1
|
Guo Z, Ai N, Ge W, Xu Q. ZebraVas: A Non-Invasive Microvision System for Vascular Recognition and Blood Flow Monitoring of Zebrafish Larvae. IEEE Trans Nanobioscience 2025; 24:225-233. [PMID: 40030690 DOI: 10.1109/tnb.2024.3520137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Zebrafish have emerged as a powerful model organism in cardiovascular disease research. Accurately identifying zebrafish blood vessels and evaluating blood flow velocity without injury has a wide range of biological applications. This paper presents the design and development of a non-invasive microvision system for vascular recognition and blood flow monitoring of zebrafish larvae. For the first time, a visual algorithm based on color thresholding and discrete Fourier transform filtering is proposed to determine the position of zebrafish dorsal cardinal vein vessels. Next, the blood flow velocity is determined based on the change rate of pixel values near the centroid point of the blood vessel recognition results. Then, an independent software system is developed based on the producer-consumer underlying framework. A user-friendly interface is specifically designed for biomedical workers, and a complete prototype system is built in combination with hardware devices. In addition, relevant experiments were conducted, and the results indicated that the system can effectively recognize the position of vessels and monitor blood flow velocity in zebrafish larvae under different anesthesia concentrations and developmental days. The heart rate information obtained based on blood flow velocity is consistent with the heart beating frequency. Moreover, the system has also been successfully applied to blood flow velocity monitoring under fluorescence conditions. In future work, this system will be applied in drug screening research for cardiovascular-related diseases of zebrafish larvae.
Collapse
|
2
|
Hsueh YS, Chen SH, Tseng WL, Lin SC, Chen DQ, Huang CC, Hsueh YY. Leptin deficiency leads to nerve degeneration and impairs axon remyelination by inducing Schwann cell apoptosis and demyelination in type 2 diabetic peripheral neuropathy in rats. Neurochem Int 2025; 182:105908. [PMID: 39608454 DOI: 10.1016/j.neuint.2024.105908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/08/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Diabetic peripheral neuropathy, characterized by symptoms such as paresthesia, neuropathic pain, and potential lower limb amputation, poses significant clinical management challenges. Recent studies suggest that chronic hyperglycemia-induced Schwann cells (SCs) apoptosis contributes to neurodegeneration and impaired nerve regeneration, but the detailed mechanisms are still unknown. Our study investigated a mixed-sex type 2 diabetes mellitus (T2DM) rat model using leptin knockout (KO) to simulate obesity and diabetes-related conditions. Through extensive assessments, including mechanical allodynia, electrophysiology, and microcirculation analyses, along with myelin degradation studies in KO versus wild-type rats, we focused on apoptosis, autophagy, and SCs dedifferentiation in the sciatic nerve and examined nerve regeneration in KO rats. KO rats exhibited notable reductions in mechanical withdrawal force, prolonged latency, decreased compound muscle action potential (CMAP) amplitude, reduced microcirculation, myelin sheath damage, and increases in apoptosis, autophagy, and SCs dedifferentiation. Moreover, leptin KO was found to impair peripheral nerve regeneration postinjury, as indicated by reduced muscle weight, lower CMAP amplitude, extended latency, and decreased remyelination and SCs density. These findings underscore the effectiveness of the T2DM rat model in clarifying the impact of leptin KO on SCs apoptosis, dedifferentiation, and demyelination, providing valuable insights into new therapeutic avenues for treating T2DM-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Yuan-Shuo Hsueh
- Department of Physiology, School of Post Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Szu-Han Chen
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Wan-Ling Tseng
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Sheng-Che Lin
- Division of Plastic Surgery, Department of Surgery, An-Nan Hospital, China Medical University, Tainan, 709, Taiwan
| | - De-Quan Chen
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chih-Chung Huang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yuan-Yu Hsueh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
3
|
Lee SA, Kamimura HAS, Smith M, Konofagou EE. Functional Cerebral Neurovascular Mapping During Focused Ultrasound Peripheral Neuromodulation of Neuropathic Pain. IEEE Trans Biomed Eng 2024; 71:1770-1779. [PMID: 38198257 PMCID: PMC11105977 DOI: 10.1109/tbme.2024.3352025] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
BACKGROUND Nociceptive pain is required for healthy function, yet, neuropathic pain (disease or injury) can be severely debilitating. Though a wide-array of treatment options are available, they are often systemic and/or invasive. As a promising neuromodulation treatment, Focused ultrasound (FUS) is a noninvasive and highly spatially-targeted technique shown to stimulate neural activity, yet, effects on pain signaling are currently unknown. OBJECTIVE Develop and validate a method for studying FUS nerve stimulation modulation of pain-evoked neural responses in vivo. METHODS We developed a high-resolution functional ultrasound (fUS) method capable of mapping cortical responses in healthy and neuropathic pain mice in response to FUS neuromodulation treatment. RESULTS FUS-evoked hemodynamic responses are correlated with the intensity of peripheral neuromodulation. We confirm functional connectivity is altered in neuropathic mice and demonstrate that FUS can modulate neuropathic pain-evoked hemodynamics. CONCLUSIONS The findings presented herein provides evidence for an FUS-based nerve pain method and validates the fUS technique developed for monitoring pain-evoked hemodynamics. SIGNIFICANCE We anticipate that the findings presented herein describe a noninvasive and flexible nerve modulation technique for pain mitigation, furthering evidence for clinical translation.
Collapse
|
4
|
Wang N, Qiang Y, Qiu C, Chen Y, Wang X, Pan Y, Liu R, Wu W, Zheng H, Qiu W, Zhang Z. A Multiplexed 32 × 32 2D Matrix Array Transducer for Flexible Sub-Aperture Volumetric Ultrasound Imaging. IEEE Trans Biomed Eng 2024; 71:831-840. [PMID: 37756181 DOI: 10.1109/tbme.2023.3319513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
A fully-sampled two-dimensional (2D) matrix array ultrasonic transducer is essential for fast and accurate three-dimensional (3D) volumetric ultrasound imaging. However, these arrays, usually consisting of thousands of elements, not only face challenges of poor performance and complex wiring due to high-density elements and small element sizes but also put high requirements for electronic systems. Current commercially available fully-sampled matrix arrays, dividing the aperture into four fixed sub-apertures to reduce system channels through multiplexing are widely used. However, the fixed sub-aperture configuration limits imaging flexibility and the gaps between sub-apertures lead to reduced imaging quality. In this study, we propose a high-performance multiplexed matrix array by the design of 1-3 piezocomposite and gapless sub-aperture configuration, as well as optimized matching layer materials. Furthermore, we introduce a sub-aperture volumetric imaging method based on the designed matrix array, enabling high-quality and flexible 3D ultrasound imaging with a low-cost 256-channel system. The influence of imaging parameters, including the number of sub-apertures and steering angle on imaging quality was investigated by simulation, in vitro and in vivo imaging experiments. The fabricated matrix array has a center frequency of 3.4 MHz and a -6 dB bandwidth of above 70%. The proposed sub-aperture volumetric imaging method demonstrated a 10% improvement in spatial resolution, a 19% increase in signal-to-noise ratio, and a 57.7% increase in contrast-to-noise ratio compared with the fixed sub-aperture array imaging method. This study provides a new strategy for high-quality volumetric ultrasound imaging with a low-cost system.
Collapse
|
5
|
Huang H, Hsu P, Tsai S, Chuang Y, Chen D, Xu G, Chen C, Kuo Y, Huang C. High-Spatiotemporal-Resolution Ultrasound Flow Imaging to Determine Cerebrovascular Hemodynamics in Alzheimer's Disease Mice Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302345. [PMID: 37964413 PMCID: PMC10724386 DOI: 10.1002/advs.202302345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/28/2023] [Indexed: 11/16/2023]
Abstract
Although the relationships of cerebrovascular hemodynamic dysfunction with neurodegenerative diseases remain unclear, many studies have indicated that poor cerebral perfusion accelerates the progression of neurodegenerative diseases, such as Alzheimer's disease (AD). Small animal models are widely used in AD research. However, providing an imaging modality with a high spatiotemporal resolution and sufficiently large field of view to assess cerebrovascular hemodynamics in vivo remains a challenge. The present study proposes a novel technique for high-spatiotemporal-resolution vector micro-Doppler imaging (HVμDI) based on contrast-free ultrafast high frequency ultrasound imaging to visualize the cerebrovascular hemodynamics of the mouse, with a data acquisition time of 0.4 s, a minimal detectable vessel size of 38 µm, and a temporal resolution of 500 Hz. In vivo experiments are conducted on wild-type and AD mice. Cerebrovascular hemodynamics are quantified using the cerebral vascular density, diameter, velocity, tortuosity, cortical flow pulsatility, and instant flow direction variations. Results reveal that AD significantly change the cerebrovascular hemodynamics. HVμDI offers new opportunities for in vivo analysis of cerebrovascular hemodynamics in neurodegenerative pathologies in preclinical animal research.
