1
|
Bao J, Lee BN, Wen J, Kim M, Mu S, Yang S, Davatzikos C, Long Q, Ritchie MD, Shen L. Employing Informatics Strategies in Alzheimer's Disease Research: A Review from Genetics, Multiomics, and Biomarkers to Clinical Outcomes. Annu Rev Biomed Data Sci 2024; 7:391-418. [PMID: 38848574 PMCID: PMC11525791 DOI: 10.1146/annurev-biodatasci-102423-121021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Alzheimer's disease (AD) is a critical national concern, affecting 5.8 million people and costing more than $250 billion annually. However, there is no available cure. Thus, effective strategies are in urgent need to discover AD biomarkers for disease early detection and drug development. In this review, we study AD from a biomedical data scientist perspective to discuss the four fundamental components in AD research: genetics (G), molecular multiomics (M), multimodal imaging biomarkers (B), and clinical outcomes (O) (collectively referred to as the GMBO framework). We provide a comprehensive review of common statistical and informatics methodologies for each component within the GMBO framework, accompanied by the major findings from landmark AD studies. Our review highlights the potential of multimodal biobank data in addressing key challenges in AD, such as early diagnosis, disease heterogeneity, and therapeutic development. We identify major hurdles in AD research, including data scarcity and complexity, and advocate for enhanced collaboration, data harmonization, and advanced modeling techniques. This review aims to be an essential guide for understanding current biomedical data science strategies in AD research, emphasizing the need for integrated, multidisciplinary approaches to advance our understanding and management of AD.
Collapse
Affiliation(s)
- Jingxuan Bao
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA;
| | - Brian N Lee
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA;
| | - Junhao Wen
- Laboratory of AI and Biomedical Science (LABS), Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, California, USA
| | - Mansu Kim
- AI Graduate School, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Shizhuo Mu
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA;
| | - Shu Yang
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA;
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Qi Long
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA;
| | - Marylyn D Ritchie
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA;
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA;
| |
Collapse
|
2
|
Hao X, Li J, Ma M, Qin J, Zhang D, Liu F. Hypergraph convolutional network for longitudinal data analysis in Alzheimer's disease. Comput Biol Med 2024; 168:107765. [PMID: 38042101 DOI: 10.1016/j.compbiomed.2023.107765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023]
Abstract
Alzheimer's disease (AD) is an irreversible and progressive neurodegenerative disease. Longitudinal structural magnetic resonance imaging (sMRI) data have been widely used for tracking AD pathogenesis and diagnosis. However, existing methods tend to treat each time point equally without considering the temporal characteristics of longitudinal data. In this paper, we propose a weighted hypergraph convolution network (WHGCN) to use the internal correlations among different time points and leverage high-order relationships between subjects for AD detection. Specifically, we construct hypergraphs for sMRI data at each time point using the K-nearest neighbor (KNN) method to represent relationships between subjects, and then fuse the hypergraphs according to the importance of the data at each time point to obtain the final hypergraph. Subsequently, we use hypergraph convolution to learn high-order information between subjects while performing feature dimensionality reduction. Finally, we conduct experiments on 518 subjects selected from the Alzheimer's disease neuroimaging initiative (ADNI) database, and the results show that the WHGCN can get higher AD detection performance and has the potential to improve our understanding of the pathogenesis of AD.
Collapse
Affiliation(s)
- Xiaoke Hao
- School of Artificial Intelligence, Hebei University of Technology, Tianjin, 300401, China.
| | - Jiawang Li
- School of Artificial Intelligence, Hebei University of Technology, Tianjin, 300401, China
| | - Mingming Ma
- School of Artificial Intelligence, Hebei University of Technology, Tianjin, 300401, China
| | - Jing Qin
- Centre for Smart Health, School of Nursing, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Daoqiang Zhang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China.
