1
|
Jia L, Su G, Zhang M, Wen Q, Wang L, Li J. Propulsion Mechanisms in Magnetic Microrobotics: From Single Microrobots to Swarms. MICROMACHINES 2025; 16:181. [PMID: 40047696 PMCID: PMC11857472 DOI: 10.3390/mi16020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 03/09/2025]
Abstract
Microrobots with different structures can exhibit multiple propulsion mechanisms under external magnetic fields. Swarms dynamically assembled by microrobots inherit the advantages of single microrobots, such as degradability and small dimensions, while also offering benefits like scalability and high flexibility. With control of magnetic fields, these swarms demonstrate diverse propulsion mechanisms and can perform precise actions in complex environments. Therefore, the relationship between single microrobots and their swarms is a significant area of study. This paper reviews the relationship between single microrobots and swarms by examining the structural design, control methods, propulsion mechanisms, and practical applications. At first, we introduce the structural design of microrobots, including materials and manufacturing methods. Then, we describe magnetic field generation systems, including gradient, rotating, and oscillating magnetic fields, and their characteristics. Next, we analyze the propulsion mechanisms of individual microrobots and the way microrobots dynamically assemble into a swarm under an external magnetic field, which illustrates the relationship between single microrobots and swarms. Finally, we discuss the application of different swarm propulsion mechanisms in water purification and targeted delivery, summarize current challenges and future work, and explore future directions.
Collapse
Affiliation(s)
| | | | | | - Qi Wen
- School of Electronic Engineering, Ocean University of China, Qingdao 266000, China; (L.J.); (G.S.); (M.Z.)
| | - Lihong Wang
- School of Electronic Engineering, Ocean University of China, Qingdao 266000, China; (L.J.); (G.S.); (M.Z.)
| | - Junyang Li
- School of Electronic Engineering, Ocean University of China, Qingdao 266000, China; (L.J.); (G.S.); (M.Z.)
| |
Collapse
|
2
|
Jiang F, Zheng Q, Zhao Q, Qi Z, Wu D, Li W, Wu X, Han C. Magnetic propelled hydrogel microrobots for actively enhancing the efficiency of lycorine hydrochloride to suppress colorectal cancer. Front Bioeng Biotechnol 2024; 12:1361617. [PMID: 38449675 PMCID: PMC10915283 DOI: 10.3389/fbioe.2024.1361617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 01/23/2024] [Indexed: 03/08/2024] Open
Abstract
Research and development in the field of micro/nano-robots have made significant progress in the past, especially in the field of clinical medicine, where further research may lead to many revolutionary achievements. Through the research and experiment of microrobots, a controllable drug delivery system will be realized, which will solve many problems in drug treatment. In this work, we design and study the ability of magnetic-driven hydrogel microrobots to carry Lycorine hydrochloride (LH) to inhibit colorectal cancer (CRC) cells. We have successfully designed a magnetic field driven, biocompatible drug carrying hydrogel microsphere robot with Fe3O4 particles inside, which can achieve magnetic field response, and confirmed that it can transport drug through fluorescence microscope. We have successfully demonstrated the motion mode of hydrogel microrobots driven by a rotating external magnetic field. This driving method allows the microrobots to move in a precise and controllable manner, providing tremendous potential for their use in various applications. Finally, we selected drug LH and loaded it into the hydrogel microrobot for a series of experiments. LH significantly inhibited CRC cells proliferation in a dose- and time-dependent manner. LH inhibited the proliferation, mobility of CRC cells and induced apoptosis. This delivery system can significantly improve the therapeutic effect of drugs on tumors.
Collapse
Affiliation(s)
- Fengqi Jiang
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
- Department of General Surgery, Heilongjiang Provincial Hospital, Harbin, China
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Qiuyan Zheng
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingsong Zhao
- Postdoctoral Programme of Meteria Medica Institute of Harbin University of Commerce, Harbin, China
| | - Zijuan Qi
- Department of Pathology, Heilongjiang Provincial Hospital, Harbin, China
| | - Di Wu
- Department of General Surgery, Heilongjiang Provincial Hospital, Harbin, China
| | - Wenzhong Li
- Department of General Surgery, Heilongjiang Provincial Hospital, Harbin, China
| | - Xiaoke Wu
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Conghui Han
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| |
Collapse
|
3
|
Lu K, Zhou C, Li Z, Liu Y, Wang F, Xuan L, Wang X. Multi-level magnetic microrobot delivery strategy within a hierarchical vascularized organ-on-a-chip. LAB ON A CHIP 2024; 24:446-459. [PMID: 38095230 DOI: 10.1039/d3lc00770g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Targeted microrobotic delivery within the circulatory system holds significant potential for medical theranostic applications. Existing delivery strategies of microrobots encounter challenges such as slow speed, limited navigation control, and dispersal under dynamic flow conditions. Furthermore, within the realm of microrobots, in vitro testing platforms often lack essential biological microenvironments, while in vivo studies conducted on animal models are constrained by limited detection resolution. In this study, we propose a multi-level magnetic delivery strategy that integrates a tethered microrobotic guidewire and untethered swimming microrobots. The amalgamation compensates for their inherent constraints, ensuring a robust and highly efficient delivery of microrobots under complex physiological conditions over extensive distances. Concurrently, a hierarchical vascular network encompassing engineered arteries/veins and capillary networks was constructed by integrating vasculogenesis and endothelial cell (EC) lining strategies, thereby providing an in vivo-like testing platform for microrobots. Experimental evidence demonstrates that the flexible microrobotic guidewire can be precisely directed to any entrance of the second-tier branches, with its inner lumen providing an "express lane" for rapid passage of microrobots through complex fluidic environments without direct contact. After release, dynamically assembled swarms could effectively locomote on the micro-topography of the EC-lined channel surface without becoming trapped and congregate within specified regions inside capillary lumens when guided collectively by a biologically safe magnetic field. Additionally, the superparamagnetic capabilities of microrobotic swarms ensure their dissolution into monodispersed entities upon withdrawal of the magnetic field, mitigating the risk of intravascular thrombosis. The hierarchical vascularized organ-on-a-chip platform establishes a comprehensive testing platform that integrates imaging, control, and a functional 3D microvascular environment, thereby enhancing its suitability for microrobotic applications encompassing targeted drug delivery, thrombus ablation, sensing and diagnosis, etc.
Collapse
Affiliation(s)
- Kangyi Lu
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Chenyang Zhou
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Zhangjie Li
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yijun Liu
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Feifan Wang
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Lian Xuan
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaolin Wang
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
4
|
Chen Q, Liu FW, Cho SK, Kim K. 3-D real-time ultrasound tracking of acoustically actuated swimming microdrone. Sci Rep 2024; 14:1547. [PMID: 38233589 PMCID: PMC10794230 DOI: 10.1038/s41598-024-52044-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/12/2024] [Indexed: 01/19/2024] Open
Abstract
Maneuverable microswimmers/microdrones that navigate in hard-to-reach spaces inside human bodies hold a great potential for various biomedical applications. Acoustically actuated microswimmers have already demonstrated feasibility. However, for eventual translation of this technology, a robust 3-D tracking strategy for the microswimmer is particularly required. This paper presents our lab-designed 3-D ultrasound tracking system for real-time tracking of an acoustically actuated 3-D swimming microdrone. The ultrasound tracking system utilizing two ultrasound probes, a step motor and a host controller, was built to track the 3-D arbitrary motion of the microdrone in real-time. The performance of tracking was evaluated in the benchtop experiments by comparing the reconstructed trajectories with synchronized camera recordings. The ultrasound tracking system showed high reliability, with an average error of less than 0.3 mm across six different trials when compared to camera tracking. The results demonstrated the capability of our lab-designed 3-D ultrasound tracking system in accurately tracking the undetermined motion of the acoustic actuated 3-D swimming microdrone in real-time. The developed tracking system holds promise as a potential approach for biomedical applications and could pave the way for future clinical translation of the microswimmer technology.
