1
|
Pryor EC, El Fathi A, Breton MD. Accounting for Hypoglycemia Treatments in Continuous Glucose Metrics. J Diabetes Sci Technol 2025:19322968251329952. [PMID: 40186497 PMCID: PMC11977617 DOI: 10.1177/19322968251329952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
Abstract
BACKGROUND Continuous glucose monitoring (CGM) is increasingly used in the management of diabetes, providing dense data for patients and clinical providers to review and identify patterns and trends in blood glucose. However, behavioral factors like hypoglycemia treatments (HTs) are not captured in CGM data. Hypoglycemia treatments, by definition, reduce the visibility (frequency and duration) of hypoglycemia exposure recorded by CGM, which can lead to errors in treatment management when relying solely on CGM metrics. METHODS We propose a method to incorporate HTs into CGM-based metrics and standardize hypoglycemia exposure quantification for a variety of HT behaviors; specifically (1) treatment proactiveness and (2) potential severity of the avoided hypoglycemia. In addition, we introduce an HT detector to identify instances of HT using in CGM data that otherwise lack HT documentation. We then use the HT-modified hypoglycemia metrics in a previously published run-to-run treatment adaptation system using CGM-based metrics. RESULTS Using in-silico data to correct time-below-range with HT, we reconstruct the avoided hypoglycemia exposure with high fidelity (R2 = .94). Our HT detector has an F1 score of 0.72 on clinical data with labeled HT. In the example run-to-run application, we reduce the average number of HT per day from 3.3 in the HT-unaware system to 1.6, while maintaining 84% time in 70 to 180 mg/dL. CONCLUSION This new metric integrates HT behaviors into CGM-based analysis, offering a behavior-sensitive measure of hypoglycemia exposure for more robust T1D management. Our results show that HT can be seamlessly incorporated into existing CGM methods, enhancing treatment insights by accounting for HT variability.
Collapse
Affiliation(s)
- Elliott C. Pryor
- Center for Diabetes Technology, University of Virginia, Charlottesville, VA, USA
| | - Anas El Fathi
- Center for Diabetes Technology, University of Virginia, Charlottesville, VA, USA
| | - Marc D. Breton
- Center for Diabetes Technology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
2
|
Diaz C. JL, Colmegna P, Pryor E, Breton MD. A Performance-Based Adaptation Index for Automated Insulin Delivery Systems. J Diabetes Sci Technol 2025:19322968251315499. [PMID: 39910927 PMCID: PMC11803600 DOI: 10.1177/19322968251315499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
BACKGROUND Automated insulin delivery (AID) algorithms can benefit from tuning of their aggressiveness to meet individual needs, as insulin requirements vary among and within users. We introduce the Performance-Based Adaptation Index (PAI), a tool designed to enable automatic adjustment of an AID system aggressiveness based on continuous glucose monitoring (CGM) metrics. METHODS PAI integrates two CGM-based metrics-one for hypoglycemia and another for hyperglycemia exposure-over a previous time window into a single index (α θ ). We propose two methods to compute α θ : one based on time in range (TIR, 70-180 mg/dL), and the other on glycemic risk indices. Using α θ , we developed a multiplicative strategy to adjust the AID system's aggressiveness, accounting for situations where α θ cannot be reliably calculated. The feasibility of this method was assessed in-silico using the UVA/Padova Type 1 Diabetes Simulator and our full closed-loop algorithm (UVA-model predictive control (MPC)) across five scenarios: optimal tuning (baseline), conservative and aggressive tunings, and temporary and permanent changes in insulin needs. Glycemic outcomes were evaluated from the simulated glucose traces. RESULTS Negligible performance variations were observed in the baseline scenario. For the conservative scenario, adjusting α θ improved TIR (35.1% vs 71.8%) and increased total daily insulin (32.1 U vs 41.2 U). Conversely, for the aggressive scenario, it reduced hypoglycemia exposure (TBR: 2.6% vs 1.4%) and overall insulin usage (45.6 U vs 43.0 U). CONCLUSION In-silico results demonstrated the safety and efficacy of using PAI to automatically tune the UVA-MPC controller, achieving TIR values above 70% under fully closed-loop conditions and across various physiological states. Clinical validation of these results is warranted.
Collapse
Affiliation(s)
- Jenny L. Diaz C.
- Center for Diabetes Technology, School of Medicine, University of Virginia, Charlottesville, VA, USA
- Insulet Co., Acton, MA, USA
| | - Patricio Colmegna
- Center for Diabetes Technology, School of Medicine, University of Virginia, Charlottesville, VA, USA
- Dexcom Inc, San Diego, CA, USA
| | - Elliot Pryor
- Center for Diabetes Technology, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Marc D. Breton
- Center for Diabetes Technology, School of Medicine, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
3
|
Lv W, Wu T, Xiong L, Wu L, Zhou J, Tang Y, Qian F. Hybrid Control Policy for Artificial Pancreas via Ensemble Deep Reinforcement Learning. IEEE Trans Biomed Eng 2025; 72:309-323. [PMID: 39208051 DOI: 10.1109/tbme.2024.3451712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
OBJECTIVE The artificial pancreas (AP) shows promise for closed-loop glucose control in type 1 diabetes mellitus (T1DM). However, designing effective control policies for the AP remains challenging due to complex physiological processes, delayed insulin response, and inaccurate glucose measurements. While model predictive control (MPC) offers safety and stability through the dynamic model and safety constraints, it lacks individualization and is adversely affected by unannounced meals. Conversely, deep reinforcement learning (DRL) provides personalized and adaptive strategies but struggles with distribution shifts and substantial data requirements. METHODS We propose a hybrid control policy for the artificial pancreas (HyCPAP) to address the above challenges. HyCPAP combines an MPC policy with an ensemble DRL policy, leveraging the strengths of both policies while compensating for their respective limitations. To facilitate faster deployment of AP systems in real-world settings, we further incorporate meta-learning techniques into HyCPAP, leveraging previous experience and patient-shared knowledge to enable fast adaptation to new patients with limited available data. RESULTS We conduct extensive experiments using the UVA/Padova T1DM simulator across five scenarios. Our approaches achieve the highest percentage of time spent in the desired range and the lowest occurrences of hypoglycemia. CONCLUSION The results clearly demonstrate the superiority of our methods for closed-loop glucose management in individuals with T1DM. SIGNIFICANCE The study presents novel control policies for AP systems, affirming their great potential for efficient closed-loop glucose control.
Collapse
|
4
|
Campanella S, Paragliola G, Cherubini V, Pierleoni P, Palma L. Towards Personalized AI-Based Diabetes Therapy: A Review. IEEE J Biomed Health Inform 2024; 28:6944-6957. [PMID: 39137085 DOI: 10.1109/jbhi.2024.3443137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Insulin pumps and other smart devices have recently made significant advancements in the treatment of diabetes, a disorder that affects people all over the world. The development of medical AI has been influenced by AI methods designed to help physicians make diagnoses, choose a course of therapy, and predict outcomes. In this article, we thoroughly analyse how AI is being used to enhance and personalize diabetes treatment. The search turned up 77 original research papers, from which we've selected the most crucial information regarding the learning models employed, the data typology, the deployment stage, and the application domains. We identified two key trends, enabled mostly by AI: patient-based therapy personalization and therapeutic algorithm optimization. In the meanwhile, we point out various shortcomings in the existing literature, like a lack of multimodal database analysis or a lack of interpretability. The rapid improvements in AI and the expansion of the amount of data already available offer the possibility to overcome these difficulties shortly and enable a wider deployment of this technology in clinical settings.
Collapse
|
5
|
Serafini MC, Rosales N, Garelli F. Auto adaptation of closed-loop insulin delivery system using continuous reward functions and incremental discretization. Comput Methods Biomech Biomed Engin 2024; 27:1375-1386. [PMID: 37545465 DOI: 10.1080/10255842.2023.2241945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/07/2023] [Accepted: 07/20/2023] [Indexed: 08/08/2023]
Abstract
Several closed or hybrid loop controllers for Blood Glucose (BG) regulation, which are also known as Artificial Pancreas (AP) Systems or Automated Insulin Delivery systems (AIDs), are in development worldwide. Most AIDs are designed and evaluated for short-term performance, with a particular emphasis on the post-meal period. However, if controllers are not adapted properly to account for variations in physiology that affect Insulin Sensitivity (IS), the AIDs may perform inadequately. In this work, the performance of two Reinforcement Learning (RL) agents trained under both piecewise and continuous reward functions is evaluated in-silico for long-term adaptation of a Fully Automated Insulin Delivery (fAID) system. An automatic adaptive discretization scheme that expands the state space as needed is also implemented to avoid disproportionate state space exploration. The proposed agents are evaluated for long-term adaptation of the Automatic Regulation of Glucose (ARG) algorithm, considering variations in IS. Results show that both RL agents have improved performance compared to a rule-based decision-making approach and the baseline controller for the majority of the adult population. Moreover, the use of a continuous shaped reward function proves to enhance the performance of the agents further than a piecewise one.
Collapse
Affiliation(s)
- Maria Cecilia Serafini
- Grupo de Control Aplicado, Instituto LEICI (UNLP-CONICET), Facultad de Ingeniería, Universidad Nacional de La Plata, Argentina
| | - Nicolas Rosales
- Grupo de Control Aplicado, Instituto LEICI (UNLP-CONICET), Facultad de Ingeniería, Universidad Nacional de La Plata, Argentina
| | - Fabricio Garelli
- Grupo de Control Aplicado, Instituto LEICI (UNLP-CONICET), Facultad de Ingeniería, Universidad Nacional de La Plata, Argentina
| |
Collapse
|
6
|
Bonet J, Barbieri E, Santoro N, Dalla Man C. Modeling Glucose, Insulin, C-Peptide, and Lactate Interplay in Adolescents During an Oral Glucose Tolerance Test. J Diabetes Sci Technol 2024:19322968241266825. [PMID: 39076151 PMCID: PMC11572107 DOI: 10.1177/19322968241266825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
BACKGROUND Lactate is not considered just a "waste product" of anaerobic glycolysis anymore. It has been proved to play a key role in several metabolic diseases, such as in the metabolic dysfunction-associated steatotic liver disease, obesity, and diabetes. The capability of simulating glucose-insulin-lactate interaction would be useful to design and test drugs targeting lactate metabolism in such pathological conditions. Minimal models are available, which describe and quantify glucose-lactate interaction but models to simulate postprandial glucose-insulin-C-peptide-lactate time courses are missing. The aim of this study is to fill this gap. METHODS Starting from the Padova Type 2 Diabetes Simulator (T2DS), we first added a description of glucose-lactate kinetics and then created a population of 100 in silico subjects to match glucose-insulin-C-peptide-lactate data of 44 adolescents with/without obesity who underwent a standard oral glucose tolerance test (OGTT) of 75 g. RESULTS The developed model accurately predicts all molecules time courses, guaranteeing precise model parameter estimates (percent coefficient of variation [CV%] median [25th-75th percentile] = 19 [9-29]%). The generated in silico population shows good agreement with the clinical data in terms of area under the curve (AUC) (P = .6, .6, .9, .6 for glucose, insulin, C-peptide, and lactate, respectively) and parameter distributions (P > .1). CONCLUSIONS We have developed a simulator to describe glucose, insulin, C-peptide, and lactate kinetics during an OGTT, which captures the behavior of a real population of adolescents with/without obesity both in terms of average and intersubject variability. Such simulator can be used to investigate the pharmacodynamics of drugs targeting lactate metabolic pathway in various pathological conditions.