Collapse
Affiliation(s)
- Hsin Huang
- Department of Biomedical EngineeringNational Cheng Kung UniversityTainan70101Taiwan
| | - Pei‐Ling Hsu
- Department of AnatomySchool of MedicineCollege of MedicineKaohsiung Medical UniversityKaohsiung80708Taiwan
- Department of Medical ResearchKaohsiung Medical University HospitalKaohsiung80708Taiwan
- Drug Development and Value Creation Research CenterKaohsiung Medical UniversityKaohsiung80708Taiwan
| | - Sheng‐Feng Tsai
- Department of Cell Biology and AnatomyCollege of MedicineNational Cheng Kung UniversityTainan70101Taiwan
- Institute of Basic Medical SciencesCollege of MedicineNational Cheng Kung UniversityTainan70101Taiwan
| | - Yi‐Hsiang Chuang
- Department of Biomedical EngineeringNational Cheng Kung UniversityTainan70101Taiwan
| | - De‐Quan Chen
- Department of Biomedical EngineeringNational Cheng Kung UniversityTainan70101Taiwan
| | - Guo‐Xuan Xu
- Department of Biomedical EngineeringNational Cheng Kung UniversityTainan70101Taiwan
| | - Chien Chen
- Department of Biomedical EngineeringNational Cheng Kung UniversityTainan70101Taiwan
| | - Yu‐Min Kuo
- Department of Cell Biology and AnatomyCollege of MedicineNational Cheng Kung UniversityTainan70101Taiwan
- Institute of Basic Medical SciencesCollege of MedicineNational Cheng Kung UniversityTainan70101Taiwan
| | - Chih‐Chung Huang
- Department of Biomedical EngineeringNational Cheng Kung UniversityTainan70101Taiwan
- Medical Device Innovation CenterNational Cheng Kung UniversityTainan70101Taiwan
| |
Collapse
|
6
|
Huang YH, Huang H, Chuang YH, Mo FE, Huang CC. Visualization of Pulse-Wave Velocity on Arterial Wall of Mice Through High-Frequency Ultrafast Doppler Imaging. IEEE Trans Biomed Eng 2023; 70:3366-3372. [PMID: 37318964 DOI: 10.1109/tbme.2023.3286343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Arterial pulse-wave velocity (PWV) is widely used in clinical applications to assess cardiovascular diseases. Ultrasound methods have been proposed for estimating regional PWV in human arteries. Furthermore, high-frequency ultrasound (HFUS) has been applied to perform preclinical small-animal PWV measurements; however, electrocardiogram (ECG)-gated retrospective imaging is required to achieve high-frame-rate imaging, which might be affected by arrhythmia-related problems. In this article, HFUS PWV mapping based on 40-MHz ultrafast HFUS imaging is proposed to visualize PWV on mouse carotid artery to measure arterial stiffness without ECG gating. In contrast to most other studies that used cross-correlation methods to detect arterial motion, ultrafast Doppler imaging was applied in this study to measure arterial wall velocity for PWV estimations. The performance of the proposed HFUS PWV mapping method was verified using a polyvinyl alcohol (PVA) phantom with various freeze-thaw cycles. Small-animal studies were then performed in wild-type (WT) mice and in apolipoprotein E knockout (ApoE KO) mice that were fed a high-fat diet (for 16 and 24 weeks). The Young's modulus of the PVA phantom measured through HFUS PWV mapping was 15.3 ± 0.81, 20.8 ± 0.32, and 32.2 ± 1.11 kPa for three, four, and five freeze-thaw cycles, respectively, and the corresponding measurement biases (relative to theoretical values) were 1.59%, 6.41%, and 5.73%, respectively. In the mouse study, the average PWVs were 2.0 ± 0.26, 3.3 ± 0.45, and 4.1 ± 0.22 m/s for 16-week WT, 16-week ApoE KO, and 24-week ApoE KO mice, respectively. The PWVs of ApoE KO mice increased during the high-fat diet feeding period. HFUS PWV mapping was used to visualize the regional stiffness of mouse artery, and a histology confirmed that the plaque formation in the bifurcation region increased the regional PWV. All the results indicate that the proposed HFUS PWV mapping method is a convenient tool for investigating arterial properties in preclinical small-animal studies.
Collapse
|
7
|
Titov SA, Burlakov AB, Zinin PV, Bogachenkov AN. Measurement of ultrasound velocity in yolk and blastula of fish embryo in vivo. ULTRASONICS 2023; 132:106963. [PMID: 36863133 DOI: 10.1016/j.ultras.2023.106963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 11/24/2022] [Accepted: 02/13/2023] [Indexed: 05/29/2023]
Abstract
An acoustic microscopy method for measuring the velocity of ultrasound in the yolk and blastula of bony fish embryos at early stages of development was proposed. The yolk and blastula were approximated as a sphere and a spherical dome, respectively, consisting of a homogeneous liquid. A theoretical model of ultrasonic wave propagation through a spherical liquid drop located on a solid substrate was developed in the ray approximation. The dependence of the wave propagation time on the speed of sound in the drop, its diameter, and the position of the focus of the ultrasonic transducer has been determined. It was shown that the velocity in the drop can be found by solving the inverse problem by minimizing the discrepancy between the experimental and model spatial distributions of the propagation time, assuming that the velocity in the immersion liquid and the radius of the drop are known. The velocities in the yolk and blastula of the loach (Misgurnus fossilis) embryo at the stage of development of the middle blastula were measured in vivo using a pulsed scanning acoustic microscope operating at a central frequency of 50 MHz. The yolk and blastula radii were determined from ultrasound images of the embryo. Acoustic microscopy measurements conducted with four embryos provide velocities of the acoustic longitudinal wave in the yolk and blastula. They were measured to be 1581 ± 5 m/s and 1525 ± 4 m/s when the temperature of the liquid in the water tank was kept at 22 ± 2 °C.
Collapse
Affiliation(s)
- S A Titov
- Scientific and Technological Center for Unique Instrumentation of the Russian Academy of Sciences(STC UP RAS), 15 Butlerova str, Moscow 117342, Russia.
| | - A B Burlakov
- Lomonosov Moscow state University, 1 Leninskie Gory, Moscow 119991, Russia
| | - P V Zinin
- Scientific and Technological Center for Unique Instrumentation of the Russian Academy of Sciences(STC UP RAS), 15 Butlerova str, Moscow 117342, Russia
| | - A N Bogachenkov
- Institute of Biochemical Physics of the Russian Academy of Sciences, 4 Kosygina str, Moscow 119334, Russia
| |
Collapse
|
8
|
Lei S, Zhang C, Zhu B, Gao Z, Zhang Q, Liu J, Li Y, Zheng H, Ma T. In vivo ocular microvasculature imaging in rabbits with 3D ultrasound localization microscopy. ULTRASONICS 2023; 133:107022. [PMID: 37178486 DOI: 10.1016/j.ultras.2023.107022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023]
Abstract
Morphological and hemodynamic changes in the ocular vasculature are important signs of various ocular diseases. The evaluation of the ocular microvasculature with high resolution is valuable in comprehensive diagnoses. However, it is difficult for current optical imaging techniques to visualize the posterior segment and retrobulbar microvasculature due to the limited penetration depth of light, particularly when the refractive medium is opaque. Thus, we have developed a 3D ultrasound localization microscopy (ULM) imaging method to visualize the ocular microvasculature in rabbits with micron-scale resolution. We used a 32 × 32 matrix array transducer (center frequency: 8 MHz) with a compounding plane wave sequence and microbubbles. Block-wise singular value decomposition spatiotemporal clutter filtering and block-matching 3D denoising were implemented to extract the flowing microbubble signals at different imaging depths with high signal-to-noise ratios. The center points of microbubbles were localized and tracked in 3D space to achieve the micro-angiography. The in vivo results demonstrate the ability of 3D ULM to visualize the microvasculature of the eye in rabbits, where vessels down to 54 μm were successfully revealed. Moreover, the microvascular maps indicated the morphological abnormalities in the eye with retinal detachment. This efficient modality shows potential for use in the diagnosis of ocular diseases.