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
3
|
Wang R, Bashyam V, Yang Z, Yu F, Tassopoulou V, Chintapalli SS, Skampardoni I, Sreepada LP, Sahoo D, Nikita K, Abdulkadir A, Wen J, Davatzikos C. Applications of generative adversarial networks in neuroimaging and clinical neuroscience. Neuroimage 2023; 269:119898. [PMID: 36702211 PMCID: PMC9992336 DOI: 10.1016/j.neuroimage.2023.119898] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/16/2022] [Accepted: 01/21/2023] [Indexed: 01/25/2023] Open
Abstract
Generative adversarial networks (GANs) are one powerful type of deep learning models that have been successfully utilized in numerous fields. They belong to the broader family of generative methods, which learn to generate realistic data with a probabilistic model by learning distributions from real samples. In the clinical context, GANs have shown enhanced capabilities in capturing spatially complex, nonlinear, and potentially subtle disease effects compared to traditional generative methods. This review critically appraises the existing literature on the applications of GANs in imaging studies of various neurological conditions, including Alzheimer's disease, brain tumors, brain aging, and multiple sclerosis. We provide an intuitive explanation of various GAN methods for each application and further discuss the main challenges, open questions, and promising future directions of leveraging GANs in neuroimaging. We aim to bridge the gap between advanced deep learning methods and neurology research by highlighting how GANs can be leveraged to support clinical decision making and contribute to a better understanding of the structural and functional patterns of brain diseases.
Collapse
Affiliation(s)
- Rongguang Wang
- Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, USA; Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, USA.
| | - Vishnu Bashyam
- Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, USA; Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, USA
| | - Zhijian Yang
- Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, USA; Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, USA
| | - Fanyang Yu
- Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, USA; Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, USA
| | - Vasiliki Tassopoulou
- Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, USA; Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, USA
| | - Sai Spandana Chintapalli
- Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, USA; Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, USA
| | - Ioanna Skampardoni
- Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, USA; Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, USA; School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
| | - Lasya P Sreepada
- Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, USA; Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, USA
| | - Dushyant Sahoo
- Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, USA; Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, USA
| | - Konstantina Nikita
- School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
| | - Ahmed Abdulkadir
- Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, USA; Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, USA; Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Junhao Wen
- Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, USA; Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, USA
| | - Christos Davatzikos
- Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, USA; Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
4
|
El-Sappagh S, Alonso-Moral JM, Abuhmed T, Ali F, Bugarín-Diz A. Trustworthy artificial intelligence in Alzheimer’s disease: state of the art, opportunities, and challenges. Artif Intell Rev 2023. [DOI: 10.1007/s10462-023-10415-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
5
|
Gao Z, Wang Y, Huang M, Luo J, Tang S. A kernel-free fuzzy reduced quadratic surface ν-support vector machine with applications. Appl Soft Comput 2022. [DOI: 10.1016/j.asoc.2022.109390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
6
|
Zeng A, Rong H, Pan D, Jia L, Zhang Y, Zhao F, Peng S. Discovery of Genetic Biomarkers for Alzheimer's Disease Using Adaptive Convolutional Neural Networks Ensemble and Genome-Wide Association Studies. Interdiscip Sci 2021; 13:787-800. [PMID: 34410590 DOI: 10.1007/s12539-021-00470-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 07/01/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE To identify candidate neuroimaging and genetic biomarkers for Alzheimer's disease (AD) and other brain disorders, especially for little-investigated brain diseases, we advocate a data-driven approach which incorporates an adaptive classifier ensemble model acquired by integrating Convolutional Neural Network (CNN) and Ensemble Learning (EL) with Genetic Algorithm (GA), i.e., the CNN-EL-GA method, into Genome-Wide Association Studies (GWAS). METHODS Above all, a large number of CNN models as base classifiers were trained using coronal, sagittal, or transverse magnetic resonance imaging slices, respectively, and the CNN models with strong discriminability were then selected to build a single classifier ensemble with the GA for classifying AD, with the help of the CNN-EL-GA method. While the acquired classifier ensemble exhibited the highest generalization capability, the points of intersection were determined with the most discriminative coronal, sagittal, and transverse slices. Finally, we conducted GWAS on the genotype data and the phenotypes, i.e., the gray matter volumes of the top ten most discriminative brain regions, which contained the ten most points of intersection. RESULTS Six genes of PCDH11X/Y, TPTE2, LOC107985902, MUC16 and LINC01621 as well as Single-Nucleotide Polymorphisms, e.g., rs36088804, rs34640393, rs2451078, rs10496214, rs17016520, rs2591597, rs9352767 and rs5941380, were identified. CONCLUSION This approach overcomes the limitations associated with the impact of subjective factors and dependence on prior knowledge while adaptively achieving more robust and effective candidate biomarkers in a data-driven way. SIGNIFICANCE The approach is promising to facilitate discovering effective candidate genetic biomarkers for brain disorders, as well as to help improve the effectiveness of identified candidate neuroimaging biomarkers for brain diseases.
