1
|
Lakunina A, Socha KZ, Ladd A, Bowen AJ, Chen S, Colonell J, Doshi A, Karsh B, Krumin M, Kulik P, Li A, Neutens P, O'Callaghan J, Olsen M, Putzeys J, Tilmans HA, Ye Z, Welkenhuysen M, Häusser M, Koch C, Ting JT, Dutta B, Harris TD, Steinmetz NA, Svoboda K, Siegle JH, Carandini M. Neuropixels Opto: Combining high-resolution electrophysiology and optogenetics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.04.636286. [PMID: 39975326 PMCID: PMC11838571 DOI: 10.1101/2025.02.04.636286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
High-resolution extracellular electrophysiology is the gold standard for recording spikes from distributed neural populations, and is especially powerful when combined with optogenetics for manipulation of specific cell types with high temporal resolution. We integrated these approaches into prototype Neuropixels Opto probes, which combine electronic and photonic circuits. These devices pack 960 electrical recording sites and two sets of 14 light emitters onto a 1 cm shank, allowing spatially addressable optogenetic stimulation with blue and red light. In mouse cortex, Neuropixels Opto probes delivered high-quality recordings together with spatially addressable optogenetics, differentially activating or silencing neurons at distinct cortical depths. In mouse striatum and other deep structures, Neuropixels Opto probes delivered efficient optotagging, facilitating the identification of two cell types in parallel. Neuropixels Opto probes represent an unprecedented tool for recording, identifying, and manipulating neuronal populations.
Collapse
Affiliation(s)
- Anna Lakunina
- Allen Institute for Neural Dynamics, Seattle, WA, USA
| | - Karolina Z Socha
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Alexander Ladd
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Anna J Bowen
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Susu Chen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jennifer Colonell
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Anjal Doshi
- Allen Institute for Neural Dynamics, Seattle, WA, USA
| | - Bill Karsh
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Michael Krumin
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Pavel Kulik
- Allen Institute for Neural Dynamics, Seattle, WA, USA
| | - Anna Li
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA
| | | | | | - Meghan Olsen
- Allen Institute for Neural Dynamics, Seattle, WA, USA
| | | | | | - Zhiwen Ye
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA
| | | | - Michael Häusser
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | | | - Jonathan T Ting
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Timothy D Harris
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Nicholas A Steinmetz
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Karel Svoboda
- Allen Institute for Neural Dynamics, Seattle, WA, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Matteo Carandini
- UCL Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
2
|
Xu Y, Li BZ, Huang X, Liu Y, Liang Z, Yang X, Lin L, Wang L, Xia Y, Ridenour M, Huang Y, Yuan Z, Klug A, Pun SH, Lei TC, Zhang B. Sapphire-Based Optrode for Low Noise Neural Recording and Optogenetic Manipulation. ACS Chem Neurosci 2025; 16:628-641. [PMID: 39910858 DOI: 10.1021/acschemneuro.4c00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
Electrophysiological recording of neurons in deep brain regions using optogenetic stimulation is a powerful method for understanding and regulating the role of complex neural activity in biological behavior and cognitive function. Optogenetic techniques have significantly advanced neuroscience research by enabling the optical manipulation of neural activities. Because of the significance of the technique, constant advancements in implantable optrodes that integrate optical stimulation with low-noise, large-scale electrophysiological recording are in demand to improve the spatiotemporal resolution for various experimental designs and future clinical applications. However, robust and easy-to-use neural optrodes that integrate neural recording arrays with high-intensity light emitting diodes (LEDs) are still lacking. Here, we propose a neural optrode based on Gallium Nitride (GaN) on sapphire technology, which integrates a high-intensity blue LED with a 5 × 2 recording array monolithically for simultaneous neural recording and optogenetic manipulation. To reduce the noise interference between the recording electrodes and the LED, which is in close physical proximity, three metal grounding interlayers were incorporated within the optrode, and their ability to reduce LED-induced artifacts during neural recording was confirmed through both electromagnetic simulations and experimental demonstrations. The capability of the sapphire optrode to record action potentials has been demonstrated by recording the firing of mitral/tuft cells in the olfactory bulbs of mice in vivo. Additionally, the elevation of action potential firing due to optogenetic stimulation observed using the sapphire probe in medial superior olive (MSO) neurons of the gerbil auditory brainstem confirms the capability of this sapphire optrode to precisely access neural activities in deep brain regions under complex experimental designs.
