1
|
Nelson CK, Kline M, Payne A, Dillon CR. Computational predictions of magnetic resonance acoustic radiation force imaging for breast cancer focused ultrasound therapy. Int J Hyperthermia 2025; 42:2452927. [PMID: 39842813 PMCID: PMC11902895 DOI: 10.1080/02656736.2025.2452927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 12/31/2024] [Accepted: 01/08/2025] [Indexed: 01/24/2025] Open
Abstract
PURPOSE In magnetic resonance-guided focused ultrasound (MRgFUS) breast therapies, the focal location must be characterized to guide successful treatment. Focal characterization is difficult because heterogeneous breast tissues introduce phase aberrations that blur and shift the focus and traditional guidance methods do not work in adipose tissues. The purpose of this work is to evaluate numerical simulations of MRgFUS that predict the focal location. Those simulations are compared to clinical magnetic resonance acoustic radiation force imaging (MR-ARFI) data collected during in vivo treatment of breast tumors. METHODS The focal location was evaluated before MRgFUS treatment with MR-ARFI in five patients. The hybrid angular spectrum method (HAS) was applied to simulate pressure fields which were converted to forces, then convolved with a 3D Green's function (with time-of-arrival weighting) to produce a simulation of the MR-ARFI tissue displacement. RESULTS The focal locations found by the simulations and the MR-ARFI measurements were on average separated by 3.7 mm (SD: 0.9 mm). Characterization of the focal zone spatial distributions had a normalized root mean squared difference of 8.1% (SD: 2.5%). The displacement magnitudes of the simulations underestimated the MR-ARFI measurements by 82% (SD: 5.6%). CONCLUSIONS The agreement between MR-ARFI measurements and simulations demonstrates that HAS can predict the in vivo focal location in heterogeneous tissues, though accurate patient-specific properties are needed to improve predictions of tissue displacement magnitude. Tools developed in this study could be used to streamline MRgFUS treatment planning and optimization, for biomechanical property estimation, and in developing phase aberration correction techniques.
Collapse
Affiliation(s)
- Chloe K Nelson
- Department of Mechanical Engineering, Brigham Young University, Provo, UT, USA
| | - Michelle Kline
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Allison Payne
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | | |
Collapse
|
2
|
Josset A, Vappou J, Ishak O, Cabras P, Breton É. Effectiveness of fat suppression methods and influence on proton-resonance frequency shift (PRFS) MR thermometry. Magn Reson Imaging 2025; 118:110340. [PMID: 39892478 DOI: 10.1016/j.mri.2025.110340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/29/2025] [Accepted: 01/29/2025] [Indexed: 02/03/2025]
Abstract
PURPOSE To evaluate the effectiveness of fat suppression techniques experimentally and illustrate their influence on the accuracy of PRFS MR-thermometry. METHODS The residual magnitudes of the main fat peaks are measured using a water-fat decomposition algorithm in an oil phantom and in vivo in swine bone marrow, either with spectral fat saturation (FS), water excitation (WE) or fast water excitation (FWE), as implemented on 1.5 T whole-body clinical MRIs. Thermometry experiments in tissue-mimicking oil-water phantoms (10 and 30 % fat) allow determining temperature errors in PRFS MR-thermometry with no fat suppression, FS and WE, compared against reference fiber optic thermometry. RESULTS WE attenuates the signal of the main methylene fat peak more than FS (2 % and 22 % amplitude attenuation in the oil phantom, respectively), while the olefinic and glycerol peaks surrounding the water peak remain unaltered with both FS and WE. Within the 37 °C to 60 °C temperature range explored, FS and WE strongly attenuate temperature errors compared to PRFS without fat suppression. The residual fat signal after FS and WE leads to errors in PRFS thermometry, that increase with the fat content and oscillate with TE and temperature. In our tests limited to a single MR provider, fat suppression with WE appears to suppress fat signal more effectively. CONCLUSIONS We propose a protocol to quantify the remaining fraction of each spectral fat peak after fat suppression. In PRFS thermometry, despite spectral fat suppression, the remnant fat signal leads to temperature underestimation or overestimation depending on TE, fat fraction and temperature range. Fat suppression techniques should be evaluated specifically for quantitative MRI methods such as PRFS thermometry.
