1
|
Do TD, Mukhatov A, Tolebay A, Le TA, Pham TT. A comprehensive analysis of the impacts of Image Resolution and Scanning Times on the quality of MPI-reconstructed images. Sci Rep 2025; 15:5519. [PMID: 39953088 PMCID: PMC11828862 DOI: 10.1038/s41598-025-89296-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 02/04/2025] [Indexed: 02/17/2025] Open
Abstract
Scanning trajectories are essential and important components of trajectory-based scanning and imaging systems such as laser scanning confocal microscopes, atomic force microscopes (AFM), laser scanning systems for aerial surveying (LiDAR), micro-electromechanical systems (MEMS), medical imaging and 2D/3D printing. Previous study has demonstrated that Sinusoidal Lissajous is the optimal scanning trajectory and proposed that increasing the scanning repetition could further enhance image quality. However, it is challenging to pinpoint the essential elements needed to enhance the quality of the reconstructed images since there is currently no comprehensive analysis of how the scanning trajectory resolution and scanning time affect the reconstructed image quality. The purpose of this work is to look into the influence of scanning resolution and scanning time on the quality of magnetic particle imaging (MPI)-reconstructed images across a variety of scanning trajectories. This study offers a comprehensive analysis of how scanning repetition and scanning time affect the reconstructed images' quality at the individual pixel in the field of view (FOV) as well as throughout the entire FOV. The impacts of the scanning time were investigated both before and after image reconstruction. In the pre-reconstruction phase, the minimum and maximum distances to the closest neighboring points in the FOV and their distribution in different regions of the FOV were analyzed in order to investigate the density, homogeneity, and time spent on each pixel. Here, we demonstrated that the image resolution for any scanning trajectory is scale invariance, meaning that for a fixed frequency ratio [Formula: see text], the ratio of pixel size to image FOV size remains constant. Peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), normalized root mean square error (NRMSE), and normalized sum of squared error (NSSE) are used to evaluate and compare the reconstructed images' quality in the post-reconstruction stage. It is found that the Sinusoidal Lissajous scanning trajectory is the best in terms of accuracy, structural similarity, and signal-to-noise. We showed that only the image quality for bidirectional Cartesian and sinusoidal Lissajous trajectories are sensitive to scanning time, particularly at the pixel scale. Furthermore, contrary to expectations, we discovered that optimizing the scanning repetition did not enhance the MPI-reconstructed image quality. Nevertheless, the image quality would be enhanced by extending the scanning duration through decreasing the scanning frequency. The optimal scanning frequency is half of the frequently used 25 kHz for the chosen [Formula: see text] ratio of 100.
Collapse
Affiliation(s)
- Ton Duc Do
- Department of Robotics, School of Engineering and Digital Sciences (SEDS), Nazarbayev University, Astana, 010000, Kazakhstan.
| | - Azamat Mukhatov
- Department of Robotics, School of Engineering and Digital Sciences (SEDS), Nazarbayev University, Astana, 010000, Kazakhstan
| | - Aizhan Tolebay
- Department of Biology, School of Sciences, Humanities Nazarbayev University, Astana, 010000, Kazakhstan
| | - Tuan-Anh Le
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Scottsdale, AZ, 85259, USA
| | - Tri T Pham
- Department of Biology, School of Sciences, Humanities Nazarbayev University, Astana, 010000, Kazakhstan.
| |
Collapse
|
2
|
Huber CM, Pavan TZ, Ullmann I, Heim C, Rupitsch SJ, Vossiek M, Alexiou C, Ermert H, Lyer S. A Review on Ultrasound-based Methods to Image the Distribution of Magnetic Nanoparticles in Biomedical Applications. ULTRASOUND IN MEDICINE & BIOLOGY 2025; 51:210-234. [PMID: 39537544 DOI: 10.1016/j.ultrasmedbio.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/13/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
Magnetic nanoparticles (MNPs) have gained significant attention in biomedical engineering and imaging applications due to their unique magnetic and mechanical properties. With their high magnetization and small size, MNPs serve as excitation sources for magnetically heating to destroy tumors (magnetic hyperthermia) and magnetically controlled drug carriers in magnetic drug targeting. However, effectively visualizing the distribution of MNPs during research or potential clinical use with low-cost modalities remains a critical challenge. Although magnetic resonance imaging provides pre- and post-procedural imaging, it is considered to be high cost, and real-time imaging during clinical procedures is limited. In contrast, ultrasound-based imaging methods offer the advantage of providing the potential for immediate feedback during clinical use and are considered to be a low-cost modality. Ultrasound-based imaging techniques, including magnetomotive ultrasound, magnetoacoustic tomography, and thermoacoustic imaging, emerged as promising approaches for imaging the distribution of MNPs. These techniques offer the potential for real-time imaging, facilitating precise therapy monitoring. By exploring the strengths and limitations of various ultrasound-based imaging techniques for MNPs, this review seeks to provide comprehensive insights that can guide researchers in selecting suitable ultrasound-based modalities and inspire further advancements in this exciting field.
Collapse
Affiliation(s)
- Christian Marinus Huber
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Professorship for Al-Controlled Nanomaterials (KINAM), Universitätsklinikum Erlangen, Erlangen, Germany; Institute of Microwaves and Photonics (LHFT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Theo Z Pavan
- Department of Physics, Faculty of Philosophy, Sciences and Letters of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - Ingrid Ullmann
- Institute of Microwaves and Photonics (LHFT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Heim
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
| | - Stefan J Rupitsch
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
| | - Martin Vossiek
- Institute of Microwaves and Photonics (LHFT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner Fresenius Foundation Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Helmut Ermert
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner Fresenius Foundation Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Stefan Lyer
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Professorship for Al-Controlled Nanomaterials (KINAM), Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
3
|
Wang X, Zhao S, Zhang A. Image-Based Monitoring of Thermal Ablation. Bioengineering (Basel) 2025; 12:78. [PMID: 39851352 PMCID: PMC11762831 DOI: 10.3390/bioengineering12010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/05/2025] [Accepted: 01/13/2025] [Indexed: 01/26/2025] Open
Abstract
Thermal therapy is a commonly used local treatment technique in clinical practice. Monitoring the treatment process is essential for ensuring its success. In this review, we analyze recent image-based methods for thermal therapy monitoring, focusing particularly on their feasibility for synchronous or immediate postoperative monitoring. This includes thermography and other techniques that track the physical changes in tissue during thermal ablation. Potential directions and challenges for further clinical applications are also summarized.