Collapse
Affiliation(s)
- Shuang Lei
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China; Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Changlu Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Benpeng Zhu
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Zeping Gao
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qi Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; National Innovation Center for Advanced Medical Devices, Shenzhen 518126, China
| | - Jiamei Liu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; National Innovation Center for Advanced Medical Devices, Shenzhen 518126, China
| | - Yongchuan Li
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hairong Zheng
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Teng Ma
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; National Innovation Center for Advanced Medical Devices, Shenzhen 518126, China.
| |
Collapse
|
9
|
Quan B, Liu X, Zhao S, Chen X, Zhang X, Chen Z. Detecting Early Ocular Choroidal Melanoma Using Ultrasound Localization Microscopy. Bioengineering (Basel) 2023; 10:bioengineering10040428. [PMID: 37106615 PMCID: PMC10136200 DOI: 10.3390/bioengineering10040428] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/15/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Ocular choroidal melanoma (OCM) is the most common ocular primary malignant tumor in adults, and there is an increasing emphasis on its early detection and treatment worldwide. The main obstacle in early detection of OCM is its overlapping clinical features with benign choroidal nevus. Thus, we propose ultrasound localization microscopy (ULM) based on the image deconvolution algorithm to assist the diagnosis of small OCM in early stages. Furthermore, we develop ultrasound (US) plane wave imaging based on three-frame difference algorithm to guide the placement of the probe on the field of view. A high-frequency Verasonics Vantage system and an L22-14v linear array transducer were used to perform experiments on both custom-made modules in vitro and a SD rat with ocular choroidal melanoma in vivo. The results demonstrate that our proposed deconvolution method implement more robust microbubble (MB) localization, reconstruction of microvasculature network in a finer grid and more precise flow velocity estimation. The excellent performance of US plane wave imaging was successfully validated on the flow phantom and in an in vivo OCM model. In the future, the super-resolution ULM, a critical complementary imaging modality, can provide doctors with conclusive suggestions for early diagnosis of OCM, which is significant for the treatment and prognosis of patients.
Collapse
Affiliation(s)
- Biao Quan
- The College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Xiangdong Liu
- The College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Shuang Zhao
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiang Chen
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xuan Zhang
- The Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha 410008, China
- Correspondence: (X.Z.); (Z.C.)
| | - Zeyu Chen
- The College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
- Correspondence: (X.Z.); (Z.C.)
| |
Collapse
|
10
|
Yeh YW, Huang CC, Kuo WS, Liao TL, Tsai TL, Wu PC. Multifunctional Hydrogel Dressing That Carries Three Antibiotics Simultaneously and Enables Real-Time Ultrasound Bacterial Colony Detection. ACS OMEGA 2023; 8:10278-10287. [PMID: 36969425 PMCID: PMC10034778 DOI: 10.1021/acsomega.2c07806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
We have developed a multifunctional hydrogel that can carry three synergistic antibiotics commonly used in clinical practice. This hydrogel was discovered to have drug encapsulation efficiencies of 94% for neomycin, 97% for bacitracin, and 88% for polymyxin B. Drug release data indicated that the release profiles of these three antibiotics were different. A swelling test demonstrated that the hydrogel absorbed liquid after the release of its antibiotics until it became saturated, which occurred within 48 h. Moreover, this hydrogel exhibited excellent antibacterial effects against Escherichia coli and Pseudomonas aeruginosa and biocompatibility; it can thus protect a wound from microbial invasion. When the alginate hydrogel is used to cover a wound, the wound can be checked for colonization at any time using ultrasound imaging; this can thus enable the prevention of wound biofilm formation in the early stages of infection. We evaluated the hydrogel against commercially available wound dressings and discovered that these wound dressings did not have the aforementioned desirable features. In conclusion, our multifunctional hydrogel can carry three types of antibiotics simultaneously and is a suitable medium through which an ultrasound can be performed to detect the growth of colonies in wounds. The hydrogel is expected to make a valuable contribution to the prevention of wound infections in the future.
Collapse
Affiliation(s)
- Yao-Wei Yeh
- Department
of Biomedical Engineering, National Cheng
Kung University, Tainan 701401, Taiwan
| | - Chih-Chung Huang
- Department
of Biomedical Engineering, National Cheng
Kung University, Tainan 701401, Taiwan
- Medical
Device Innovation Center, National Cheng
Kung University, Tainan 701401, Taiwan
| | - Wen-Shuo Kuo
- Center
for Allergy, Immunology and Microbiome (AIM), China Medical University Children’s Hospital/China Medical
University Hospital, China Medical University, Taichung 404327, Taiwan
| | - Tzu-Lung Liao
- Department
of Biomedical Engineering, National Cheng
Kung University, Tainan 701401, Taiwan
| | - Tsung-Lin Tsai
- Department
of Biomedical Engineering, National Cheng
Kung University, Tainan 701401, Taiwan
- Department
of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
- Center
of Applied Nanomedicine, National Cheng
Kung University, Tainan 701401, Taiwan
| | - Ping-Ching Wu
- Department
of Biomedical Engineering, National Cheng
Kung University, Tainan 701401, Taiwan
- Medical
Device Innovation Center, National Cheng
Kung University, Tainan 701401, Taiwan
- Center
of Applied Nanomedicine, National Cheng
Kung University, Tainan 701401, Taiwan
- Institute
of Oral Medicine and Department of Stomatology, National Cheng Kung
University Hospital, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
| |
Collapse
|
11
|
Xue X, Zhang B, Moon S, Xu GX, Huang CC, Sharma N, Jiang X. Development of a Wearable Ultrasound Transducer for Sensing Muscle Activities in Assistive Robotics Applications. BIOSENSORS 2023; 13:134. [PMID: 36671969 PMCID: PMC9855872 DOI: 10.3390/bios13010134] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Robotic prostheses and powered exoskeletons are novel assistive robotic devices for modern medicine. Muscle activity sensing plays an important role in controlling assistive robotics devices. Most devices measure the surface electromyography (sEMG) signal for myoelectric control. However, sEMG is an integrated signal from muscle activities. It is difficult to sense muscle movements in specific small regions, particularly at different depths. Alternatively, traditional ultrasound imaging has recently been proposed to monitor muscle activity due to its ability to directly visualize superficial and at-depth muscles. Despite their advantages, traditional ultrasound probes lack wearability. In this paper, a wearable ultrasound (US) transducer, based on lead zirconate titanate (PZT) and a polyimide substrate, was developed for a muscle activity sensing demonstration. The fabricated PZT-5A elements were arranged into a 4 × 4 array and then packaged in polydimethylsiloxane (PDMS). In vitro porcine tissue experiments were carried out by generating the muscle activities artificially, and the muscle movements were detected by the proposed wearable US transducer via muscle movement imaging. Experimental results showed that all 16 elements had very similar acoustic behaviors: the averaged central frequency, -6 dB bandwidth, and electrical impedance in water were 10.59 MHz, 37.69%, and 78.41 Ω, respectively. The in vitro study successfully demonstrated the capability of monitoring local muscle activity using the prototyped wearable transducer. The findings indicate that ultrasonic sensing may be an alternative to standardize myoelectric control for assistive robotics applications.
Collapse
Affiliation(s)
- Xiangming Xue
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Bohua Zhang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Sunho Moon
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Guo-Xuan Xu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chih-Chung Huang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Nitin Sharma
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
12
|
Machikhin A, Huang CC, Khokhlov D, Galanova V, Burlakov A. Single-shot Mueller-matrix imaging of zebrafish tissues: In vivo analysis of developmental and pathological features. JOURNAL OF BIOPHOTONICS 2022; 15:e202200088. [PMID: 35582886 DOI: 10.1002/jbio.202200088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/05/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Zebrafish is a well-established animal model for developmental and disease studies. Its optical transparency at early developmental stages allows in vivo tissues visualization. Interaction of polarized light with these tissues provides information on their structure and properties. This approach is effective for muscle tissue analysis due to its birefringence. To enable real-time Mueller-matrix characterization of unanesthetized fish, we assembled a microscope for single-shot Mueller-matrix imaging. First, we performed a continuous observation of 48 species within the period of 2 to 96 hpf and measured temporal dependencies of the polarization features in different tissues. These measurements show that hatching was accompanied by a sharp change in the angle and degree of linearly polarized light after interaction with muscles. Second, we analyzed nine species with skeletal disorders and demonstrated that the spatial distribution of light depolarization features clearly indicated them. Obtained results demonstrated that real-time Mueller-matrix imaging is a powerful tool for label-free monitoring zebrafish embryos.