Collapse
Affiliation(s)
- Jacopo Bonet
- Department of Information Engineering, University of Padua, Padova, Italy
| | - Emiliano Barbieri
- Section of Pediatrics, Department of Translational Sciences, University of Naples Federico II, Napoli, Italy
| | - Nicola Santoro
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
- Department of Medicine and Health Sciences, “V. Tiberio” University of Molise, Campobasso, Italy
| | - Chiara Dalla Man
- Department of Information Engineering, University of Padua, Padova, Italy
| |
Collapse
|
7
|
Visentin R, Schiavon M, Bonet J, Riz M, Wagenhuber B, Man CD. Tailoring the Padova Type 2 Diabetes Simulator for Treatment Guidance in Target Populations. IEEE Trans Biomed Eng 2024; 71:1780-1788. [PMID: 38198258 DOI: 10.1109/tbme.2024.3352153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
OBJECTIVE The Padova type 2 diabetes (T2D) simulator (T2DS) has been recently proposed to optimize T2D treatments including novel long-acting insulins. It consists of a physiological model and an in silico population describing glucose dynamics, derived from early-stage T2D subjects studied with sophisticated tracer-based experimental techniques. This limits T2DS domain of validity to this specific sub-population. Conversely, running simulations in insulin-naïve or advanced T2D subjects, would be more valuable. However, it is rarely possible or cost-effective to run complex experiments in such populations. Therefore, we propose a method for tuning the T2DS to any desired T2D sub-population using published clinical data. As case study, we extended the T2DS to insulin-naïve T2D subjects, who need to start insulin therapy to compensate the reduced insulin function. METHODS T2DS model was identified based on literature data of the target population. The estimated parameters were used to generate a virtual cohort of insulin-naïve T2D subjects (inC1). A model of basal insulin degludec (IDeg) was also incorporated into the T2DS to enable basal insulin therapy. The resulting tailored T2DS was assessed by simulating IDeg therapy initiation and comparing simulated vs. clinical trial outcomes. For further validation, this procedure was reiterated to generate a new cohort of insulin-naïve T2D (inC2) assuming inC1 as target population. RESULTS No statistically significant differences were found when comparing fasting plasma glucose and IDeg dose, neither in clinical data vs. inC1, nor inC1 vs. inC2. CONCLUSIONS The tuned T2DS allowed reproducing the main findings of clinical studies in insulin-naïve T2D subjects. SIGNIFICANCE The proposed methodology makes the Padova T2DS usable for supporting treatment guidance in target T2D populations.
Collapse
|
8
|
Jafar A, Pasqua MR. Postprandial glucose-management strategies in type 1 diabetes: Current approaches and prospects with precision medicine and artificial intelligence. Diabetes Obes Metab 2024; 26:1555-1566. [PMID: 38263540 DOI: 10.1111/dom.15463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/01/2024] [Accepted: 01/05/2024] [Indexed: 01/25/2024]
Abstract
Postprandial glucose control can be challenging for individuals with type 1 diabetes, and this can be attributed to many factors, including suboptimal therapy parameters (carbohydrate ratios, correction factors, basal doses) because of physiological changes, meal macronutrients and engagement in postprandial physical activity. This narrative review aims to examine the current postprandial glucose-management strategies tested in clinical trials, including adjusting therapy settings, bolusing for meal macronutrients, adjusting pre-exercise and postexercise meal boluses for postprandial physical activity, and other therapeutic options, for individuals on open-loop and closed-loop therapies. Then we discuss their challenges and future avenues. Despite advancements in insulin delivery devices such as closed-loop systems and decision-support systems, many individuals with type 1 diabetes still struggle to manage their glucose levels. The main challenge is the lack of personalized recommendations, causing suboptimal postprandial glucose control. We suggest that postprandial glucose control can be improved by (i) providing personalized recommendations for meal macronutrients and postprandial activity; (ii) including behavioural recommendations; (iii) using other personalized therapeutic approaches (e.g. glucagon-like peptide-1 receptor agonists, sodium-glucose co-transporter inhibitors, amylin analogues, inhaled insulin) in addition to insulin therapy; and (iv) integrating an interpretability report to explain to individuals about changes in treatment therapy and behavioural recommendations. In addition, we suggest a future avenue to implement precision recommendations for individuals with type 1 diabetes utilizing the potential of deep reinforcement learning and foundation models (such as GPT and BERT), employing different modalities of data including diabetes-related and external background factors (i.e. behavioural, environmental, biological and abnormal events).
Collapse
Affiliation(s)
- Adnan Jafar
- Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | - Melissa-Rosina Pasqua
- Division of Endocrinology, Department of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Jafar A, Pasqua MR, Olson B, Haidar A. Advanced decision support system for individuals with diabetes on multiple daily injections therapy using reinforcement learning and nearest-neighbors: In-silico and clinical results. Artif Intell Med 2024; 148:102749. [PMID: 38325921 DOI: 10.1016/j.artmed.2023.102749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 12/03/2023] [Accepted: 12/10/2023] [Indexed: 02/09/2024]
Abstract
Many individuals with diabetes on multiple daily insulin injections therapy use carbohydrate ratios (CRs) and correction factors (CFs) to determine mealtime and correction insulin boluses. The CRs and CFs vary over time due to physiological changes in individuals' response to insulin. Errors in insulin dosing can lead to life-threatening abnormal glucose levels, increasing the risk of retinopathy, neuropathy, and nephropathy. Here, we present a novel learning algorithm that uses Q-learning to track optimal CRs and uses nearest-neighbors based Q-learning to track optimal CFs. The learning algorithm was compared with the run-to-run algorithm A and the run-to-run algorithm B, both proposed in the literature, over an 8-week period using a validated simulator with a realistic scenario created with suboptimal CRs and CFs values, carbohydrate counting errors, and random meals sizes at random ingestion times. From Week 1 to Week 8, the learning algorithm increased the percentage of time spent in target glucose range (4.0 to 10.0 mmol/L) from 51 % to 64 % compared to 61 % and 58 % with the run-to-run algorithm A and the run-to-run algorithm B, respectively. The learning algorithm decreased the percentage of time spent below 4.0 mmol/L from 9 % to 1.9 % compared to 3.4 % and 2.3 % with the run-to-run algorithm A and the run-to-run algorithm B, respectively. The algorithm was also assessed by comparing its recommendations with (i) the endocrinologist's recommendations on two type 1 diabetes individuals over a 16-week period and (ii) real-world individuals' therapy settings changes of 23 individuals (19 type 2 and 4 type 1) over an 8-week period using the commercial Bigfoot Unity Diabetes Management System. The full agreements (i) were 89 % and 76 % for CRs and CFs for the type 1 diabetes individuals and (ii) was 62 % for mealtime doses for the individuals on the commercial Bigfoot system. Therefore, the proposed algorithm has the potential to improve glucose control in individuals with type 1 and type 2 diabetes.
Collapse
Affiliation(s)
- Adnan Jafar
- Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | - Melissa-Rosina Pasqua
- Division of Endocrinology, Department of Medicine, McGill University, Montreal, Quebec, Canada; The Research Institute of McGill University Health Centre, Montreal, Quebec, Canada; Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Byron Olson
- Bigfoot Biomedical Inc., Milpitas, CA, United States
| | - Ahmad Haidar
- Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada; Division of Endocrinology, Department of Medicine, McGill University, Montreal, Quebec, Canada; The Research Institute of McGill University Health Centre, Montreal, Quebec, Canada; Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
10
|
Diaz C JL, Villa-Tamayo MF, Moscoso-Vasquez M, Colmegna P. Simulation-driven optimization of insulin therapy profiles in a commercial hybrid closed-loop system. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 242:107830. [PMID: 37806122 DOI: 10.1016/j.cmpb.2023.107830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/19/2023] [Accepted: 09/23/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Automated insulin delivery (AID) has represented a breakthrough in managing type 1 diabetes (T1D), showing safe and effective glucose control extensively across the board. However, metabolic variability still poses a challenge to commercial hybrid closed-loop (HCL) solutions, whose performance depends on customizable insulin therapy profiles. In this work, we propose an Identification-Replay-Optimization (IRO) approach to optimize gradually and safely such profiles for the Control-IQ AID algorithm. METHODS Closed-loop data are generated using the full adult cohort of the UVA/Padova T1D simulation platform in diverse glycemic scenarios. For each subject, daily records are processed and used to estimate a personalized model of the underlying insulin-glucose dynamics. Every two weeks, all identified models are integrated into an optimization procedure where daily basal and bolus profiles are adjusted so as to minimize the risks for hypo- and hyperglycemia. The proposed strategy is tested under different scenarios of metabolic and behavioral variability in order to evaluate the efficacy and convergence of the proposed strategy. Finally, glycemic metrics between cycles are compared using paired t-tests with p<0.05 as the significance threshold. RESULTS Simulations reveal that the proposed IRO approach was able to improve glucose control over time by safely mitigating the risks for both hypo- and hyperglycemia. Furthermore, smaller changes were recommended at each cycle, indicating convergence when simulation conditions were maintained. CONCLUSIONS The use of reliable simulation-driven tools capable of accurately reproducing field-collected data and predicting changes can substantially shorten the process of optimizing insulin therapy, adjusting it to metabolic changes and leading to improved glucose control.
Collapse
Affiliation(s)
- Jenny L Diaz C
- Center for Diabetes Technology, University of Virginia, Charlottesville, 22903, VA, USA.
| | - María F Villa-Tamayo
- Center for Diabetes Technology, University of Virginia, Charlottesville, 22903, VA, USA
| | | | - Patricio Colmegna
- Center for Diabetes Technology, University of Virginia, Charlottesville, 22903, VA, USA
| |
Collapse
|
11
|
Moscoso-Vasquez M, Fabris C, Breton MD. Performance Effect of Adjusting Insulin Sensitivity for Model-Based Automated Insulin Delivery Systems. J Diabetes Sci Technol 2023; 17:1470-1481. [PMID: 37864340 PMCID: PMC10658700 DOI: 10.1177/19322968231206798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
BACKGROUND Model predictive control (MPC) has become one of the most popular control strategies for automated insulin delivery (AID) in type 1 diabetes (T1D). These algorithms rely on a prediction model to determine the best insulin dosing every sampling time. Although these algorithms have been shown to be safe and effective for glucose management through clinical trials, managing the ever-fluctuating relationship between insulin delivery and resulting glucose uptake (aka insulin sensitivity, IS) remains a challenge. We aim to evaluate the effect of informing an AID system with IS on the performance of the system. METHOD The University of Virginia (UVA) MPC control-based hybrid closed-loop (HCL) and fully closed-loop (FCL) system was used. One-day simulations at varying levels of IS were run with the UVA/Padova T1D Simulator. The AID system was informed with an estimated value of IS obtained through a mixed meal glucose tolerance test. Relevant controller parameters are updated to inform insulin dosing of IS. Performance of the HCL/FCL system with and without information of the changing IS was assessed using a novel performance metric penalizing the time outside the target glucose range. RESULTS Feedback in AID systems provides a certain degree tolerance to changes in IS. However, IS-informed bolus and basal dosing improve glycemic outcomes, providing increased protection against hyperglycemia and hypoglycemia according to the individual's physiological state. CONCLUSIONS The proof-of-concept analysis presented here shows the potentially beneficial effects on system performance of informing the AID system with accurate estimates of IS. In particular, when considering reduced IS, the informed controller provides increased protection against hyperglycemia compared with the naïve controller. Similarly, reduced hypoglycemia is obtained for situations with increased IS. Further tailoring of the adaptation schemes proposed in this work is needed to overcome the increased hypoglycemia observed in the more resistant cases and to optimize the performance of the adaptation method.