Collapse
Affiliation(s)
- Qiyang Chen
- Department of Medicine, University of Pittsburgh, 623A Scaife Hall, 3550 Terrace Street, Pittsburgh, PA, 15261, USA
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine & Heart and Vascular Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, 15261, USA
| | - Fang-Wei Liu
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Sung Kwon Cho
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Kang Kim
- Department of Medicine, University of Pittsburgh, 623A Scaife Hall, 3550 Terrace Street, Pittsburgh, PA, 15261, USA.
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine & Heart and Vascular Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, 15261, USA.
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
- Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA.
- McGowan Institute of Regenerative Medicine, University of Pittsburgh and University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, 15219, USA.
| |
Collapse
|
5
|
Zheng J, Huang R, Lin Z, Chen S, Yuan K. Nano/Micromotors for Cancer Diagnosis and Therapy: Innovative Designs to Improve Biocompatibility. Pharmaceutics 2023; 16:44. [PMID: 38258055 PMCID: PMC10821023 DOI: 10.3390/pharmaceutics16010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Nano/micromotors are artificial robots at the nano/microscale that are capable of transforming energy into mechanical movement. In cancer diagnosis or therapy, such "tiny robots" show great promise for targeted drug delivery, cell removal/killing, and even related biomarker sensing. Yet biocompatibility is still the most critical challenge that restricts such techniques from transitioning from the laboratory to clinical applications. In this review, we emphasize the biocompatibility aspect of nano/micromotors to show the great efforts made by researchers to promote their clinical application, mainly including non-toxic fuel propulsion (inorganic catalysts, enzyme, etc.), bio-hybrid designs, ultrasound propulsion, light-triggered propulsion, magnetic propulsion, dual propulsion, and, in particular, the cooperative swarm-based strategy for increasing therapeutic effects. Future challenges in translating nano/micromotors into real applications and the potential directions for increasing biocompatibility are also described.
Collapse
Affiliation(s)
- Jiahuan Zheng
- Department of Chemistry, Shantou University Medical College, Shantou 515041, China;
| | - Rui Huang
- Bio-Analytical Laboratory, Shantou University Medical College, Shantou 515041, China; (R.H.); (Z.L.)
| | - Zhexuan Lin
- Bio-Analytical Laboratory, Shantou University Medical College, Shantou 515041, China; (R.H.); (Z.L.)
| | - Shaoqi Chen
- Department of Ultrasound, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Kaisong Yuan
- Bio-Analytical Laboratory, Shantou University Medical College, Shantou 515041, China; (R.H.); (Z.L.)
- Department of Ultrasound, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
6
|
Wang Q, Yang S, Zhang L. Untethered Micro/Nanorobots for Remote Sensing: Toward Intelligent Platform. NANO-MICRO LETTERS 2023; 16:40. [PMID: 38032461 PMCID: PMC10689342 DOI: 10.1007/s40820-023-01261-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
Untethered micro/nanorobots that can wirelessly control their motion and deformation state have gained enormous interest in remote sensing applications due to their unique motion characteristics in various media and diverse functionalities. Researchers are developing micro/nanorobots as innovative tools to improve sensing performance and miniaturize sensing systems, enabling in situ detection of substances that traditional sensing methods struggle to achieve. Over the past decade of development, significant research progress has been made in designing sensing strategies based on micro/nanorobots, employing various coordinated control and sensing approaches. This review summarizes the latest developments on micro/nanorobots for remote sensing applications by utilizing the self-generated signals of the robots, robot behavior, microrobotic manipulation, and robot-environment interactions. Providing recent studies and relevant applications in remote sensing, we also discuss the challenges and future perspectives facing micro/nanorobots-based intelligent sensing platforms to achieve sensing in complex environments, translating lab research achievements into widespread real applications.
Collapse
Affiliation(s)
- Qianqian Wang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211189, People's Republic of China.
| | - Shihao Yang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, People's Republic of China
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, People's Republic of China.
- Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, People's Republic of China.
- T Stone Robotics Institute, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, People's Republic of China.
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, People's Republic of China.
| |
Collapse
|
7
|
Wang H, Jing Y, Yu J, Ma B, Sui M, Zhu Y, Dai L, Yu S, Li M, Wang L. Micro/nanorobots for remediation of water resources and aquatic life. Front Bioeng Biotechnol 2023; 11:1312074. [PMID: 38026904 PMCID: PMC10666170 DOI: 10.3389/fbioe.2023.1312074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Nowadays, global water scarcity is becoming a pressing issue, and the discharge of various pollutants leads to the biological pollution of water bodies, which further leads to the poisoning of living organisms. Consequently, traditional water treatment methods are proving inadequate in addressing the growing demands of various industries. As an effective and eco-friendly water treatment method, micro/nanorobots is making significant advancements. Based on researches conducted between 2019 and 2023 in the field of water pollution using micro/nanorobots, this paper comprehensively reviews the development of micro/nanorobots in water pollution control from multiple perspectives, including propulsion methods, decontamination mechanisms, experimental techniques, and water monitoring. Furthermore, this paper highlights current challenges and provides insights into the future development of the industry, providing guidance on biological water pollution control.
Collapse
Affiliation(s)
- Haocheng Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Yizhan Jing
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Jiuzheng Yu
- Oil & Gas Technology Research Institute, PetroChina Changqing Oilfield Company, Xi’an, China
| | - Bo Ma
- State Engineering Laboratory of Exploration and Development of Low-Permeability Oil & Gas Field, Xi’an, China
| | - Mingyang Sui
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Yanhe Zhu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Lizhou Dai
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Shimin Yu
- College of Engineering, Ocean University of China, Qingdao, China
| | - Mu Li
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lin Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
8
|
Zhao P, Yan L, Gao X. A programmable ferrofluidic droplet robot. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:87. [PMID: 37752272 DOI: 10.1140/epje/s10189-023-00348-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/10/2023] [Indexed: 09/28/2023]
Abstract
Soft miniature robots have wide potential applications in lab-on-a-chip and biomedical sciences due to their deformability, safety, and remarkable controllability. However, current ferrofluidic droplet robots have some problems, such as easy broken, limited motion range and high energy consumption. Therefore, the objective of this study is to propose a programmable ferrofluidic flexible droplet robot (PFDR) with control strategies for elongation, splitting and merging behaviors by designing an actuation system consisting of a row of electromagnets and a robotic arm or a coordinate robot. The PFDR can not only deform actively to prevent itself from breaking, but also deform passively to fit the profile of channels or tubes to move efficiently. The actuation system can make PFDR have larger motion range as well as lower energy consumption. The design concept and the operating principle of PFDR are presented. The magnetic actuation system is developed. The lag of PFDR is analyzed in theoretical and experimental ways. The splitting and merging behaviors are investigated and other functionalities are studied as well.
Collapse
Affiliation(s)
- Peiran Zhao
- School of Automation Science and Electrical Engineering, Beihang University, Beijing, 100191, China
| | - Liang Yan
- School of Automation Science and Electrical Engineering, Beihang University, Beijing, 100191, China.
- Ningbo Institute of Technology, Beihang University, Ningbo, 315800, China.
- Tianmushan Laboratory, Hangzhou, 310023, China.