Collapse
Affiliation(s)
- Yanyan Xu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ben-Zheng Li
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau 999078, China
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
- Department of Electrical Engineering, University of Colorado Denver, Denver, Colorado 80204, United States
| | - Xinlong Huang
- Reliability Physics and Application Technology of Electronic Component Key Laboratory, China Electronic Product Reliability and Environmental Testing Research Institute, Guangzhou 511370, China
| | - Yuebo Liu
- Reliability Physics and Application Technology of Electronic Component Key Laboratory, China Electronic Product Reliability and Environmental Testing Research Institute, Guangzhou 511370, China
| | - Zhiwen Liang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xien Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510275, China
| | - Lizhang Lin
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510275, China
| | - Liyang Wang
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau 999078, China
| | - Yu Xia
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau 999078, China
| | - Matthew Ridenour
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Yujing Huang
- Centre for Cognitive and Brain Sciences, University of Macau, Macau 999078, China
- Ministry of Education, Frontiers Science Center for Precision Oncology, Faculty of Health Science, University of Macau, Macau 999078, China
| | - Zhen Yuan
- Centre for Cognitive and Brain Sciences, University of Macau, Macau 999078, China
- Ministry of Education, Frontiers Science Center for Precision Oncology, Faculty of Health Science, University of Macau, Macau 999078, China
| | - Achim Klug
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Sio Hang Pun
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau 999078, China
| | - Tim C Lei
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
- Department of Electrical Engineering, University of Colorado Denver, Denver, Colorado 80204, United States
| | - Baijun Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
3
|
Cui Y, Sun M, Liu C, Deng Y. All-inorganic ultrathin high-sensitivity transparent temperature sensor based on a Mn-Co-Ni-O nanofilm. MICROSYSTEMS & NANOENGINEERING 2024; 10:70. [PMID: 38803351 PMCID: PMC11128445 DOI: 10.1038/s41378-024-00706-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/25/2024] [Accepted: 04/14/2024] [Indexed: 05/29/2024]
Abstract
The demand for optically transparent temperature sensors in intelligent devices is increasing. However, the performance of these sensors, particularly in terms of their sensitivity and resolution, must be further enhanced. This study introduces a novel transparent and highly sensitive temperature sensor characterized by its ultrathin, freestanding design based on a Mn-Co-Ni-O nanofilm. The Mn-Co-Ni-O-based sensor exhibits remarkable sensitivity, with a temperature coefficient of resistance of -4% °C-1, and can detect minuscule temperature fluctuations as small as 0.03 °C. Additionally, the freestanding sensor can be transferred onto any substrate for versatile application while maintaining robust structural stability and excellent resistance to interference, indicating its suitability for operation in challenging environments. Its practical utility in monitoring the surface temperature of optical devices is demonstrated through vertical integration of the sensor and a micro light-emitting diode on a polyimide substrate. Moreover, an experiment in which the sensor is implanted in rats confirms its favorable biocompatibility, highlighting the promising applications of the sensor in the biomedical domain.
