1
|
Shaikh MFW, Mama MS, Proddaturi SH, Vidal J, Gnanasekaran P, Kumar MS, Clarke CJ, Reddy KS, Bello HM, Raquib N, Morani Z. The Role of Artificial Intelligence in the Prediction, Diagnosis, and Management of Cardiovascular Diseases: A Narrative Review. Cureus 2025; 17:e81332. [PMID: 40291312 PMCID: PMC12034035 DOI: 10.7759/cureus.81332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2025] [Indexed: 04/30/2025] Open
Abstract
Cardiovascular diseases (CVDs) remain the leading global cause of mortality, and a high prevalence of cardiac conditions, including premature deaths, have increased from decades until today. However, early detection and management of these conditions are challenging, given their complexity, the scale of affected populations, the dynamic nature of the disease process, and the treatment approach. The transformative potential is being brought by Artificial Intelligence (AI), specifically machine learning (ML) and deep learning technologies, to analyze massive datasets, improve diagnostic accuracy, and optimize treatment strategy. The recent advancements in such AI-based frameworks as the personalization of decision-making support systems for customized medicine automated image assessments drastically increase the precision and efficiency of healthcare professionals. However, implementing AI is widely clogged with obstacles, including regulatory, privacy, and validation across populations. Additionally, despite the desire to incorporate AI into clinical routines, there is no shortage of concern about interoperability and clinician acceptance of the system. Despite these challenges, further research and development are essential for overcoming these hurdles. This review explores the use of AI in cardiovascular care, its limitations for current use, and future integration toward better patient outcomes.
Collapse
Affiliation(s)
| | | | | | - Juan Vidal
- Medicine, Universidad del Azuay, Cuenca, ECU
| | | | - Mekala S Kumar
- Internal Medicine, Sri Venkata Sai (SVS) Medical College, Hyderabad, IND
| | - Cleve J Clarke
- College of Oral Health Sciences, University of Technology, Jamaica, Kingston, JAM
| | - Kalva S Reddy
- Internal Medicine, Sri Venkata Sai (SVS) Medical College, Hyderabad, IND
| | | | - Naama Raquib
- Obstetrics and Gynecology, Grange University Hospital, Newport, GBR
| | - Zoya Morani
- Family Medicine, Washington University of Health and Science, San Pedro, BLZ
| |
Collapse
|
2
|
Nabavi S, Hashemi M, Ebrahimi Moghaddam M, Abin AA, Frangi AF. Automated cardiac coverage assessment in cardiovascular magnetic resonance imaging using an explainable recurrent 3D dual-domain convolutional network. Med Phys 2024; 51:8789-8803. [PMID: 39312585 DOI: 10.1002/mp.17411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 07/30/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Cardiovascular magnetic resonance (CMR) imaging has become a modality with superior power for the diagnosis and prognosis of cardiovascular diseases. One of the essential quality controls of CMR images is to investigate the complete cardiac coverage, which is necessary for the volumetric and functional assessment. PURPOSE This study examines the full cardiac coverage using a 3D dual-domain convolutional model and then improves this model using an innovative explainable salient region detection model and a recurrent architecture. METHODS Salient regions are extracted from the short-axis cine CMR stacks using a three-step proposed algorithm. Changing the architecture of the 3D dual-domain convolutional model to a recurrent one and taking advantage of the salient region detection model creates a kind of attention mechanism that leads to improved results. RESULTS The results obtained from the images of over 6200 participants of the UK Biobank population cohort study show the superiority of the proposed model over the previous studies. The dataset is the largest regarding the number of participants to control the cardiac coverage. The accuracies of the proposed model in identifying the presence/absence of basal/apical slices are 96.22% and 95.42%, respectively. CONCLUSION The proposed recurrent architecture of the 3D dual-domain convolutional model can force the model to focus on the most informative areas of the images using the extracted salient regions, which can help the model improve accuracy. The performance of the proposed fully automated model indicates that it can be used for image quality control in population cohort datasets and real-time post-imaging quality assessments. Codes are available at https://github.com/mohammadhashemii/CMR_Cardiac_Coverage_Control.