- Science and Technology on Aircraft Control Laboratory, Beihang University, Beijing, 100191, China.
| | - Xiaoshan Gao
- School of Automation Science and Electrical Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
9
|
Wang Q, Jin D. Active Micro/Nanoparticles in Colloidal Microswarms. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1687. [PMID: 37242103 PMCID: PMC10220621 DOI: 10.3390/nano13101687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Colloidal microswarms have attracted increasing attention in the last decade due to their unique capabilities in various complex tasks. Thousands or even millions of tiny active agents are gathered with distinctive features and emerging behaviors, demonstrating fascinating equilibrium and non-equilibrium collective states. In recent studies, with the development of materials design, remote control strategies, and the understanding of pair interactions between building blocks, microswarms have shown advantages in manipulation and targeted delivery tasks with high adaptability and on-demand pattern transformation. This review focuses on the recent progress in active micro/nanoparticles (MNPs) in colloidal microswarms under the input of an external field, including the response of MNPs to external fields, MNP-MNP interactions, and MNP-environment interactions. A fundamental understanding of how building blocks behave in a collective system provides the foundation for designing microswarm systems with autonomy and intelligence, aiming for practical application in diverse environments. It is envisioned that colloidal microswarms will significantly impact active delivery and manipulation applications on small scales.
Collapse
Affiliation(s)
- Qianqian Wang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211000, China
| | - Dongdong Jin
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518000, China
| |
Collapse
|
10
|
Xu Z, Wu Z, Yuan M, Chen Y, Ge W, Xu Q. Versatile magnetic hydrogel soft capsule microrobots for targeted delivery. iScience 2023; 26:106727. [PMID: 37216105 PMCID: PMC10192936 DOI: 10.1016/j.isci.2023.106727] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/16/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
Maintaining the completeness of cargo and achieving on-demand cargo release during long navigations in complex environments of the internal human body is crucial. Herein, we report a novel design of magnetic hydrogel soft capsule microrobots, which can be physically disintegrated to release microrobot swarms and diverse cargoes with almost no loss. CaCl2 solution and magnetic powders are utilized to produce suspension droplets, which are put into sodium alginate solution to generate magnetic hydrogel membranes for enclosing microrobot swarms and cargos. Low-density rotating magnetic fields drive the microrobots. Strong gradient magnetic fields break the mechanical structure of the hydrogel shell to implement on-demand release. Under the guidance of ultrasound imaging, the microrobot is remotely controlled in acidic or alkaline environments, similar to those in the human digestion system. The proposed capsule microrobots provide a promising solution for targeted cargo delivery in the internal human body.
Collapse
Affiliation(s)
- Zichen Xu
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Zehao Wu
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Mingzhe Yuan
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Macau, China
| | - Yuanhe Chen
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Wei Ge
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Macau, China
| | - Qingsong Xu
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| |
Collapse
|
11
|
Tong Y, Zhang W, Qin X, Xie Y, Rong X, Du J. A customized control and readout device for vector magnetometers based on nitrogen-vacancy centers. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:014709. [PMID: 36725589 DOI: 10.1063/5.0132545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
A customized control and readout device, which is developed to perform real-time measurement for vector magnetometers based on nitrogen-vacancy centers, is presented in this paper. A dual-channel analog-to-digital-converter chip, which has a 25 MSa/s sampling rate and a 16 bits amplitude resolution, is integrated for analog signal acquisition. The data processing and the system control are realized using a Xilinx Kirtex-7 field-programmable-gate-array chip. Eight independent lock-in modules, a four-channel proportional-integral-derivative controller, a reference generator, and a vector field reconstruction module are integrated with the Kirtex-7 device in order to perform the real-time vector magnetic field measurement. The device has a bright future to be applied in practical applications.
Collapse
Affiliation(s)
- Yu Tong
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Wenzhe Zhang
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Xi Qin
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Yijin Xie
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Xing Rong
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Jiangfeng Du
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
12
|
Liu X, Esser D, Wagstaff B, Zavodni A, Matsuura N, Kelly J, Diller E. Capsule robot pose and mechanism state detection in ultrasound using attention-based hierarchical deep learning. Sci Rep 2022; 12:21130. [PMID: 36476715 PMCID: PMC9729303 DOI: 10.1038/s41598-022-25572-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Ingestible robotic capsules with locomotion capabilities and on-board sampling mechanism have great potential for non-invasive diagnostic and interventional use in the gastrointestinal tract. Real-time tracking of capsule location and operational state is necessary for clinical application, yet remains a significant challenge. To this end, we propose an approach that can simultaneously determine the mechanism state and in-plane 2D pose of millimeter capsule robots in an anatomically representative environment using ultrasound imaging. Our work proposes an attention-based hierarchical deep learning approach and adapts the success of transfer learning towards solving the multi-task tracking problem with limited dataset. To train the neural networks, we generate a representative dataset of a robotic capsule within ex-vivo porcine stomachs. Experimental results show that the accuracy of capsule state classification is 97%, and the mean estimation errors for orientation and centroid position are 2.0 degrees and 0.24 mm (1.7% of the capsule's body length) on the hold-out test set. Accurate detection of the capsule while manipulated by an external magnet in a porcine stomach and colon is also demonstrated. The results suggest our proposed method has the potential for advancing the wireless capsule-based technologies by providing accurate detection of capsule robots in clinical scenarios.
Collapse
Affiliation(s)
- Xiaoyun Liu
- grid.17063.330000 0001 2157 2938Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S1A8 Canada
| | - Daniel Esser
- grid.152326.10000 0001 2264 7217Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235 USA
| | - Brandon Wagstaff
- grid.17063.330000 0001 2157 2938University of Toronto Institute of Aerospace Studies, University of Toronto, Toronto, ON M5S1A8 Canada
| | - Anna Zavodni
- grid.17063.330000 0001 2157 2938Division of Cardiology, Department of Medicine, University of Toronto, Toronto, ON M5S1A8 Canada
| | - Naomi Matsuura
- grid.17063.330000 0001 2157 2938Department of Materials Science and Engineering and Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S1A8 Canada
| | - Jonathan Kelly
- grid.17063.330000 0001 2157 2938University of Toronto Institute of Aerospace Studies, University of Toronto, Toronto, ON M5S1A8 Canada
| | - Eric Diller
- grid.17063.330000 0001 2157 2938Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S1A8 Canada
| |
Collapse
|
13
|
Konara M, Mudugamuwa A, Dodampegama S, Roshan U, Amarasinghe R, Dao DV. Formation Techniques Used in Shape-Forming Microrobotic Systems with Multiple Microrobots: A Review. MICROMACHINES 2022; 13:1987. [PMID: 36422416 PMCID: PMC9699214 DOI: 10.3390/mi13111987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 05/19/2023]
Abstract
Multiple robots are used in robotic applications to achieve tasks that are impossible to perform as individual robotic modules. At the microscale/nanoscale, controlling multiple robots is difficult due to the limitations of fabrication technologies and the availability of on-board controllers. This highlights the requirement of different approaches compared to macro systems for a group of microrobotic systems. Current microrobotic systems have the capability to form different configurations, either as a collectively actuated swarm or a selectively actuated group of agents. Magnetic, acoustic, electric, optical, and hybrid methods are reviewed under collective formation methods, and surface anchoring, heterogeneous design, and non-uniform control input are significant in the selective formation of microrobotic systems. In addition, actuation principles play an important role in designing microrobotic systems with multiple microrobots, and the various control systems are also reviewed because they affect the development of such systems at the microscale. Reconfigurability, self-adaptable motion, and enhanced imaging due to the aggregation of modules have shown potential applications specifically in the biomedical sector. This review presents the current state of shape formation using microrobots with regard to forming techniques, actuation principles, and control systems. Finally, the future developments of these systems are presented.