Collapse
Affiliation(s)
| | - Chiara Fabris
- Center for Diabetes Technology,
University of Virginia, Charlottesville, VA, USA
| | - Marc D. Breton
- Center for Diabetes Technology,
University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
12
|
Dalla Libera A, Toffanin C, Drecogna M, Galderisi A, Pillonetto G, Cobelli C. In silico design and validation of a time-varying PID controller for an artificial pancreas with intraperitoneal insulin delivery and glucose sensing. APL Bioeng 2023; 7:026105. [PMID: 37229215 PMCID: PMC10205143 DOI: 10.1063/5.0145446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease featured by the loss of beta cell function and the need for lifetime insulin replacement. Over the recent decade, the use of automated insulin delivery systems (AID) has shifted the paradigm of treatment: the availability of continuous subcutaneous (SC) glucose sensors to guide SC insulin delivery through a control algorithm has allowed, for the first time, to reduce the daily burden of the disease as well as to abate the risk for hypoglycemia. AID use is still limited by individual acceptance, local availability, coverage, and expertise. A major drawback of SC insulin delivery is the need for meal announcement and the peripheral hyperinsulinemia that, over time, contributes to macrovascular complications. Inpatient trials using intraperitoneal (IP) insulin pumps have demonstrated that glycemic control can be improved without meal announcement due to the faster insulin delivery through the peritoneal space. This calls for novel control algorithms able to account for the specificities of IP insulin kinetics. Recently, our group described a two-compartment model of IP insulin kinetics demonstrating that the peritoneal space acts as a virtual compartment and IP insulin delivery is virtually intraportal (intrahepatic), thus closely mimicking the physiology of insulin secretion. The FDA-accepted T1D simulator for SC insulin delivery and sensing has been updated for IP insulin delivery and sensing. Herein, we design and validate-in silico-a time-varying proportional integrative derivative controller to guide IP insulin delivery in a fully closed-loop mode without meal announcement.
Collapse
Affiliation(s)
- Alberto Dalla Libera
- Department of Woman and Child's Health, University of Padova, 35128 Padova, Italy
| | - Chiara Toffanin
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100 Pavia, Italy
| | - Martina Drecogna
- Department of Woman and Child's Health, University of Padova, 35128 Padova, Italy
| | | | - Gianluigi Pillonetto
- Department of Information Engineering, University of Padova, 35131 Padova, Italy
| | - Claudio Cobelli
- Department of Woman and Child's Health, University of Padova, 35128 Padova, Italy
| |
Collapse
|
13
|
Dermawan D, Kenichi Purbayanto MA. An overview of advancements in closed-loop artificial pancreas system. Heliyon 2022; 8:e11648. [PMID: 36411933 PMCID: PMC9674553 DOI: 10.1016/j.heliyon.2022.e11648] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/15/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Type 1 diabetes (T1D) is one of the world's health problems with a prevalence of 1.1 million for children and young adults under the age of 20. T1D is a health problem characterized by autoimmunity and the destruction of pancreatic cells that produce insulin. The available treatment is to maintain blood glucose within the desired normal range. To meet bolus and basal requirements, T1D patients may receive multiple daily injections (MDI) of fast-acting and long-acting insulin once or twice daily. In addition, insulin pumps can deliver multiple doses a day without causing injection discomfort in individuals with T1D. T1D patients have also monitored their blood glucose levels along with insulin replacement treatment using a continuous glucose monitor (CGM). However, this CGM has some drawbacks, like the sensor needs to be replaced after being inserted under the skin for seven days and needs to be calibrated (for some CGMs). The treatments and monitoring devices mentioned creating a lot of workloads to maintain blood glucose levels in individuals with T1D. Therefore, to overcome these problems, closed-loop artificial pancreas (APD) devices are widely used to manage blood glucose in T1D patients. Closed-loop APD consists of a glucose sensor, an insulin infusion device, and a control algorithm. This study reviews the progress of closed-loop artificial pancreas systems from the perspective of device properties, uses, testing procedures, regulations, and current market conditions.
Collapse
Affiliation(s)
- Doni Dermawan
- Applied Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | | |
Collapse
|
14
|
Cobelli C, Dalla Man C. Minimal and Maximal Models to Quantitate Glucose Metabolism: Tools to Measure, to Simulate and to Run in Silico Clinical Trials. J Diabetes Sci Technol 2022; 16:1270-1298. [PMID: 34032128 PMCID: PMC9445339 DOI: 10.1177/19322968211015268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Several models have been proposed to describe the glucose system at whole-body, organ/tissue and cellular level, designed to measure non-accessible parameters (minimal models), to simulate system behavior and run in silico clinical trials (maximal models). Here, we will review the authors' work, by putting it into a concise historical background. We will discuss first the parametric portrait provided by the oral minimal models-building on the classical intravenous glucose tolerance test minimal models-to measure otherwise non-accessible key parameters like insulin sensitivity and beta-cell responsivity from a physiological oral test, the mixed meal or the oral glucose tolerance tests, and what can be gained by adding a tracer to the oral glucose dose. These models were used in various pathophysiological studies, which we will briefly review. A deeper understanding of insulin sensitivity can be gained by measuring insulin action in the skeletal muscle. This requires the use of isotopic tracers: both the classical multiple-tracer dilution and the positron emission tomography techniques are discussed, which quantitate the effect of insulin on the individual steps of glucose metabolism, that is, bidirectional transport plasma-interstitium, and phosphorylation. Finally, we will present a cellular model of insulin secretion that, using a multiscale modeling approach, highlights the relations between minimal model indices and subcellular secretory events. In terms of maximal models, we will move from a parametric to a flux portrait of the system by discussing the triple tracer meal protocol implemented with the tracer-to-tracee clamp technique. This allows to arrive at quasi-model independent measurement of glucose rate of appearance (Ra), endogenous glucose production (EGP), and glucose rate of disappearance (Rd). Both the fast absorbing simple carbs and the slow absorbing complex carbs are discussed. This rich data base has allowed us to build the UVA/Padova Type 1 diabetes and the Padova Type 2 diabetes large scale simulators. In particular, the UVA/Padova Type 1 simulator proved to be a very useful tool to safely and effectively test in silico closed-loop control algorithms for an artificial pancreas (AP). This was the first and unique simulator of the glucose system accepted by the U.S. Food and Drug Administration as a substitute to animal trials for in silico testing AP algorithms. Recent uses of the simulator have looked at glucose sensors for non-adjunctive use and new insulin molecules.
Collapse
Affiliation(s)
- Claudio Cobelli
- Department of Woman and Child’s Health University of Padova, Padova, Italy
| | - Chiara Dalla Man
- Department of Information Engineering, University of Padova, Padova, Italy
| |
Collapse
|
15
|
A simulator with realistic and challenging scenarios for virtual T1D patients undergoing CSII and MDI therapy. J Biomed Inform 2022; 132:104141. [PMID: 35835439 DOI: 10.1016/j.jbi.2022.104141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 06/28/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022]
Abstract
In silico simulations have become essential for the development of diabetes treatments. However, currently available simulators are not challenging enough and often suffer from limitations in insulin and meal absorption variability, which is unable to realistically reflect the dynamics of people with type 1 diabetes (T1D). Additionally, T1D simulators are mainly designed for the testing of continuous subcutaneous insulin infusion (CSII) therapies. In this work, a simulator is presented that includes a generated virtual patient (VP) cohort and both fast- and long-acting Glargine-100 U/ml (Gla-100), Glargine-300 U/ml (Gla-300), and Degludec-100 U/ml (Deg-100) insulin models. Therefore, in addition to CSII therapies, multiple daily injections (MDI) therapies can also be tested. The Hovorka model and its published parameter probability distributions were used to generate cohorts of VPs that represent a T1D population. Valid patients are filtered through restrictions that guarantee that they are physiologically acceptable. To obtain more realistic scenarios, basal insulin profile patterns from the literature have been used to identify variability in insulin sensitivity. A library of mixed meals identified from real data has also been included. This work presents and validates a methodology for the creation of realistic VP cohorts that include physiological variability and a simulator that includes challenging and realistic scenarios for in silico testing. A cohort of 47 VPs has been generated and in silico simulations of both CSII and MDI therapies were performed in open-loop. The simulation outcome metrics were contrasted with literature results.
Collapse
|
16
|
Olçomendy L, Cassany L, Pirog A, Franco R, Puginier E, Jaffredo M, Gucik-Derigny D, Ríos H, Ferreira de Loza A, Gaitan J, Raoux M, Bornat Y, Catargi B, Lang J, Henry D, Renaud S, Cieslak J. Towards the Integration of an Islet-Based Biosensor in Closed-Loop Therapies for Patients With Type 1 Diabetes. Front Endocrinol (Lausanne) 2022; 13:795225. [PMID: 35528003 PMCID: PMC9072637 DOI: 10.3389/fendo.2022.795225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/25/2022] [Indexed: 01/01/2023] Open
Abstract
In diabetes mellitus (DM) treatment, Continuous Glucose Monitoring (CGM) linked with insulin delivery becomes the main strategy to improve therapeutic outcomes and quality of patients' lives. However, Blood Glucose (BG) regulation with CGM is still hampered by limitations of algorithms and glucose sensors. Regarding sensor technology, current electrochemical glucose sensors do not capture the full spectrum of other physiological signals, i.e., lipids, amino acids or hormones, relaying the general body status. Regarding algorithms, variability between and within patients remains the main challenge for optimal BG regulation in closed-loop therapies. This work highlights the simulation benefits to test new sensing and control paradigms which address the previous shortcomings for Type 1 Diabetes (T1D) closed-loop therapies. The UVA/Padova T1DM Simulator is the core element here, which is a computer model of the human metabolic system based on glucose-insulin dynamics in T1D patients. That simulator is approved by the US Food and Drug Administration (FDA) as an alternative for pre-clinical testing of new devices and closed-loop algorithms. To overcome the limitation of standard glucose sensors, the concept of an islet-based biosensor, which could integrate multiple physiological signals through electrical activity measurement, is assessed here in a closed-loop insulin therapy. This investigation has been addressed by an interdisciplinary consortium, from endocrinology to biology, electrophysiology, bio-electronics and control theory. In parallel to the development of an islet-based closed-loop, it also investigates the benefits of robust control theory against the natural variability within a patient population. Using 4 meal scenarios, numerous simulation campaigns were conducted. The analysis of their results then introduces a discussion on the potential benefits of an Artificial Pancreas (AP) system associating the islet-based biosensor with robust algorithms.