Collapse
Affiliation(s)
| | | | - Aili Zhang
- School of Biomedical Engineering, 400 Med-X Research Institute, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; (X.W.); (S.Z.)
| |
Collapse
|
4
|
Vicente TT, Arsalani S, Quiel MS, Fernandes GSP, da Silva KR, Fukada SY, Gualdi AJ, Guidelli ÉJ, Baffa O, Carneiro AAO, Ramos AP, Pavan TZ. Improving the Theranostic Potential of Magnetic Nanoparticles by Coating with Natural Rubber Latex for Ultrasound, Photoacoustic Imaging, and Magnetic Hyperthermia: An In Vitro Study. Pharmaceutics 2024; 16:1474. [PMID: 39598597 PMCID: PMC11597301 DOI: 10.3390/pharmaceutics16111474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Magnetic nanoparticles (MNPs) have gained attention in theranostics for their ability to combine diagnostic imaging and therapeutic capabilities in a single platform, enhancing targeted treatment and monitoring. Surface coatings are essential for stabilizing MNPs, improving biocompatibility, and preventing oxidation that could compromise their functionality. Natural rubber latex (NRL) offers a promising coating alternative due to its biocompatibility and stability-enhancing properties. While NRL-coated MNPs have shown potential in applications such as magnetic resonance imaging, their effectiveness in theranostics, particularly magnetic hyperthermia (MH) and photoacoustic imaging (PAI), remains underexplored. METHODS In this study, iron oxide nanoparticles were synthesized via coprecipitation, using NRL as the coating agent. The samples were labeled by NRL amount used during synthesis: NRL-100 for 100 μL and NRL-400 for 400 μL. RESULTS Characterization results showed that NRL-100 and NRL-400 samples exhibited improved stability with zeta potentials of -27 mV and -30 mV, respectively and higher saturation magnetization values of 79 emu/g and 88 emu/g of Fe3O4. Building on these findings, we evaluated the performance of these nanoparticles in biomedical applications, including magnetomotive ultrasound (MMUS), PAI, and MH. NRL-100 and NRL-400 samples showed greater displacements and higher contrast in MMUS than uncoated samples (5, 8, and 9 µm) at 0.5 wt%. In addition, NRL-coated samples demonstrated an improved signal-to-noise ratio (SNR) in PAI. SNR values were 24.72 (0.51), 31.44 (0.44), and 33.81 (0.46) dB for the phantoms containing uncoated MNPs, NRL-100, and NRL-400, respectively. Calorimetric measurements for MH confirmed the potential of NRL-coated MNPs as efficient heat-generating agents, showing values of 43 and 40 W/g for NRL-100 and NRL-400, respectively. CONCLUSIONS Overall, NRL-coated MNPs showed great promise as contrast agents in MMUS and PAI imaging, as well as in MH applications.
Collapse
Affiliation(s)
- Thiago T. Vicente
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil; (T.T.V.); (S.A.); (M.S.Q.); (G.S.P.F.); (É.J.G.); (O.B.); (A.A.O.C.)
| | - Saeideh Arsalani
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil; (T.T.V.); (S.A.); (M.S.Q.); (G.S.P.F.); (É.J.G.); (O.B.); (A.A.O.C.)
- UT Southwestern Medical Center, Biomedical Engineering Department, Dallas, TA 75235-7323, USA
| | - Mateus S. Quiel
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil; (T.T.V.); (S.A.); (M.S.Q.); (G.S.P.F.); (É.J.G.); (O.B.); (A.A.O.C.)
| | - Guilherme S. P. Fernandes
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil; (T.T.V.); (S.A.); (M.S.Q.); (G.S.P.F.); (É.J.G.); (O.B.); (A.A.O.C.)
| | - Keteryne R. da Silva
- Department of BioMolecular Sciences, FCFRP, University of São Paulo, Av. Professor Doutor Zeferino Vaz, sn, Ribeirão Preto 14040-901, São Paulo, Brazil; (K.R.d.S.); (S.Y.F.)
| | - Sandra Y. Fukada
- Department of BioMolecular Sciences, FCFRP, University of São Paulo, Av. Professor Doutor Zeferino Vaz, sn, Ribeirão Preto 14040-901, São Paulo, Brazil; (K.R.d.S.); (S.Y.F.)
| | - Alexandre J. Gualdi
- Department of Physics, Federal University of São Carlos, Rod. Washington Luiz, km 235, São Carlos 13565-905, São Paulo, Brazil;
| | - Éder J. Guidelli
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil; (T.T.V.); (S.A.); (M.S.Q.); (G.S.P.F.); (É.J.G.); (O.B.); (A.A.O.C.)
| | - Oswaldo Baffa
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil; (T.T.V.); (S.A.); (M.S.Q.); (G.S.P.F.); (É.J.G.); (O.B.); (A.A.O.C.)
| | - Antônio A. O. Carneiro
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil; (T.T.V.); (S.A.); (M.S.Q.); (G.S.P.F.); (É.J.G.); (O.B.); (A.A.O.C.)
| | - Ana Paula Ramos
- Department of Chemistry, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil;
| | - Theo Z. Pavan
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil; (T.T.V.); (S.A.); (M.S.Q.); (G.S.P.F.); (É.J.G.); (O.B.); (A.A.O.C.)
| |
Collapse
|
5
|
Pi Z, Deng D, Chen X, Chen S, Lin H, Chen M. Magneto-Acoustic Theranostic Approach: Integration of Magnetomotive Ultrasound Shear Wave Elastography and Magnetic Hyperthermia. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2024; 43:1819-1831. [PMID: 38872619 DOI: 10.1002/jum.16512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/02/2024] [Accepted: 06/01/2024] [Indexed: 06/15/2024]
Abstract
OBJECTIVES Although magnetically induced hyperthermia has shown great efficiency in the treatment of solid tumors, it is still a challenge to avoid incomplete ablation or overtreatment. In this study, we applied magnetomotive ultrasound shear wave elastography (MMUS-SWE) as a tool for real-time image guidance and feedback in the magnetic hyperthermia (MH) process. We called this new method as magneto-acoustic theranostic approach (MATA). METHODS In MATA, a ferromagnetic particle (fMP) was simultaneously used as a thermoseed for MH and a shear wave source for MMUS-SWE. The fMP was excited by a high-frequency magnetic field to induce the heating effect for MH. Meanwhile, the fMP was stimulated by a pulsed magnetic field to generate shear wave propagation for MMUS-SWE. Thus, the changes in elastic modulus surrounding fMP can be used to estimate the therapy effect of MH. RESULTS The phantom and in vitro experiments were conducted to verify the feasibility of MATA, which has good performance in magnetothermal conversion and treatment efficacy feedback. The shear wave speed of the isolated pork liver changed significantly after the MH process, which varied from about 1.36 to 4.85 m/s. CONCLUSIONS Preliminary results proved that changes in elastic modulus could be useful to estimate the therapy effect of MH. We expect that MATA, which is the integration of MMUS-SWE and MH, will be a novel theranostic method for clinical translation.