Collapse
Affiliation(s)
- Menaka Konara
- Centre for Advanced Mechatronics Systems, University of Moratuwa, Katubedda 10400, Sri Lanka
| | - Amith Mudugamuwa
- Centre for Advanced Mechatronics Systems, University of Moratuwa, Katubedda 10400, Sri Lanka
| | - Shanuka Dodampegama
- Centre for Advanced Mechatronics Systems, University of Moratuwa, Katubedda 10400, Sri Lanka
| | - Uditha Roshan
- Department of Mechanical Engineering, University of Moratuwa, Katubedda 10400, Sri Lanka
| | - Ranjith Amarasinghe
- Centre for Advanced Mechatronics Systems, University of Moratuwa, Katubedda 10400, Sri Lanka
- Department of Mechanical Engineering, University of Moratuwa, Katubedda 10400, Sri Lanka
| | - Dzung Viet Dao
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Brisbane, QLD 4111, Australia
| |
Collapse
|
14
|
Chen H, Wang Y, Liu Y, Zou Q, Yu J. Sensing of Fluidic Features Using Colloidal Microswarms. ACS NANO 2022; 16:16281-16291. [PMID: 36197321 DOI: 10.1021/acsnano.2c05281] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Sensing of key parameters in fluidic environments has attracted extensive attention because the physical features of body fluids could be used for point-of-care disease diagnosis. Although various sensing methods have been investigated, effective sensing strategies of microenvironments remains a major challenge. In this paper, we propose an approach that can realize sensing of fluidic viscosity and ionic strength using microswarms formed by simple colloidal nanoparticles. The influences of fluidic ionic strength and viscosity on two swarm behaviors are analyzed (i.e., the spreading of circular vortex-like swarms and the elongation of elliptical swarms). The data models for quantifying the fluidic viscosity and ionic strength are obtained from experiments, and the fluidic features can be sensed successfully using the swarm behaviors. Furthermore, we demonstrate that the microswarms have the capability of passing through tortuous and narrow microchannels for sensing. Continuous sensing of different fluidic environments using swarms is also realized. Finally, the sensing of viscosity and ionic strength of porcine whole blood is presented, which also validates the feasibility of the sensing strategy.
Collapse
Affiliation(s)
- Hui Chen
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen518129, China
| | - Yibin Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen518129, China
| | - Yuezhen Liu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen518172, China
| | - Qian Zou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen518172, China
| | - Jiangfan Yu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen518129, China
| |
Collapse
|
15
|
Kaya M, Stein F, Padmanaban P, Zhang Z, Rouwkema J, Khalil ISM, Misra S. Visualization of micro-agents and surroundings by real-time multicolor fluorescence microscopy. Sci Rep 2022; 12:13375. [PMID: 35927294 PMCID: PMC9352757 DOI: 10.1038/s41598-022-17297-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/22/2022] [Indexed: 11/09/2022] Open
Abstract
Optical microscopy techniques are a popular choice for visualizing micro-agents. They generate images with relatively high spatiotemporal resolution but do not reveal encoded information for distinguishing micro-agents and surroundings. This study presents multicolor fluorescence microscopy for rendering color-coded identification of mobile micro-agents and dynamic surroundings by spectral unmixing. We report multicolor microscopy performance by visualizing the attachment of single and cluster micro-agents to cancer spheroids formed with HeLa cells as a proof-of-concept for targeted drug delivery demonstration. A microfluidic chip is developed to immobilize a single spheroid for the attachment, provide a stable environment for multicolor microscopy, and create a 3D tumor model. In order to confirm that multicolor microscopy is able to visualize micro-agents in vascularized environments, in vitro vasculature network formed with endothelial cells and ex ovo chicken chorioallantoic membrane are employed as experimental models. Full visualization of our models is achieved by sequential excitation of the fluorophores in a round-robin manner and synchronous individual image acquisition from three-different spectrum bands. We experimentally demonstrate that multicolor microscopy spectrally decomposes micro-agents, organic bodies (cancer spheroids and vasculatures), and surrounding media utilizing fluorophores with well-separated spectrum characteristics and allows image acquisition with 1280 [Formula: see text] 1024 pixels up to 15 frames per second. Our results display that real-time multicolor microscopy provides increased understanding by color-coded visualization regarding the tracking of micro-agents, morphology of organic bodies, and clear distinction of surrounding media.
Collapse
Affiliation(s)
- Mert Kaya
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, 7522 NB, Enschede, The Netherlands. .,Surgical Robotics Laboratory, Department of Biomedical Engineering and University Medical Centre Groningen, University of Groningen, 9713 AV, Groningen, The Netherlands.
| | - Fabian Stein
- Vascularization Laboratory, Department of Biomechanical Engineering, University of Twente, 7522 NB, Enschede, The Netherlands
| | - Prasanna Padmanaban
- Vascularization Laboratory, Department of Biomechanical Engineering, University of Twente, 7522 NB, Enschede, The Netherlands
| | - Zhengya Zhang
- Surgical Robotics Laboratory, Department of Biomedical Engineering and University Medical Centre Groningen, University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Jeroen Rouwkema
- Vascularization Laboratory, Department of Biomechanical Engineering, University of Twente, 7522 NB, Enschede, The Netherlands
| | - Islam S M Khalil
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, 7522 NB, Enschede, The Netherlands
| | - Sarthak Misra
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, 7522 NB, Enschede, The Netherlands.,Surgical Robotics Laboratory, Department of Biomedical Engineering and University Medical Centre Groningen, University of Groningen, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
16
|
Soft microswimmers: Material capabilities and biomedical applications. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Lu Y, Zhao H, Becker AT, Leclerc J. Steering Rotating Magnetic Swimmers in 2.5 Dimensions Using Only 2D Ultrasonography for Position Sensing. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3146560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Park M, Le TA, Yoon J. Offline Programming Guidance for Swarm Steering of Micro-/Nano Magnetic Particles in a Dynamic Multichannel Vascular Model. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3148789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Quashie D, Benhal P, Chen Z, Wang Z, Mu X, Song X, Jiang T, Zhong Y, Cheang UK, Ali J. Magnetic bio-hybrid micro actuators. NANOSCALE 2022; 14:4364-4379. [PMID: 35262134 DOI: 10.1039/d2nr00152g] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Over the past two decades, there has been a growing body of work on wireless devices that can operate on the length scales of biological cells and even smaller. A class of these devices receiving increasing attention are referred to as bio-hybrid actuators: tools that integrate biological cells or subcellular parts with synthetic or inorganic components. These devices are commonly controlled through magnetic manipulation as magnetic fields and gradients can be generated with a high level of control. Recent work has demonstrated that magnetic bio-hybrid actuators can address common challenges in small scale fabrication, control, and localization. Additionally, it is becoming apparent that these magnetically driven bio-hybrid devices can display high efficiency and, in many cases, have the potential for self-repair and even self-replication. Combining these properties with magnetically driven forces and torques, which can be transmitted over significant distances, can be highly controlled, and are biologically safe, gives magnetic bio-hybrid actuators significant advantages over other classes of small scale actuators. In this review, we describe the theory and mechanisms required for magnetic actuation, classify bio-hybrid actuators by their diverse organic components, and discuss their current limitations. Insights into the future of coupling cells and cell-derived components with magnetic materials to fabricate multi-functional actuators are also provided.
Collapse
Affiliation(s)
- David Quashie
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida, USA, 32310.
- National High Magnetic Field Laboratory, Tallahassee, Florida, USA, 32310
| | - Prateek Benhal
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida, USA, 32310.
- National High Magnetic Field Laboratory, Tallahassee, Florida, USA, 32310
| | - Zhi Chen
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China, 518055
| | - Zihan Wang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China, 518055
| | - Xueliang Mu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China, 518055
| | - Xiaoxia Song
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China, 518055
| | - Teng Jiang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China, 518055
| | - Yukun Zhong
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China, 518055
| | - U Kei Cheang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China, 518055
| | - Jamel Ali
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida, USA, 32310.