Collapse
Affiliation(s)
- Loïc Olçomendy
- Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, Talence, France
| | - Louis Cassany
- Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, Talence, France
| | - Antoine Pirog
- Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, Talence, France
| | - Roberto Franco
- Tecnológico Nacional de México/I.T. La Laguna, Torreón, Mexico
| | | | | | | | - Héctor Ríos
- Tecnológico Nacional de México/I.T. La Laguna, Torreón, Mexico
- Cátedras CONACYT, Ciudad de México, Mexico
| | | | - Julien Gaitan
- Univ. Bordeaux, CNRS, CBMN, UMR 5248, Pessac, France
| | | | - Yannick Bornat
- Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, Talence, France
| | - Bogdan Catargi
- Univ. Bordeaux, CNRS, CBMN, UMR 5248, Pessac, France
- Bordeaux Hospitals, Endocrinology and Metabolic Diseases Unit, Bordeaux, France
| | - Jochen Lang
- Univ. Bordeaux, CNRS, CBMN, UMR 5248, Pessac, France
| | - David Henry
- Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, Talence, France
| | - Sylvie Renaud
- Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, Talence, France
| | - Jérôme Cieslak
- Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, Talence, France
- *Correspondence: Jérôme Cieslak,
| |
Collapse
|
17
|
Villa-Tamayo MF, García-Jaramillo M, León-Vargas F, Rivadeneira PS. Interval Safety Layer Coupled With an Impulsive MPC for Artificial Pancreas to Handle Intrapatient Variability. Front Endocrinol (Lausanne) 2022; 13:796521. [PMID: 35265035 PMCID: PMC8899654 DOI: 10.3389/fendo.2022.796521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
The aim of control strategies for artificial pancreas systems is to calculate the insulin doses required by a subject with type 1 diabetes to regulate blood glucose levels by reducing hyperglycemia and avoiding the induction of hypoglycemia. Several control formulations developed for this end involve a safety constraint given by the insulin on board (IOB) estimation. This constraint has the purpose of reducing hypoglycemic episodes caused by insulin stacking. However, intrapatient variability constantly changes the patient's response to insulin, and thus, an adaptive method is required to restrict the control action according to the current situation of the subject. In this work, the control action computed by an impulsive model predictive controller is modulated with a safety layer to satisfy an adaptive IOB constraint. This constraint is established with two main steps. First, upper and lower IOB bounds are generated with an interval model that accounts for parameter uncertainty, and thus, define the possible system responses. Second, the constraint is selected according to the current value of glycemia, an estimation of the plant-model mismatch, and their corresponding first and second time derivatives to anticipate the changes of both glucose levels and physiological variations. With this strategy satisfactory results were obtained in an adult cohort where random circadian variability and sensor noise were considered. A 92% time in normoglycemia was obtained, representing an increase of time in range compared to previous MPC strategies, and a reduction of time in hypoglycemia to 0% was achieved without dangerously increasing the time in hyperglycemia.
Collapse
Affiliation(s)
| | | | - Fabian León-Vargas
- Universidad Antonio Nariño, Facultad de ingeniería Mecánica, Electrónica y Biomédica (FIMEB), Grupo REM, Bogotá, Colombia
| | - Pablo S. Rivadeneira
- Universidad Nacional de Colombia, Facultad de Minas, Grupo GITA, Medellin, Colombia
- *Correspondence: Pablo S. Rivadeneira,
| |
Collapse
|
18
|
Rigo RS, Levin LE, Belsito DV, Garzon MC, Gandica R, Williams KM. Cutaneous Reactions to Continuous Glucose Monitoring and Continuous Subcutaneous Insulin Infusion Devices in Type 1 Diabetes Mellitus. J Diabetes Sci Technol 2021; 15:786-791. [PMID: 32389062 PMCID: PMC8258506 DOI: 10.1177/1932296820918894] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Continuous glucose monitoring (CGM) and continuous subcutaneous insulin infusion (CSII) are the standard of care for type 1 diabetes in children. There is little reported on device-related skin complications and treatment options. This study documents cutaneous reactions to CGM and CSII devices in children and young adults with type 1 diabetes. METHODS One hundred and twenty-one subjects (3-25 years) with type 1 diabetes and CGM and/or CSII use were recruited over a three-month period from the Naomi Berrie Diabetes Center at Columbia University Irving Medical Center. A five-question survey was completed for each subject detailing demographic data, diabetes management, and device-related skin complications. RESULTS Sixty percent of subjects reported skin complications related to CGM and/or CSII use. Terms most frequently used to describe cutaneous reactions were "red," "itchy," "painful," and "rash." Subjects who used both CGM and CSII were more likely to report skin problems than those who used only CSII (odds ratio 2.9, [95% confidence interval: 1.2-6.7]; P = .015). There were no associations between skin complications and sex or race/ethnicity. Twenty-two percent of subjects with adverse skin event(s) discontinued use of a device due to their skin problem. Seven percent were evaluated by a dermatologist. Eighty-one percent used a range of products to treat their symptoms, with variable perceived clinical outcomes. CONCLUSIONS Skin complications related to CSII or CGM devices are commonly reported in pediatric patients with type 1 diabetes and may lead to interruption or discontinuation of device use. Future studies are needed to elucidate the causes of these reactions and determine the best methods for prevention.
Collapse
Affiliation(s)
- Rachel S. Rigo
- Columbia University Irving Medical Center, New York, NY, USA
| | - Laura E. Levin
- Columbia University Irving Medical Center, New York, NY, USA
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY, USA
| | - Donald V. Belsito
- Columbia University Irving Medical Center, New York, NY, USA
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY, USA
| | - Maria C. Garzon
- Columbia University Irving Medical Center, New York, NY, USA
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY, USA
| | - Rachelle Gandica
- Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Kristen M. Williams
- Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
- Kristen M. Williams, MD, Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, 1150 Saint Nicholas Avenue, 2nd Floor, New York, NY 10032, USA.
| |
Collapse
|
19
|
Jafar A, Fathi AE, Haidar A. Long-term use of the hybrid artificial pancreas by adjusting carbohydrate ratios and programmed basal rate: A reinforcement learning approach. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 200:105936. [PMID: 33515844 DOI: 10.1016/j.cmpb.2021.105936] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND OBJECTIVES The hybrid artificial pancreas regulates glucose levels in people with type 1 diabetes. It delivers (i) insulin boluses at meal times based on the meals' carbohydrate content and the carbohydrate ratios (CRs) and (ii) insulin basal, between meals and at night, continuously modulated around individual-specific programmed basal rate. The CRs and programmed basal rate significantly vary between individuals and within the same individual with type 1 diabetes, and using suboptimal values in the hybrid artificial pancreas may degrade glucose control. We propose a reinforcement learning algorithm to adaptively optimize CRs and programmed basal rate to improve the performance of the hybrid artificial pancreas. METHODS The proposed reinforcement learning algorithm was designed using the Q-learning approach. The algorithm learns the optimal actions (CRs and programmed basal rate) by applying them to the individual's state (previous day's glucose levels and insulin delivery) based on an exploration and exploitation trade-off. First, outcomes from our simulator were compared to those of a clinical study in 23 individuals with type 1 diabetes and have yielded similar results. Second, the learning algorithm was tested using the simulator with two scenarios. Scenario 1 has fixed meal sizes and ingestion times and scenario 2 has a more realistic eating behavior with random meal sizes, ingestion times, and carbohydrate counting errors. RESULTS After about five weeks, the reinforcement learning algorithm improved the percentage of time spent in target range from 67% to 86.7% in scenario 1 and 65.5% to 86% in scenario 2. The percentage of time spent below 4.0 mmol/L decreased from 9% to 0.9% in scenario 1 and 9.5% to 1.1% in scenario 2. CONCLUSIONS Results indicate that the proposed algorithm has the potential to improve glucose control in people with type 1 diabetes using the hybrid artificial pancreas. The proposed algorithm is a key in making the hybrid artificial pancreas adaptive for the long-term real life outpatient studies.
Collapse
Affiliation(s)
- Adnan Jafar
- Department of Biomedical Engineering, McGill University, Montreal, Canada.
| | - Anas El Fathi
- Department of Electrical and Computer Engineering, McGill University, Montreal, Canada.
| | - Ahmad Haidar
- Department of Biomedical Engineering, McGill University, Montreal, Canada.
| |
Collapse
|
20
|
Camerlingo N, Vettoretti M, Del Favero S, Facchinetti A, Sparacino G. Mathematical Models of Meal Amount and Timing Variability With Implementation in the Type-1 Diabetes Patient Decision Simulator. J Diabetes Sci Technol 2021; 15:346-359. [PMID: 32940087 PMCID: PMC7925444 DOI: 10.1177/1932296820952123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND In type 1 diabetes (T1D) research, in-silico clinical trials (ISCTs) have proven effective in accelerating the development of new therapies. However, published simulators lack a realistic description of some aspects of patient lifestyle which can remarkably affect glucose control. In this paper, we develop a mathematical description of meal carbohydrates (CHO) amount and timing, with the aim to improve the meal generation module in the T1D Patient Decision Simulator (T1D-PDS) published in Vettoretti et al. METHODS Data of 32 T1D subjects under free-living conditions for 4874 days were used. Univariate probability density function (PDF) parametric models with different candidate shapes were fitted, individually, against sample distributions of: CHO amounts of breakfast (CHOB), lunch (CHOL), dinner (CHOD), and snack (CHOS); breakfast timing (TB); and time between breakfast-lunch (TBL) and between lunch-dinner (TLD). Furthermore, a support vector machine (SVM) classifier was developed to predict the occurrence of a snack in future fixed-length time windows. Once embedded inside the T1D-PDS, an ISCT was performed. RESULTS Resulting PDF models were: gamma (CHOB, CHOS), lognormal (CHOL, TB), loglogistic (CHOD), and generalized-extreme-values (TBL, TLD). The SVM showed a classification accuracy of 0.8 over the test set. The distributions of simulated meal data were not statistically different from the distributions of the real data used to develop the models (α = 0.05). CONCLUSIONS The models of meal amount and timing variability developed are suitable for describing real data. Their inclusion in modules that describe patient behavior in the T1D-PDS can permit investigators to perform more realistic, reliable, and insightful ISCTs.
Collapse
Affiliation(s)
- Nunzio Camerlingo
- Department of Information Engineering,
University of Padova, Padova, Italy
| | - Martina Vettoretti
- Department of Information Engineering,
University of Padova, Padova, Italy
| | - Simone Del Favero
- Department of Information Engineering,
University of Padova, Padova, Italy
| | - Andrea Facchinetti
- Department of Information Engineering,
University of Padova, Padova, Italy
| | - Giovanni Sparacino
- Department of Information Engineering,
University of Padova, Padova, Italy
| |
Collapse
|
21
|
Lee S, Kim J, Park SW, Jin SM, Park SM. Toward a Fully Automated Artificial Pancreas System Using a Bioinspired Reinforcement Learning Design: In Silico Validation. IEEE J Biomed Health Inform 2021; 25:536-546. [PMID: 32750935 DOI: 10.1109/jbhi.2020.3002022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE The automation of insulin treatment is the most challenge aspect of glucose management for type 1 diabetes owing to unexpected exogenous events (e.g., meal intake). In this article, we propose a novel reinforcement learning (RL) based artificial intelligence (AI) algorithm for a fully automated artificial pancreas (AP) system. METHODS A bioinspired RL designing method was developed for automated insulin infusion. This method has reward functions that imply the temporal homeostatic objective and discount factors that reflect an individual specific pharmacological characteristic. The proposed method was applied to a training method using an RL algorithm and was evaluated in virtual patients from the FDA approved UVA/Padova simulator with unannounced meal intakes. RESULTS For a single-meal experiment with preprandial fasting, the trained policy demonstrated fully automated regulation in both the basal and postprandial phases. In the in silico trial with a variation of insulin sensitivity and dawn phenomenon, the policy achieved a mean glucose of 124.72 mg/dL and percentage time in the normal range of 89.56%. The layer-wise relevance propagation provides interpretable information on AI-driven decision for robustness to sensor noise, automated postprandial regulation, and insulin stacking avoidance. CONCLUSION The AP algorithm based on the bioinspired RL approach enables fully automated blood glucose control with unannounced meal intake. SIGNIFICANCE The proposed framework can be extended to other drug-based treatments for systems with significant uncertainties.