Collapse
Affiliation(s)
- An Zeng
- Faculty of Computer, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Huabin Rong
- Faculty of Computer, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Dan Pan
- School of Electronics and Information, Guangdong Polytechnic Normal University, Guangzhou, 510665, People's Republic of China.
| | - Longfei Jia
- Faculty of Computer, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Yiqun Zhang
- Faculty of Computer, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Fengyi Zhao
- Faculty of Computer, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Shaoliang Peng
- College of Computer Science and Electronic Engineering, Hunan University, School of Computer Science, National University of Defense Technology, Peng Cheng Lab, Shenzhen, 518000, People's Republic of China.
| |
Collapse
|
7
|
Zhang J, Liu M, Lu K, Gao Y. Group-Wise Learning for Aurora Image Classification With Multiple Representations. IEEE TRANSACTIONS ON CYBERNETICS 2021; 51:4112-4124. [PMID: 30932858 DOI: 10.1109/tcyb.2019.2903591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In conventional aurora image classification methods, it is general to employ only one single feature representation to capture the morphological characteristics of aurora images, which is difficult to describe the complicated morphologies of different aurora categories. Although several studies have proposed to use multiple feature representations, the inherent correlation among these representations are usually neglected. To address this problem, we propose a group-wise learning (GWL) method for the automatic aurora image classification using multiple representations. Specifically, we first extract the multiple feature representations for aurora images, and then construct a graph in each of multiple feature spaces. To model the correlation among different representations, we partition multiple graphs into several groups via a clustering algorithm. We further propose a GWL model to automatically estimate class labels for aurora images and optimal weights for the multiple representations in a data-driven manner. Finally, we develop a label fusion approach to make a final classification decision for new testing samples. The proposed GWL method focuses on the diverse properties of multiple feature representations, by clustering the correlated representations into the same group. We evaluate our method on an aurora image data set that contains 12 682 aurora images from 19 days. The experimental results demonstrate that the proposed GWL method achieves approximately 6% improvement in terms of classification accuracy, compared to the methods using a single feature representation.
Collapse
|
8
|
Sharma R, Goel T, Tanveer M, Dwivedi S, Murugan R. FAF-DRVFL: Fuzzy activation function based deep random vector functional links network for early diagnosis of Alzheimer disease. Appl Soft Comput 2021. [DOI: 10.1016/j.asoc.2021.107371] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
9
|
Dong A, Li Z, Wang M, Shen D, Liu M. High-Order Laplacian Regularized Low-Rank Representation for Multimodal Dementia Diagnosis. Front Neurosci 2021; 15:634124. [PMID: 33776639 PMCID: PMC7994898 DOI: 10.3389/fnins.2021.634124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/25/2021] [Indexed: 11/15/2022] Open
Abstract
Multimodal heterogeneous data, such as structural magnetic resonance imaging (MRI), positron emission tomography (PET), and cerebrospinal fluid (CSF), are effective in improving the performance of automated dementia diagnosis by providing complementary information on degenerated brain disorders, such as Alzheimer's prodromal stage, i.e., mild cognitive impairment. Effectively integrating multimodal data has remained a challenging problem, especially when these heterogeneous data are incomplete due to poor data quality and patient dropout. Besides, multimodal data usually contain noise information caused by different scanners or imaging protocols. The existing methods usually fail to well handle these heterogeneous and noisy multimodal data for automated brain dementia diagnosis. To this end, we propose a high-order Laplacian regularized low-rank representation method for dementia diagnosis using block-wise missing multimodal data. The proposed method was evaluated on 805 subjects (with incomplete MRI, PET, and CSF data) from the real Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. Experimental results suggest the effectiveness of our method in three tasks of brain disease classification, compared with the state-of-the-art methods.