Collapse
Affiliation(s)
- Zhaoke Pi
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Dingqian Deng
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Xin Chen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Siping Chen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Haoming Lin
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Mian Chen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| |
Collapse
|
6
|
Shahalaei M, Azad AK, Sulaiman WMAW, Derakhshani A, Mofakham EB, Mallandrich M, Kumarasamy V, Subramaniyan V. A review of metallic nanoparticles: present issues and prospects focused on the preparation methods, characterization techniques, and their theranostic applications. Front Chem 2024; 12:1398979. [PMID: 39206442 PMCID: PMC11351095 DOI: 10.3389/fchem.2024.1398979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/04/2024] [Indexed: 09/04/2024] Open
Abstract
Metallic nanoparticles (MNPs) have garnered significant attention due to their ability to improve the therapeutic index of medications by reducing multidrug resistance and effectively delivering therapeutic agents through active targeting. In addition to drug delivery, MNPs have several medical applications, including in vitro and in vivo diagnostics, and they improve the biocompatibility of materials and nutraceuticals. MNPs have several advantages in drug delivery systems and genetic manipulation, such as improved stability and half-life in circulation, passive or active targeting into the desired target selective tissue, and gene manipulation by delivering genetic materials. The main goal of this review is to provide current information on the present issues and prospects of MNPs in drug and gene delivery systems. The current study focused on MNP preparation methods and their characterization by different techniques, their applications to targeted delivery, non-viral vectors in genetic manipulation, and challenges in clinical trial translation.
Collapse
Affiliation(s)
- Mona Shahalaei
- Biomaterial Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Karaj, Iran
| | - Abul Kalam Azad
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University College of MAIWP International (UCMI), Kuala Lumpur, Malaysia
| | - Wan Mohd Azizi Wan Sulaiman
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University College of MAIWP International (UCMI), Kuala Lumpur, Malaysia
| | - Atefeh Derakhshani
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elmira Banaee Mofakham
- Biomaterial Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Karaj, Iran
| | - Mireia Mallandrich
- Department of Pharmacy, Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Vetriselvan Subramaniyan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Sunway, Malaysia
| |
Collapse
|
7
|
Zhang YF, Lu M. Advances in magnetic induction hyperthermia. Front Bioeng Biotechnol 2024; 12:1432189. [PMID: 39161353 PMCID: PMC11331313 DOI: 10.3389/fbioe.2024.1432189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
Magnetic induction hyperthermia (MIH), is a technique that has developed rapidly in recent years in the field of tumor thermotherapy. It implants a magnetic heating medium (millimeter-sized heat seeds, micron-sized magnetic particles and nanometer-sized magnetic fluids, etc.) inside the tumor. The material heats up under the induction of an external alternating magnetic field (100-500 kHz), which causes a high temperature zone to rapidly form in the local biological tissues and induces apoptosis in tumor cells. Magnetic induction hyperthermia has the advantages of high safety, strong targeting, repeatable treatment, and the size of the incision during treatment is negligible compared to surgical resection, and is currently used in clinical treatment. However, the millimeter-scale heat seed heating that is typically used in treatments can result in uneven temperatures within the tissue. Common MIH heating devices are bulky and complex in design, and are not easy for medical staff to get their hands on, which are issues that limit the diffusion of MIH. In this view, this paper will discuss the basic theoretical research on MIH and the progress of MIH-related technologies, with a focus on the latest research and development results and research hotspots of nanoscale ferromagnetic media and magnetic heat therapy devices, as well as the validation results and therapeutic efficacy of the new MIH technology on animal experiments and clinical trials. In this paper, it is found that induction heating using magnetic nanoparticles improves the uniformity of the temperature field, and the magneto-thermal properties of nanoscale ferromagnetic materials are significantly improved. The heating device was miniaturized to simplify the operation steps, while the focusing of the magnetic field was locally enhanced. However, there are fewer studies on the biotoxicity aspects of nanomedicines, and the localized alternating magnetic field uniformity used for heating and the safety of the alternating magnetic field after irradiation of the human body have not been sufficiently discussed. Ultimately, the purpose of this paper is to advance research related to magnetic induction thermotherapy that can be applied in clinical treatment.
Collapse
Affiliation(s)
| | - Mai Lu
- Key Laboratory of Opto-Electronic Technology and Intelligent Control of Ministry of Education, Lanzhou Jiaotong University, Lanzhou, China
| |
Collapse
|
8
|
Mazon Valadez EE, Bordonal RR, Freire JE, Uliana JH, Arsalani S, Collazos-Burbano DA, Carneiro AAO, Pavan TZ. Pulse generators for enhanced magnetomotive ultrasound: Toward a cost-effective imaging for tissue characterization. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:074904. [PMID: 39046299 DOI: 10.1063/5.0206856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/01/2024] [Indexed: 07/25/2024]
Abstract
Magnetomotive ultrasound (MMUS) stands out as a promising and effective ultrasound-based method for detecting magnetic nanoparticles (MNPs) within tissues. This innovative technique relies on the precise estimation of micrometric displacements induced by the interaction of an external magnetic field with MNPs. Pulsed MMUS has emerged as a strategic alternative to address limitations associated with harmonic excitation, such as heat generation in amplifiers and coils, frequency-dependent tissue mechanical responses, and prolonged magnetic field rise times. Despite the growing interest in MMUS, the devices conventionally employed to excite the coil are not specifically tailored to generate intense magnetic fields while minimizing interference with the transient behavior of induced displacements. To bridge this gap, our work introduces the design and fabrication of two pulse generators: one based on a capacitor-discharge circuit and the other on a resonant-inverter circuit. We evaluated the performance of these pulse generators by considering parameters such as the magnetic field generated, rise and fall times, and their ability to supply sustained current for varied pulse widths across different pulse repetition frequencies. Furthermore, we carried out a practical MMUS implementation using tissue-mimicking phantoms, demonstrating the capability of both devices to achieve magnetic fields of up to 1 T and average displacements of 25 µm within the phantom. In addition, we estimated the shear wave velocity, effective shear modulus, and their temperature-dependent variations. Our findings highlight the versatility and efficacy of the proposed pulse generators and emphasize their potential as low-cost platforms for theranostic applications, enabling the assessment of targeted entities within biological tissues.