- National High Magnetic Field Laboratory, Tallahassee, Florida, USA, 32310
| |
Collapse
|
20
|
Ramos‐Sebastian A, Gwak S, Kim SH. Multimodal Locomotion and Active Targeted Thermal Control of Magnetic Agents for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103863. [PMID: 35060366 PMCID: PMC8895130 DOI: 10.1002/advs.202103863] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/07/2021] [Indexed: 05/27/2023]
Abstract
Magnetic microrobots can be miniaturized to a nanometric scale owing to their wireless actuation, thereby rendering them ideal for numerous biomedical applications. As a result, nowadays, there exist several mechano-electromagnetic systems for their actuation. However, magnetic actuation is not sufficient for implementation in biomedical applications, and further functionalities such as imaging and heating are required. This study proposes a multimodal electromagnetic system comprised of three pairs of Helmholtz coils, a pair of Maxwell coils, and a high-frequency solenoid to realize multimodal locomotion and heating control of magnetic microrobots. The system produces different configurations of magnetic fields that can generate magnetic forces and torques for the multimodal locomotion of magnetic microrobots, as well as generate magnetic traps that can control the locomotion of magnetic swarms. Furthermore, these magnetic fields are employed to control the magnetization of magnetic nanoparticles, affecting their magnetic relaxation mechanisms and diminishing their thermal properties. Thus, the system enables the control of the temperature increase of soft-magnetic materials and selective heating of magnetic microrobots at different positions, while suppressing the heating properties of magnetic nanoparticles located at undesired areas.
Collapse
Affiliation(s)
- Armando Ramos‐Sebastian
- Department of Electronics Convergence EngineeringWonkwang UniversityIksan54538Republic of Korea
- Present address:
Department of Convergence Technology EngineeringJeonbuk National UniversityJeonju54896Republic of Korea
| | - So‐Jung Gwak
- Department of Chemical EngineeringWonkwang UniversityIksan54538Republic of Korea
| | - Sung Hoon Kim
- Department of Electronics Convergence EngineeringWonkwang UniversityIksan54538Republic of Korea
- Wonkwang Institute of Materials Science and TechnologyWonkwang UniversityIksan54538Republic of Korea
| |
Collapse
|
21
|
Zhang Z, Wang L, Chan TKF, Chen Z, Ip M, Chan PKS, Sung JJY, Zhang L. Micro-/Nanorobots in Antimicrobial Applications: Recent Progress, Challenges, and Opportunities. Adv Healthc Mater 2022; 11:e2101991. [PMID: 34907671 DOI: 10.1002/adhm.202101991] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/24/2021] [Indexed: 12/13/2022]
Abstract
The evolution of drug-resistant pathogenic bacteria remains one of the most urgent threats to public health worldwide. Even worse, the bacterial cells commonly form biofilms through aggregation and adhesion, preventing antibiotic penetration and resisting environmental stress. Moreover, biofilms tend to grow in some hard-to-reach regions, bringing difficulty for antibiotic delivery at the infected site. The drug-resistant pathogenic bacteria and intractable biofilm give rise to chronic and recurrent infections, exacerbating the challenge in combating bacterial infections. Micro/nanorobots (MNRs) are capable of active cargo delivery, targeted treatment with high precision, and motion-assisted mechanical force, which enable transport and enhance penetration of antibacterial agents into the targeted site, thus showing great promise in emerging as an attractive alternative to conventional antibacterial therapies. This review summarizes the recent advances in micro-/nanorobots for antibacterial applications, with emphasis on those novel strategies for drug-resistance bacterium and stubborn biofilm infections. Insights on the future development of MNRs with good functionality and biosafety offer promising approaches to address infections in the clinic setting.
Collapse
Affiliation(s)
- Zifeng Zhang
- Department of Mechanical and Automation Engineering The Chinese University of Hong Kong Hong Kong SAR 999077 China
| | - Lu Wang
- Department of Mechanical and Automation Engineering The Chinese University of Hong Kong Hong Kong SAR 999077 China
| | - Tony K. F. Chan
- Chow Yuk Ho Technology Center for Innovative Medicine The Chinese University of Hong Kong Hong Kong SAR 999077 China
| | - Zigui Chen
- Department of Microbiology The Chinese University of Hong Kong Hong Kong SAR 999077 China
| | - Margaret Ip
- Department of Microbiology The Chinese University of Hong Kong Hong Kong SAR 999077 China
| | - Paul K. S. Chan
- Department of Microbiology The Chinese University of Hong Kong Hong Kong SAR 999077 China
- Stanley Ho Centre for Emerging Infectious Diseases Faculty of Medicine The Chinese University of Hong Kong Hong Kong SAR 999077 China
| | - Joseph J. Y. Sung
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore 636921 Singapore
| | - Li Zhang
- Department of Mechanical and Automation Engineering The Chinese University of Hong Kong Hong Kong SAR 999077 China
- Chow Yuk Ho Technology Center for Innovative Medicine The Chinese University of Hong Kong Hong Kong SAR 999077 China
- CUHK T Stone Robotics Institute The Chinese University of Hong Kong Hong Kong SAR 999077 China
- Department of Surgery The Chinese University of Hong Kong Hong Kong SAR 999077 China
| |
Collapse
|
22
|
Wang Q, Du X, Jin D, Zhang L. Real-Time Ultrasound Doppler Tracking and Autonomous Navigation of a Miniature Helical Robot for Accelerating Thrombolysis in Dynamic Blood Flow. ACS NANO 2022; 16:604-616. [PMID: 34985859 DOI: 10.1021/acsnano.1c07830] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Untethered small-scale robots offer great promise for medical applications in complex biological environments. However, challenges remain in the control and medical imaging of a robot for targeted delivery inside a living body, especially in flowing conditions (e.g., blood vessels). In this work, we report a strategy to autonomously navigate a miniature helical robot in dynamic blood flow under ultrasound Doppler imaging guidance. A magnetic torque and force-hybrid control approach is implemented, enabling the actuation of a millimeter-scale helical robot against blood flow under a rotating magnetic field with a controllable field gradient. Experimental results demonstrate that the robot (length 7.30 mm; diameter 2.15 mm) exhibits controlled navigation in vascular environments, including upstream and downstream navigation in flowing and pulsatile flowing blood with flow rates up to 24 mL/min (mean flow velocity: 14.15 mm/s). During navigation, the rotating robot-induced Doppler signals enable real-time localization and tracking in flowing and pulsatile flowing blood environments. Moreover, the robot can be selectively navigated along different paths by actively controlling the robot's orientation. We apply this autonomous strategy for localizing thrombus and accelerating thrombolysis rate. Compared with conventional tissue plasminogen activator (tPA) thrombolysis, the robot-enhanced shear stress and tPA convection near the clot-blood interface increase the unblocking and thrombolysis efficiency up to 4.8- and 3.5-fold, respectively. Such a medical imaging-guided navigation strategy provides simultaneous robot navigation and localization in complex dynamic biological environments, providing an intelligent approach toward real-time targeted delivery and diagnostic applications in vivo.