Collapse
|
22
|
Cescon M, Deshpande S, Nimri R, Doyle Iii FJ, Dassau E. Using Iterative Learning for Insulin Dosage Optimization in Multiple-Daily-Injections Therapy for People With Type 1 Diabetes. IEEE Trans Biomed Eng 2021; 68:482-491. [PMID: 32746043 DOI: 10.1109/tbme.2020.3005622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE In this work, we design iterative algorithms for the delivery of long-acting (basal) and rapid-acting (bolus) insulin, respectively, for people with type 1 diabetes (T1D) on multiple-daily-injections (MDIs) therapy using feedback from self-monitoring of blood glucose (SMBG) measurements. METHODS Iterative learning control (ILC) updates basal therapy consisting of one long-acting insulin injection per day, while run-to-run (R2R) adapts meal bolus therapy via the update of the mealtime-specific insulin-to-carbohydrate ratio (CR). Updates are due weekly and are based upon sparse SMBG measurements. RESULTS Upon termination of the 20 weeks long in-silico trial, in a scenario characterized by meal carbohydrate (CHO) normally distributed with mean μ = [50, 75, 75] grams and standard deviation σ = [5, 7, 7] grams, our strategy produced statistically significant improvements in time in range (70--180) [mg/dl], from 66.9(33.1) % to 93.6(6.7) %, p = 0.02. CONCLUSIONS Iterative learning shows potential to improve glycemic regulation over time by driving blood glucose closer to the recommended glycemic targets. SIGNIFICANCE Decision support systems (DSSs) and automated therapy advisors such as the one proposed here are expected to improve glycemic outcomes reducing the burden on patients on MDI therapy.
Collapse
|
23
|
Visentin R, Cobelli C, Dalla Man C. The Padova Type 2 Diabetes Simulator from Triple-Tracer Single-Meal Studies: In Silico Trials Also Possible in Rare but Not-So-Rare Individuals. Diabetes Technol Ther 2020; 22:892-903. [PMID: 32324063 DOI: 10.1089/dia.2020.0110] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background:In silico trials in type 2 diabetes (T2D) would be useful for testing diabetes treatments and accelerating the development of new antidiabetic drugs. In this study, we present a T2D simulator able to reproduce the variability observed in a T2D population. The simulator also allows to safely experiment on virtual subjects with severe (and possibly rare) pathological conditions. Methods: A meal simulation model of glucose, insulin, and C-peptide systems, made of 15 differential equations and 39 parameters, has been identified using a system decomposition and forcing function Bayesian strategy on data of 51 T2D subjects undergoing a single triple-tracer mixed meal. One hundred T2D in silico subjects have been generated from the joint distribution of estimated model parameters. A case study is presented to illustrate the simulator use for testing a virtual drug (improving insulin action and secretion) in a subpopulation of rare, extremely impaired, T2D subjects. Results: The model well fitted T2D data and parameters were estimated with precision. Simulated plasma glucose, insulin, and C-peptide well matched the data (e.g., median [25th-75th percentile] glucose area under the curves of 6.9 [6.1-8.5] 104 mg/dL·min in silico vs. 7.0 [5.6-8.2] 104 mg/dL·min in vivo). The potential use of the simulator was shown in a case study, in which the (virtual) antidiabetic drug dose was optimized for very insulin-resistant T2D subjects. Conclusions: We have developed a T2D simulator that captures the behavior of T2D population during a meal, both in terms of average and intersubject variability. The simulator represents a cost-effective way to test new antidiabetic drugs, before moving to human trials.
Collapse
Affiliation(s)
- Roberto Visentin
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Claudio Cobelli
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Chiara Dalla Man
- Department of Information Engineering, University of Padova, Padova, Italy
| |
Collapse
|
24
|
Fathi AE, Kearney RE, Palisaitis E, Boulet B, Haidar A. A Model-Based Insulin Dose Optimization Algorithm for People With Type 1 Diabetes on Multiple Daily Injections Therapy. IEEE Trans Biomed Eng 2020; 68:1208-1219. [PMID: 32915722 DOI: 10.1109/tbme.2020.3023555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Multiple daily injections (MDI) therapy is the most common treatment for type 1 diabetes (T1D) including basal insulin doses to keep glucose levels constant during fasting conditions and bolus insulin doses with meals. Optimal insulin dosing is critical to achieving satisfactory glycemia but is challenging due to inter- and intra-individual variability. Here, we present a novel model-based iterative algorithm that optimizes insulin doses using previous-day glucose, insulin, and meal data. METHODS Our algorithm employs a maximum-a-posteriori method to estimate parameters of a model describing the effects of changes in basal-bolus insulin doses. Then, parameter estimates, their confidence intervals, and the goodness of fit, are combined to generate new recommendations. We assessed our algorithm in three ways. First, a clinical data set of 150 days (15 participants) were used to evaluate the proposed model and the estimation method. Second, 60-day simulations were performed to demonstrate the efficacy of the algorithm. Third, a sample 6-day clinical experiment is presented and discussed. RESULTS The model fitted the clinical data well with a root-mean-square-error of 1.75 mmol/L. Simulation results showed an improvement in the time in target (3.9-10 mmol/L) from 64% to 77% and a decrease in the time in hypoglycemia (< 3.9 mmol/L) from 8.1% to 3.8%. The clinical experiment demonstrated the feasibility of the algorithm. CONCLUSION Our algorithm has the potential to improve glycemic control in people with T1D using MDI. SIGNIFICANCE This work is a step forward towards a decision support system that improves their quality of life.
Collapse
|
25
|
Schiavon M, Visentin R, Giegerich C, Sieber J, Dalla Man C, Cobelli C, Klabunde T. In Silico Head-to-Head Comparison of Insulin Glargine 300 U/mL and Insulin Degludec 100 U/mL in Type 1 Diabetes. Diabetes Technol Ther 2020; 22:553-561. [PMID: 32125178 PMCID: PMC7407002 DOI: 10.1089/dia.2020.0027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: Second-generation long-acting insulin glargine 300 U/mL (Gla-300) and degludec 100 U/mL (Deg-100) provide novel basal insulin therapies for the treatment of type 1 diabetes (T1D). Both offer a flatter pharmacokinetic (PK) profile than the previous generation of long-acting insulins, thus improving glycemic control while reducing hypoglycemic events. This work describes an in silico head-to-head comparison of the two basal insulins on 24-h glucose profiles and was used to guide the design of a clinical trial. Materials and Methods: The Universities of Virginia (UVA)/Padova T1D simulator describes the intra-/interday variability of glucose-insulin dynamics and thus provides a robust bench-test for assessing glucose control for basal insulin therapies. A PK model describing subcutaneous absorption of Deg-100, in addition to the one already available for Gla-300, has been developed based on T1D clinical data and incorporated into the simulator. One hundred in silico T1D subjects received a basal insulin dose (Gla-300 or Deg-100) for 12 weeks (8 weeks uptitration, 4 weeks stable dosing) by morning or evening administration in a basal/bolus regimen. The virtual patients were uptitrated to their individual doses with two different titration rules. Results: The last 2-week simulated continuous glucose monitoring data were used to calculate various outcome metrics for both basal insulin treatments, with primary outcome being the percent time in glucose target (70-140 mg/dL). The simulations show no statistically significant difference for Gla-300 versus Deg-100 in the main endpoints. Conclusions: This work suggests comparable glucose control using either Gla-300 or Deg-100 and was used to guide the design of a clinical trial intended to compare second-generation long-acting insulin analogues.
Collapse
Affiliation(s)
- Michele Schiavon
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Roberto Visentin
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Clemens Giegerich
- Translational Disease Modeling, R&D Digital and Data Sciences, Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany
| | - Jochen Sieber
- Medical Affairs Diabetes Care EMEA, Becton, Dickinson and Company
| | - Chiara Dalla Man
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Claudio Cobelli
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Thomas Klabunde
- Translational Disease Modeling, R&D Digital and Data Sciences, Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany
- Address correspondence to: Thomas Klabunde, PhD, Translational Disease Modeling, R&D Digital and Data Sciences, Sanofi-Aventis Deutschland GmbH, Industriepark Hochst, Frankfurt am Main D-65926, Germany
| |
Collapse
|
26
|
Artificial Pancreas Control Strategies Used for Type 1 Diabetes Control and Treatment: A Comprehensive Analysis. APPLIED SYSTEM INNOVATION 2020. [DOI: 10.3390/asi3030031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This paper presents a comprehensive survey about the fundamental components of the artificial pancreas (AP) system including insulin administration and delivery, glucose measurement (GM), and control strategies/algorithms used for type 1 diabetes mellitus (T1DM) treatment and control. Our main focus is on the T1DM that emerges due to pancreas’s failure to produce sufficient insulin due to the loss of beta cells (β-cells). We discuss various insulin administration and delivery methods including physiological methods, open-loop, and closed-loop schemes. Furthermore, we report several factors such as hyperglycemia, hypoglycemia, and many other physical factors that need to be considered while infusing insulin in human body via AP systems. We discuss three prominent control algorithms including proportional-integral- derivative (PID), fuzzy logic, and model predictive, which have been clinically evaluated and have all shown promising results. In addition, linear and non-linear insulin infusion control schemes have been formally discussed. To the best of our knowledge, this is the first work which systematically covers recent developments in the AP components with a solid foundation for future studies in the T1DM field.
Collapse
|
27
|
Visentin R, Schiavon M, Man CD. In Silico Cloning of Target Type 2 Diabetes Population for Treatments Development and Decision Support . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:5111-5114. [PMID: 33019136 DOI: 10.1109/embc44109.2020.9175271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Therapies for treatment of type 2 diabetes (T2D) involve a variety of medications, depending on the stage of T2D progression. It is now an accepted knowledge that in silico trials can help to accelerate drug development and support treatment optimization. A T2D simulator (T2DS), consisting of a model of the glucose-insulin system and an in silico population describing glucose-insulin dynamics in T2D subjects, has been recently developed based on early-stage T2D data, studied with sophisticated experimental techniques. This limits the domain of validity of the simulator to this specific sub-population of T2D. Here we proposed a method for tuning the T2DS to any desired T2D target population, e.g. insulin-naïve (i.e., not experienced with insulin) patients, without the need to resort to complex and expensive clinical studies. This will allow to use the T2DS for testing treatments in the target population. To illustrate the methodology, we used a case study: extending the T2DS to reproduce the behavior of insulin-naïve T2D subjects. The methodology described here can be extended to other stages of T2D, allowing an extensive in silico testing phase of different treatments before human trials.
Collapse
|
28
|
Thomas PS, Castro da Silva B, Barto AG, Giguere S, Brun Y, Brunskill E. Preventing undesirable behavior of intelligent machines. Science 2020; 366:999-1004. [PMID: 31754000 DOI: 10.1126/science.aag3311] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 08/31/2017] [Accepted: 10/25/2019] [Indexed: 11/03/2022]
Abstract
Intelligent machines using machine learning algorithms are ubiquitous, ranging from simple data analysis and pattern recognition tools to complex systems that achieve superhuman performance on various tasks. Ensuring that they do not exhibit undesirable behavior-that they do not, for example, cause harm to humans-is therefore a pressing problem. We propose a general and flexible framework for designing machine learning algorithms. This framework simplifies the problem of specifying and regulating undesirable behavior. To show the viability of this framework, we used it to create machine learning algorithms that precluded the dangerous behavior caused by standard machine learning algorithms in our experiments. Our framework for designing machine learning algorithms simplifies the safe and responsible application of machine learning.