Collapse
Affiliation(s)
- Ernesto E Mazon Valadez
- Technology Science Department, Universidad de Guadalajara, Centro Universitario de la Ciénega, Ocotlan, Jalisco 47810, Mexico
- Department of Physics, FFCLRP, University of São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Ricardo R Bordonal
- Department of Physics, FFCLRP, University of São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - José E Freire
- Department of Physics, FFCLRP, University of São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - João H Uliana
- Department of Physics, FFCLRP, University of São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Saeideh Arsalani
- Department of Physics, FFCLRP, University of São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
- Department of Biomedical Engineering, UT Southwestern Medical Center, Dallas, Texas 75235-7323, USA
| | - David A Collazos-Burbano
- Department of Physics, FFCLRP, University of São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Antonio A O Carneiro
- Department of Physics, FFCLRP, University of São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Theo Z Pavan
- Department of Physics, FFCLRP, University of São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
| |
Collapse
|
9
|
Yang C, Wang K, Liang G, Tian S, Peng J, Mo L, Lin W. A versatile MOF-derived theranostic for dual-miRNA controlled accurate cancer cell recognition and photodynamic therapy. Talanta 2023; 265:124805. [PMID: 37331042 DOI: 10.1016/j.talanta.2023.124805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/20/2023]
Abstract
Precise detection and monitoring of microRNAs (miRNAs) in living tumor cells is significant for the prompt diagnosis of cancer and provides important information for treatment of cancer. A significant challenge is developing methods for imaging different miRNAs simultaneously to further enhance diagnostic and treatment accuracy. In this work, a versatile MOF-derived theranostic system (DAPM) was constructed using photosensitive metal-organic frameworks (PMOF, PM) and a DNA AND logic gate (DA). The DAPM exhibited excellent biostability and enabled sensitive detection of miR-21 and miR-155, achieving a low limit of detection (LOD) for miR-21 (89.10 pM) and miR-155 (54.02 pM). The DAPM probe generated a fluorescence signal in tumor cells where miR-21 and miR-155 co-existed, demonstrating the enhanced ability of tumor cell recognition. Additionally, the DAPM achieved efficient ROS generation and concentration-dependent cytotoxicity under light irradiation, providing effective photodynamic therapy for anti-tumors. The proposed DAPM theranostic system enables accurate cancer diagnosis, and provides spatial and temporal information for PDT.
Collapse
Affiliation(s)
- Chan Yang
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China
| | - Kun Wang
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China
| | - Guohan Liang
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China
| | - Shuo Tian
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China
| | - Juanjuan Peng
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China
| | - Liuting Mo
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China
| | - Weiying Lin
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China.
| |
Collapse
|
10
|
Le TA, Hadadian Y, Yoon J. A prediction model for magnetic particle imaging-based magnetic hyperthermia applied to a brain tumor model. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 235:107546. [PMID: 37068450 DOI: 10.1016/j.cmpb.2023.107546] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND OBJECTIVE Brain tumor is a global health concern at the moment. Thus far, the only treatments available are radiotherapy and chemotherapy, which have several drawbacks such as low survival rates and low treatment efficacy due to obstruction of the blood-brain barrier. Magnetic hyperthermia (MH) using magnetic nanoparticles (MNPs) is a promising non-invasive approach that has the potential for tumor treatment in deep tissues. Due to the limitations of the current drug-targeting systems, only a small proportion of the injected MNPs can be delivered to the desired area and the rest are distributed throughout the body. Thus, the application of conventional MH can lead to damage to healthy tissues. METHODS Magnetic particle imaging (MPI)-guided treatment platform for MH is an emerging approach that can be used for spatial localization of MH to arbitrarily selected regions by using the MPI magnetic field gradient. Although the feasibility of this method has been demonstrated experimentally, a multidimensional prediction model, which is of crucial importance for treatment planning, has not yet been developed. Hence, in this study, the time dependent magnetization equation derived by Martsenyuk, Raikher, and Shliomis (which is a macroscopic equation of motion derived from the Fokker-Planck equation for particles with Brownian relaxation mechanism) and the bio-heat equations have been used to develop and investigate a three-dimensional model that predicts specific loss power (SLP), its spatio-thermal resolution (temperature distribution), and the fraction of damage in brain tumors. RESULTS Based on the simulation results, the spatio-thermal resolution in focused heating depends, in a complex manner, on several parameters ranging from MNPs properties to magnetic fields characteristics, and coils configuration. However, to achieve a high performance in focused heating, the direction and the relative amplitude of the AC magnetic heating field with respect to the magnetic field gradient are among the most important parameters that need to be optimized. The temperature distribution and fraction of the damage in a simple brain model bearing a tumor were also obtained. CONCLUSIONS The complexity in the relationship between the MNPs properties and fields parameter imposes a trade-off between the heating efficiency of MNPs and the accuracy (resolution) of the focused heating. Therefore, the system configuration and field parameters should be chosen carefully for each specific treatment scenario. In future, the results of the model are expected to lead to the development of an MPI-guided MH treatment platform for brain tumor therapy. However, for more accurate quantitative results in such a platform, a magnetization dynamics model that takes into account coupled Néel-Brownian relaxation mechanism in the MNPs should be developed.
Collapse
Affiliation(s)
- Tuan-Anh Le
- School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea; Department of Physiology and Biomedical Engineering, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Yaser Hadadian
- School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Jungwon Yoon
- School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea.
| |
Collapse
|
11
|
Rivera D, Schupper AJ, Bouras A, Anastasiadou M, Kleinberg L, Kraitchman DL, Attaluri A, Ivkov R, Hadjipanayis CG. Neurosurgical Applications of Magnetic Hyperthermia Therapy. Neurosurg Clin N Am 2023; 34:269-283. [PMID: 36906333 PMCID: PMC10726205 DOI: 10.1016/j.nec.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Magnetic hyperthermia therapy (MHT) is a highly localized form of hyperthermia therapy (HT) that has been effective in treating various forms of cancer. Many clinical and preclinical studies have applied MHT to treat aggressive forms of brain cancer and assessed its role as a potential adjuvant to current therapies. Initial results show that MHT has a strong antitumor effect in animal studies and a positive association with overall survival in human glioma patients. Although MHT is a promising therapy with the potential to be incorporated into the future treatment of brain cancer, significant advancement of current MHT technology is required.