Collapse
Affiliation(s)
- Qianqian Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Xingzhou Du
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Dongdong Jin
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong 999077, China
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong 999077, China
- Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
- T Stone Robotics Institute, The Chinese University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
23
|
Jin D, Zhang L. Collective Behaviors of Magnetic Active Matter: Recent Progress toward Reconfigurable, Adaptive, and Multifunctional Swarming Micro/Nanorobots. Acc Chem Res 2022; 55:98-109. [PMID: 34931794 DOI: 10.1021/acs.accounts.1c00619] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Active matter refers to the nonequilibrium system composed of interacting units that continually dissipate energy at a single-unit level and transduce it into mechanical force or motion. Such systems are ubiquitous in nature and span most of the biological scales, ranging from cytoskeleton protein polymers at the molecular level to bacterial colonies at the cellular level to swarms of insects, flocks of birds, schools of fish, and even crowds of humans on the organismal scale. The consumption of energy within systems tends to induce the self-organization of active matter as well as the spontaneous emergence of dynamic, complex, and collective states with extraordinary properties, such as adaptability, reconfigurability, taxis, and so on. The research into active matter is expected to deepen the understanding of the underlying mechanisms of how the units in living systems interact with each other and regulate the flow of energy to improve the survival efficiency, which in turn can provide valuable insights into the engineering of artificial active systems with novel and practical collective functionalities.Because of the striking similarity in collective states, a colloidal system is an emerging approach to understanding the guiding principles of the coordinated activities in living systems. Thanks to the capabilities in batch fabrication, size control, and the modulation of interactions (e.g., dipole-dipole interactions, capillary forces, electrostatic interactions, and so on), various complex collective states have been reproduced and programmed in colloidal suspension through the elaborate design of compositions and unit-unit interactions. Among the developed colloidal systems, magnetic colloids energized by alternating magnetic fields demonstrate several unique advantages, including the high-degree-of-freedom and simple modulation of the magnetic field parameters as well as the excellent compatibility of the magnetic field with many application scenarios. Therefore, magnetic active matter not only constitutes a useful platform that leads to a discovery of fascinating emergent collective behaviors but also promises enormous potential in a variety of engineering fields.In this Account, we summarize and highlight the key efforts carried out by our group and others on the investigation of the collective behavior of magnetic active matter in the past 5 years. First, we elucidate the generation mechanisms of the emergent coordinated behaviors, which are classified according to the dominating interactions among agents, that is, the magnetic dipole-dipole interaction, hydrodynamic interaction, and weak interaction. Then we illustrate the construction of magnetic active matter with a higher level of collective effects and functionalities (e.g., reconfigurability, environmental adaptability, 3D swarming, cooperative multifunctionality, and so on) via the synergistic effects between magnetic fields and other fields. Next, potential applications of magnetic active matter are discussed, which mainly focus on the exploration in revolutionizing traditional biomedical fields. Finally, an outlook of future opportunities is presented to promote the development of magnetic active matter, which facilitates a better understanding of living counterparts and the further realization of practical applications.
Collapse
|
24
|
Pane S, Faoro G, Sinibaldi E, Iacovacci V, Menciassi A. Ultrasound Acoustic Phase Analysis Enables Robotic Visual-Servoing of Magnetic Microrobots. IEEE T ROBOT 2022. [DOI: 10.1109/tro.2022.3143072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Dynamic tracking of a magnetic micro-roller using ultrasound phase analysis. Sci Rep 2021; 11:23239. [PMID: 34853369 PMCID: PMC8636564 DOI: 10.1038/s41598-021-02553-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 11/18/2021] [Indexed: 12/30/2022] Open
Abstract
Microrobots (MRs) have attracted significant interest for their potentialities in diagnosis and non-invasive intervention in hard-to-reach body areas. Fine control of biomedical MRs requires real-time feedback on their position and configuration. Ultrasound (US) imaging stands as a mature and advantageous technology for MRs tracking, but it suffers from disturbances due to low contrast resolution. To overcome these limitations and make US imaging suitable for monitoring and tracking MRs, we propose a US contrast enhancement mechanism for MR visualization in echogenic backgrounds (e.g., tissue). Our technique exploits the specific acoustic phase modulation produced by the MR characteristic motions. By applying this principle, we performed real-time visualization and position tracking of a magnetic MR rolling on a lumen boundary, both in static flow and opposing flow conditions, with an average error of 0.25 body-lengths. Overall, the reported results unveil countless possibilities to exploit the proposed approach as a robust feedback strategy for monitoring and tracking biomedical MRs in-vivo.
Collapse
|
26
|
Chen H, Zhang H, Xu T, Yu J. An Overview of Micronanoswarms for Biomedical Applications. ACS NANO 2021; 15:15625-15644. [PMID: 34647455 DOI: 10.1021/acsnano.1c07363] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Micronanoswarms have attracted extensive attention worldwide due to their great promise in biomedical applications. The collective behaviors among thousands, or even millions, of tiny active agents indicate immense potential for benefiting the progress of clinical therapeutic and diagnostic methods. In recent years, with the development of smart materials, remote actuation modalities, and automatic control strategies, the motion dexterity, environmental adaptability, and functionality versatility of micronanoswarms are improved. Swarms can thus be designed as dexterous platforms inside living bodies to perform a multitude of tasks related to healthcare. Existing surveys summarize the design, functionalization, and biomedical applications of micronanorobots and the actuation and motion control strategies of micronanoswarms. This review presents the recent progress of micronanoswarms, aiming for biomedical applications. The recent advances on structural design of artificial, living, and hybrid micronanoswarms are summarized, and the biomedical applications that could be tackled using micronanoswarms are introduced, such as targeted drug delivery, hyperthermia, imaging and sensing, and thrombolysis. Moreover, potential challenges and promising trends of future developments are discussed. It is envisioned that the future success of these promising tools will have a significant impact on clinical treatment.
Collapse
Affiliation(s)
- Hui Chen
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen 518129, China
| | - Huimin Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Tiantian Xu
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen 518129, China
- Guangdong Provincial Key Laboratory of Robotics and Intelligent System, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518126, China
| | - Jiangfan Yu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen 518129, China
| |
Collapse
|
27
|
Yang L, Zhang M, Yang H, Yang Z, Zhang L. Hybrid Magnetic Force and Torque Actuation of Miniature Helical Robots Using Mobile Coils to Accelerate Blood Clot Removal. 2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS) 2021:7476-7482. [DOI: 10.1109/iros51168.2021.9636851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
28
|
Su L, Jin DD, Pan CF, Xia N, Chan KF, Iacovacci V, Xu T, Du X, Zhang L. A mobile magnetic pad with fast light-switchable adhesion capabilities. BIOINSPIRATION & BIOMIMETICS 2021; 16:055005. [PMID: 34225261 DOI: 10.1088/1748-3190/ac114a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Octopus suckers that possess the ability to actively control adhesion through muscle actuation have inspired artificial adhesives for safe manipulation of thin and delicate objects. However, the design of adhesives with fast adhesion switching speed to transport cargoes in confined spaces remains an open challenge. Here, we present an untethered magnetic adhesive pad combining the functionality of fast adhesion switching and remotely controlled locomotion. The adhesive pad can be activated from low-adhesion state to high-adhesion state by near infrared laser within 30 s, allowing to fulfill a high-throughput task of retrieving and releasing objects. Moreover, under the guidance of external magnetic field, the proposed pad is demonstrated to transport thin and fragile electronic components across a tortuous path, thus indicating its potential for dexterous delivery in complex working environments.
Collapse
Affiliation(s)
- Lin Su
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, People's Republic of China
| | - Dong Dong Jin
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, People's Republic of China
| | - Cheng Feng Pan
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, People's Republic of China
| | - Neng Xia
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, People's Republic of China
| | - Kai Fung Chan
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, People's Republic of China
| | - Veronica Iacovacci
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, People's Republic of China
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa 56025, Italy
| | - Tiantian Xu
- Guangdong Provincial Key Laboratory of Robotics and Intelligent System, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Xuemin Du
- Institute of Biomedical and Health Engineering (IBHE), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, People's Republic of China
| |
Collapse
|
29
|
Lao Z, Xia N, Wang S, Xu T, Wu X, Zhang L. Tethered and Untethered 3D Microactuators Fabricated by Two-Photon Polymerization: A Review. MICROMACHINES 2021; 12:465. [PMID: 33924199 PMCID: PMC8074609 DOI: 10.3390/mi12040465] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/11/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022]
Abstract
Microactuators, which can transform external stimuli into mechanical motion at microscale, have attracted extensive attention because they can be used to construct microelectromechanical systems (MEMS) and/or microrobots, resulting in extensive applications in a large number of fields such as noninvasive surgery, targeted delivery, and biomedical machines. In contrast to classical 2D MEMS devices, 3D microactuators provide a new platform for the research of stimuli-responsive functional devices. However, traditional planar processing techniques based on photolithography are inadequate in the construction of 3D microstructures. To solve this issue, researchers have proposed many strategies, among which 3D laser printing is becoming a prospective technique to create smart devices at the microscale because of its versatility, adjustability, and flexibility. Here, we review the recent progress in stimulus-responsive 3D microactuators fabricated with 3D laser printing depending on different stimuli. Then, an outlook of the design, fabrication, control, and applications of 3D laser-printed microactuators is propounded with the goal of providing a reference for related research.