Collapse
Affiliation(s)
- Alexander Machikhin
- Laboratory of Acousto-optical Spectroscopy, Scientific and Technological Center of Unique Instrumentation, Russian Academy of Sciences, Moscow, Russia
| | - Chih-Chung Huang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Demid Khokhlov
- Laboratory of Acousto-optical Spectroscopy, Scientific and Technological Center of Unique Instrumentation, Russian Academy of Sciences, Moscow, Russia
| | - Victoria Galanova
- Laboratory of Acousto-optical Spectroscopy, Scientific and Technological Center of Unique Instrumentation, Russian Academy of Sciences, Moscow, Russia
- Department of Laser and Opto-Electronic Systems, Bauman Moscow State Technical University, Moscow, Russia
| | - Alexander Burlakov
- Laboratory of Acousto-optical Spectroscopy, Scientific and Technological Center of Unique Instrumentation, Russian Academy of Sciences, Moscow, Russia
- Department of Ichthyology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
13
|
Machikhin A, Guryleva A, Selyukov A, Burlakov A, Bukova V, Khokhlov D, Efremova E, Rudenko E. Spatio-temporal segmentation of image sequences for non-invasive analysis of cardiovascular structure and function in Whitefish embryos. Micron 2022; 163:103360. [DOI: 10.1016/j.micron.2022.103360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/07/2022] [Accepted: 09/25/2022] [Indexed: 10/14/2022]
|
14
|
Truong TT, Chiu WT, Lai YS, Huang H, Jiang X, Huang CC. Ca 2+ signaling-mediated low-intensity pulsed ultrasound-induced proliferation and activation of motor neuron cells. ULTRASONICS 2022; 124:106739. [PMID: 35367809 DOI: 10.1016/j.ultras.2022.106739] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/24/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Motor neuron diseases (MND) including amyotrophic lateral sclerosis and Parkinson disease are commonly neurodegenerative, causing a gradual loss of nerve cells and affecting the mechanisms underlying changes in calcium (Ca2+)-regulated dendritic growth. In this study, the NSC-34 cell line, a population of hybridomas generated using mouse spinal cord cells with neuroblastoma, was used to investigate the effect of low-intensity pulsed ultrasound (LIPUS) as part of an MND treatment model. After NSC-34 cells were seeded for 24 h, LIPUS stimulation was performed on the cells at days 1 and 3 using a non-focused transducer at 1.15 MHz for 8 min. NSC-34 cell proliferation and morphological changes were observed at various LIPUS intensities and different combinations of Ca2+ channel blockers. The nuclear translocation of Ca2+-dependent transcription factors was also examined. We observed that the neurite outgrowth and cell number of NSC-34 significantly increased with LIPUS stimulation at days 2 and 4, which may be associated with the treatment's positive effect on the activation of Ca2+-dependent transcription factors, such as nuclear factor of activated T cells and nuclear factor-kappa B. Our findings suggest that the LIPUS-induced Ca2+ signaling and transcription factor activation facilitate the morphological maturation and proliferation of NSC-34 cells, presenting a promising noninvasive method to improve stimulation therapy for MNDs in the future.
Collapse
Affiliation(s)
- Thi-Thuyet Truong
- Department of Biomedical Engineering, National Cheng Kung University, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Taiwan
| | - Yi-Shyun Lai
- Department of Biomedical Engineering, National Cheng Kung University, Taiwan
| | - Hsien Huang
- Department of Biomedical Engineering, National Cheng Kung University, Taiwan
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, USA
| | - Chih-Chung Huang
- Department of Biomedical Engineering, National Cheng Kung University, Taiwan; Department of Mechanical and Aerospace Engineering, North Carolina State University, USA; Medical Device Innovation Center, National Cheng Kung University, Taiwan.
| |
Collapse
|
15
|
Bhatti A, Kanno N, Ikeda H, Ishii T, Saijo Y. Development of an Imaging Framework for Visualization of Cutaneous Micro-Vasculature by using High Frequency Ultrafast Ultrasound Imaging. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:190-193. [PMID: 36086264 DOI: 10.1109/embc48229.2022.9871304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Visualization of cutaneous micro-vasculatures is a determined approach in the diagnosis of skin vascular disorders. Clinically, high frequency ultrasound (HFUS) modalities have been used for cutaneous morphological and structural imaging, but visualization of micro-vessels has always been remained a daunting task. These tiny structures might be visualized by devising a highly sensitive Doppler technique for HFUS systems. In this study, we proposed an imaging framework using HFUS (30 MHz) ultrafast Doppler imaging along with SVD clutter filtering that is proficient in detection of micro-scale circulation. The performance of the devised framework was examined on a 200-micron flow phantom made of poly-vinyl alcohol under four different flow rates (56 - 18 ul/min) and visualized the micro-structure with averaged detected diameter of 93 - 170 µm. The results indicated that the devised framework has sufficient sensitivity and resolvability to visualize the micro-vasculatures in dermis layer of skin (depth ≤ 4 mm). Clinical Relevance - This study brings an insight to visualize in-vivo cutaneous micro-vasculatures with ultrafast Doppler imaging in clinical applications for better assessment of cutaneous disorders.
Collapse
|
16
|
Tsai WY, Hsueh YY, Chen PY, Hung KS, Huang CC. High-Frequency Ultrasound Elastography for Assessing Elastic Properties of Skin and Scars. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1871-1880. [PMID: 35201987 DOI: 10.1109/tuffc.2022.3154235] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Scars are a type of fibrous tissue that typically forms during the wound healing process to replace damaged skin. Because studies have indicated a high correlation between scar stiffness and clinical symptoms, assessing the mechanical properties of scar is crucial for determining an appropriate treatment strategy and evaluating the treatment's efficacy. Shear wave elastography (SWE) is a common technique for measuring tissue elasticity. Because scars are typically a few millimeters thick, they are thin-layer tissues, and therefore, the dispersion effect must be considered to accurately estimate their elasticity. In this study, high-frequency ultrasound (HFUS) elastography was proposed for estimating the elastic properties of scars by using the Lamb wave model (LWM). An external vibrator was used to generate elastic waves in scar tissue and skin, and the propagation of the elastic waves was tracked through 40-MHz ultrafast ultrasound imaging. The elasticity was estimated through shear wave models (SWMs) and LWMs. The effectiveness of using HFUS elastography was verified through phantom and human studies. The phantom experiments involved bulk phantoms with gelatin concentrations of 7% and 15% and 2-4-mm-thick thin-layer 15% gelatin phantoms. The studies of three patients with eight cases of scarring were also conducted. The phantom experimental results demonstrated that the elasticity estimation biases for the thin-layer mediums were approximately -36% to -50% and 3% to -9% in the SWMs and LWMs, respectively, and the estimated shear moduli were 12.8 ± 5.4 kPa and 74.8 ± 26.8 kPa for healthy skin and scar tissue, respectively. All the results demonstrated that the proposed HFUS elastography has a great potential for improving the accuracy of elasticity estimations in clinical dermatological diagnoses.
Collapse
|
17
|
Chen W, Zhang Q, Liu J, Lei S, Li Y, Huang J, Guo L, Zheng H, Wu D, Ma T. Design and Fabrication of a High-Frequency Microconvex Array Transducer for Small Animals Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1943-1951. [PMID: 35073263 DOI: 10.1109/tuffc.2022.3146309] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
High-frequency convex array transducer, featuring both high spatial resolution and wide field of view, has been successfully developed for ophthalmic imaging. To further expand its application range to small animals' imaging, this work develops a high-frequency microconvex array transducer possessing smaller aperture size and wider scanning angle. This transducer featured 128 array elements arranged in a curvilinear 2-2 piezoelectric composite configuration, yielding a maximum view angle of 97.8°. The array was composed of two front matching layers, a nonconductive backing layer, and a customized flexible circuit that electrically connected array elements to coaxial cables. The center frequency and the -6-dB fractional bandwidth were about 18.14 MHz and 69.15%, respectively. The image of a tungsten wire phantom resulted in approximately 62.9- [Formula: see text] axial resolution and 121.3- [Formula: see text] lateral resolution. The image of the whole kidney of a rat as well as its internal arteries was acquired in vivo, demonstrating the imaging capability of the proposed high-frequency microconvex array transducers for small animals' imaging applications.
Collapse
|
18
|
Huang H, Chang WT, Huang CC. High-Spatiotemporal-Resolution Visualization of Myocardial Strains Through Vector Doppler Estimation: A Small-Animal Study. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1859-1870. [PMID: 35108204 DOI: 10.1109/tuffc.2022.3148873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
High-frequency ultrasound (HFUS) imaging is extensively used for cardiac diseases in small animals due to its high spatial resolution. However, there is a lack of a system that can provide a 2-D high-spatiotemporal dynamic visualization of mouse myocardial strains. In this article, a dynamic HFUS (40 MHz) high-resolution strain imaging was developed through the vector Doppler imaging. Following in vitro tests using a rubber balloon phantom, in vivo experiments were performed on wild-type (WT) and myocardial infarction (MI) mice. High-resolution dynamic images of myocardial strains were obtained in the longitudinal, radial, and circumferential directions at a frame rate of 1 kHz. Global peak strain values for WT mice were -19.3% ± 1.3% (longitudinal), 31.4% ± 1.7% (radial in the long axis), -19.9% ±.8% (circumferential), and 34.4% ± 1.9% (radial in the short axis); those for the MI mice were -16.1% ±.9% (longitudinal), 26.8% ± 2.9% (radial in the long axis), -15.2% ± 2.7% (circumferential), and 21.6% ± 4.8% (radial in the short axis). These results indicate that the strains for MI mice are significantly lower than those for WT mice. Regional longitudinal strain curves in the epicardial, midcardial, and endocardial layers were measured and the peak strain values for WT mice were -22.% and -16.8% in the endocardial and epicardial layers, respectively. However, no significant difference in the layer-based values was noted for the MI mice. Regional analysis results revealed obvious myocardial strain variation in the apical anterior region in the MI mice. The experimental results demonstrate that the proposed dynamic cardiac strain imaging can be useful in high-performance imaging of small-animal cardiac diseases.