Collapse
Affiliation(s)
- Daniel Rivera
- Department of Neurological Surgery, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA; Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Suite F-158, Pittsburgh, PA 15213, USA; Brain Tumor Nanotechnology Laboratory, UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA 15232, USA
| | - Alexander J Schupper
- Department of Neurological Surgery, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Alexandros Bouras
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Suite F-158, Pittsburgh, PA 15213, USA; Brain Tumor Nanotechnology Laboratory, UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA 15232, USA
| | - Maria Anastasiadou
- Department of Neurological Surgery, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Lawrence Kleinberg
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, 1550 Orleans Street, Baltimore, MD 21231-5678, USA
| | - Dara L Kraitchman
- Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins University, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - Anilchandra Attaluri
- Department of Mechanical Engineering, The Pennsylvania State University, 777 West Harrisburg Pike Middletown, PA 17057, USA
| | - Robert Ivkov
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, 1550 Orleans Street, Baltimore, MD 21231-5678, USA; Department of Oncology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD 21231-5678, USA; Department of Mechanical Engineering, Johns Hopkins University, Whiting School of Engineering, 3400 North Charles Street, Baltimore, MD 21218, USA; Department of Materials Science and Engineering, Johns Hopkins University, Whiting School of Engineering, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Constantinos G Hadjipanayis
- Department of Neurological Surgery, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA; Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Suite F-158, Pittsburgh, PA 15213, USA; Brain Tumor Nanotechnology Laboratory, UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA 15232, USA.
| |
Collapse
|
12
|
Arsalani S, Arsalani S, Isikawa M, Guidelli EJ, Mazon EE, Ramos AP, Bakuzis A, Pavan TZ, Baffa O, Carneiro AAO. Hybrid Nanoparticles of Citrate-Coated Manganese Ferrite and Gold Nanorods in Magneto-Optical Imaging and Thermal Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:434. [PMID: 36770395 PMCID: PMC9921964 DOI: 10.3390/nano13030434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
The development of nanomaterials has drawn considerable attention in nanomedicine to advance cancer diagnosis and treatment over the last decades. Gold nanorods (GNRs) and magnetic nanoparticles (MNPs) have been known as commonly used nanostructures in biomedical applications due to their attractive optical properties and superparamagnetic (SP) behaviors, respectively. In this study, we proposed a simple combination of plasmonic and SP properties into hybrid NPs of citrate-coated manganese ferrite (Ci-MnFe2O4) and cetyltrimethylammonium bromide-coated GNRs (CTAB-GNRs). In this regard, two different samples were prepared: the first was composed of Ci-MnFe2O4 (0.4 wt%), and the second contained hybrid NPs of Ci-MnFe2O4 (0.4 wt%) and CTAB-GNRs (0.04 wt%). Characterization measurements such as UV-Visible spectroscopy and transmission electron microscopy (TEM) revealed electrostatic interactions caused by the opposing surface charges of hybrid NPs, which resulted in the formation of small nanoclusters. The performance of the two samples was investigated using magneto-motive ultrasound imaging (MMUS). The sample containing Ci-MnFe2O4_CTAB-GNRs demonstrated a displacement nearly two-fold greater than just using Ci-MnFe2O4; therefore, enhancing MMUS image contrast. Furthermore, the preliminary potential of these hybrid NPs was also examined in magnetic hyperthermia (MH) and photoacoustic imaging (PAI) modalities. Lastly, these hybrid NPs demonstrated high stability and an absence of aggregation in water and phosphate buffer solution (PBS) medium. Thus, Ci-MnFe2O4_CTAB-GNRs hybrid NPs can be considered as a potential contrast agent in MMUS and PAI and a heat generator in MH.
Collapse
Affiliation(s)
- Saeideh Arsalani
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil
| | - Soudabeh Arsalani
- Physikalisch-Technische Bundesanstalt, Abbestrasse 2-12, D-10587 Berlin, Germany
| | - Mileni Isikawa
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil
| | - Eder J. Guidelli
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil
| | - Ernesto E. Mazon
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil
| | - Ana Paula Ramos
- Department of Chemistry, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil
| | - Andris Bakuzis
- Institute of Physics and CNanoMed, Federal University of Goiás, Goiânia 74690-900, São Paulo, Brazil
| | - Theo Z. Pavan
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil
| | - Oswaldo Baffa
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil
| | - Antonio A. O. Carneiro
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil
| |
Collapse
|
13
|
Mukhatov A, Le T, Pham TT, Do TD. A comprehensive review on magnetic imaging techniques for biomedical applications. NANO SELECT 2023. [DOI: 10.1002/nano.202200219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Azamat Mukhatov
- Department of Robotics School of Engineering and Digital Sciences Nazarbayev University Astana Kazakhstan
| | - Tuan‐Anh Le
- Department of Physiology and Biomedical Engineering Mayo Clinic Scottsdale Arizona USA
| | - Tri T. Pham
- Department of Biology School of Sciences and Humanities Nazarbayev University Astana Kazakhstan
| | - Ton Duc Do
- Department of Robotics School of Engineering and Digital Sciences Nazarbayev University Astana Kazakhstan
| |
Collapse
|
14
|
Rabaan AA, Bukhamsin R, AlSaihati H, Alshamrani SA, AlSihati J, Al-Afghani HM, Alsubki RA, Abuzaid AA, Al-Abdulhadi S, Aldawood Y, Alsaleh AA, Alhashem YN, Almatouq JA, Emran TB, Al-Ahmed SH, Nainu F, Mohapatra RK. Recent Trends and Developments in Multifunctional Nanoparticles for Cancer Theranostics. Molecules 2022; 27:8659. [PMID: 36557793 PMCID: PMC9780934 DOI: 10.3390/molecules27248659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Conventional anticancer treatments, such as radiotherapy and chemotherapy, have significantly improved cancer therapy. Nevertheless, the existing traditional anticancer treatments have been reported to cause serious side effects and resistance to cancer and even to severely affect the quality of life of cancer survivors, which indicates the utmost urgency to develop effective and safe anticancer treatments. As the primary focus of cancer nanotheranostics, nanomaterials with unique surface chemistry and shape have been investigated for integrating cancer diagnostics with treatment techniques, including guiding a prompt diagnosis, precise imaging, treatment with an effective dose, and real-time supervision of therapeutic efficacy. Several theranostic nanosystems have been explored for cancer diagnosis and treatment in the past decade. However, metal-based nanotheranostics continue to be the most common types of nonentities. Consequently, the present review covers the physical characteristics of effective metallic, functionalized, and hybrid nanotheranostic systems. The scope of coverage also includes the clinical advantages and limitations of cancer nanotheranostics. In light of these viewpoints, future research directions exploring the robustness and clinical viability of cancer nanotheranostics through various strategies to enhance the biocompatibility of theranostic nanoparticles are summarised.