Collapse
Affiliation(s)
- Shahabedin Nabavi
- Faculty of Computer Science and Engineering, Shahid Beheshti University, Tehran, Iran
| | - Mohammad Hashemi
- Faculty of Computer Science and Engineering, Shahid Beheshti University, Tehran, Iran
| | | | - Ahmad Ali Abin
- Faculty of Computer Science and Engineering, Shahid Beheshti University, Tehran, Iran
| | - Alejandro F Frangi
- Christable Pankhurst Institute, Division of Informatics, Imaging and Data Sciences, School of Health Sciences, and Department of Computer Science, School of Engineering, The University of Manchester, Manchester, UK
- Medical Imaging Research Center (MIRC), Department of Electrical Engineering and Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- Alan Turing Institute, London, UK
| |
Collapse
|
3
|
Zhang Q, Fotaki A, Ghadimi S, Wang Y, Doneva M, Wetzl J, Delfino JG, O'Regan DP, Prieto C, Epstein FH. Improving the efficiency and accuracy of cardiovascular magnetic resonance with artificial intelligence-review of evidence and proposition of a roadmap to clinical translation. J Cardiovasc Magn Reson 2024; 26:101051. [PMID: 38909656 PMCID: PMC11331970 DOI: 10.1016/j.jocmr.2024.101051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/09/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Cardiovascular magnetic resonance (CMR) is an important imaging modality for the assessment of heart disease; however, limitations of CMR include long exam times and high complexity compared to other cardiac imaging modalities. Recently advancements in artificial intelligence (AI) technology have shown great potential to address many CMR limitations. While the developments are remarkable, translation of AI-based methods into real-world CMR clinical practice remains at a nascent stage and much work lies ahead to realize the full potential of AI for CMR. METHODS Herein we review recent cutting-edge and representative examples demonstrating how AI can advance CMR in areas such as exam planning, accelerated image reconstruction, post-processing, quality control, classification and diagnosis. RESULTS These advances can be applied to speed up and simplify essentially every application including cine, strain, late gadolinium enhancement, parametric mapping, 3D whole heart, flow, perfusion and others. AI is a unique technology based on training models using data. Beyond reviewing the literature, this paper discusses important AI-specific issues in the context of CMR, including (1) properties and characteristics of datasets for training and validation, (2) previously published guidelines for reporting CMR AI research, (3) considerations around clinical deployment, (4) responsibilities of clinicians and the need for multi-disciplinary teams in the development and deployment of AI in CMR, (5) industry considerations, and (6) regulatory perspectives. CONCLUSIONS Understanding and consideration of all these factors will contribute to the effective and ethical deployment of AI to improve clinical CMR.
Collapse
Affiliation(s)
- Qiang Zhang
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; Big Data Institute, University of Oxford, Oxford, UK.
| | - Anastasia Fotaki
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK; Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK.
| | - Sona Ghadimi
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
| | - Yu Wang
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
| | | | - Jens Wetzl
- Siemens Healthineers AG, Erlangen, Germany.
| | - Jana G Delfino
- US Food and Drug Administration, Center for Devices and Radiological Health (CDRH), Office of Science and Engineering Laboratories (OSEL), Silver Spring, MD, USA.
| | - Declan P O'Regan
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK.
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK; School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Frederick H Epstein
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
4
|
Nabavi S, Simchi H, Moghaddam ME, Abin AA, Frangi AF. A generalised deep meta-learning model for automated quality control of cardiovascular magnetic resonance images. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 242:107770. [PMID: 37714020 DOI: 10.1016/j.cmpb.2023.107770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/01/2023] [Accepted: 08/17/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND AND OBJECTIVES Cardiovascular magnetic resonance (CMR) imaging is a powerful modality in functional and anatomical assessment for various cardiovascular diseases. Sufficient image quality is essential to achieve proper diagnosis and treatment. A large number of medical images, the variety of imaging artefacts, and the workload of imaging centres are amongst the factors that reveal the necessity of automatic image quality assessment (IQA). However, automated IQA requires access to bulk annotated datasets for training deep learning (DL) models. Labelling medical images is a tedious, costly and time-consuming process, which creates a fundamental challenge in proposing DL-based methods for medical applications. This study aims to present a new method for CMR IQA when there is limited access to annotated datasets. METHODS The proposed generalised deep meta-learning model can evaluate the quality by learning tasks in the prior stage and then fine-tuning the resulting model on a small labelled dataset of the desired tasks. This model was evaluated on the data of over 6,000 subjects from the UK Biobank for five defined tasks, including detecting respiratory motion, cardiac motion, Aliasing and Gibbs ringing artefacts and images without artefacts. RESULTS The results of extensive experiments show the superiority of the proposed model. Besides, comparing the model's accuracy with the domain adaptation model indicates a significant difference by using only 64 annotated images related to the desired tasks. CONCLUSION The proposed model can identify unknown artefacts in images with acceptable accuracy, which makes it suitable for medical applications and quality assessment of large cohorts. CODE AVAILABILITY: https://github.com/HosseinSimchi/META-IQA-CMRImages.