Collapse
Affiliation(s)
- Zhaoxin Lao
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong 999077, China; (N.X.); (S.W.)
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230022, China
| | - Neng Xia
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong 999077, China; (N.X.); (S.W.)
| | - Shijie Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong 999077, China; (N.X.); (S.W.)
| | - Tiantian Xu
- Guangdong Provincial Key Laboratory of Robotics and Intelligent System, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (T.X.); (X.W.)
| | - Xinyu Wu
- Guangdong Provincial Key Laboratory of Robotics and Intelligent System, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (T.X.); (X.W.)
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong 999077, China; (N.X.); (S.W.)
| |
Collapse
|
30
|
Yang Z, Yang L, Zhang M, Wang Q, Simon CH, Zhang L. Magnetic Control of a Steerable Guidewire Under Ultrasound Guidance Using Mobile Electromagnets. IEEE Robot Autom Lett 2021. [DOI: 10.1109/lra.2021.3057295] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
31
|
Jiang J, Yang L, Zhang L. Closed-Loop Control of a Helmholtz Coil System for Accurate Actuation of Magnetic Microrobot Swarms. IEEE Robot Autom Lett 2021. [DOI: 10.1109/lra.2021.3052394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Blackiston D, Lederer E, Kriegman S, Garnier S, Bongard J, Levin M. A cellular platform for the development of synthetic living machines. Sci Robot 2021; 6:6/52/eabf1571. [PMID: 34043553 DOI: 10.1126/scirobotics.abf1571] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/08/2021] [Indexed: 12/18/2022]
Abstract
Robot swarms have, to date, been constructed from artificial materials. Motile biological constructs have been created from muscle cells grown on precisely shaped scaffolds. However, the exploitation of emergent self-organization and functional plasticity into a self-directed living machine has remained a major challenge. We report here a method for generation of in vitro biological robots from frog (Xenopus laevis) cells. These xenobots exhibit coordinated locomotion via cilia present on their surface. These cilia arise through normal tissue patterning and do not require complicated construction methods or genomic editing, making production amenable to high-throughput projects. The biological robots arise by cellular self-organization and do not require scaffolds or microprinting; the amphibian cells are highly amenable to surgical, genetic, chemical, and optical stimulation during the self-assembly process. We show that the xenobots can navigate aqueous environments in diverse ways, heal after damage, and show emergent group behaviors. We constructed a computational model to predict useful collective behaviors that can be elicited from a xenobot swarm. In addition, we provide proof of principle for a writable molecular memory using a photoconvertible protein that can record exposure to a specific wavelength of light. Together, these results introduce a platform that can be used to study many aspects of self-assembly, swarm behavior, and synthetic bioengineering, as well as provide versatile, soft-body living machines for numerous practical applications in biomedicine and the environment.
Collapse
Affiliation(s)
| | - Emma Lederer
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA
| | - Sam Kriegman
- Department of Computer Science, University of Vermont, Burlington, VT 05405, USA
| | - Simon Garnier
- Federated Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Joshua Bongard
- Department of Computer Science, University of Vermont, Burlington, VT 05405, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA. .,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
33
|
Abstract
![]()
Manipulation and navigation of micro
and nanoswimmers in different
fluid environments can be achieved by chemicals, external fields,
or even motile cells. Many researchers have selected magnetic fields
as the active external actuation source based on the advantageous
features of this actuation strategy such as remote and spatiotemporal
control, fuel-free, high degree of reconfigurability, programmability,
recyclability, and versatility. This review introduces fundamental
concepts and advantages of magnetic micro/nanorobots (termed here
as “MagRobots”) as well as basic knowledge of magnetic
fields and magnetic materials, setups for magnetic manipulation, magnetic
field configurations, and symmetry-breaking strategies for effective
movement. These concepts are discussed to describe the interactions
between micro/nanorobots and magnetic fields. Actuation mechanisms
of flagella-inspired MagRobots (i.e., corkscrew-like motion and traveling-wave
locomotion/ciliary stroke motion) and surface walkers (i.e., surface-assisted
motion), applications of magnetic fields in other propulsion approaches,
and magnetic stimulation of micro/nanorobots beyond motion are provided
followed by fabrication techniques for (quasi-)spherical, helical,
flexible, wire-like, and biohybrid MagRobots. Applications of MagRobots
in targeted drug/gene delivery, cell manipulation, minimally invasive
surgery, biopsy, biofilm disruption/eradication, imaging-guided delivery/therapy/surgery,
pollution removal for environmental remediation, and (bio)sensing
are also reviewed. Finally, current challenges and future perspectives
for the development of magnetically powered miniaturized motors are
discussed.
Collapse
Affiliation(s)
- Huaijuan Zhou
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Carmen C Mayorga-Martinez
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Salvador Pané
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Tannenstrasse 3, 8092 Zurich, Switzerland
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Martin Pumera
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic.,Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan.,Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.,Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.,Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno CZ-612 00, Czech Republic
| |
Collapse
|
34
|
Du X, Yu J, Jin D, Chiu PWY, Zhang L. Independent Pattern Formation of Nanorod and Nanoparticle Swarms under an Oscillating Field. ACS NANO 2021; 15:4429-4439. [PMID: 33599480 DOI: 10.1021/acsnano.0c08284] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Natural swarms can be formed by various creatures. The swarms can conduct demanded behaviors to adapt to their living environments, such as passing through harsh terrains and protecting each other from predators. At micrometer and nanometer scales, formation of a swarm pattern relies on the physical or chemical interactions between the agents owing to the absence of an on-board device. Independent pattern formation of different swarms, especially under the same input, is a more challenging task. In this work, a swarm of nickel nanorods is proposed and by exploiting its different behavior with the nanoparticle swarm, independent pattern formation of diverse microrobotic swarms under the same environment can be conducted. A mathematical model for the nanorod swarm is constructed, and the mechanism is illustrated. Two-region pattern changing of the nanorod swarm is discovered and compared with the one-region property of the nanoparticle swarm. Experimental characterization of the nanorod swarm pattern is conducted to prove the concept and validate the effectiveness of the theoretical analysis. Furthermore, independent pattern formation of different microrobotic swarms was demonstrated. The pattern of the nanorod swarm could be adjusted while the other swarm was kept unchanged. Simultaneous pattern changing of two swarms was achieved as well. As a fundamental research on the microrobotic swarm, this work presents how the nanoscale magnetic anisotropy of building agents affects their macroscopic swarm behaviors and promotes further development on the independent control of microrobotic swarms under a global field input.