Collapse
Affiliation(s)
- Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Rehab Bukhamsin
- Dammam Regional Laboratory and Blood Bank, Dammam 31411, Saudi Arabia
| | - Hajir AlSaihati
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Saleh A. Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Jehad AlSihati
- Internal Medicine Department, Gastroenterology Section, King Fahad Specialist Hospital, Dammam 31311, Saudi Arabia
| | - Hani M. Al-Afghani
- Laboratory Department, Security Forces Hospital, Makkah 24269, Saudi Arabia
- iGene Center for Research and Training, Jeddah 23484, Saudi Arabia
| | - Roua A. Alsubki
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Abdulmonem A. Abuzaid
- Medical Microbiology Department, Security Forces Hospital Programme, Dammam 32314, Saudi Arabia
| | - Saleh Al-Abdulhadi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Riyadh 11942, Saudi Arabia
- Dr. Saleh Office for Medical Genetic and Genetic Counseling Services, The House of Expertise, Prince Sattam Bin Abdulaziz University, Dammam 32411, Saudi Arabia
| | - Yahya Aldawood
- Department of Clinical Laboratory Sciences, Mohammed AlMana College of Health Sciences, Dammam 34222, Saudi Arabia
| | - Abdulmonem A. Alsaleh
- Department of Clinical Laboratory Sciences, Mohammed AlMana College of Health Sciences, Dammam 34222, Saudi Arabia
| | - Yousef N. Alhashem
- Department of Clinical Laboratory Sciences, Mohammed AlMana College of Health Sciences, Dammam 34222, Saudi Arabia
| | - Jenan A. Almatouq
- Department of Clinical Laboratory Sciences, Mohammed AlMana College of Health Sciences, Dammam 34222, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Shamsah H. Al-Ahmed
- Specialty Paediatric Medicine, Qatif Central Hospital, Qatif 32654, Saudi Arabia
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Ranjan K. Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar 758002, India
| |
Collapse
|
15
|
Aram E, Moeni M, Abedizadeh R, Sabour D, Sadeghi-Abandansari H, Gardy J, Hassanpour A. Smart and Multi-Functional Magnetic Nanoparticles for Cancer Treatment Applications: Clinical Challenges and Future Prospects. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12203567. [PMID: 36296756 PMCID: PMC9611246 DOI: 10.3390/nano12203567] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/16/2022] [Accepted: 09/27/2022] [Indexed: 05/14/2023]
Abstract
Iron oxide nanoparticle (IONPs) have become a subject of interest in various biomedical fields due to their magnetism and biocompatibility. They can be utilized as heat mediators in magnetic hyperthermia (MHT) or as contrast media in magnetic resonance imaging (MRI), and ultrasound (US). In addition, their high drug-loading capacity enabled them to be therapeutic agent transporters for malignancy treatment. Hence, smartening them allows for an intelligent controlled drug release (CDR) and targeted drug delivery (TDD). Smart magnetic nanoparticles (SMNPs) can overcome the impediments faced by classical chemo-treatment strategies, since they can be navigated and release drug via external or internal stimuli. Recently, they have been synchronized with other modalities, e.g., MRI, MHT, US, and for dual/multimodal theranostic applications in a single platform. Herein, we provide an overview of the attributes of MNPs for cancer theranostic application, fabrication procedures, surface coatings, targeting approaches, and recent advancement of SMNPs. Even though MNPs feature numerous privileges over chemotherapy agents, obstacles remain in clinical usage. This review in particular covers the clinical predicaments faced by SMNPs and future research scopes in the field of SMNPs for cancer theranostics.
Collapse
Affiliation(s)
- Elham Aram
- Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Babol 47138-18981, Iran
- Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan 49188-88369, Iran
| | - Masome Moeni
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Roya Abedizadeh
- Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Babol 47138-18981, Iran
| | - Davood Sabour
- Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Babol 47138-18981, Iran
| | - Hamid Sadeghi-Abandansari
- Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Babol 47138-18981, Iran
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Jabbar Gardy
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
- Correspondence: (J.G.); (A.H.)
| | - Ali Hassanpour
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
- Correspondence: (J.G.); (A.H.)
| |
Collapse
|
16
|
Kaur T, Sharma D. Expansion of thermometry in magnetic hyperthermia cancer therapy: antecedence and aftermath. Nanomedicine (Lond) 2022; 17:1607-1623. [PMID: 36318111 DOI: 10.2217/nnm-2022-0095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Magnetic hyperthermia cancer therapy (MHCT) is a promising antitumor therapy based on the generation of heat by magnetic nanoparticles under the influence of an alternating-current magnetic field. However, an often-overlooked factor hindering the translation of MHCT to clinics is the inability to accurately monitor temperature, thereby leading to erroneous thermal control. It is significant to address 'thermometry' during magnetic hyperthermia because numerous factors are affected by the magnetic fields employed, rendering traditional thermometry methods unsuitable for temperature estimation. Currently, there is a dearth of literature describing appropriate techniques for thermometry during MHCT. This review offers a general outline of the various modes of conventional thermometry as well as cutting-edge techniques operating at cellular/nanoscale levels (nanothermometry) as prospective thermometers for MHCT in the future.
Collapse
Affiliation(s)
- Tashmeen Kaur
- Institute of Nano Science & Technology, Knowledge City, Sector 81, Mohali, Punjab, 140306, India
| | - Deepika Sharma
- Institute of Nano Science & Technology, Knowledge City, Sector 81, Mohali, Punjab, 140306, India
| |
Collapse
|
17
|
Józefczak A, Kaczmarek K, Bielas R. Magnetic mediators for ultrasound theranostics. Theranostics 2021; 11:10091-10113. [PMID: 34815806 PMCID: PMC8581415 DOI: 10.7150/thno.62218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/02/2021] [Indexed: 12/11/2022] Open
Abstract
The theranostics paradigm is based on the concept of combining therapeutic and diagnostic modalities into one platform to improve the effectiveness of treatment. Combinations of multiple modalities provide numerous medical advantages and are enabled by nano- and micron-sized mediators. Here we review recent advancements in the field of ultrasound theranostics and the use of magnetic materials as mediators. Several subdisciplines are described in detail, including controlled drug delivery and release, ultrasound hyperthermia, magneto-ultrasonic heating, sonodynamic therapy, magnetoacoustic imaging, ultrasonic wave generation by magnetic fields, and ultrasound tomography. The continuous progress and improvement in theranostic materials, methods, and physical computing models have created undeniable possibilities for the development of new approaches. We discuss the prospects of ultrasound theranostics and possible expansions of other studies to the theranostic context.
Collapse
Affiliation(s)
- Arkadiusz Józefczak
- Chair of Acoustics, Faculty of Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Katarzyna Kaczmarek
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Wolfson Centre, 106 Rottenrow, Glasgow, United Kingdom
| | - Rafał Bielas
- Chair of Acoustics, Faculty of Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| |
Collapse
|
18
|
Maenhout G, Markovic T, Nauwelaers B. Non-Invasive Microwave Hyperthermia and Simultaneous Temperature Monitoring with a Single Theranostic Applicator . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:1314-1317. [PMID: 34891527 DOI: 10.1109/embc46164.2021.9629592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cancer therapies are constantly evolving. Currently, heating tumor tissue is becoming more accessible as a stand-alone method or in combination with other therapies. Due to its multiple advantages over other heating mechanisms, microwave hyperthermia has recently gained a lot of traction. In this work, we present a complementary split-ring resonator that is simultaneously excited in two independent frequency bands. With a high-power signal, the applicator is excited and heats the tissue-under-test up to 50°C with an average heating rate of 0.72°C per second. Furthermore, we present a dielectric temperature control system using the same applicator for microwave hyperthermia applications, which currently still requires an additional thermometry system. By exciting the applicator with a low-power signal, we can constantly monitor its resonant frequency. This resonant frequency depends on the tissue properties, which in turn are temperature-dependent. In the temperature range from 20-50°C, a positive correlation between the temperature and resonant frequency was established.Clinical relevance - Exploiting the dual-band behavior of the complementary split-ring resonator to heat the tissue-under-test while dielectrically monitoring its temperature, creates new possibilities towards a theranostic, non-invasive microwave hyperthermia applicator.