Collapse
Affiliation(s)
| | | | | | | | - Yuriy Brun
- University of Massachusetts, Amherst, MA, USA
| | | |
Collapse
|
29
|
Sangeetha S, Sreepradha C, Sobana S, Bidisha P, Panda RC. Modeling and Control of the Glucose‐Insulin‐Glucagon System in Type I Diabetis Mellitus. CHEMBIOENG REVIEWS 2020. [DOI: 10.1002/cben.201900015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | - Subramani Sobana
- Easwari Engineering CollegeElectronics & Instrumentation Engineering Chennai India
| | - Panda Bidisha
- Stella Maris CollegeDepartment of Chemistry Chennai India
| | - Rames C. Panda
- Central Leather Research InstituteChemical Engineering Department Chennai India
| |
Collapse
|
30
|
Villa-Tamayo MF, Rivadeneira PS. Adaptive Impulsive Offset-Free MPC to Handle Parameter Variations for Type 1 Diabetes Treatment. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b05979] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- María F. Villa-Tamayo
- Universidad Nacional de Colombia, Facultad de Minas, Grupo
GITA, Cra. 80 # 65-223, Medellín, Colombia
| | - Pablo S. Rivadeneira
- Universidad Nacional de Colombia, Facultad de Minas, Grupo
GITA, Cra. 80 # 65-223, Medellín, Colombia
| |
Collapse
|
31
|
A systematic stochastic design strategy achieving an optimal tradeoff between peak BGL and probability of hypoglycaemic events for individuals having type 1 diabetes mellitus. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2019.101813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
Toffanin C, Kozak M, Sumnik Z, Cobelli C, Petruzelkova L. In Silico Trials of an Open-Source Android-Based Artificial Pancreas: A New Paradigm to Test Safety and Efficacy of Do-It-Yourself Systems. Diabetes Technol Ther 2020; 22:112-120. [PMID: 31769699 DOI: 10.1089/dia.2019.0375] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Objective: Safety data on Do-It-Yourself Artificial Pancreas Systems are missing. The most widespread in Europe is the AndroidAPS implementation of the OpenAPS algorithm. We used the UVA/Padova Type 1 Diabetes Simulator to in silico test safety and efficacy of this algorithm in different scenarios. Methods: We tested five configurations of the AndroidAPS algorithm differing in aggressiveness and patient's interaction with the system. All configurations were tested with insulin sensitivity variation of ±30%. The most promising configurations were tested in real-life scenarios: over- and underestimated bolus by 50%, bolus delivered 15 min before meal, and late bolus delivered 15 min after meal. Continuous Glucose Monitoring (CGM) time in ranges (TIRs) metrics were used to assess the glycemic control. Results: In silico testing showed that open-source closed-loop system AndroidAPS works effectively and safely. The best results were reached if AndroidAPS algorithm worked with microboluses and when half of calculated bolus was issued (mean glycemia 131 mg/dL, SD 27 mg/dL, TIR 91%, time between 54 and 70 mg/dL <1%, and low blood glucose index even <1). The meal bolus over- and underestimation as well as late bolus did not affect the TIR and, importantly, the time between 54 and 70 mg/dL. Conclusion: In silico testing proved that AndroidAPS implementation of the OpenAPS algorithm is safe and effective, and it showed a great potential to be tested in prospective home setting study.
Collapse
Affiliation(s)
- Chiara Toffanin
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Milos Kozak
- CLOSED LOOP Systems, Prague, Czech Republic, Prague, Czech Republic
| | - Zdenek Sumnik
- Department of Paediatrics, Motol University Hospital, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Claudio Cobelli
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Lenka Petruzelkova
- Department of Paediatrics, Motol University Hospital, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
33
|
Moscoso-Vasquez M, Colmegna P, Rosales N, Garelli F, Sanchez-Pena R. Control-Oriented Model With Intra-Patient Variations for an Artificial Pancreas. IEEE J Biomed Health Inform 2020; 24:2681-2689. [PMID: 31995506 DOI: 10.1109/jbhi.2020.2969389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this work, a low-order model designed for glucose regulation in Type 1 Diabetes Mellitus (T1DM) is obtained from the UVA/Padova metabolic simulator. It captures not only the nonlinear behavior of the glucose-insulin system, but also intra-patient variations related to daily insulin sensitivity ( SI) changes. To overcome the large inter-subject variability, the model can also be personalized based on a priori patient information. The structure is amenable for linear parameter varying (LPV) controller design, and represents the dynamics from the subcutaneous insulin input to the subcutaneous glucose output. The efficacy of this model is evaluated in comparison with a previous control-oriented model which in turn is an improvement of previous models. Both models are compared in terms of their open- and closed-loop differences with respect to the UVA/Padova model. The proposed model outperforms previous T1DM control-oriented models, which could potentially lead to more robust and reliable controllers for glycemia regulation.
Collapse
|
34
|
Yu X, Rashid M, Feng J, Hobbs N, Hajizadeh I, Samadi S, Sevil M, Lazaro C, Maloney Z, Littlejohn E, Quinn L, Cinar A. Online Glucose Prediction Using Computationally Efficient Sparse Kernel Filtering Algorithms in Type-1 Diabetes. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY : A PUBLICATION OF THE IEEE CONTROL SYSTEMS SOCIETY 2020; 28:3-15. [PMID: 32699492 PMCID: PMC7375403 DOI: 10.1109/tcst.2018.2843785] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Streaming data from continuous glucose monitoring (CGM) systems enable the recursive identification of models to improve estimation accuracy for effective predictive glycemic control in patients with type-1 diabetes. A drawback of conventional recursive identification techniques is the increase in computational requirements, which is a concern for online and real-time applications such as the artificial pancreas systems implemented on handheld devices and smartphones where computational resources and memory are limited. To improve predictions in such computationally constrained hardware settings, efficient adaptive kernel filtering algorithms are developed in this paper to characterize the nonlinear glycemic variability by employing a sparsification criterion based on the information theory to reduce the computation time and complexity of the kernel filters without adversely deteriorating the predictive performance. Furthermore, the adaptive kernel filtering algorithms are designed to be insensitive to abnormal CGM measurements, thus compensating for measurement noise and disturbances. As such, the sparsification-based real-time model update framework can adapt the prediction models to accurately characterize the time-varying and nonlinear dynamics of glycemic measurements. The proposed recursive kernel filtering algorithms leveraging sparsity for improved computational efficiency are applied to both in-silico and clinical subjects, and the results demonstrate the effectiveness of the proposed methods.
Collapse
Affiliation(s)
- Xia Yu
- School of Information Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Mudassir Rashid
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
| | - Jianyuan Feng
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
| | - Nicole Hobbs
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
| | - Iman Hajizadeh
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
| | - Sediqeh Samadi
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
| | - Mert Sevil
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
| | - Caterina Lazaro
- Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
| | - Zacharie Maloney
- Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
| | - Elizabeth Littlejohn
- Kovler Diabetes Center, Department of Pediatrics and Medicine, University of Chicago, Chicago, IL 60637 USA
| | - Laurie Quinn
- Department of Biobehavioral Health Science, College of Nursing, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Ali Cinar
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA, and also with the Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW The aim of this review is to summarize the development of the photoactivated depot (PAD) approach for the minimally invasive and continuously variable delivery of insulin. RECENT FINDINGS Using an insulin PAD, we have demonstrated that we can release native, bioactive insulin into diabetic animals in response to light signals from a small external LED light source. We have further shown that this released insulin retains bioactivity and reduces blood glucose. In addition, we have designed and constructed second generation materials that have high insulin densities, with the potential for multiple day delivery. The PAD approach for insulin therapy holds promise for addressing the pressing need for continuously variable delivery methods that do not rely on pumps, and their myriad associated problems.
Collapse
Affiliation(s)
- Simon H Friedman
- Division of Pharmacology and Pharmaceutical Sciences, University of Missouri-Kansas City, School of Pharmacy, 2464 Charlotte Street, Kansas City, MO, 64108, USA.
| |
Collapse
|
36
|
Hajizadeh I, Hobbs N, Samadi S, Sevil M, Rashid M, Brandt R, Askari MR, Maloney Z, Cinar A. Controlling the AP Controller: Controller Performance Assessment and Modification. J Diabetes Sci Technol 2019; 13:1091-1104. [PMID: 31561714 PMCID: PMC6835190 DOI: 10.1177/1932296819877217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Despite recent advances in closed-loop control of blood glucose concentration (BGC) in people with type 1 diabetes (T1D), online performance assessment and modification of artificial pancreas (AP) control systems remain a challenge as the metabolic characteristics of users change over time. METHODS A controller performance assessment and modification system (CPAMS) analyzes the glucose concentration variations and controller behavior, and modifies the parameters of the control system used in the multivariable AP system. Various indices are defined to quantitatively evaluate the controller performance in real time. Controller performance assessment and modification system also incorporates online learning from historical data to anticipate impending disturbances and proactively counteract their effects. RESULTS Using a multivariable simulation platform for T1D, the CPAMS is used to enhance the BGC regulation in people with T1D by means of automated insulin delivery with an adaptive learning predictive controller. Controller performance assessment and modification system increases the percentage of time in the target range (70-180) mg/dL by 52.3% without causing any hypoglycemia and hyperglycemia events. CONCLUSIONS The results demonstrate a significant improvement in the multivariable AP controller performance by using CPAMS.
Collapse
Affiliation(s)
- Iman Hajizadeh
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Nicole Hobbs
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Sediqeh Samadi
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Mert Sevil
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Mudassir Rashid
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Rachel Brandt
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Mohammad Reza Askari
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Zacharie Maloney
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Ali Cinar
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL, USA
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| |
Collapse
|
37
|
Resalat N, Hilts W, Youssef JE, Tyler N, Castle JR, Jacobs PG. Adaptive Control of an Artificial Pancreas Using Model Identification, Adaptive Postprandial Insulin Delivery, and Heart Rate and Accelerometry as Control Inputs. J Diabetes Sci Technol 2019; 13:1044-1053. [PMID: 31595784 PMCID: PMC6835177 DOI: 10.1177/1932296819881467] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND People with type 1 diabetes (T1D) have varying sensitivities to insulin and also varying responses to meals and exercise. We introduce a new adaptive run-to-run model predictive control (MPC) algorithm that can be used to help people with T1D better manage their glucose levels using an artificial pancreas (AP). The algorithm adapts to individuals' different insulin sensitivities, glycemic response to meals, and adjustment during exercise as a continuous input during free-living conditions. METHODS A new insulin sensitivity adaptation (ISA) algorithm is presented that updates each patient's insulin sensitivity during nonmeal periods to reduce the error between the actual glucose levels and the process model. We further demonstrate how an adaptive learning postprandial hypoglycemia prevention algorithm (ALPHA) presented in the previous work can complement the ISA algorithm, and the algorithm can adapt in several days. We further show that if physical activity is incorporated as a continuous input (heart rate and accelerometry), performance is improved. The contribution of this work is the description of the ISA algorithm and the evaluation of how ISA, ALPHA, and incorporation of exercise metrics as a continuous input can impact glycemic control. RESULTS Incorporating ALPHA, ISA, and physical activity into the MPC improved glycemic outcome measures. The adaptive learning postprandial hypoglycemia prevention algorithm combined with ISA significantly reduced time spent in hypoglycemia by 71.7% and the total number of rescue carbs by 67.8% to 0.37% events/day/patient. Insulin sensitivity adaptation significantly reduced model-actual mismatch by 12.2% compared to an AP without ISA. Incorporating physical activity as a continuous input modestly improved time in the range 70 to 180 mg/dL during high physical activity days from 84.4% to 84.9% and reduced the percentage time in hypoglycemia by 23.8% from 2.1% to 1.6%. CONCLUSION Adapting postprandial insulin delivery, insulin sensitivity, and adapting to physical exercise in an MPC-based AP systems can improve glycemic outcomes.