Collapse
|
19
|
Lu JY, Lee PY, Huang CC. Improving Image Quality for Single-Angle Plane Wave Ultrasound Imaging With Convolutional Neural Network Beamformer. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1326-1336. [PMID: 35175918 DOI: 10.1109/tuffc.2022.3152689] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ultrafast ultrasound imaging based on plane wave (PW) compounding has been proposed for use in various clinical and preclinical applications, including shear wave imaging and super resolution blood flow imaging. Because the image quality afforded by PW imaging is highly dependent on the number of PW angles used for compounding, a tradeoff between image quality and frame rate occurs. In the present study, a convolutional neural network (CNN) beamformer based on a combination of the GoogLeNet and U-Net architectures was developed to replace the conventional delay-and-sum (DAS) algorithm to obtain high-quality images at a high frame rate. RF channel data are used as the inputs for the CNN beamformers. The outputs are in-phase and quadrature data. Simulations and phantom experiments revealed that the images predicted by the CNN beamformers had higher resolution and contrast than those predicted by conventional single-angle PW imaging with the DAS approach. In in vivo studies, the contrast-to-noise ratios (CNRs) of carotid artery images predicted by the CNN beamformers using three or five PWs as ground truths were approximately 12 dB in the transverse view, considerably higher than the CNR obtained using the DAS beamformer (3.9 dB). Most tissue speckle information was retained in the in vivo images produced by the CNN beamformers. In conclusion, only a single PW at 0° was fired, but the quality of the output image was proximal to that of an image generated using three or five PW angles. In other words, the quality-frame rate tradeoff of coherence compounding could be mitigated through the use of the proposed CNN for beamforming.
Collapse
|
20
|
Qiu L, Zhang J, Yang Y, Zhang H, Lee FF, He Q, Huang C, Huang L, Qian L, Luo J. In Vivo assessment of hypertensive nephrosclerosis using ultrasound localization microscopy. Med Phys 2022; 49:2295-2308. [PMID: 35218672 DOI: 10.1002/mp.15583] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/27/2022] [Accepted: 02/21/2022] [Indexed: 11/07/2022] Open
Abstract
PURPOSE As a typical chronic kidney disease (CKD), hypertensive nephrosclerosis (HN) is a common syndrome of hypertension, characterized by chronic kidney microvascular damage. Early diagnosis of microvascular damage using conventional ultrasound imaging encounters challenges in sensitivity and specificity owing to the inherent diffraction limit. Ultrasound localization microscopy (ULM) has been developed to obtain microvasculature and microvascular hemodynamics within the kidney, and would be a promising tool for early diagnosis of CKD. METHODS In this study, the advantage of quantitative indexes obtained by using ULM (mean arterial blood flow speeds of different segments of interlobular arteries) over indexes obtained using conventional clinical serum (β2-microglobulin, serum urea nitrogen and creatinine) and urine (24-hour urine volume and urine protein) tests and ultrasound Doppler imaging [peak systolic velocity (PSV), end-diastolic velocity (EDV) and resistance index (RI)] and contrast-enhanced ultrasound imaging [CEUS; rise time (RT), peak intensity (IMAX), mean transit time (mTT) and area under the time-intensity curve (AUC)] for early diagnosis of HN was investigated. Examinations were carried out on 6 spontaneously hypertensive rats (SHR) and 5 normal Wistar-Kyoto (WKY) rats at the age of 10 weeks. RESULTS The experimental results showed that the indicators derived from conventional clinical inspections (serum and urine tests) and ultrasound imaging (PSV, EDV, RI, RT, IMAX, mTT and AUC) did not show significant difference between hypertensive and healthy rats (p > 0.05), while the TTP of the SHR group (28.52 ± 5.52 s) derived from CEUS is significantly higher than that of the WKY group (18.68 ± 7.32 s; p < 0.05). The mean blood flow speed in interlobular artery of SHR (12.47 ± 1.06 mm/s) derived from ULM is significantly higher than that of WKY rats (10.13 ± 1.17 mm/s; p < 0.01). CONCLUSION The advantages of ULM over conventional clinical inspections and ultrasound imaging methods for early diagnosis of HN were validated. The quantitative results showed that ULM can effectively diagnose HN at the early stage by detecting the blood flow speed changes of interlobular arteries. ULM may promise a reliable technique for early diagnosis of HN in the future. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Lanyan Qiu
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Jingke Zhang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Yi Yang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Hong Zhang
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Fu-Feng Lee
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Qiong He
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Chengwu Huang
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Lijie Huang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Linxue Qian
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Jianwen Luo
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
21
|
Qiu XR, Wang MT, Huang H, Kuo LC, Hsu HY, Yang TH, Su FC, Huang CC. Estimating the neovascularity of human finger tendon through high frequency ultrasound micro-Doppler imaging. IEEE Trans Biomed Eng 2022; 69:2667-2678. [PMID: 35192458 DOI: 10.1109/tbme.2022.3152151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Neovascularization of injured tendons prolongs the proliferative phase of healing, but prolonged neovascularization may cause improper healing and pain. Currently, ultrasound Doppler imaging is used for measuring the neovascularization of injured tendons (e.g., Achilles tendon). However, the resolution of state-of-the-art clinical ultrasound machines is insufficient for visualizing the neovascularization in finger tendons. In this study, a high-resolution micro-Doppler imaging (HFDI) based on 40-MHz ultrafast ultrasound imaging was proposed for visualizing the neovascularization in injured finger tendons during multiple rehabilitation phases. METHOD The vessel visibility was enhanced through a block-wise singular value decomposition filter and several curvilinear structure enhancement strategies, including the bowler-hat transform and Hessian-based vessel enhancement filtering. HFDI was verified through small animal kidney and spleen imaging because the related vessel structure patterns of mice are well studied. Five patients with finger tendon injuries underwent HFDI examination at various rehabilitation phases after surgery (weeks 1156), and finger function evaluations were performed for comparisons. RESULTS The results of small animal experiments revealed that the proposed HFDI provides excellent microvasculature imaging performance; the contrast-to-noise ratio of HFDI was approximately 15 dB higher than that of the conventional singular value decomposition filter, and the minimum detectable vessel size for mouse kidney was 35 m without the use of contrast agent. In the human study, neovascularization was clearly observed in injured finger tendons during the early phase of healing (weeks 1121), but it regressed from week 52 to 56. Finger rehabilitation appears to help reduce neovascularization; neovascular density decreased by approximately 1.8%8.0% in participants after 4 weeks of rehabilitation. CONCLUSION The experimental results verified the performance of HFDI for microvasculature imaging and its potential for injured finger tendon evaluations.
Collapse
|
22
|
Lei S, Zhang G, Zhu B, Long X, Jiang Z, Liu Y, Hu D, Sheng Z, Zhang Q, Wang C, Gao Z, Zheng H, Ma T. In Vivo Ultrasound Localization Microscopy Imaging of the Kidney's Microvasculature With Block-Matching 3-D Denoising. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:523-533. [PMID: 34727030 DOI: 10.1109/tuffc.2021.3125010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Structural abnormalities and functional changes of renal microvascular networks play a significant pathophysiologic role in the occurrence of kidney diseases. Super-resolution ultrasound imaging has been successfully utilized to visualize the microvascular network and provide valuable diagnostic information. To prevent the burst of microbubbles, a lower mechanical index (MI) is generally used in ultrasound localization microscopy (ULM) imaging. However, high noise levels lead to incorrect signal localizations in relatively low-MI settings and deep tissue. In this study, we implemented a block-matching 3-D (BM3D) image-denoising method, after the application of singular value decomposition filtering, to further suppress the noise at various depths. The in vitro flow-phantom results show that the BM3D method helps the significant reduction of the error localizations, thus improving the localization accuracy. In vivo rhesus macaque experiments help conclude that the BM3D method improves the resolution more than other image-based denoising techniques, such as the nonlocal means method. The obtained clutter-filtered images with fewer incorrect localizations can enable robust ULM imaging, thus helping in establishing an effective diagnostic tool.