Collapse
Affiliation(s)
- Yuanyuan Cui
- Research Institute for Frontier Science, Beihang University, Beijing, 100191 China
- School of Materials Science and Engineering, Beihang University, Beijing, 100191 China
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute of Beihang University, Hangzhou, 310051 China
| | - Mengwei Sun
- School of Materials Science and Engineering, Beihang University, Beijing, 100191 China
| | - Changbo Liu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191 China
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute of Beihang University, Hangzhou, 310051 China
| | - Yuan Deng
- Research Institute for Frontier Science, Beihang University, Beijing, 100191 China
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute of Beihang University, Hangzhou, 310051 China
| |
Collapse
|
4
|
Osouli-Bostanabad K, Masalehdan T, Kapsa RMI, Quigley A, Lalatsa A, Bruggeman KF, Franks SJ, Williams RJ, Nisbet DR. Traction of 3D and 4D Printing in the Healthcare Industry: From Drug Delivery and Analysis to Regenerative Medicine. ACS Biomater Sci Eng 2022; 8:2764-2797. [PMID: 35696306 DOI: 10.1021/acsbiomaterials.2c00094] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Three-dimensional (3D) printing and 3D bioprinting are promising technologies for a broad range of healthcare applications from frontier regenerative medicine and tissue engineering therapies to pharmaceutical advancements yet must overcome the challenges of biocompatibility and resolution. Through comparison of traditional biofabrication methods with 3D (bio)printing, this review highlights the promise of 3D printing for the production of on-demand, personalized, and complex products that enhance the accessibility, effectiveness, and safety of drug therapies and delivery systems. In addition, this review describes the capacity of 3D bioprinting to fabricate patient-specific tissues and living cell systems (e.g., vascular networks, organs, muscles, and skeletal systems) as well as its applications in the delivery of cells and genes, microfluidics, and organ-on-chip constructs. This review summarizes how tailoring selected parameters (i.e., accurately selecting the appropriate printing method, materials, and printing parameters based on the desired application and behavior) can better facilitate the development of optimized 3D-printed products and how dynamic 4D-printed strategies (printing materials designed to change with time or stimulus) may be deployed to overcome many of the inherent limitations of conventional 3D-printed technologies. Comprehensive insights into a critical perspective of the future of 4D bioprinting, crucial requirements for 4D printing including the programmability of a material, multimaterial printing methods, and precise designs for meticulous transformations or even clinical applications are also given.
Collapse
Affiliation(s)
- Karim Osouli-Bostanabad
- Biomaterials, Bio-engineering and Nanomedicine (BioN) Lab, Institute of Biomedical and Biomolecular, Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, United Kingdom
| | - Tahereh Masalehdan
- Department of Materials Engineering, Institute of Mechanical Engineering, University of Tabriz, Tabriz 51666-16444, Iran
| | - Robert M I Kapsa
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia.,Department of Medicine, St Vincent's Hospital Melbourne, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Anita Quigley
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia.,Department of Medicine, St Vincent's Hospital Melbourne, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Aikaterini Lalatsa
- Biomaterials, Bio-engineering and Nanomedicine (BioN) Lab, Institute of Biomedical and Biomolecular, Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, United Kingdom
| | - Kiara F Bruggeman
- Laboratory of Advanced Biomaterials, Research School of Chemistry and the John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.,Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Stephanie J Franks
- Laboratory of Advanced Biomaterials, Research School of Chemistry and the John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Richard J Williams
- Institute of Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - David R Nisbet
- Laboratory of Advanced Biomaterials, Research School of Chemistry and the John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.,The Graeme Clark Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia.,Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
5
|
Multichannel optogenetics combined with laminar recordings for ultra-controlled neuronal interrogation. Nat Commun 2022; 13:985. [PMID: 35190556 PMCID: PMC8861070 DOI: 10.1038/s41467-022-28629-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/02/2022] [Indexed: 11/18/2022] Open
Abstract
Simultaneous large-scale recordings and optogenetic interventions may hold the key to deciphering the fast-paced and multifaceted dialogue between neurons that sustains brain function. Here we have taken advantage of thin, cell-sized, optical fibers for minimally invasive optogenetics and flexible implantations. We describe a simple procedure for making those fibers side-emitting with a Lambertian emission distribution. Here we combined those fibers with silicon probes to achieve high-quality recordings and ultrafast multichannel optogenetic inhibition. Furthermore, we developed a multi-channel optical commutator and general-purpose patch-cord for flexible experiments. We demonstrate that our framework allows to conduct simultaneous laminar recordings and multifiber stimulations, 3D optogenetic stimulation, connectivity inference, and behavioral quantification in freely moving animals. Our framework paves the way for large-scale photo tagging and controlled interrogation of rapid neuronal communication in any combination of brain areas. Researchers from Freiburg University developed an ultraflexible fiber-based 3D light delivery system for electrophysiology and optogenetic manipulation in freely moving animals. The system allows multiside modulation of neuronal activity combined with neuronal measurements.