Collapse
|
19
|
Cao TL, Le TA, Hadadian Y, Yoon J. Theoretical Analysis for Using Pulsed Heating Power in Magnetic Hyperthermia Therapy of Breast Cancer. Int J Mol Sci 2021; 22:ijms22168895. [PMID: 34445603 PMCID: PMC8396204 DOI: 10.3390/ijms22168895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022] Open
Abstract
In magnetic hyperthermia, magnetic nanoparticles (MNPs) are used to generate heat in an alternating magnetic field to destroy cancerous cells. This field can be continuous or pulsed. Although a large amount of research has been devoted to studying the efficiency and side effects of continuous fields, little attention has been paid to the use of pulsed fields. In this simulation study, Fourier's law and COMSOL software have been utilized to identify the heating power necessary for treating breast cancer under blood flow and metabolism to obtain the optimized condition among the pulsed powers for thermal ablation. The results showed that for small source diameters (not larger than 4 mm), pulsed powers with high duties were more effective than continuous power. Although by increasing the source domain the fraction of damage caused by continuous power reached the damage caused by the pulsed powers, it affected the healthy tissues more (at least two times greater) than the pulsed powers. Pulsed powers with high duty (0.8 and 0.9) showed the optimized condition and the results have been explained based on the Arrhenius equation. Utilizing the pulsed powers for breast cancer treatment can potentially be an efficient approach for treating breast tumors due to requiring lower heating power and minimizing side effects to the healthy tissues.
Collapse
Affiliation(s)
- Thanh-Luu Cao
- School of Integrated Technology, Gwangju Institute of Science and Technology, 123 Cheomdangwagiro, Buk-gu, Gwangju 61005, Korea; (T.-L.C.); or (T.-A.L.); (Y.H.)
| | - Tuan-Anh Le
- School of Integrated Technology, Gwangju Institute of Science and Technology, 123 Cheomdangwagiro, Buk-gu, Gwangju 61005, Korea; (T.-L.C.); or (T.-A.L.); (Y.H.)
- Department of Electrical Engineering, Faulty of Electrical and Electronics Engineering, Thuyloi University, 175 Tay Son, Dong Da, Hanoi 116705, Vietnam
| | - Yaser Hadadian
- School of Integrated Technology, Gwangju Institute of Science and Technology, 123 Cheomdangwagiro, Buk-gu, Gwangju 61005, Korea; (T.-L.C.); or (T.-A.L.); (Y.H.)
| | - Jungwon Yoon
- School of Integrated Technology, Gwangju Institute of Science and Technology, 123 Cheomdangwagiro, Buk-gu, Gwangju 61005, Korea; (T.-L.C.); or (T.-A.L.); (Y.H.)
- Correspondence: ; Tel.: +82-62-715-5332
| |
Collapse
|
20
|
Huang PC, Chaney EJ, Aksamitiene E, Barkalifa R, Spillman DR, Bogan BJ, Boppart SA. Biomechanical sensing of in vivo magnetic nanoparticle hyperthermia-treated melanoma using magnetomotive optical coherence elastography. Theranostics 2021; 11:5620-5633. [PMID: 33897871 PMCID: PMC8058715 DOI: 10.7150/thno.55333] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
Rationale: Magnetic nanoparticle hyperthermia (MH) therapy is capable of thermally damaging tumor cells, yet a biomechanically-sensitive monitoring method for the applied thermal dosage has not been established. Biomechanical changes to tissue are known indicators for tumor diagnosis due to its association with the structural organization and composition of tissues at the cellular and molecular level. Here, by exploiting the theranostic functionality of magnetic nanoparticles (MNPs), we aim to explore the potential of using stiffness-based metrics that reveal the intrinsic biophysical changes of in vivo melanoma tumors after MH therapy. Methods: A total of 14 melanoma-bearing mice were intratumorally injected with dextran-coated MNPs, enabling MH treatment upon the application of an alternating magnetic field (AMF) at 64.7 kHz. The presence of the MNP heating sources was detected by magnetomotive optical coherence tomography (MM-OCT). For the first time, the elasticity alterations of the hyperthermia-treated, MNP-laden, in vivo tumors were also measured with magnetomotive optical coherence elastography (MM-OCE), based on the mechanical resonant frequency detected. To investigate the correlation between stiffness changes and the intrinsic biological changes, histopathology was performed on the excised tumor after the in vivo measurements. Results: Distinct shifts in mechanical resonant frequency were observed only in the MH-treated group, suggesting a heat-induced stiffness change in the melanoma tumor. Moreover, tumor cellularity, protein conformation, and temperature rise all play a role in tumor stiffness changes after MH treatment. With low cellularity, tumor softens after MH even with low temperature elevation. In contrast, with high cellularity, tumor softening occurs only with a low temperature rise, which is potentially due to protein unfolding, whereas tumor stiffening was seen with a higher temperature rise, likely due to protein denaturation. Conclusions: This study exploits the theranostic functionality of MNPs and investigates the MH-induced stiffness change on in vivo melanoma-bearing mice with MM-OCT and MM-OCE for the first time. It was discovered that the elasticity alteration of the melanoma tumor after MH treatment depends on both thermal dosage and the morphological features of the tumor. In summary, changes in tissue-level elasticity can potentially be a physically and physiologically meaningful metric and integrative therapeutic marker for MH treatment, while MM-OCE can be a suitable dosimetry technique.