Collapse
|
23
|
Fan Q, Zhang H, Qu J, Xie L, Huang W, Zhu Y, Bi K, Lu W. Posture adjustment and robust microinjection of zebrafish larval heart. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:014101. [PMID: 35104951 DOI: 10.1063/5.0064563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Unlike cells or embryos, zebrafish have a complex physiological structure, which poses challenges to posture recognition and adjustment during microinjection. Furthermore, zebrafish surface pigments exhibit strong interference with visual servo-based injection control, thus, affecting the success of microinjection and the subsequent survival rate. To address these challenges, we developed an automated microinjection system for the zebrafish heart that has advantages of high accuracy and success rate and avoids biological sample contamination. A convolutional neural networks (CNN) deep learning model is employed to determine the body axis posture. To solve the problems of blocked needle and abnormal tip positioning induced by zebrafish surface pigment during the injection process, an adaptive robust Kalman filter is proposed to suppress the abnormal values of visual feedback. Experimental results show that the success rate of body axis recognition based on the employed deep learning model exceeds 95%, and the proposed adaptive Kalman filter effectively suppresses the visual outliers, satisfying the requirements of high-precision injection for the zebrafish heart.
Collapse
Affiliation(s)
- Qigao Fan
- College of Internet of Things Engineering, Jiangnan University, Wuxi 214000, China
| | - Hai Zhang
- State Grid Taizhou Power Supply Company, Taizhou 225309, China
| | - Juntian Qu
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Linbo Xie
- College of Internet of Things Engineering, Jiangnan University, Wuxi 214000, China
| | - Wentao Huang
- College of Internet of Things Engineering, Jiangnan University, Wuxi 214000, China
| | - Yixin Zhu
- College of Internet of Things Engineering, Jiangnan University, Wuxi 214000, China
| | - Kaitao Bi
- College of Internet of Things Engineering, Jiangnan University, Wuxi 214000, China
| | - Wenzhou Lu
- College of Internet of Things Engineering, Jiangnan University, Wuxi 214000, China
| |
Collapse
|
24
|
Wang IC, Huang H, Chang WT, Huang CC. Wall shear stress mapping for human femoral artery based on ultrafast ultrasound vector Doppler estimations. Med Phys 2021; 48:6755-6764. [PMID: 34525217 DOI: 10.1002/mp.15230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Wall shear stress (WSS), a type of friction exerted on the artery wall by flowing blood, is considered a crucial factor in atherosclerotic plaque development. Currently, achieving a reliable WSS mapping of an artery noninvasively by using existing imaging modalities is still challenging. In this study, a WSS mapping based on vector Doppler flow velocity estimation was proposed to measure the dynamic WSS on the human femoral artery. METHODS Because ultrafast ultrasound imaging was used here, flow-enhanced imaging was also performed to observe the moving blood flow condition. The performance of WSS mapping was verified using both straight (8 mm in diameter) and stenosis (70% of stenosis) phantoms under a pulsatile flow condition. A human study was conducted from five healthy volunteers. RESULTS Experimental results demonstrated that the WSS estimation was close to the standard value that was obtained from maximum velocity estimation in straight phantom experiments. In a stenosis phantom experiment, a low WSS region was observed at a site downstream of an obstruction, which is a high-risk area for plaque formation. Dynamic WSS mapping was accomplished in measurement in the femoral artery bifurcation. In measurements, the time-averaged WSS of the common femoral artery, superficial femoral artery, and deep femoral artery was 0.52± 0.19, 0.44 ± 0.21, and 0.29 ± 0.16 Pa, respectively, for the anterior wall and 0.29 ± 0.11, 0.54 ± 0.24, and 0.23 ± 0.10 Pa, respectively, for the posterior wall. CONCLUSIONS All results indicated that WSS mapping has the potential to be a useful tool for vessel duplex scanning in the future.
Collapse
Affiliation(s)
- I-Chieh Wang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City, Taiwan
| | - Hsin Huang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City, Taiwan
| | - Wei-Ting Chang
- Department of Cardiology, Chi-Mei Medical Center, Tainan City, Taiwan.,Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan City, Taiwan.,Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan City, Taiwan
| | - Chih-Chung Huang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City, Taiwan.,Medical Device Innovation Center, National Cheng Kung University, Tainan City, Taiwan
| |
Collapse
|
25
|
Ho YJ, Huang CC, Fan CH, Liu HL, Yeh CK. Ultrasonic technologies in imaging and drug delivery. Cell Mol Life Sci 2021; 78:6119-6141. [PMID: 34297166 PMCID: PMC11072106 DOI: 10.1007/s00018-021-03904-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022]
Abstract
Ultrasonic technologies show great promise for diagnostic imaging and drug delivery in theranostic applications. The development of functional and molecular ultrasound imaging is based on the technical breakthrough of high frame-rate ultrasound. The evolution of shear wave elastography, high-frequency ultrasound imaging, ultrasound contrast imaging, and super-resolution blood flow imaging are described in this review. Recently, the therapeutic potential of the interaction of ultrasound with microbubble cavitation or droplet vaporization has become recognized. Microbubbles and phase-change droplets not only provide effective contrast media, but also show great therapeutic potential. Interaction with ultrasound induces unique and distinguishable biophysical features in microbubbles and droplets that promote drug loading and delivery. In particular, this approach demonstrates potential for central nervous system applications. Here, we systemically review the technological developments of theranostic ultrasound including novel ultrasound imaging techniques, the synergetic use of ultrasound with microbubbles and droplets, and microbubble/droplet drug-loading strategies for anticancer applications and disease modulation. These advancements have transformed ultrasound from a purely diagnostic utility into a promising theranostic tool.
Collapse
Affiliation(s)
- Yi-Ju Ho
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Chung Huang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Hsiang Fan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Hao-Li Liu
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan.
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
26
|
Chen PY, Yang TH, Kuo LC, Hsu HY, Su FC, Huang CC. Evaluation of Hand Tendon Elastic Properties During Rehabilitation Through High-Frequency Ultrasound Shear Elastography. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2716-2726. [PMID: 33956629 DOI: 10.1109/tuffc.2021.3077891] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Tendon injuries lead to tendon stiffness, which impairs skeletal muscle movement. Most studies have focused on patellar or Achilles tendons by using ultrasound elastography. Only a few studies have measured the stiffness of hand tendons because their thickness is only 1-2 mm, rendering clinical ultrasound elastography unsuitable for mapping hand tendon stiffness. In this study, a high-frequency ultrasound shear elastography (HFUSE) system was proposed to map the shear wave velocity (SWV) of hand flexor tendons. A handheld vibration system that was coaxially mounted with an external vibrator on a high-frequency ultrasound (HFUS) array transducer allowed the operators to scan hand tendons freely. To quantify the performance of HFUSE, six parameters were comprehensively measured from homogeneous, two-sided, and three-sided gelatin phantom experiments: bias, precision, lateral resolution, contrast, contrast-to-noise ratio (CNR), and accuracy. HFUSE demonstrated an excellent resolution of [Formula: see text] to distinguish the local stiffness of thin phantom (thickness: 1.2 mm) without compromising bias, precision, contrast, CNR, and accuracy, which has been noted with previous systems. Human experiments involved four patients with hand tendon injuries who underwent ≥2 months of rehabilitation. Using HFUSE, two-dimensional SWV images of flexor tendons could be clearly mapped for healthy and injured tendons, respectively. The findings demonstrate that HFUSE can be a promising tool for evaluating the elastic properties of the injured hand tendon after surgery and during rehabilitation and thus help monitor progress.
Collapse
|
27
|
Ceballos-Francisco D, García-Carrillo N, Cuesta A, Esteban MÁ. Ultrasonography study of the skin wound healing process in gilthead seabream (Sparus aurata). JOURNAL OF FISH DISEASES 2021; 44:1091-1100. [PMID: 33760262 DOI: 10.1111/jfd.13370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
This work aimed to carry out an in vivo study of the skin healing process in gilthead seabream (Sparus aurata) after being experimentally wounded. Firstly, the structure of normal skin was studied by real-time ultrasonography (Vevo Lab, VisualSonics) and light microscopy. Besides this, experimental wounds were made on the left flank of each fish with a circular biopsy punch (8 mm diameter) below the lateral line. The healing process was assessed on live fish at 0, 6, 11 and 23 days post-wounding using the real-time ultrasonography in B-mode and Power Doppler mode (Vevo 3100 FUJIFILM, VisualSonics). Through the ultrasonography images, both the skin structure and the evolution of the changes that wounds originated in the surrounding tissues were studied in vivo over time. Concomitantly, the pattern of neovascularization in the wounded area was followed during the healing process and it was demonstrated that, although the neovascularization started very early after the skin damage, it was increased in wounded areas from day 11 post-wounding onwards. The results obtained proved the utility and power of using ultrasounds in fish to evaluate in vivo complex biological processes in real time, which are difficult to study by other methodologies. The present data shed some light on the reparation of external injuries in aquatic vertebrates.