Collapse
|
6
|
Sharma K, Jäckel Z, Schneider A, Paul O, Diester I, Ruther P. Multifunctional optrode for opsin delivery, optical stimulation, and electrophysiological recordings in freely moving rats. J Neural Eng 2021; 18. [PMID: 34795066 DOI: 10.1088/1741-2552/ac3206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/21/2021] [Indexed: 11/11/2022]
Abstract
Objective. Optogenetics involves delivery of light-sensitive opsins to the target brain region, as well as introduction of optical and electrical devices to manipulate and record neural activity, respectively, from the targeted neural population. Combining these functionalities in a single implantable device is of great importance for a precise investigation of neural networks while minimizing tissue damage.Approach. We report on the development, characterization, andin vivovalidation of a multifunctional optrode that combines a silicon-based neural probe with an integrated microfluidic channel, and an optical glass fiber in a compact assembly. The silicon probe comprises an 11-µm-wide fluidic channel and 32 recording electrodes (diameter 30µm) on a tapered probe shank with a length, thickness, and maximum width of 7.5 mm, 50µm, and 150µm, respectively. The size and position of fluidic channels, electrodes, and optical fiber can be precisely tuned according to thein vivoapplication.Main results.With a total system weight of 0.97 g, our multifunctional optrode is suitable for chronicin vivoexperiments requiring simultaneous drug delivery, optical stimulation, and neural recording. We demonstrate the utility of our device in optogenetics by injecting a viral vector carrying a ChR2-construct in the prefrontal cortex and subsequent photostimulation of the transduced neurons while recording neural activity from both the target and adjacent regions in a freely moving rat for up to 9 weeks post-implantation. Additionally, we demonstrate a pharmacological application of our device by injecting GABA antagonist bicuculline in an anesthetized rat brain and simultaneously recording the electrophysiological response.Significance. Our triple-modality device enables a single-step optogenetic surgery. In comparison to conventional multi-step surgeries, our approach achieves higher spatial specificity while minimizing tissue damage.
Collapse
Affiliation(s)
- Kirti Sharma
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany.,Cluster IMBIT/BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| | - Zoë Jäckel
- Cluster IMBIT/BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany.,Faculty of Biology, Optophysiology, University of Freiburg, Freiburg, Germany
| | - Artur Schneider
- Cluster IMBIT/BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany.,Faculty of Biology, Optophysiology, University of Freiburg, Freiburg, Germany
| | - Oliver Paul
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany.,Cluster IMBIT/BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| | - Ilka Diester
- Cluster IMBIT/BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany.,Faculty of Biology, Optophysiology, University of Freiburg, Freiburg, Germany.,Bernstein Center, University of Freiburg, Freiburg, Germany
| | - Patrick Ruther
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany.,Cluster IMBIT/BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| |
Collapse
|
7
|
Gerbella M, Borra E, Pothof F, Lanzilotto M, Livi A, Fogassi L, Paul O, Orban G, Ruther P, Bonini L. Histological assessment of a chronically implanted cylindrically-shaped, polymer-based neural probe in the monkey. J Neural Eng 2021; 18. [PMID: 33461177 DOI: 10.1088/1741-2552/abdd11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/18/2021] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Previous studies demonstrated the possibility to fabricate stereo-electroencephalography (SEEG) probes with high channel count and great design freedom, which incorporate macro- as well as micro-electrodes offering potential benefits for the pre-surgical evaluation of drug resistant epileptic patients. These new polyimide probes allowed to record local field potentials and multi-unit activity in the macaque monkey as early as one hour after implantation, yielding stable single-unit activity for up to 26 days after implantation. The findings opened new perspectives for investigating mechanisms underlying focal epilepsy and its treatment, but before moving to possible human applications, safety data are needed. Thus, in the present study we evaluate the biocompatibility of this new neural interface by assessing post-mortem the reaction of brain tissue along and around the probe implantation site. APPROACH Three probes were implanted, independently, in the brain of one monkey (Macaca mulatta) at different times. We used specific immunostaining methods for visualizing neuronal cells and astrocytes, for measuring the extent of damage caused by the probe and for relating it with the implantation time. MAIN RESULTS The size of the region where neurons cannot be detected did not exceed the size of the probe, indicating that a complete loss of neuronal cells is only present where the probe was physically positioned in the brain. Furthermore, around the probe shank, we observed a slightly reduced number of neurons within a radius of 50 µm and a modest increase in the number of astrocytes within 100 µm. SIGNIFICANCE In the light of previous electrophysiological findings, the present biocompatibility data suggest the potential usefulness and safety of this probe for human applications.