Collapse
Affiliation(s)
- Anne Josset
- Université de Strasbourg, CNRS, INSERM, ICube, UMR7357, Strasbourg, France.
| | - Jonathan Vappou
- Université de Strasbourg, CNRS, INSERM, ICube, UMR7357, Strasbourg, France.
| | - Ounay Ishak
- Université de Strasbourg, CNRS, INSERM, ICube, UMR7357, Strasbourg, France.
| | - Paolo Cabras
- Université de Strasbourg, CNRS, INSERM, ICube, UMR7357, Strasbourg, France; Image Guided Therapy, Pessac, France.
| | - Élodie Breton
- Université de Strasbourg, CNRS, INSERM, ICube, UMR7357, Strasbourg, France.
| |
Collapse
|
3
|
Zhang K, Wang T, Huang X, Wu P, Shen L, Yang Y, Wan W, Sun S, Zhang Z. Ultrasound-mediated nanomaterials for the treatment of inflammatory diseases. ULTRASONICS SONOCHEMISTRY 2025; 114:107270. [PMID: 39961217 DOI: 10.1016/j.ultsonch.2025.107270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/01/2025] [Accepted: 02/11/2025] [Indexed: 03/03/2025]
Abstract
Sterile and infection-associated inflammatory diseases are becoming increasingly prevalent worldwide. Conventional drug therapies often entail significant drawbacks, such as the risk of drug overdose, the development of drug resistance in pathogens, and systemic adverse reactions, all of which can undermine the effectiveness of treatments for these conditions. Nanomaterials (NMs) have emerged as a promising tool in the treatment of inflammatory diseases due to their precise targeting capabilities, tunable characteristics, and responsiveness to external stimuli. Ultrasound (US), a non-invasive and effective treatment method, has been explored in combination with NMs to achieve enhanced therapeutic outcomes. This review provides a comprehensive overview of the recent advances in the use of US-mediated NMs for treating inflammatory diseases. A comprehensive introduction to the application and classification of US was first presented, emphasizing the advantages of US-mediated NMs and the mechanisms through which US and NMs interact to enhance anti-inflammatory therapy. Subsequently, specific applications of US-mediated NMs in sterile and infection-associated inflammation were summarized. Finally, the challenges and prospects of US-mediated NMs in clinical translation were discussed, along with an outline of future research directions. This review aims to provide insights to guide the development and improvement of US-mediated NMs for more effective therapeutic interventions in inflammatory diseases.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, PR China; Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, PR China
| | - Tingting Wang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, PR China
| | - Xingyong Huang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, PR China
| | - Peng Wu
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, PR China
| | - Lufan Shen
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, PR China
| | - Yuanyuan Yang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, PR China
| | - Wenyu Wan
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Hospital of China Medical University, PR China; Key Laboratory of Immunodermatology, National Health Commission of the People's Republic of China, The First Hospital of China Medical University, PR China; National and Local Joint Engineering Research Center of Immunodermatological Theranostics, The First Hospital of China Medical University, PR China.
| | - Siyu Sun
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, PR China; Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, PR China.
| | - Zhan Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, PR China; Cancer Stem Cell and Translational Medicine Laboratory, Shengjing Hospital of China Medical University, Shenyang, PR China.
| |
Collapse
|
4
|
Bader KB, Padilla F, Haworth KJ, Ellens N, Dalecki D, Miller DL, Wear KA. Overview of Therapeutic Ultrasound Applications and Safety Considerations: 2024 Update. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2025; 44:381-433. [PMID: 39526313 PMCID: PMC11796337 DOI: 10.1002/jum.16611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/11/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024]
Abstract
A 2012 review of therapeutic ultrasound was published to educate researchers and physicians on potential applications and concerns for unintended bioeffects (doi: 10.7863/jum.2012.31.4.623). This review serves as an update to the parent article, highlighting advances in therapeutic ultrasound over the past 12 years. In addition to general mechanisms for bioeffects produced by therapeutic ultrasound, current applications, and the pre-clinical and clinical stages are outlined. An overview is provided for image guidance methods to monitor and assess treatment progress. Finally, other topics relevant for the translation of therapeutic ultrasound are discussed, including computational modeling, tissue-mimicking phantoms, and quality assurance protocols.