Collapse
Affiliation(s)
- Diana Ceballos-Francisco
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Nuria García-Carrillo
- Integrated Center for Biomedical Research (CEIB), Health Sciences Campus, University of Murcia, Murcia, Spain
| | - Alberto Cuesta
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Murcia, Spain
| |
Collapse
|
28
|
Shen CC, Chu YC. DMAS Beamforming with Complementary Subset Transmit for Ultrasound Coherence-Based Power Doppler Detection in Multi-Angle Plane-Wave Imaging. SENSORS 2021; 21:s21144856. [PMID: 34300594 PMCID: PMC8309888 DOI: 10.3390/s21144856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/30/2021] [Accepted: 07/13/2021] [Indexed: 11/24/2022]
Abstract
Conventional ultrasonic coherent plane-wave (PW) compounding corresponds to Delay-and-Sum (DAS) beamforming of low-resolution images from distinct PW transmit angles. Nonetheless, the trade-off between the level of clutter artifacts and the number of PW transmit angle may compromise the image quality in ultrafast acquisition. Delay-Multiply-and-Sum (DMAS) beamforming in the dimension of PW transmit angle is capable of suppressing clutter interference and is readily compatible with the conventional method. In DMAS, a tunable p value is used to modulate the signal coherence estimated from the low-resolution images to produce the final high-resolution output and does not require huge memory allocation to record all the received channel data in multi-angle PW imaging. In this study, DMAS beamforming is used to construct a novel coherence-based power Doppler detection together with the complementary subset transmit (CST) technique to further reduce the noise level. For p = 2.0 as an example, simulation results indicate that the DMAS beamforming alone can improve the Doppler SNR by 8.2 dB compared to DAS counterpart. Another 6-dB increase in Doppler SNR can be further obtained when the CST technique is combined with DMAS beamforming with sufficient ensemble averaging. The CST technique can also be performed with DAS beamforming, though the improvement in Doppler SNR and CNR is relatively minor. Experimental results also agree with the simulations. Nonetheless, since the DMAS beamforming involves multiplicative operation, clutter filtering in the ensemble direction has to be performed on the low-resolution images before DMAS to remove the stationary tissue without coupling from the flow signal.
Collapse
Affiliation(s)
- Che-Chou Shen
- Correspondence: ; Tel.: +886-2-27301229; Fax: +886-2-27376699
| | | |
Collapse
|
29
|
Chen W, Xie L, Yu F, Li Y, Chen C, Xie W, Huang T, Zhang Y, Zhang S, Li P. Zebrafish as a Model for In-Depth Mechanistic Study for Stroke. Transl Stroke Res 2021; 12:695-710. [PMID: 34050491 DOI: 10.1007/s12975-021-00907-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/22/2022]
Abstract
Stroke is one of the world's leading causes of death and disability, posing enormous burden to the society. However, the pathogenesis and mechanisms that underlie brain injury and brain repair remain largely unknown. There's an unmet need of in-depth mechanistic research in this field. Zebrafish (Danio rerio) is a powerful tool in brain science research mainly due to its small size and transparent body, high genome synteny with human, and similar nervous system structures. It can be used to establish both hemorrhagic and ischemic stroke models easily and effectively through different ways. After the establishment of stroke model, research methods including behavioral test, in vivo imaging, and drug screening are available to explore mechanisms that underlie the brain injury and brain repair after stroke. This review focuses on the advantages and the feasibility of zebrafish stroke model, and will also introduce the key methods available for stroke studies in zebrafish, which may drive future mechanistic studies in the pursuit of discovering novel therapeutic targets for stroke patients.
Collapse
Affiliation(s)
- Weijie Chen
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Lv Xie
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Fang Yu
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Yan Li
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Chen Chen
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Wanqing Xie
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Tingting Huang
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Yueman Zhang
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Song Zhang
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China.
| | - Peiying Li
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China.
| |
Collapse
|
30
|
Zhang G, Tong M, Zhuang S, Yu X, Sun W, Lin W, Gao H. Zebrafish Larva Orientation and Smooth Aspiration Control for Microinjection. IEEE Trans Biomed Eng 2021; 68:47-55. [DOI: 10.1109/tbme.2020.2999896] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
31
|
Weng CC, Chen PY, Chou D, Shih CC, Huang CC. High Frequency Ultrasound Elastography for Estimating the Viscoelastic Properties of the Cornea Using Lamb Wave Model. IEEE Trans Biomed Eng 2020; 68:2637-2644. [PMID: 33306463 DOI: 10.1109/tbme.2020.3044066] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Estimating the elasticity distribution in the cornea is important because corneal elasticity is usually influenced by corneal pathologies and surgical treatments, especially for early corneal sclerosis. Because the thickness of the cornea is typically less than 1 mm, high-resolution ultrasound elastography as well as the Lamb wave model is required for viscoelastic property estimation. In the present study, an array high-frequency ultrasound (HFUS) elastography method based on ultrafast ultrasound imaging was proposed for estimating the viscoelastic properties of porcine cornea. METHODS The elastic wave was generated by an external vibrator, after which the wave propagation image was obtained using a 40-MHz array transducer. Viscoelasticity estimation was performed by fitting the phase velocity curve using the Lamb wave model. The performance of the proposed HFUS elastography system was verified using 2-mm-thick thin-layer gelatin phantoms with gelatin concentrations of 7% and 12%. Ex vivo experiments were carried out using fresh porcine cornea with artificial sclerosing. RESULTS Experimental results showed that the estimated elasticity was close to the standard value obtained in the phantom study when the Lamb wave model was used for elasticity measurement. However, the error between the standard elasticity values and the elasticity values estimated using group shear wave velocity was large. In the ex vivo eyeball experiments, the estimated elasticities and viscosities were respectively 9.1 ± 1.3 kPa and 0.5 ± 0.10 Pa·s for a healthy cornea and respectively 15.9 ± 2.1 kPa and 1.1 ± 0.12 Pa·s for a cornea with artificial sclerosis. A 3D HFUS elastography was also obtained for distinguishing the region of sclerosis in the cornea. CONCLUSION The experimental results demonstrated that the proposed HFUS elastography method has high potential for the clinical diagnosis of corneal diseases compared with other HFUS single-element transducer elastography systems.
Collapse
|
32
|
Huang H, Chen PY, Huang CC. 40-MHz high-frequency vector Doppler imaging for superficial venous valve flow estimation. Med Phys 2020; 47:4020-4031. [PMID: 32609885 DOI: 10.1002/mp.14362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/26/2020] [Accepted: 06/17/2020] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Doppler ultrasound imaging has been used widely for diagnosing vascular diseases. Recently, vector Doppler imaging (VDI) has been proposed for visualizing the blood flow in all directions to yield more detailed information for estimating flow conditions. Increasing the resolution of VDI is important for the structural mapping of superficial vessels with microstructure. However, VDI that operates under a high-frequency ultrasound (HFUS; >30 MHz) is rare. In this study, a 40-MHz high-frequency VDI (HFVDI) based on ultrafast ultrasound imaging was developed to obtain the vector information of blood flow around the superficial venous valve. METHODS The use of HFUS imaging system causes an overload of data acquisition easily. In order to provide sufficient recording time, the frame rate should be reduced. Because the aliasing problem worsens due to a low frame rate when operating Doppler imaging, phase-unwrapping processing methods based on spatial and temporal continuities were applied. Flow phantom experiments were performed to validate the accuracy. In vivo experiments were performed on the valve of superficial veins of healthy volunteers. RESULTS The experimental results from the phantom study indicated that the error of velocity estimation was <10% in most cases. Dynamic changes of valve movements and flow conditions (including velocity profiles and vector) were observed. Because of the high resolution of HFVDI, the jet and vortex phenomena were observed between the leaflets and in the sinus pocket, respectively. CONCLUSIONS Flow velocities ranging from 2 to 15 mm/s were measured at different locations around the venous valve during the opening and closing phases. All the results indicated that HFVDI has the potential to be a useful tool for vessel duplex scanning.