Collapse
Affiliation(s)
- Shahabedin Nabavi
- Faculty of Computer Science and Engineering, Shahid Beheshti University, Tehran, Iran
| | - Hossein Simchi
- Faculty of Computer Science and Engineering, Shahid Beheshti University, Tehran, Iran
| | | | - Ahmad Ali Abin
- Faculty of Computer Science and Engineering, Shahid Beheshti University, Tehran, Iran
| | - Alejandro F Frangi
- Division of Informatics, Imaging and Data Sciences, Schools of Computer Science and Health Sciences, The University of Manchester, Manchester, UK; Medical Imaging Research Center (MIRC), Electrical Engineering and Cardiovascular Sciences Departments, KU Leuven, Leuven, Belgium; Alan Turing Institute, London, UK
| |
Collapse
|
5
|
Koulaouzidis G, Jadczyk T, Iakovidis DK, Koulaouzidis A, Bisnaire M, Charisopoulou D. Artificial Intelligence in Cardiology-A Narrative Review of Current Status. J Clin Med 2022; 11:jcm11133910. [PMID: 35807195 PMCID: PMC9267740 DOI: 10.3390/jcm11133910] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
Artificial intelligence (AI) is an integral part of clinical decision support systems (CDSS), offering methods to approximate human reasoning and computationally infer decisions. Such methods are generally based on medical knowledge, either directly encoded with rules or automatically extracted from medical data using machine learning (ML). ML techniques, such as Artificial Neural Networks (ANNs) and support vector machines (SVMs), are based on mathematical models with parameters that can be optimally tuned using appropriate algorithms. The ever-increasing computational capacity of today’s computer systems enables more complex ML systems with millions of parameters, bringing AI closer to human intelligence. With this objective, the term deep learning (DL) has been introduced to characterize ML based on deep ANN (DNN) architectures with multiple layers of artificial neurons. Despite all of these promises, the impact of AI in current clinical practice is still limited. However, this could change shortly, as the significantly increased papers in AI, machine learning and deep learning in cardiology show. We highlight the significant achievements of recent years in nearly all areas of cardiology and underscore the mounting evidence suggesting how AI will take a central stage in the field.
Collapse
Affiliation(s)
- George Koulaouzidis
- Department of Biochemical Sciences, Pomeranian Medical University (PMU), 70-204 Szczecin, Poland;
| | - Tomasz Jadczyk
- Division of Cardiology and Structural Heart Diseases, Medical University of Silesia, 40-551 Katowice, Poland;
- International Clinical Research Center, St. Anne’s University Hospital Brno, 656 91 Brno, Czech Republic
| | - Dimitris K. Iakovidis
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 40500 Lamia, Greece;
| | - Anastasios Koulaouzidis
- Department of Social Medicine & Public Health, Pomeranian Medical University (PMU), 70-204 Szczecin, Poland
- Department of Medicine, OUH Svendborg Sygehus, 5700 Svendborg, Denmark
- Surgical Research Unit, Odense University Hospital, 5000 Odense, Denmark
- Department of Clinical Research, University of Southern Denmark (SDU), 5000 Odense, Denmark
- Correspondence:
| | - Marc Bisnaire
- Cardiology Research and Scientific Advancements, UVA Research, Toronto, ON L3R 3Z3, Canada;
| | - Dafni Charisopoulou
- Academic Centre for Congenital Heart Disease, 6500 HB Nijmegen, The Netherlands;
- Amalia Children’s Hospital, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
6
|
Terenicheva MA, Stukalova OV, Shakhnovich RM, Ternovoy SK. The role of cardiac magnetic resonance imaging in defining the prognosis of patients with acute <i>ST</i>-segment elevation myocardial infarction. Part 2. Assessment of the disease prognosis. TERAPEVT ARKH 2022; 94:552-557. [DOI: 10.26442/00403660.2022.04.201458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 11/22/2022]
Abstract
Currently the incidence of congestive heart failure after ST-segment elevation myocardial infarction (STEMI) tends to increase. Reperfusion therapy is still the only effective method to reduce an infarct size. Therefore, there is a high unmet need of novel cardioprotective treatments that would improve outcomes in such patients. Recent advances in cardiovascular magnetic resonance (CMR) methods enabled the identification of certain new infarct characteristics associated with the development of heart failure and sudden cardiac death. These characteristics can help identify new groups of high risk patients and used as a targets for novel cardioprotective treatments. This part of the review summarizes novel CMR-based characteristics of myocardial infarction and their role in the prognostic stratification of STEMI patients.