Collapse
Affiliation(s)
- Aimei Dong
- School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Science), Jinan, China
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Zhigang Li
- School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Science), Jinan, China
| | - Mingliang Wang
- College of Computer Science and Technology, Nanjing University of Aeronautics & Astronautics, Nanjing, China
| | - Dinggang Shen
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
- Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
- Department of Artificial Intelligence, Korea University, Seoul, South Korea
| | - Mingxia Liu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
10
|
Yang P, Zhou F, Ni D, Xu Y, Chen S, Wang T, Lei B. Fused Sparse Network Learning for Longitudinal Analysis of Mild Cognitive Impairment. IEEE TRANSACTIONS ON CYBERNETICS 2021; 51:233-246. [PMID: 31567112 DOI: 10.1109/tcyb.2019.2940526] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with an irreversible and progressive process. To understand the brain functions and identify the biomarkers of AD and early stages of the disease [also known as, mild cognitive impairment (MCI)], it is crucial to build the brain functional connectivity network (BFCN) using resting-state functional magnetic resonance imaging (rs-fMRI). Existing methods have been mainly developed using only a single time-point rs-fMRI data for classification. In fact, multiple time-point data is more effective than a single time-point data in diagnosing brain diseases by monitoring the disease progression patterns using longitudinal analysis. In this article, we utilize multiple rs-fMRI time-point to identify early MCI (EMCI) and late MCI (LMCI), by integrating the fused sparse network (FSN) model with parameter-free centralized (PFC) learning. Specifically, we first construct the FSN framework by building multiple time-point BFCNs. The multitask learning via PFC is then leveraged for longitudinal analysis of EMCI and LMCI. Accordingly, we can jointly learn the multiple time-point features constructed from the BFCN model. The proposed PFC method can automatically balance the contributions of different time-point information via learned specific and common features. Finally, the selected multiple time-point features are fused by a similarity network fusion (SNF) method. Our proposed method is evaluated on the public AD neuroimaging initiative phase-2 (ADNI-2) database. The experimental results demonstrate that our method can achieve quite promising performance and outperform the state-of-the-art methods.
Collapse
|
11
|
Wang M, Hao X, Huang J, Wang K, Shen L, Xu X, Zhang D, Liu M. Hierarchical Structured Sparse Learning for Schizophrenia Identification. Neuroinformatics 2020; 18:43-57. [PMID: 31016571 DOI: 10.1007/s12021-019-09423-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fractional amplitude of low-frequency fluctuation (fALFF) has been widely used for resting-state functional magnetic resonance imaging (rs-fMRI) based schizophrenia (SZ) diagnosis. However, previous studies usually measure the fALFF within low-frequency fluctuation (from 0.01 to 0.08Hz), which cannot fully cover the complex neural activity pattern in the resting-state brain. In addition, existing studies usually ignore the fact that each specific frequency band can delineate the unique spontaneous fluctuations of neural activities in the brain. Accordingly, in this paper, we propose a novel hierarchical structured sparse learning method to sufficiently utilize the specificity and complementary structure information across four different frequency bands (from 0.01Hz to 0.25Hz) for SZ diagnosis. The proposed method can help preserve the partial group structures among multiple frequency bands and the specific characters in each frequency band. We further develop an efficient optimization algorithm to solve the proposed objective function. We validate the efficacy of our proposed method on a real SZ dataset. Also, to demonstrate the generality of the method, we apply our proposed method on a subset of Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Experimental results on both datasets demonstrate that our proposed method achieves promising performance in brain disease classification, compared with several state-of-the-art methods.
Collapse
Affiliation(s)
- Mingliang Wang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing, China.,The State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an, Shaanxi, China
| | - Xiaoke Hao
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing, China
| | - Jiashuang Huang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing, China
| | - Kangcheng Wang
- Department of Psychology, Southwest University, Chongqing, China
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xijia Xu
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.
| | - Daoqiang Zhang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing, China.
| | - Mingxia Liu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
12
|
A novel conversion prediction method of MCI to AD based on longitudinal dynamic morphological features using ADNI structural MRIs. J Neurol 2020; 267:2983-2997. [PMID: 32500373 DOI: 10.1007/s00415-020-09890-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 12/23/2022]
Abstract
Mild cognitive impairment (MCI) is a pre-existing state of Alzheimer's disease (AD). An accurate prediction on the conversion from MCI to AD is of vital clinical significance for potential prevention and treatment of AD. Longitudinal studies received widespread attention for investigating the disease progression, though most studies did not sufficiently utilize the evolution information. In this paper, we proposed a cerebral similarity network with more progression information to predict the conversion from MCI to AD efficiently. First, we defined the new dynamic morphological feature to mine longitudinal information sufficiently. Second, based on the multiple dynamic morphological features the cerebral similarity network was constructed by sparse regression algorithm with optimized parameters to obtain better prediction performance. Then, leave-one-out cross-validation and support vector machine (SVM) were employed for the training and evaluation of the classifiers. The proposed methodology obtained a high accuracy of 92.31% (Sensitivity = 100%, Specificity = 82.86%) in a three-year ahead prediction of MCI to AD conversion. Experiment results suggest the effectiveness of the dynamic morphological feature, serving as a more sensitive biomarker in the prediction of MCI conversion.