Collapse
Affiliation(s)
- Navid Resalat
- Artificial Intelligence for Medical Systems (AIMS) Lab, Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Wade Hilts
- Artificial Intelligence for Medical Systems (AIMS) Lab, Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Joseph El Youssef
- Artificial Intelligence for Medical Systems (AIMS) Lab, Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
- Department of Medicine, Division of Endocrinology, Harold Schnitzer Diabetes Health Center Oregon Health & Science University, Portland, OR, USA
| | - Nichole Tyler
- Artificial Intelligence for Medical Systems (AIMS) Lab, Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Jessica R. Castle
- Department of Medicine, Division of Endocrinology, Harold Schnitzer Diabetes Health Center Oregon Health & Science University, Portland, OR, USA
| | - Peter G. Jacobs
- Artificial Intelligence for Medical Systems (AIMS) Lab, Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
- Peter G. Jacobs, PhD, Department of Biomedical Engineering, Oregon Health & Science University, 3303 SW Bond Ave, Mailstop: 13B, Portland, OR 97239, USA.
| |
Collapse
|
38
|
Tagougui S, Taleb N, Molvau J, Nguyen É, Raffray M, Rabasa-Lhoret R. Artificial Pancreas Systems and Physical Activity in Patients with Type 1 Diabetes: Challenges, Adopted Approaches, and Future Perspectives. J Diabetes Sci Technol 2019; 13:1077-1090. [PMID: 31409125 PMCID: PMC6835182 DOI: 10.1177/1932296819869310] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Physical activity is important for patients living with type 1 diabetes (T1D) but limited by the challenges associated with physical activity induced glucose variability. Optimizing glycemic control without increasing the risk of hypoglycemia is still a hurdle despite many advances in insulin formulations, delivery methods, and continuous glucose monitoring systems. In this respect, the artificial pancreas (AP) system is a promising therapeutic option for a safer practice of physical activity in the context of T1D. It is important that healthcare professionals as well as patients acquire the necessary knowledge about how the AP system works, its limits, and how glucose control is regulated during physical activity. This review aims to examine the current state of knowledge on exercise-related glucose variations especially hypoglycemic risk in T1D and to discuss their effects on the use and development of AP systems. Though effective and highly promising, these systems warrant further research for an optimized use around exercise.
Collapse
Affiliation(s)
- Sémah Tagougui
- Montreal Clinical Research Institute, Montreal, Quebec, Canada
- Department of Nutrition, Faculty of Medicine, Montreal, Quebec, Canada
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d’Opale, EA 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Lille, France
| | - Nadine Taleb
- Montreal Clinical Research Institute, Montreal, Quebec, Canada
- Department of Biomedical Sciences, Faculty of Medicine, Édouard-Montpetit, Montreal, Quebec, Canada
| | | | - Élisabeth Nguyen
- Montreal Clinical Research Institute, Montreal, Quebec, Canada
- Department of Nutrition, Faculty of Medicine, Montreal, Quebec, Canada
| | - Marie Raffray
- Montreal Clinical Research Institute, Montreal, Quebec, Canada
| | - Rémi Rabasa-Lhoret
- Montreal Clinical Research Institute, Montreal, Quebec, Canada
- Department of Nutrition, Faculty of Medicine, Montreal, Quebec, Canada
- Division of Endocrinology, Centre Hospitalier de l’université de Montréal, Montreal, Quebec, Canada
- Montreal Diabetes Research Center & Endocrinology division, Quebec, Canada
- Rémi Rabasa-Lhoret, Montreal Clinical Research Institute, 110, avenue des Pins Ouest, Montreal, Quebec, Canada H2W 1R7.
| |
Collapse
|
39
|
Visentin R, Schiavon M, Giegerich C, Klabunde T, Man CD, Cobelli C. Incorporating Long-Acting Insulin Glargine Into the UVA/Padova Type 1 Diabetes Simulator for In Silico Testing of MDI Therapies. IEEE Trans Biomed Eng 2019; 66:2889-2896. [DOI: 10.1109/tbme.2019.2897851] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Automatic blood glucose control for type 1 diabetes: A trade-off between postprandial hyperglycemia and hypoglycemia. Biomed Signal Process Control 2019. [DOI: 10.1016/j.bspc.2019.101603] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Cappon G, Facchinetti A, Sparacino G, Georgiou P, Herrero P. Classification of Postprandial Glycemic Status with Application to Insulin Dosing in Type 1 Diabetes-An In Silico Proof-of-Concept. SENSORS 2019; 19:s19143168. [PMID: 31323886 PMCID: PMC6679291 DOI: 10.3390/s19143168] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 02/06/2023]
Abstract
In the daily management of type 1 diabetes (T1D), determining the correct insulin dose to be injected at meal-time is fundamental to achieve optimal glycemic control. Wearable sensors, such as continuous glucose monitoring (CGM) devices, are instrumental to achieve this purpose. In this paper, we show how CGM data, together with commonly recorded inputs (carbohydrate intake and bolus insulin), can be used to develop an algorithm that allows classifying, at meal-time, the post-prandial glycemic status (i.e., blood glucose concentration being too low, too high, or within target range). Such an outcome can then be used to improve the efficacy of insulin therapy by reducing or increasing the corresponding meal bolus dose. A state-of-the-art T1D simulation environment, including intraday variability and a behavioral model, was used to generate a rich in silico dataset corresponding to 100 subjects over a two-month scenario. Then, an extreme gradient-boosted tree (XGB) algorithm was employed to classify the post-prandial glycemic status. Finally, we demonstrate how the XGB algorithm outcome can be exploited to improve glycemic control in T1D through real-time adjustment of the meal insulin bolus. The proposed XGB algorithm obtained good accuracy at classifying post-prandial glycemic status (AUROC = 0.84 [0.78, 0.87]). Consequently, when used to adjust, in real-time, meal insulin boluses obtained with a bolus calculator, the proposed approach improves glycemic control when compared to the baseline bolus calculator. In particular, percentage time in target [70, 180] mg/dL was improved from 61.98 (±13.89) to 67.00 (±11.54; p < 0.01) without increasing hypoglycemia.
Collapse
Affiliation(s)
- Giacomo Cappon
- Department of Information Engineering, University of Padova, 35131 Padova (PD), Italy
| | - Andrea Facchinetti
- Department of Information Engineering, University of Padova, 35131 Padova (PD), Italy
| | - Giovanni Sparacino
- Department of Information Engineering, University of Padova, 35131 Padova (PD), Italy
| | - Pantelis Georgiou
- Department of Electrical and Electronical Engineering, Imperial College London, London W5 5SA, UK
| | - Pau Herrero
- Department of Electrical and Electronical Engineering, Imperial College London, London W5 5SA, UK.
| |
Collapse
|
42
|
Artificial Pancreas: Current Progress and Future Outlook in the Treatment of Type 1 Diabetes. Drugs 2019; 79:1089-1101. [DOI: 10.1007/s40265-019-01149-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Shi D, Dassau E, Doyle FJ. Multivariate learning framework for long-term adaptation in the artificial pancreas. Bioeng Transl Med 2019; 4:61-74. [PMID: 30680319 PMCID: PMC6336673 DOI: 10.1002/btm2.10119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/21/2018] [Accepted: 09/22/2018] [Indexed: 01/17/2023] Open
Abstract
The long-term use of the artificial pancreas (AP) requires an automated insulin delivery algorithm that can learn and adapt with the growth, development, and lifestyle changes of patients. In this work, we introduce a data-driven AP adaptation method for improved glucose management in a home environment. A two-phase Bayesian optimization assisted parameter learning algorithm is proposed to adapt basal and carbohydrate-ratio profile, and key feedback control parameters. The method is evaluated on the basis of the 111-adult cohort of the FDA-accepted UVA/Padova type 1 diabetes mellitus simulator through three scenarios with lifestyle disturbances and incorrect initial parameters. For all the scenarios, the proposed method is able to robustly adapt AP parameters for improved glycemic regulation performance in terms of percent time in the euglycemic range [70, 180] mg/dl without causing risk of hypoglycemia in terms of percent time below 70 mg/dl.
Collapse
Affiliation(s)
- Dawei Shi
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard UniversityCambridgeMA 02138
| | - Eyal Dassau
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard UniversityCambridgeMA 02138
| | - Francis J. Doyle
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard UniversityCambridgeMA 02138
| |
Collapse
|
44
|
Sun Q, Jankovic MV, Budzinski J, Moore B, Diem P, Stettler C, Mougiakakou SG. A Dual Mode Adaptive Basal-Bolus Advisor Based on Reinforcement Learning. IEEE J Biomed Health Inform 2018; 23:2633-2641. [PMID: 30571648 DOI: 10.1109/jbhi.2018.2887067] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Self-monitoring of blood glucose (SMBG) and continuous glucose monitoring (CGM) are commonly used by type 1 diabetes (T1D) patients to measure glucose concentrations. The proposed adaptive basal-bolus algorithm (ABBA) supports inputs from either SMBG or CGM devices to provide personalised suggestions for the daily basal rate and prandial insulin doses on the basis of the patients' glucose level on the previous day. The ABBA is based on reinforcement learning, a type of artificial intelligence, and was validated in silico with an FDA-accepted population of 100 adults under different realistic scenarios lasting three simulated months. The scenarios involve three main meals and one bedtime snack per day, along with different variabilities and uncertainties for insulin sensitivity, mealtime, carbohydrate amount, and glucose measurement time. The results indicate that the proposed approach achieves comparable performance with CGM or SMBG as input signals, without influencing the total daily insulin dose. The results are a promising indication that AI algorithmic approaches can provide personalised adaptive insulin optimization and achieve glucose control-independent of the type of glucose monitoring technology.
Collapse
|
45
|
Shi D, Dassau E, Doyle FJ. Adaptive Zone Model Predictive Control of Artificial Pancreas Based on Glucose- and Velocity-Dependent Control Penalties. IEEE Trans Biomed Eng 2018; 66:1045-1054. [PMID: 30142748 DOI: 10.1109/tbme.2018.2866392] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Zone model predictive control (MPC) has been proven to be an efficient approach to closed-loop insulin delivery in clinical studies. In this paper, we aim to safely reduce mean glucose levels by proposing control penalty adaptation in the cost function of zone MPC. METHODS A zone MPC method with a dynamic cost function that updates its control penalty parameters in real time according to the predicted glucose and its rate of change is developed. The proposed method is evaluated on the entire 100-adult cohort of the FDA-accepted UVA/Padova T1DM simulator and compared with the zone MPC tested in an extended outpatient study. RESULTS For unannounced meals, the proposed method leads to statistically significant improvements in terms of mean glucose (153.8 mg/dL vs. 159.0 mg/dL; ) and percentage time in [70, 180] mg/dL ([Formula: see text] vs. [Formula: see text]; ) without increasing the risk of hypoglycemia. Performance for announced meals is similar to that obtained without adaptation. The proposed method also behaves properly and safely for scenarios of moderate meal-bolus and basal rate mismatches, as well as simulated unannounced exercise. Advisory-mode analysis based on clinical data indicates that the method can reduce glucose levels through suggesting additional safe amounts of insulin on top of those suggested by the zone MPC used in the study. CONCLUSION The proposed method leads to improved glucose control without increasing hypoglycemia risks. SIGNIFICANCE The results validate the feasibility of improving glucose regulation through glucose- and velocity-dependent control penalty adaptation in MPC design.