Collapse
|
7
|
Xia Y, Ravikumar N, Frangi AF. Learning to Complete Incomplete Hearts for Population Analysis of Cardiac MR Images. Med Image Anal 2022; 77:102354. [DOI: 10.1016/j.media.2022.102354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 11/10/2021] [Accepted: 01/03/2022] [Indexed: 10/19/2022]
|
8
|
Sermesant M, Delingette H, Cochet H, Jaïs P, Ayache N. Applications of artificial intelligence in cardiovascular imaging. Nat Rev Cardiol 2021; 18:600-609. [PMID: 33712806 DOI: 10.1038/s41569-021-00527-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 01/31/2023]
Abstract
Research into artificial intelligence (AI) has made tremendous progress over the past decade. In particular, the AI-powered analysis of images and signals has reached human-level performance in many applications owing to the efficiency of modern machine learning methods, in particular deep learning using convolutional neural networks. Research into the application of AI to medical imaging is now very active, especially in the field of cardiovascular imaging because of the challenges associated with acquiring and analysing images of this dynamic organ. In this Review, we discuss the clinical questions in cardiovascular imaging that AI can be used to address and the principal methodological AI approaches that have been developed to solve the related image analysis problems. Some approaches are purely data-driven and rely mainly on statistical associations, whereas others integrate anatomical and physiological information through additional statistical, geometric and biophysical models of the human heart. In a structured manner, we provide representative examples of each of these approaches, with particular attention to the underlying computational imaging challenges. Finally, we discuss the remaining limitations of AI approaches in cardiovascular imaging (such as generalizability and explainability) and how they can be overcome.
Collapse
Affiliation(s)
| | | | - Hubert Cochet
- IHU Liryc, CHU Bordeaux, Université Bordeaux, Inserm 1045, Pessac, France
| | - Pierre Jaïs
- IHU Liryc, CHU Bordeaux, Université Bordeaux, Inserm 1045, Pessac, France
| | | |
Collapse
|
9
|
Terenicheva MA, Stukalova OV, Shakhnovich RM, Ternovoy SK. The role of cardiac magnetic resonance imaging (cardiovascular magnetic resonance) in defining the prognosis of patients with acute ST-segment elevation myocardial infarction. Part 1. Indications and contraindications to cardiovascular magnetic resonance. TERAPEVT ARKH 2021; 93:497-501. [DOI: 10.26442/00403660.2021.04.200687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 11/22/2022]
Abstract
Recently, the role of cardiac magnetic resonance imaging (cardiovascular magnetic resonance) in the diagnosis of coronary artery disease and acute myocardial infarction has increased significantly. This method is defined as the gold standard for differentiation between ischemic vs non-ischemic and acute vs chronic myocardial injury. This part of the review summarizes the main methods of cardiovascular magnetic resonance, its safety, indications and contraindications.
Collapse
|
10
|
Sharma K, Alsadoon A, Prasad PWC, Al-Dala'in T, Nguyen TQV, Pham DTH. A novel solution of using deep learning for left ventricle detection: Enhanced feature extraction. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 197:105751. [PMID: 32957061 DOI: 10.1016/j.cmpb.2020.105751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 09/05/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIM deep learning algorithms have not been successfully used for the left ventricle (LV) detection in echocardiographic images due to overfitting and vanishing gradient descent problem. This research aims to increase accuracy and improves the processing time of the left ventricle detection process by reducing the overfitting and vanishing gradient problem. METHODOLOGY the proposed system consists of an enhanced deep convolutional neural network with an extra convolutional layer, and dropout layer to solve the problem of overfitting and vanishing gradient. Data augmentation was used for increasing the accuracy of feature extraction for left ventricle detection. RESULTS four pathological groups of datasets were used for training and evaluation of the model: heart failure without infarction, heart failure with infarction, and hypertrophy, and healthy. The proposed model provided an accuracy of 94% in left ventricle detection for all the groups compared to the other current systems. The results showed that the processing time was reduced from 0.45 s to 0.34 s in an average. CONCLUSION the proposed system enhances accuracy and decreases processing time in the left ventricle detection. This paper solves the issues of overfitting of the data.