Collapse
|
13
|
Martí-Juan G, Sanroma-Guell G, Piella G. A survey on machine and statistical learning for longitudinal analysis of neuroimaging data in Alzheimer's disease. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 189:105348. [PMID: 31995745 DOI: 10.1016/j.cmpb.2020.105348] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/10/2020] [Accepted: 01/18/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND OBJECTIVES Recently, longitudinal studies of Alzheimer's disease have gathered a substantial amount of neuroimaging data. New methods are needed to successfully leverage and distill meaningful information on the progression of the disease from the deluge of available data. Machine learning has been used successfully for many different tasks, including neuroimaging related problems. In this paper, we review recent statistical and machine learning applications in Alzheimer's disease using longitudinal neuroimaging. METHODS We search for papers using longitudinal imaging data, focused on Alzheimer's Disease and published between 2007 and 2019 on four different search engines. RESULTS After the search, we obtain 104 relevant papers. We analyze their approach to typical challenges in longitudinal data analysis, such as missing data and variability in the number and extent of acquisitions. CONCLUSIONS Reviewed works show that machine learning methods using longitudinal data have potential for disease progression modelling and computer-aided diagnosis. We compare results and models, and propose future research directions in the field.
Collapse
Affiliation(s)
- Gerard Martí-Juan
- BCN Medtech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain.
| | | | - Gemma Piella
- BCN Medtech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
14
|
Wang L, Liu Y, Zeng X, Cheng H, Wang Z, Wang Q. Region-of-Interest based sparse feature learning method for Alzheimer's disease identification. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 187:105290. [PMID: 31927305 DOI: 10.1016/j.cmpb.2019.105290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE In recent years, some clinical parameters, such as the volume of gray matter (GM) and cortical thickness, have been used as anatomical features to identify Alzheimer's disease (AD) from Healthy Controls (HC) in some feature-based machine learning methods. However, fewer image-based feature parameters have been proposed, which are equivalent to these clinical parameters, to describe the atrophy of regions-of-interest (ROIs) of the brain. In this study, we aim to extract effective image-based feature parameters to improve the diagnostic performance of AD with magnetic resonance imaging (MRI) data. METHODS A new subspace-based sparse feature learning method is proposed, which builds a union-of-subspace representation model to realize feature extraction and disease identification. Specifically, the proposed method estimates feature dimensions reasonably, at the same time, it protects local features for the specified ROIs of the brain, and realizes image-based feature extraction and classification automatically instead of computing the volume of GM or cortical thickness preliminarily. RESULTS Experimental results illustrate the effectiveness and robustness of the proposed method on feature extraction and classification, which are based on the sampled clinical dataset from Peking University Third Hospital of China and the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. The extracted image-based feature parameters describe the atrophy of ROIs of the brain well as clinical parameters but show better performance in AD identification than clinical parameters. Based on them, the important ROIs for AD identification can be identified even for correlated variables. CONCLUSION The extracted features and the proposed identification parameters show high correlation with the volume of GM and the clinical mini-mental state examination (MMSE) score respectively. The proposed method will be useful in denoting the changes of cerebral pathology and cognitive function in AD patients.
Collapse
Affiliation(s)
- Ling Wang
- Center for Robotics, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Yan Liu
- School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing, 100049 China.
| | - Xiangzhu Zeng
- Department of Radiology, Peking University Third Hospital, Beijing, 100191 China.
| | - Hong Cheng
- Center for Robotics, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Zheng Wang
- Department of Radiology, Peking University Third Hospital, Beijing, 100191 China
| | - Qiang Wang
- Beijing Union University, Beijing, 100101 China
| |
Collapse
|
15
|
Wang M, Zhang D, Huang J, Yap PT, Shen D, Liu M. Identifying Autism Spectrum Disorder With Multi-Site fMRI via Low-Rank Domain Adaptation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:644-655. [PMID: 31395542 PMCID: PMC7169995 DOI: 10.1109/tmi.2019.2933160] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that is characterized by a wide range of symptoms. Identifying biomarkers for accurate diagnosis is crucial for early intervention of ASD. While multi-site data increase sample size and statistical power, they suffer from inter-site heterogeneity. To address this issue, we propose a multi-site adaption framework via low-rank representation decomposition (maLRR) for ASD identification based on functional MRI (fMRI). The main idea is to determine a common low-rank representation for data from the multiple sites, aiming to reduce differences in data distributions. Treating one site as a target domain and the remaining sites as source domains, data from these domains are transformed (i.e., adapted) to a common space using low-rank representation. To reduce data heterogeneity between the target and source domains, data from the source domains are linearly represented in the common space by those from the target domain. We evaluated the proposed method on both synthetic and real multi-site fMRI data for ASD identification. The results suggest that our method yields superior performance over several state-of-the-art domain adaptation methods.