Collapse
Affiliation(s)
- Marzio Gerbella
- University of Parma Department of Medicine and Surgery, Via Gramsci 14, Parma, 43126, ITALY
| | - Elena Borra
- University of Parma Department of Medicine and Surgery, Via Gramsci 14, Parma, Emilia-Romagna, 43126, ITALY
| | - Frederick Pothof
- University of Freiburg, Germany, 79085, Freiburg, Fahnenbergplatz, Freiburg im Breisgau, Baden-Württemberg, 79085, GERMANY
| | - Marco Lanzilotto
- Università degli Studi di Torino, Via Verdi 8, Torino, Piemonte, 10124, ITALY
| | - Alessandro Livi
- University of Parma Department of Medicine and Surgery, Via Gramsci 14, Parma, Emilia-Romagna, 43126, ITALY
| | - Leonardo Fogassi
- Dipartimento di Neuroscienze, Università degli studi di Parma, Via Gramsci 14, Parma, 43126, ITALY
| | - Oliver Paul
- University of Freiburg, Germany, 79085, Freiburg, Fahnenbergplatz, Freiburg im Breisgau, Baden-Württemberg, 79085, GERMANY
| | - Guy Orban
- University of Parma Department of Medicine and Surgery, Via Gramsci 14, Parma, Emilia-Romagna, 43126, ITALY
| | - Patrick Ruther
- Department of Microsystems Engineering, University of Freiburg, Germany, 79085, Freiburg, Fahnenbergplatz, Freiburg, 79085, GERMANY
| | - Luca Bonini
- Brain Center for Social and Motor Cognition, University of Parma Department of Medicine and Surgery, Via Gramsci 14, Parma, Emilia-Romagna, 43126, ITALY
| |
Collapse
|
8
|
Gundelach LA, Hüser MA, Beutner D, Ruther P, Bruegmann T. Towards the clinical translation of optogenetic skeletal muscle stimulation. Pflugers Arch 2020; 472:527-545. [PMID: 32415463 PMCID: PMC7239821 DOI: 10.1007/s00424-020-02387-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/05/2020] [Accepted: 04/28/2020] [Indexed: 12/27/2022]
Abstract
Paralysis is a frequent phenomenon in many diseases, and to date, only functional electrical stimulation (FES) mediated via the innervating nerve can be employed to restore skeletal muscle function in patients. Despite recent progress, FES has several technical limitations and significant side effects. Optogenetic stimulation has been proposed as an alternative, as it may circumvent some of the disadvantages of FES enabling cell type–specific, spatially and temporally precise stimulation of cells expressing light-gated ion channels, commonly Channelrhodopsin2. Two distinct approaches for the restoration of skeletal muscle function with optogenetics have been demonstrated: indirect optogenetic stimulation through the innervating nerve similar to FES and direct optogenetic stimulation of the skeletal muscle. Although both approaches show great promise, both have their limitations and there are several general hurdles that need to be overcome for their translation into clinics. These include successful gene transfer, sustained optogenetic protein expression, and the creation of optically active implantable devices. Herein, a comprehensive summary of the underlying mechanisms of electrical and optogenetic approaches is provided. With this knowledge in mind, we substantiate a detailed discussion of the advantages and limitations of each method. Furthermore, the obstacles in the way of clinical translation of optogenetic stimulation are discussed, and suggestions on how they could be overcome are provided. Finally, four specific examples of pathologies demanding novel therapeutic measures are discussed with a focus on the likelihood of direct versus indirect optogenetic stimulation.
Collapse
Affiliation(s)
- Lili A Gundelach
- Institute of Cardiovascular Physiology, University Medical Center, Göttingen, Germany
| | - Marc A Hüser
- Institute of Cardiovascular Physiology, University Medical Center, Göttingen, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center, Göttingen, Germany
| | - Dirk Beutner
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center, Göttingen, Germany
| | - Patrick Ruther
- Microsystem Materials Laboratory, Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
- BrainLinks-BrainTools Cluster of Excellence at the University of Freiburg, Freiburg, Germany
| | - Tobias Bruegmann
- Institute of Cardiovascular Physiology, University Medical Center, Göttingen, Germany.
- DZHK e.V. (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany.
| |
Collapse
|