Collapse
Affiliation(s)
- Kiran Sharma
- School of Computing and Mathematics, Charles Sturt University, Sydney Campus, Australia
| | - Abeer Alsadoon
- School of Computing and Mathematics, Charles Sturt University, Sydney Campus, Australia.
| | - P W C Prasad
- School of Computing and Mathematics, Charles Sturt University, Sydney Campus, Australia
| | - Thair Al-Dala'in
- School of Computing and Mathematics, Charles Sturt University, Sydney Campus, Australia
| | - Tran Quoc Vinh Nguyen
- The University of Da Nang - University of Science and Education, Faculty of Information Technology, Vietnam
| | - Duong Thu Hang Pham
- The University of Da Nang - University of Science and Education, Faculty of Information Technology, Vietnam
| |
Collapse
|
11
|
Recovering from missing data in population imaging - Cardiac MR image imputation via conditional generative adversarial nets. Med Image Anal 2020; 67:101812. [PMID: 33129140 DOI: 10.1016/j.media.2020.101812] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/05/2020] [Accepted: 08/19/2020] [Indexed: 11/21/2022]
Abstract
Accurate ventricular volume measurements are the primary indicators of normal/abnor- mal cardiac function and are dependent on the Cardiac Magnetic Resonance (CMR) volumes being complete. However, missing or unusable slices owing to the presence of image artefacts such as respiratory or motion ghosting, aliasing, ringing and signal loss in CMR sequences, significantly hinder accuracy of anatomical and functional cardiac quantification, and recovering from those is insufficiently addressed in population imaging. In this work, we propose a new robust approach, coined Image Imputation Generative Adversarial Network (I2-GAN), to learn key features of cardiac short axis (SAX) slices near missing information, and use them as conditional variables to infer missing slices in the query volumes. In I2-GAN, the slices are first mapped to latent vectors with position features through a regression net. The latent vector corresponding to the desired position is then projected onto the slice manifold, conditioned on intensity features through a generator net. The generator comprises residual blocks with normalisation layers that are modulated with auxiliary slice information, enabling propagation of fine details through the network. In addition, a multi-scale discriminator was implemented, along with a discriminator-based feature matching loss, to further enhance performance and encourage the synthesis of visually realistic slices. Experimental results show that our method achieves significant improvements over the state-of-the-art, in missing slice imputation for CMR, with an average SSIM of 0.872. Linear regression analysis yields good agreement between reference and imputed CMR images for all cardiac measurements, with correlation coefficients of 0.991 for left ventricular volume, 0.977 for left ventricular mass and 0.961 for right ventricular volume.
Collapse
|
12
|
Tai H, Khairalseed M, Hoyt K. 3-D H-Scan Ultrasound Imaging and Use of a Convolutional Neural Network for Scatterer Size Estimation. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2810-2818. [PMID: 32653207 PMCID: PMC7484237 DOI: 10.1016/j.ultrasmedbio.2020.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 05/29/2023]
Abstract
H-Scan ultrasound (US) is a new imaging technology that estimates the relative size of acoustic scattering objects and structures. The purpose of this study was to introduce a three-dimensional (3-D) H-scan US imaging approach for scatterer size estimation in volume space. Using a programmable research scanner (Vantage 256, Verasonics Inc, Kirkland, WA, USA) equipped with a custom volumetric imaging transducer (4 DL7, Vermon, Tours, France), raw radiofrequency (RF) data was collected for offline processing to generate H-scan US volumes. A deep convolutional neural network (CNN) was modified and used to achieve voxel mapping from the input H-scan US image to underlying scatterer size. Preliminary studies were conducted using homogeneous gelatin-based tissue-mimicking phantom materials embedded with acoustic scatterers of varying size (15 to 250 μm) and concentrations (0.1 to 1%). Two additional phantoms were embedded with 63 or 125 µm-sized microspheres and used to test CNN estimation accuracy. In vitro results indicate that 3-D H-scan US imaging can visualize the spatial distribution of acoustic scatterers of varying size at different concentrations (R2 > 0.85, p < 0.03). The result of scatterer size estimation reveals that a CNN can achieve an average mapping accuracy of 93.3%. Overall, our preliminary in vitro findings reveal that 3-D H-scan US imaging allows the visualization of tissue scatterer patterns and incorporation of a CNN can be used to help estimate size of the acoustic scattering objects.