Collapse
Affiliation(s)
- Mingliang Wang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing 211106, China
| | - Daoqiang Zhang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing 211106, China
| | - Jiashuang Huang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing 211106, China
| | - Pew-Thian Yap
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina 27599, USA
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina 27599, USA
- Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Mingxia Liu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
16
|
Ramirez-Bautista JA, Huerta-Ruelas JA, Kóczy LT, Hatwágner MF, Chaparro-Cárdenas SL, Hernández-Zavala A. Classification of plantar foot alterations by fuzzy cognitive maps against multi-layer perceptron neural network. Biocybern Biomed Eng 2020. [DOI: 10.1016/j.bbe.2019.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Zhou T, Liu M, Thung KH, Shen D. Latent Representation Learning for Alzheimer's Disease Diagnosis With Incomplete Multi-Modality Neuroimaging and Genetic Data. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:2411-2422. [PMID: 31021792 PMCID: PMC8034601 DOI: 10.1109/tmi.2019.2913158] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The fusion of complementary information contained in multi-modality data [e.g., magnetic resonance imaging (MRI), positron emission tomography (PET), and genetic data] has advanced the progress of automated Alzheimer's disease (AD) diagnosis. However, multi-modality based AD diagnostic models are often hindered by the missing data, i.e., not all the subjects have complete multi-modality data. One simple solution used by many previous studies is to discard samples with missing modalities. However, this significantly reduces the number of training samples, thus leading to a sub-optimal classification model. Furthermore, when building the classification model, most existing methods simply concatenate features from different modalities into a single feature vector without considering their underlying associations. As features from different modalities are often closely related (e.g., MRI and PET features are extracted from the same brain region), utilizing their inter-modality associations may improve the robustness of the diagnostic model. To this end, we propose a novel latent representation learning method for multi-modality based AD diagnosis. Specifically, we use all the available samples (including samples with incomplete modality data) to learn a latent representation space. Within this space, we not only use samples with complete multi-modality data to learn a common latent representation, but also use samples with incomplete multi-modality data to learn independent modality-specific latent representations. We then project the latent representations to the label space for AD diagnosis. We perform experiments using 737 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, and the experimental results verify the effectiveness of our proposed method.
Collapse
Affiliation(s)
- Tao Zhou
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
- Inception Institute of Artificial Intelligence, Abu Dhabi 51133, United Arab Emirates
| | - Mingxia Liu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Kim-Han Thung
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Dinggang Shen
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
- Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
18
|
Longitudinal score prediction for Alzheimer's disease based on ensemble correntropy and spatial-temporal constraint. Brain Imaging Behav 2019; 13:126-137. [PMID: 29582337 DOI: 10.1007/s11682-018-9834-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Neuroimaging data has been widely used to predict clinical scores for automatic diagnosis of Alzheimer's disease (AD). For accurate clinical score prediction, one of the major challenges is high feature dimension of the imaging data. To address this issue, this paper presents an effective framework using a novel feature selection model via sparse learning. In contrast to previous approaches focusing on a single time point, this framework uses information at multiple time points. Specifically, a regularized correntropy with the spatial-temporal constraint is used to reduce the adverse effect of noise and outliers, and promote consistent and robust selection of features by exploring data characteristics. Furthermore, ensemble learning of support vector regression (SVR) is exploited to accurately predict AD scores based on the selected features. The proposed approach is extensively evaluated on the Alzheimer's disease neuroimaging initiative (ADNI) dataset. Our experiments demonstrate that the proposed approach not only achieves promising regression accuracy, but also successfully recognizes disease-related biomarkers.
Collapse
|
19
|
Wang M, Zhang D, Shen D, Liu M. Multi-task exclusive relationship learning for alzheimer's disease progression prediction with longitudinal data. Med Image Anal 2019; 53:111-122. [PMID: 30763830 PMCID: PMC6397780 DOI: 10.1016/j.media.2019.01.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 01/21/2019] [Accepted: 01/26/2019] [Indexed: 11/23/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive impairment of memory and other cognitive functions. Currently, many multi-task learning approaches have been proposed to predict the disease progression at the early stage using longitudinal data, with each task corresponding to a particular time point. However, the underlying association among different time points in disease progression is still under-explored in previous studies. To this end, we propose a multi-task exclusive relationship learning model to automatically capture the intrinsic relationship among tasks at different time points for estimating clinical measures based on longitudinal imaging data. The proposed method can select the most discriminative features for different tasks and also model the intrinsic relatedness among different time points, by utilizing an exclusive lasso regularization and a relationship induced regularization. Specifically, the exclusive lasso regularization enables partial group structure feature selection among the longitudinal data, while the relationship induced regularization efficiently introduces the relationship information from data to guide knowledge transfer. We further develop an efficient optimization algorithm to solve the proposed objective function. Extensive experiments on both synthetic and real datasets demonstrate the effectiveness of our proposed method. In comparison with several state-of-the-art methods, our proposed method can achieve promising performance for cognitive status prediction and also can help discover disease-related biomarkers.