Collapse
Affiliation(s)
- Xingzhou Du
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin NT, Hong Kong, China
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin NT, Hong Kong, China
- Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong, China
| | - Jiangfan Yu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen, 518172, China
| | - Dongdong Jin
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin NT, Hong Kong, China
| | - Philip Wai Yan Chiu
- Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong, China
- Department of Surgery, The Chinese University of Hong Kong, Shatin NT, Hong Kong, China
- CUHK T Stone Robotics Institute, The Chinese University of Hong Kong, Shatin NT, Hong Kong, China
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin NT, Hong Kong, China
- Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong, China
- CUHK T Stone Robotics Institute, The Chinese University of Hong Kong, Shatin NT, Hong Kong, China
| |
Collapse
|
35
|
Wang B, Chan KF, Yuan K, Wang Q, Xia X, Yang L, Ko H, Wang YXJ, Sung JJY, Chiu PWY, Zhang L. Endoscopy-assisted magnetic navigation of biohybrid soft microrobots with rapid endoluminal delivery and imaging. Sci Robot 2021; 6:6/52/eabd2813. [PMID: 34043547 DOI: 10.1126/scirobotics.abd2813] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 02/16/2021] [Indexed: 12/28/2022]
Abstract
High-precision delivery of microrobots at the whole-body scale is of considerable importance for efforts toward targeted therapeutic intervention. However, vision-based control of microrobots, to deep and narrow spaces inside the body, remains a challenge. Here, we report a soft and resilient magnetic cell microrobot with high biocompatibility that can interface with the human body and adapt to the complex surroundings while navigating inside the body. We achieve time-efficient delivery of soft microrobots using an integrated platform called endoscopy-assisted magnetic actuation with dual imaging system (EMADIS). EMADIS enables rapid deployment across multiple organ/tissue barriers at the whole-body scale and high-precision delivery of soft and biohybrid microrobots in real time to tiny regions with depth up to meter scale through natural orifice, which are commonly inaccessible and even invisible by conventional endoscope and medical robots. The precise delivery of magnetic stem cell spheroid microrobots (MSCSMs) by the EMADIS transesophageal into the bile duct with a total distance of about 100 centimeters can be completed within 8 minutes. The integration strategy offers a full clinical imaging technique-based therapeutic/intervention system, which broadens the accessibility of hitherto hard-to-access regions, by means of soft microrobots.
Collapse
Affiliation(s)
- Ben Wang
- Department of Mechanical and Automation Engineering, Chinese University of Hong Kong, Hong Kong, China
| | - Kai Fung Chan
- Chow Yuk Ho Technology Centre for Innovative Medicine, Chinese University of Hong Kong, Hong Kong, China
| | - Ke Yuan
- Department of Mechanical and Automation Engineering, Chinese University of Hong Kong, Hong Kong, China.,Department of Biomedical Engineering, Chinese University of Hong Kong, Hong Kong, China
| | - Qianqian Wang
- Department of Mechanical and Automation Engineering, Chinese University of Hong Kong, Hong Kong, China
| | - Xianfeng Xia
- Chow Yuk Ho Technology Centre for Innovative Medicine, Chinese University of Hong Kong, Hong Kong, China.,Department of Surgery, Chinese University of Hong Kong, Hong Kong, China
| | - Lidong Yang
- Department of Mechanical and Automation Engineering, Chinese University of Hong Kong, Hong Kong, China
| | - Ho Ko
- Department of Medicine and Therapeutics and School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China.,Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| | - Yi-Xiang J Wang
- Department of Imaging and Interventional Radiology, Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China
| | - Joseph Jao Yiu Sung
- Department of Medicine and Therapeutics and School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China.,Institute of Digestive Disease, Faculty of Medicine, Chinese University of Hong Kong, China
| | - Philip Wai Yan Chiu
- Chow Yuk Ho Technology Centre for Innovative Medicine, Chinese University of Hong Kong, Hong Kong, China.,Department of Surgery, Chinese University of Hong Kong, Hong Kong, China.,Institute of Digestive Disease, Faculty of Medicine, Chinese University of Hong Kong, China.,T Stone Robotics Institute, Chinese University of Hong Kong, Hong Kong, China
| | - Li Zhang
- Department of Mechanical and Automation Engineering, Chinese University of Hong Kong, Hong Kong, China. .,Chow Yuk Ho Technology Centre for Innovative Medicine, Chinese University of Hong Kong, Hong Kong, China.,T Stone Robotics Institute, Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
36
|
Wang Q, Chan KF, Schweizer K, Du X, Jin D, Yu SCH, Nelson BJ, Zhang L. Ultrasound Doppler-guided real-time navigation of a magnetic microswarm for active endovascular delivery. SCIENCE ADVANCES 2021; 7:7/9/eabe5914. [PMID: 33637532 PMCID: PMC7909881 DOI: 10.1126/sciadv.abe5914] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/12/2021] [Indexed: 05/18/2023]
Abstract
Swarming micro/nanorobots offer great promise in performing targeted delivery inside diverse hard-to-reach environments. However, swarm navigation in dynamic environments challenges delivery capability and real-time swarm localization. Here, we report a strategy to navigate a nanoparticle microswarm in real time under ultrasound Doppler imaging guidance for active endovascular delivery. A magnetic microswarm was formed and navigated near the boundary of vessels, where the reduced drag of blood flow and strong interactions between nanoparticles enable upstream and downstream navigation in flowing blood (mean velocity up to 40.8 mm/s). The microswarm-induced three-dimensional blood flow enables Doppler imaging from multiple viewing configurations and real-time tracking in different environments (i.e., stagnant, flowing blood, and pulsatile flow). We also demonstrate the ultrasound Doppler-guided swarm formation and navigation in the porcine coronary artery ex vivo. Our strategy presents a promising connection between swarm control and real-time imaging of microrobotic swarms for localized delivery in dynamic environments.
Collapse
Affiliation(s)
- Qianqian Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong (CUHK), Shatin, NT, Hong Kong, China
| | - Kai Fung Chan
- Chow Yuk Ho Technology Centre for Innovative Medicine, CUHK, Shatin, NT, Hong Kong, China
- Department of Biomedical Engineering, CUHK, Shatin, NT, Hong Kong, China
| | - Kathrin Schweizer
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong (CUHK), Shatin, NT, Hong Kong, China
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
| | - Xingzhou Du
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong (CUHK), Shatin, NT, Hong Kong, China
- Department of Biomedical Engineering, CUHK, Shatin, NT, Hong Kong, China
| | - Dongdong Jin
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong (CUHK), Shatin, NT, Hong Kong, China
- Department of Biomedical Engineering, CUHK, Shatin, NT, Hong Kong, China
| | - Simon Chun Ho Yu
- Department of Imaging and Interventional Radiology, CUHK, Shatin, NT, Hong Kong, China
| | - Bradley J Nelson
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong (CUHK), Shatin, NT, Hong Kong, China.
- Chow Yuk Ho Technology Centre for Innovative Medicine, CUHK, Shatin, NT, Hong Kong, China
- CUHK T Stone Robotics Institute, CUHK, Shatin, NT, Hong Kong, China
| |
Collapse
|
37
|
Wang Q, Zhang L. External Power-Driven Microrobotic Swarm: From Fundamental Understanding to Imaging-Guided Delivery. ACS NANO 2021; 15:149-174. [PMID: 33417764 DOI: 10.1021/acsnano.0c07753] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Untethered micro/nanorobots have been widely investigated owing to their potential in performing various tasks in different environments. The significant progress in this emerging interdisciplinary field has benefited from the distinctive features of those tiny active agents, such as wireless actuation, navigation under feedback control, and targeted delivery of small-scale objects. In recent studies, collective behaviors of these tiny machines have received tremendous attention because swarming agents can enhance the delivery capability and adaptability in complex environments and the contrast of medical imaging, thus benefiting the imaging-guided navigation and delivery. In this review, we summarize the recent research efforts on investigating collective behaviors of external power-driven micro/nanorobots, including the fundamental understanding of swarm formation, navigation, and pattern transformation. The fundamental understanding of swarming tiny machines provides the foundation for targeted delivery. We also summarize the swarm localization using different imaging techniques, including the imaging-guided delivery in biological environments. By highlighting the critical steps from understanding the fundamental interactions during swarm control to swarm localization and imaging-guided delivery applications, we envision that the microrobotic swarm provides a promising tool for delivering agents in an active, controlled manner.
Collapse
Affiliation(s)
- Qianqian Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
- Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
- T Stone Robotics Institute, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
| |
Collapse
|