Collapse
Affiliation(s)
- Hsin Huang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Yu Chen
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Chung Huang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan.,Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
33
|
Hsiao YY, Yang TH, Chen PY, Hsu HY, Kuo LC, Su FC, Huang CC. Characterization of the extensor digitorum communis tendon using high-frequency ultrasound shear wave elastography. Med Phys 2020; 47:1609-1618. [PMID: 32020648 DOI: 10.1002/mp.14061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/13/2019] [Accepted: 01/20/2020] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Hand tendon injuries caused by various accidents are common in emergency departments. The assessment of tendon properties is crucial for evaluating the effectiveness of therapy or rehabilitation during recovery after hand injuries. Many recent studies have indicated that the shear wave velocity (SWV) of tendons is related to their stiffness. However, measurement of SWV of hand tendon is still a challenge because the small size of tendon and the limitation of existing ultrasound systems for detecting fast SWV. METHODS We propose a high-frequency ultrasound (HFUS) elastography system using an external vibrator to measure the SWV of the extensor digitorum communis (EDC) tendon. First, animal studies were performed by measuring the SWV and stress of porcine tendons using the proposed HFUS elastography and materials testing systems respectively. In the human experiment, SWVs were measured during hand extension and flexion. The applied stress from a finger during the movements was recorded synchronously by using a load cell. RESULTS The experimental results reveal that a favorable linear correction (R2 of 0.96) was obtained between tendon SWV and stress in animal studies. In the human (hand) EDC tendon experiments, the SWV increased with the extension and flexion of the hand. The SWV of the EDC tendon was in the range of 20 to 135 m/s as the applied force from the finger of a healthy human increased to 50% maximal voluntary contraction. CONCLUSIONS All the experimental results show that the proposed HFUS elastography system can be used to characterize the EDC tendon and has potential use for evaluating tendon stiffness during recovery after hand injures.
Collapse
Affiliation(s)
- Yan-Yi Hsiao
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City, 701, Taiwan
| | - Tai-Hua Yang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City, 701, Taiwan.,Medical Device Innovation Center, National Cheng Kung University, Tainan City, 701, Taiwan.,Department of Orthopedics, National Cheng Kung University Hospital, Tainan City, 704, Taiwan
| | - Pei-Yu Chen
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City, 701, Taiwan
| | - Hsiu-Yun Hsu
- Department of Physical Medicine and Rehabilitation, National Cheng Kung University Hospital, Tainan City, 704, Taiwan
| | - Li-Chieh Kuo
- Department of Occupational Therapy, National Cheng Kung University, Tainan City, 701, Taiwan
| | - Fong-Chin Su
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City, 701, Taiwan.,Medical Device Innovation Center, National Cheng Kung University, Tainan City, 701, Taiwan
| | - Chih-Chung Huang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City, 701, Taiwan.,Medical Device Innovation Center, National Cheng Kung University, Tainan City, 701, Taiwan
| |
Collapse
|
34
|
Wang MY, Yang TH, Huang H, Hsu HY, Kuo LC, Su FC, Huang CC. Evaluation of Hand Tendon Movement by Using High-Frequency Ultrasound Vector Doppler Imaging. IEEE Trans Biomed Eng 2020; 67:2945-2952. [PMID: 32078528 DOI: 10.1109/tbme.2020.2974244] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Injuries to the hands, wrists, and fingers often involve damage to the tendons. The ability to measure tendon movements during the rehabilitation process can provide clinicians with important information in the quantification of tendon injuries. Conventionally, the tendon is considered a single spring-like structure during force transmission, and its twisted structure is neglected. Recently, clinicians believed that the twisted fiber structure (which enables tendon rotation during movement) of the tendon can provide it with a degree of elasticity and improve the efficiency of force transmission. However, observation of the hand tendon rotation in vivo by using the current imaging modalities is difficult. METHODS In this study, a 40-MHz high-frequency vector Doppler imaging (HFVDI) was used to visualize the movement of the hand tendon during muscle contraction. The performance of HFVDI was verified using a rotation phantom experiment. Two human experiments were designed in the present study: 1) participants were allowed to bend their distal and proximal interphalangeal (DIP and PIP) joints of fingers freely and 2) the PIP joint of the finger was fixed such that only the DIP could be moved. The HFVDIs of the flexor digitorum superficialis (FDS) and flexor digitorum profundus (FDP) tendons were obtained in the transverse and longitudinal views to observe the movements of the hand tendon during finger movements. RESULTS The average longitudinal displacements of the FDS and FDP were approximately 3-4 mm for free bending of the finger; however, it was reduced when only the DIP was moved. The rotational phenomenon of the FDS and FDP tendons was observed in the transverse view, which demonstrated the different rotational behaviors of the FDS and FDP fibers during muscle contraction. CONCLUSION All the results validated the potential of HFVDI as a novel tool for visualizing tendon rotation and would be useful in providing quantitative information regarding tendon function to determine the rehabilitation process following injuries.
Collapse
|
35
|
Qian X, Kang H, Li R, Lu G, Du Z, Shung KK, Humayun MS, Zhou Q. In Vivo Visualization of Eye Vasculature Using Super-Resolution Ultrasound Microvessel Imaging. IEEE Trans Biomed Eng 2020; 67:2870-2880. [PMID: 32054567 DOI: 10.1109/tbme.2020.2972514] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE The choroidal vessels, which supply oxygen and nutrient to the retina, may play a pivotal role in eye disease pathogenesis such as diabetic retinopathy and glaucoma. In addition, the retrobulbar circulation that feeds the choroid shows an important pathophysiologic role in myopia and degenerative myopia. Owing to the light-absorbing retinal pigment epithelium (RPE) and optically opaque sclera, choroidal and retrobulbar vasculature were difficult to be observed using clinically accepted optical coherence tomography angiography (OCT-A) technique. Here, we have developed super-resolution ultrasound microvessel imaging technique to visualize the deep ocular vasculature. METHODS An 18-MHz linear array transducer with compounding plane wave imaging technique and contrast agent - microbubble was implemented in this study. The centroid intensity of each microbubble was detected using image deconvolution algorithm with spatially variant point spread function, and then accumulated in successive frames in order to reconstruct microvasculature. The image deconvolution technique was first evaluated in a simulation study and experimental flow phantoms. The performance was then validated on normal rabbit eyes in vivo. RESULTS The image deconvolution based super-resolution ultrasound microvessel imaging technique shows good performance on either simulation study or flow phantoms. In vivo rabbit eye study indicated that the micron-level choroidal and retrobulbar vessels around the optic nerve head were successfully reconstructed in multiple 2D views and 3D volume imaging. CONCLUSIONS Our results demonstrate the capability of using super-resolution ultrasound microvessel imaging technique to image the microvasculature of the posterior pole of the eye. This efficient approach can potentially lead to a routinely performed diagnostic procedure in the field of ophthalmology.
Collapse
|
36
|
Leow CH, Bush NL, Stanziola A, Braga M, Shah A, Hernandez-Gil J, Long NJ, Aboagye EO, Bamber JC, Tang MX. 3-D Microvascular Imaging Using High Frame Rate Ultrasound and ASAP Without Contrast Agents: Development and Initial In Vivo Evaluation on Nontumor and Tumor Models. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:939-948. [PMID: 30908210 DOI: 10.1109/tuffc.2019.2906434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Three-dimensional imaging is valuable to noninvasively assess angiogenesis given the complex 3-D architecture of vascular networks. The emergence of high frame rate (HFR) ultrasound, which can produce thousands of images per second, has inspired novel signal processing techniques and their applications in structural and functional imaging of blood vessels. Although highly sensitive vascular mapping has been demonstrated using ultrafast Doppler, the detectability of microvasculature from the background noise may be hindered by the low signal-to-noise ratio (SNR) particularly in the deeper region and without the use of contrast agents. We have recently demonstrated a coherence-based technique, acoustic subaperture imaging (ASAP), for super-contrast vascular imaging and illustrated the contrast improvement using HFR contrast-enhanced ultrasound. In this work, we provide a feasibility study for microvascular imaging using ASAP without contrast agents, and extend its capability from 2-D to volumetric vascular mapping. Using an ultrasound research system and a preclinical probe, we demonstrated the improved visibility of microvascular mapping using ASAP in comparison to ultrafast power Doppler (PD) on a mouse kidney, liver, and tumor without contrast agent injection. The SNR of ASAP images improves in average by 10 dB when compared to PD. In addition, directional velocity mappings were also demonstrated by combining ASAP with the phase information extracted from lag-1 autocorrelation. The 3-D vascular and velocity mapping of the mouse kidney, liver, and tumor were demonstrated by stacking the ASAP images acquired using 2-D ultrasound imaging and a trigger-controlled linear translation stage. The 3-D results depicted clear microvasculature morphologies and functional information in terms of flow direction and velocity in two nontumor models and a tumor model. In conclusion, we have demonstrated a new 3-D in vivo ultrasound microvascular imaging technique with significantly improved SNR over existing ultrafast Doppler.
Collapse
|