Collapse
Affiliation(s)
- Mingliang Wang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
| | - Daoqiang Zhang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA.
| | - Mingxia Liu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA.
| |
Collapse
|
20
|
Sakai K, Yamada K. Machine learning studies on major brain diseases: 5-year trends of 2014–2018. Jpn J Radiol 2018; 37:34-72. [DOI: 10.1007/s11604-018-0794-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 11/14/2018] [Indexed: 12/17/2022]
|
21
|
Sutton M, Thiébaut R, Liquet B. Sparse partial least squares with group and subgroup structure. Stat Med 2018; 37:3338-3356. [PMID: 29888397 DOI: 10.1002/sim.7821] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/08/2018] [Accepted: 04/19/2018] [Indexed: 11/07/2022]
Abstract
Integrative analysis of high dimensional omics datasets has been studied by many authors in recent years. By incorporating prior known relationships among the variables, these analyses have been successful in elucidating the relationships between different sets of omics data. In this article, our goal is to identify important relationships between genomic expression and cytokine data from a human immunodeficiency virus vaccine trial. We proposed a flexible partial least squares technique, which incorporates group and subgroup structure in the modelling process. Our new method accounts for both grouping of genetic markers (eg, gene sets) and temporal effects. The method generalises existing sparse modelling techniques in the partial least squares methodology and establishes theoretical connections to variable selection methods for supervised and unsupervised problems. Simulation studies are performed to investigate the performance of our methods over alternative sparse approaches. Our R package sgspls is available at https://github.com/matt-sutton/sgspls.
Collapse
Affiliation(s)
- Matthew Sutton
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of Technology, Brisbane, Australia
| | - Rodolphe Thiébaut
- Inria, SISTM, Talence and Inserm, U1219 Bordeaux University, Bordeaux, France
- Vaccine Research Institute, Creteil, France
| | - Benoît Liquet
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of Technology, Brisbane, Australia
- Université de Pau et des Pays de l'Adour, Laboratoire de Mathematiques et de leurs Applications, UMR CNRS 5142, Pau, France
| |
Collapse
|
22
|
Hao X, Li C, Yan J, Yao X, Risacher SL, Saykin AJ, Shen L, Zhang D. Identification of associations between genotypes and longitudinal phenotypes via temporally-constrained group sparse canonical correlation analysis. Bioinformatics 2018; 33:i341-i349. [PMID: 28881979 PMCID: PMC5870577 DOI: 10.1093/bioinformatics/btx245] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Motivation Neuroimaging genetics identifies the relationships between genetic variants (i.e., the single nucleotide polymorphisms) and brain imaging data to reveal the associations from genotypes to phenotypes. So far, most existing machine-learning approaches are widely used to detect the effective associations between genetic variants and brain imaging data at one time-point. However, those associations are based on static phenotypes and ignore the temporal dynamics of the phenotypical changes. The phenotypes across multiple time-points may exhibit temporal patterns that can be used to facilitate the understanding of the degenerative process. In this article, we propose a novel temporally constrained group sparse canonical correlation analysis (TGSCCA) framework to identify genetic associations with longitudinal phenotypic markers. Results The proposed TGSCCA method is able to capture the temporal changes in brain from longitudinal phenotypes by incorporating the fused penalty, which requires that the differences between two consecutive canonical weight vectors from adjacent time-points should be small. A new efficient optimization algorithm is designed to solve the objective function. Furthermore, we demonstrate the effectiveness of our algorithm on both synthetic and real data (i.e., the Alzheimer’s Disease Neuroimaging Initiative cohort, including progressive mild cognitive impairment, stable MCI and Normal Control participants). In comparison with conventional SCCA, our proposed method can achieve strong associations and discover phenotypic biomarkers across multiple time-points to guide disease-progressive interpretation. Availability and implementation The Matlab code is available at https://sourceforge.net/projects/ibrain-cn/files/.