Collapse
Affiliation(s)
- Pin-Chieh Huang
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, USA
| | - Eric J. Chaney
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, USA
| | - Edita Aksamitiene
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, USA
| | - Ronit Barkalifa
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, USA
| | - Darold R. Spillman
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, USA
| | - Bethany J. Bogan
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, USA
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, USA
| |
Collapse
|
21
|
Capistrano G, Rodrigues HF, Zufelato N, Gonçalves C, Cardoso CG, Silveira-Lacerda EP, Bakuzis AF. Noninvasive intratumoral thermal dose determination during in vivo magnetic nanoparticle hyperthermia: combining surface temperature measurements and computer simulations. Int J Hyperthermia 2021; 37:120-140. [PMID: 33426991 DOI: 10.1080/02656736.2020.1826583] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
PURPOSE Noninvasive thermometry during magnetic nanoparticle hyperthermia (MNH) remains a challenge. Our pilot study proposes a methodology to determine the noninvasive intratumoral thermal dose during MNH in the subcutaneous tumor model. METHODS Two groups of Ehrlich bearing-mice with solid and subcutaneous carcinoma, a control group (n = 6), and a MNH treated group (n = 4) were investigated. Histopathology was used to evaluate the percentage of non-viable lesions in the tumor. MNH was performed at 301 kHz and 17.5 kA.m-1, using a multifunctional nanocarrier. Surface temperature measurements were obtained using an infrared camera, where an ROI with 750 pixels was used for comparison with computer simulations. Realistic simulations of the bioheat equation were obtained by combining histopathology intratumoral lesion information and surface temperature agreement of at least 50% of the pixel's temperature data calculated and measured at the surface. RESULTS One animal of the MNH group showed tumor recurrence, while two others showed complete tumor remission (monitored for 585 days). Sensitivity analysis of the simulation parameters indicated low tumor blood perfusion. Numerical simulations indicated, for the animals with complete remission, an irreversible tissue injury of 91 ± 5% and 100%, while the one with recurrence had a lower value, 56 ± 7%. The computer simulations also revealed the in vivo heat efficiency of the nanocarrier. CONCLUSION A new methodology for determining noninvasively the three-dimensional intratumoral thermal dose during MNH was developed. The method demonstrates the potential for predicting the long-term preclinical outcome of animals treated with MNH.
Collapse
Affiliation(s)
- Gustavo Capistrano
- Instituto de Física, Universidade Federal de Goiás, Goiânia, Brazil.,Instituto Federal de Mato Grosso, Pontes e Lacerda, Brazil
| | - Harley F Rodrigues
- Instituto de Física, Universidade Federal de Goiás, Goiânia, Brazil.,Instituto Federal de Goiás, Curso de Licenciatura em Física, Goiânia, Brazil
| | | | - Cristhiane Gonçalves
- Instituto de Física, Universidade Federal de Goiás, Goiânia, Brazil.,Universidade Tecnológica Federal do Paraná, Ponta Grossa, Brazil
| | - Clever G Cardoso
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | | | - Andris F Bakuzis
- Instituto de Física, Universidade Federal de Goiás, Goiânia, Brazil
| |
Collapse
|
22
|
Rodrigues HF, Capistrano G, Bakuzis AF. In vivo magnetic nanoparticle hyperthermia: a review on preclinical studies, low-field nano-heaters, noninvasive thermometry and computer simulations for treatment planning. Int J Hyperthermia 2021; 37:76-99. [PMID: 33426989 DOI: 10.1080/02656736.2020.1800831] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Magnetic nanoparticle hyperthermia (MNH) is a promising nanotechnology-based cancer thermal therapy that has been approved for clinical use, together with radiation therapy, for treating brain tumors. Almost ten years after approval, few new clinical applications had appeared, perhaps because it cannot benefit from the gold standard noninvasive MRI thermometry technique, since static magnetic fields inhibit heat generation. This might limit its clinical use, in particular as a single therapeutic modality. In this article, we review the in vivo MNH preclinical studies, discussing results of the last two decades with emphasis on safety as a clinical criteria, the need for low-field nano-heaters and noninvasive thermal dosimetry, and the state of the art of computational modeling for treatment planning using MNH. Limitations to more effective clinical use are discussed, together with suggestions for future directions, such as the development of ultrasound-based, computed tomography-based or magnetic nanoparticle-based thermometry to achieve greater impact on clinical translation of MNH.
Collapse
Affiliation(s)
- Harley F Rodrigues
- Instituto de Física, Universidade Federal de Goiás, Goiânia, Brasil.,Curso de Licenciatura em Física, Instituto Federal de Goiás, Goiânia, Brasil
| | - Gustavo Capistrano
- Instituto de Física, Universidade Federal de Goiás, Goiânia, Brasil.,Campus Fronteira Oeste, Instituto Federal de Mato Grosso, Pontes e Lacerda, Brasil
| | - Andris F Bakuzis
- Instituto de Física, Universidade Federal de Goiás, Goiânia, Brasil
| |
Collapse
|
23
|
Kamimura HAS, Saharkhiz N, Lee SA, Konofagou EE. Synchronous temperature variation monitoring during ultrasound imaging and/or treatment pulse application: a phantom study. IEEE OPEN JOURNAL OF ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 1:1-10. [PMID: 34713274 PMCID: PMC8547607 DOI: 10.1109/ojuffc.2021.3085539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ultrasound attenuation through soft tissues can produce an acoustic radiation force (ARF) and heating. The ARF-induced displacements and temperature evaluations can reveal tissue properties and provide insights into focused ultrasound (FUS) bio-effects. In this study, we describe an interleaving pulse sequence tested in a tissue-mimicking phantom that alternates FUS and plane-wave imaging pulses at a 1 kHz frame rate. The FUS is amplitude modulated, enabling the simultaneous evaluation of tissue-mimicking phantom displacement using harmonic motion imaging (HMI) and temperature rise using thermal strain imaging (TSI). The parameters were varied with a spatial peak temporal average acoustic intensity (I spta ) ranging from 1.5 to 311 W.cm-2, mechanical index (MI) from 0.43 to 4.0, and total energy (E) from 0.24 to 83 J.cm-2. The HMI and TSI processing could estimate displacement and temperature independently for temperatures below 1.80°C and displacements up to ~117 μm (I spta <311 W.cm-2, MI<4.0, and E<83 J.cm-2) indicated by a steady-state tissue-mimicking phantom displacement throughout the sonication and a comparable temperature estimation with simulations in the absence of tissue-mimicking phantom motion. The TSI estimations presented a mean error of ±0.03°C versus thermocouple estimations with a mean error of ±0.24°C. The results presented herein indicate that HMI can operate at diagnostic-temperature levels (i.e., <1°C) even when exceeding diagnostic acoustic intensity levels (720 mW.cm-2 < I spta < 207 W.cm-2). In addition, the combined HMI and TSI can potentially be used for simultaneous evaluation of safety during tissue elasticity imaging as well as FUS mechanism involved in novel ultrasound applications such as ultrasound neuromodulation and tumor ablation.
Collapse
Affiliation(s)
- Hermes A S Kamimura
- Department of Biomedical Engineering, Columbia University, New York, NY 10027 USA
| | - Niloufar Saharkhiz
- Department of Biomedical Engineering, Columbia University, New York, NY 10027 USA
| | - Stephen A Lee
- Department of Biomedical Engineering, Columbia University, New York, NY 10027 USA
| | - Elisa E Konofagou
- Department of Biomedical Engineering, Columbia University, New York, NY 10027 USA
| |
Collapse
|