Collapse
|
46
|
Vettoretti M, Facchinetti A, Sparacino G, Cobelli C. Type-1 Diabetes Patient Decision Simulator for In Silico Testing Safety and Effectiveness of Insulin Treatments. IEEE Trans Biomed Eng 2018; 65:1281-1290. [PMID: 28866479 DOI: 10.1109/tbme.2017.2746340] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
OBJECTIVE Type-1 diabetes (T1D) treatment requires exogenous insulin administrations finely tuned based on glucose monitoring to avoid hyper/hypoglycemia. The safety and effectiveness of insulin treatments is commonly assessed in clinical trials, which are time demanding and expensive. These limitations can be overtaken by in silico clinical trials (ISCT) that require realistic patient and treatment models. The aim is to develop a T1D patient decision simulator usable to perform reliable ISCT. METHODS The T1D patient decision simulator was developed by connecting the UVA/Padova T1D model, which describes glucose, insulin, and glucagon kinetics, with modules describing glucose monitoring devices, like self-monitoring of blood glucose (SMBG) and continuous glucose monitoring (CGM), the patient's behavior in making treatment decisions, and insulin administration. The reliability of the simulator was assessed by comparing its predictions with data collected in 44 T1D subjects using the Dexcom G5 Mobile CGM sensor as an adjunct to the Bayer Contour Next USB SMBG device. RESULTS Metrics like time spent in eu/hypo/hyperglycemia of simulated data well match those observed in subjects. In particular, mean time in euglycemia, mean time in hyperglycemia, and median time in hypoglycemia are 61.75% versus 63.60% (p-value = 0.4825), 33.38% versus 33.40% (p -value = 0.9950), and 3.17% versus 2.14% (p-value = 0.1134), respectively, in real versus simulated data. CONCLUSION The proposed simulator can be used to perform credible ISCT in realistic insulin treatment scenarios. SIGNIFICANCE The T1D patient decision simulator can be used to reliably assess novel insulin treatments, e.g., based on use of CGM only, in a realistic multiple-day scenario.
Collapse
|
47
|
Visentin R, Campos-Náñez E, Schiavon M, Lv D, Vettoretti M, Breton M, Kovatchev BP, Dalla Man C, Cobelli C. The UVA/Padova Type 1 Diabetes Simulator Goes From Single Meal to Single Day. J Diabetes Sci Technol 2018; 12:273-281. [PMID: 29451021 PMCID: PMC5851236 DOI: 10.1177/1932296818757747] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND A new version of the UVA/Padova Type 1 Diabetes (T1D) Simulator is presented which provides a more realistic testing scenario. The upgrades to the previous simulator, which was accepted by the Food and Drug Administration in 2013, are described. METHOD Intraday variability of insulin sensitivity (SI) has been modeled, based on clinical T1D data, accounting for both intra- and intersubject variability of daily SI. Thus, time-varying distributions of both subject's basal insulin infusion and insulin-to-carbohydrate ratio were calculated and made available to the user. A model of "dawn" phenomenon based on clinical T1D data has been also included. Moreover, the model of subcutaneous insulin delivery has been updated with a recently developed model of commercially available fast-acting insulin analogs. Models of both intradermal and inhaled insulin pharmacokinetics have been included. Finally, new models of error affecting continuous glucose monitoring and self-monitoring of blood glucose devices have been added. RESULTS One hundred in silico adults, adolescent, and children have been generated according to the above modifications. The new simulator reproduces the intraday glucose variability observed in clinical data, also describing the nocturnal glucose increase, and the simulated insulin profiles reflect real life data. CONCLUSIONS The new modifications introduced in the T1D simulator allow to extend its domain of validity from "single-meal" to "single-day" scenarios, thus enabling a more realistic framework for in silico testing of advanced diabetes technologies including glucose sensors, new insulin molecules and artificial pancreas.
Collapse
Affiliation(s)
- Roberto Visentin
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Enrique Campos-Náñez
- Center for Diabetes Technology, University of Virginia, Charlottesville, VA, USA
| | - Michele Schiavon
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Dayu Lv
- Center for Diabetes Technology, University of Virginia, Charlottesville, VA, USA
| | - Martina Vettoretti
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Marc Breton
- Center for Diabetes Technology, University of Virginia, Charlottesville, VA, USA
| | - Boris P. Kovatchev
- Center for Diabetes Technology, University of Virginia, Charlottesville, VA, USA
| | - Chiara Dalla Man
- Department of Information Engineering, University of Padova, Padova, Italy
- Chiara Dalla Man, PhD, Department of Information Engineering, University of Padova, Via Gradenigo 6/b, 35131 Padova, Italy.
| | - Claudio Cobelli
- Department of Information Engineering, University of Padova, Padova, Italy
| |
Collapse
|
48
|
Herrero P, Bondia J, Giménez M, Oliver N, Georgiou P. Automatic Adaptation of Basal Insulin Using Sensor-Augmented Pump Therapy. J Diabetes Sci Technol 2018; 12:282-294. [PMID: 29493359 PMCID: PMC5851242 DOI: 10.1177/1932296818761752] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND People with insulin-dependent diabetes rely on an intensified insulin regimen. Despite several guidelines, they are usually impractical and fall short in achieving optimal glycemic outcomes. In this work, a novel technique for automatic adaptation of the basal insulin profile of people with diabetes on sensor-augmented pump therapy is presented. METHODS The presented technique is based on a run-to-run control law that overcomes some of the limitations of previously proposed methods. To prove its validity, an in silico validation was performed. Finally, the artificial intelligence technique of case-based reasoning is proposed as a potential solution to deal with variability in basal insulin requirements. RESULTS Over a period of 4 months, the proposed run-to-run control law successfully adapts the basal insulin profile of a virtual population (10 adults, 10 adolescents, and 10 children). In particular, average percentage time in target [70, 180] mg/dl was significantly improved over the evaluated period (first week versus last week): 70.9 ± 11.8 versus 91.1 ± 4.4 (adults), 46.5 ± 11.9 versus 80.1 ± 10.9 (adolescents), 49.4 ± 12.9 versus 73.7 ± 4.1 (children). Average percentage time in hypoglycemia (<70 mg/dl) was also significantly reduced: 9.7 ± 6.6 versus 0.9 ± 1.2 (adults), 10.5 ± 8.3 versus 0.83 ± 1.0 (adolescents), 10.9 ± 6.1 versus 3.2 ± 3.5 (children). When compared against an existing technique over the whole evaluated period, the presented approach achieved superior results on percentage of time in hypoglycemia: 3.9 ± 2.6 versus 2.6 ± 2.2 (adults), 2.9 ± 1.9 versus 2.0 ± 1.5 (adolescents), 4.6 ± 2.8 versus 3.5 ± 2.0 (children), without increasing the percentage time in hyperglycemia. CONCLUSION The present study shows the potential of a novel technique to effectively adjust the basal insulin profile of a type 1 diabetes population on sensor-augmented insulin pump therapy.
Collapse
Affiliation(s)
- Pau Herrero
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, London, UK
- Pau Herrero, PhD, Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Jorge Bondia
- Institut Universitari d’Automàtica i Informàtica Industrial, Universitat Politècnica de València, València, Spain
| | - Marga Giménez
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine Imperial College, London, UK
| | - Nick Oliver
- Diabetes Unit, Endocrinology Department, ICMDiM Hospital Clínic, Barcelona, Spain
| | - Pantelis Georgiou
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, London, UK
| |
Collapse
|
49
|
Contreras I, Oviedo S, Vettoretti M, Visentin R, Vehí J. Personalized blood glucose prediction: A hybrid approach using grammatical evolution and physiological models. PLoS One 2017; 12:e0187754. [PMID: 29112978 PMCID: PMC5675457 DOI: 10.1371/journal.pone.0187754] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/25/2017] [Indexed: 11/19/2022] Open
Abstract
The large patient variability in human physiology and the effects of variables such as exercise or meals challenge current prediction modeling techniques. Physiological models are very precise but they are typically complex and specific physiological knowledge is required. In contrast, data-based models allow the incorporation of additional inputs and accurately capture the relationship between these inputs and the outcome, but at the cost of losing the physiological meaning of the model. In this work, we designed a hybrid approach comprising physiological models for insulin and grammatical evolution, taking into account the clinical harm caused by deviations from the target blood glucose by using a penalizing fitness function based on the Clarke error grid. The prediction models were built using data obtained over 14 days for 100 virtual patients generated by the UVA/Padova T1D simulator. Midterm blood glucose was predicted for the 100 virtual patients using personalized models and different scenarios. The results obtained were promising; an average of 98.31% of the predictions fell in zones A and B of the Clarke error grid. Midterm predictions using personalized models are feasible when the configuration of grammatical evolution explored in this study is used. The study of new alternative models is important to move forward in the development of alarm-and-control applications for the management of type 1 diabetes and the customization of the patient's treatments. The hybrid approach can be adapted to predict short-term blood glucose values to detect continuous glucose-monitoring sensor errors and to estimate blood glucose values when the continuous glucose-monitoring system fails to provide them.
Collapse
Affiliation(s)
- Iván Contreras
- Institut d’Informàtica i Aplicacions, Parc Científic i Tecnològic de la Universitat de Girona, Girona, Spain
- * E-mail:
| | - Silvia Oviedo
- Institut d’Informàtica i Aplicacions, Parc Científic i Tecnològic de la Universitat de Girona, Girona, Spain
| | - Martina Vettoretti
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Roberto Visentin
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Josep Vehí
- Institut d’Informàtica i Aplicacions, Parc Científic i Tecnològic de la Universitat de Girona, Girona, Spain
| |
Collapse
|
50
|
Zavitsanou S, Lee JB, Pinsker JE, Church MM, Doyle FJ, Dassau E. A Personalized Week-to-Week Updating Algorithm to Improve Continuous Glucose Monitoring Performance. J Diabetes Sci Technol 2017; 11:1070-1079. [PMID: 29032732 PMCID: PMC5951058 DOI: 10.1177/1932296817734367] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Continuous glucose monitoring (CGM) systems are increasingly becoming essential components in type 1 diabetes mellitus (T1DM) management. Current CGM technology requires frequent calibration to ensure accurate sensor performance. The accuracy of these systems is of great importance since medical decisions are made based on monitored glucose values and trends. METHODS In this work, we introduce a calibration strategy that is augmented with a weekly updating feature. During the life cycle of the sensor, the calibration mechanism periodically estimates the parameters of a calibration model to fit self-monitoring blood glucose (SMBG) measurements. At the end of each week of use, an optimization problem that minimizes the sum of squared residuals between past reference and predicted blood glucose values is solved remotely to identify personalized calibration parameters. The newly identified parameters are used to initialize the calibration mechanism of the following week. RESULTS The proposed method was evaluated using two sets of clinical data both consisting of 6 weeks of Dexcom G4 Platinum CGM data on 10 adults with T1DM (over 10 000 hours of CGM use), with seven SMBG data points per day measured by each subject in an unsupervised outpatient setting. Updating the calibration parameters using the history of calibration data indicated a positive trend of improving CGM performance. CONCLUSIONS Although not statistically significant, the updating framework showed a relative improvement of CGM accuracy compared to the non-updating, static calibration method. The use of information collected for longer periods is expected to improve the performance of the sensor over time.
Collapse
Affiliation(s)
- Stamatina Zavitsanou
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- William Sansum Diabetes Center, Santa Barbara, CA, USA
| | - Joon Bok Lee
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | | | | | - Francis J. Doyle
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- William Sansum Diabetes Center, Santa Barbara, CA, USA
| | - Eyal Dassau
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- William Sansum Diabetes Center, Santa Barbara, CA, USA
- Eyal Dassau, PhD, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|