Collapse
Affiliation(s)
- Xiaoke Hao
- School of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Chanxiu Li
- School of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Jingwen Yan
- Department of Radiology and Imaging Sciences, School of Medicine, Indiana University, Indianapolis, IN, USA.,School of Informatics and Computing, Indiana University, Indianapolis, IN, USA
| | - Xiaohui Yao
- Department of Radiology and Imaging Sciences, School of Medicine, Indiana University, Indianapolis, IN, USA.,School of Informatics and Computing, Indiana University, Indianapolis, IN, USA
| | - Shannon L Risacher
- Department of Radiology and Imaging Sciences, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Li Shen
- Department of Radiology and Imaging Sciences, School of Medicine, Indiana University, Indianapolis, IN, USA.,School of Informatics and Computing, Indiana University, Indianapolis, IN, USA
| | - Daoqiang Zhang
- School of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | | |
Collapse
|
23
|
Yang P, Ni D, Chen S, Wang T, Wu D, Lei B. Multi-task fused sparse learning for mild cognitive impairment identification. Technol Health Care 2018; 26:437-448. [PMID: 29710750 PMCID: PMC6004967 DOI: 10.3233/thc-174587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Brain functional connectivity network (BFCN) has been widely applied to identify biomarkers for the brain function understanding and brain diseases analysis. OBJECTIVE Building a biologically meaningful brain network is a crucial work in these applications. For this task, sparse learning has been widely applied for the network construction. If multiple time-point data is added to the brain imaging application, the disease progression pattern in the longitudinal analysis can be better revealed. METHODS A novel longitudinal analysis for MCI classification is devised based on resting-state functional magnetic resonating imaging (rs-fMRI). Specifically, this paper proposes a novel multi-task learning method to integrate fused penalty by regularization. In addition, a novel objective function is developed for fused sparse learning via smoothness constraint. RESULTS The proposed method achieves the best classification performance with an accuracy of 95.74% for baseline and 93.64% for year 1 data. CONCLUSIONS The experimental results show that our proposed method achieves quite promising classification performance.
Collapse
Affiliation(s)
- Peng Yang
- School of Biomedical Engineering, Shenzhen University, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen, Guangdong, China
| | - Dong Ni
- School of Biomedical Engineering, Shenzhen University, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen, Guangdong, China
| | - Siping Chen
- School of Biomedical Engineering, Shenzhen University, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen, Guangdong, China
| | - Tianfu Wang
- School of Biomedical Engineering, Shenzhen University, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen, Guangdong, China
| | - Donghui Wu
- Department of Geriatric Psychiatry, Shenzhen Kangning Hospital, and Shenzhen Mental Health Center, Shenzhen, Guangdong, China
| | - Baiying Lei
- School of Biomedical Engineering, Shenzhen University, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen, Guangdong, China
| |
Collapse
|
24
|
Gong J, Liu X, Liu T, Zhou J, Sun G, Tian J. Dual Temporal and Spatial Sparse Representation for Inferring Group-Wise Brain Networks From Resting-State fMRI Dataset. IEEE Trans Biomed Eng 2017; 65:1035-1048. [PMID: 28796604 DOI: 10.1109/tbme.2017.2737785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Recently, sparse representation has been successfully used to identify brain networks from task-based fMRI dataset. However, when using the strategy to analyze resting-state fMRI dataset, it is still a challenge to automatically infer the group-wise brain networks under consideration of group commonalities and subject-specific characteristics. In the paper, a novel method based on dual temporal and spatial sparse representation (DTSSR) is proposed to meet this challenge. First, the brain functional networks with subject-specific characteristics are obtained via sparse representation with online dictionary learning for the fMRI time series (temporal domain) of each subject. Next, based on the current brain science knowledge, a simple mathematical model is proposed to describe the complex nonlinear dynamic coupling mechanism of the brain networks, with which the group-wise intrinsic connectivity networks (ICNs) can be inferred by sparse representation for these brain functional networks (spatial domain) of all subjects. Experiments on Leiden_2180 dataset show that most group-wise ICNs obtained by the proposed DTSSR are interpretable by current brain science knowledge and are consistent with previous literature reports. The robustness of DTSSR and the reproducibility of the results are demonstrated by experiments on three different datasets (Leiden_2180, Leiden_2200, and our own dataset). The present work also shed new light on exploring the coupling mechanism of brain networks from perspective of information science.
Collapse
|