Collapse
Affiliation(s)
- Haowei Tai
- Department of Electrical and Computer Engineering, University of Texas at Dallas, Richardson, TX, USA
| | - Mawia Khairalseed
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Kenneth Hoyt
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA; Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Electrical and Computer Engineering, University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
13
|
Littlejohns TJ, Holliday J, Gibson LM, Garratt S, Oesingmann N, Alfaro-Almagro F, Bell JD, Boultwood C, Collins R, Conroy MC, Crabtree N, Doherty N, Frangi AF, Harvey NC, Leeson P, Miller KL, Neubauer S, Petersen SE, Sellors J, Sheard S, Smith SM, Sudlow CLM, Matthews PM, Allen NE. The UK Biobank imaging enhancement of 100,000 participants: rationale, data collection, management and future directions. Nat Commun 2020; 11:2624. [PMID: 32457287 PMCID: PMC7250878 DOI: 10.1038/s41467-020-15948-9] [Citation(s) in RCA: 371] [Impact Index Per Article: 74.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/03/2020] [Indexed: 01/18/2023] Open
Abstract
UK Biobank is a population-based cohort of half a million participants aged 40-69 years recruited between 2006 and 2010. In 2014, UK Biobank started the world's largest multi-modal imaging study, with the aim of re-inviting 100,000 participants to undergo brain, cardiac and abdominal magnetic resonance imaging, dual-energy X-ray absorptiometry and carotid ultrasound. The combination of large-scale multi-modal imaging with extensive phenotypic and genetic data offers an unprecedented resource for scientists to conduct health-related research. This article provides an in-depth overview of the imaging enhancement, including the data collected, how it is managed and processed, and future directions.
Collapse
Affiliation(s)
| | - Jo Holliday
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Lorna M Gibson
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
- Department of Clinical Radiology, New Royal Infirmary of Edinburgh, Edinburgh, UK
| | | | | | - Fidel Alfaro-Almagro
- Centre for Functional MRI of the Brain, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Jimmy D Bell
- Research Centre for Optimal Health, University of Westminster, London, UK
| | | | - Rory Collins
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Megan C Conroy
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Nicola Crabtree
- Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | | | - Alejandro F Frangi
- Department of Cardiovascular Sciences and Electrical Engineering, KU Leuven, Leuven, Belgium
- CISTIB Centre for Computational Imaging and Simulation Technologies in Biomedicine, Schools of Computing and Medicine, University of Leeds, Leeds, UK
| | - Nicholas C Harvey
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Paul Leeson
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Karla L Miller
- Centre for Functional MRI of the Brain, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Stefan Neubauer
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Steffen E Petersen
- William Harvey Research Institute, Queen Mary University of Medicine, London, UK
| | - Jonathan Sellors
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- UK Biobank Coordinating Centre, Stockport, UK
| | | | - Stephen M Smith
- Centre for Functional MRI of the Brain, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Cathie L M Sudlow
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Paul M Matthews
- Department of Brain Sciences, Imperial College London and UK Dementia Research Institute, London, UK
| | - Naomi E Allen
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| |
Collapse
|
14
|
Duchateau N, King AP, De Craene M. Machine Learning Approaches for Myocardial Motion and Deformation Analysis. Front Cardiovasc Med 2020; 6:190. [PMID: 31998756 PMCID: PMC6962100 DOI: 10.3389/fcvm.2019.00190] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/12/2019] [Indexed: 12/21/2022] Open
Abstract
Information about myocardial motion and deformation is key to differentiate normal and abnormal conditions. With the advent of approaches relying on data rather than pre-conceived models, machine learning could either improve the robustness of motion quantification or reveal patterns of motion and deformation (rather than single parameters) that differentiate pathologies. We review machine learning strategies for extracting motion-related descriptors and analyzing such features among populations, keeping in mind constraints specific to the cardiac application.
Collapse
Affiliation(s)
| | - Andrew P. King
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | | |
Collapse
|