Collapse
Affiliation(s)
| | - Frederic Padilla
- Gene Therapy ProgramFocused Ultrasound FoundationCharlottesvilleVirginiaUSA
- Department of RadiologyUniversity of Virginia Health SystemCharlottesvilleVirginiaUSA
| | - Kevin J. Haworth
- Department of PediatricsUniversity of CincinnatiCincinnatiOhioUnited States
- Department of Internal MedicineUniversity of CincinnatiCincinnatiOhioUSA
- Department of Biomedical EngineeringUniversity of CincinnatiCincinnatiOhioUSA
| | | | - Diane Dalecki
- Department of Biomedical EngineeringUniversity of RochesterRochesterNew YorkUSA
| | - Douglas L. Miller
- Department of RadiologyUniversity of Michigan Health SystemAnn ArborMichiganUSA
| | - Keith A. Wear
- Center for Devices and Radiological HealthU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| |
Collapse
|
5
|
Odéen H, Payne AH, Parker DL. Magnetic Resonance Acoustic Radiation Force Imaging (MR-ARFI). J Magn Reson Imaging 2025. [PMID: 39842847 DOI: 10.1002/jmri.29712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/24/2025] Open
Abstract
This review covers the theoretical background, pulse sequence considerations, practical implementations, and multitudes of applications of magnetic resonance acoustic radiation force imaging (MR-ARFI) described to date. MR-ARFI is an approach to encode tissue displacement caused by the acoustic radiation force of a focused ultrasound field into the phase of a MR image. The displacement encoding is done with motion encoding gradients (MEG) which have traditionally been added to spin echo-type and gradient recalled echo-type pulse sequences. Many different types of MEG (monopolar, bipolar, tripolar etc.) have been described and pros and cons are discussed. We further review studies investigating the safety of MR-ARFI, as well as approaches to simulate the MR-ARFI displacement. Lastly, MR-ARFI applications such as for focal spot localization, tissue stiffness interrogation following thermal ablation, trans-skull aberration correction, and simultaneous MR-ARFI and MR thermometry are discussed. EVIDENCE LEVEL: N/A TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Henrik Odéen
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Allison H Payne
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Dennis L Parker
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
6
|
Phipps MA, Manuel TJ, Sigona MK, Luo H, Yang PF, Newton A, Chen LM, Grissom W, Caskey CF. Practical Targeting Errors During Optically Tracked Transcranial Focused Ultrasound Using MR-ARFI and Array- Based Steering. IEEE Trans Biomed Eng 2024; 71:2740-2748. [PMID: 38640051 PMCID: PMC11983265 DOI: 10.1109/tbme.2024.3391383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
OBJECTIVE Transcranial focused ultrasound (tFUS) is being explored for neuroscience research and clinical applications due to its ability to affect precise brain regions noninvasively. The ability to target specific brain regions and localize the beam during these procedures is important for these applications to avoid damage and minimize off-target effects. Here, we present a method to combine optical tracking with magnetic resonance (MR) acoustic radiation force imaging to achieve targeting and localizing of the tFUS beam. This combined method provides steering coordinates to target brain regions within a clinically practical time frame. METHODS Using an optically tracked hydrophone and bias correction with MR imaging we transformed the FUS focus coordinates into the MR space for targeting and error correction. We validated this method in vivo in 18 macaque FUS studies. RESULTS Across these in vivo studies a single localization scan allowed for the average targeting error to be reduced from 4.8 mm to 1.4 mm and for multiple brain regions to be targeted with one transducer position. CONCLUSIONS By reducing targeting error and providing the means to target multiple brain regions within a single session with high accuracy this method will allow further study of the effects of tFUS neuromodulation with more advanced approaches such as simultaneous dual or multi-site brain stimulation.
Collapse
|
7
|
Filippou A, Damianou C. Agar-based Phantom for Evaluating Targeting of High-intensity Focused Ultrasound Systems for Breast Ablation. J Med Phys 2024; 49:343-355. [PMID: 39526164 PMCID: PMC11548075 DOI: 10.4103/jmp.jmp_52_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/24/2024] [Accepted: 05/05/2024] [Indexed: 11/16/2024] Open
Abstract
AIM Phantoms are often utilized for the preclinical evaluation of novel high-intensity focused ultrasound (HIFU) systems, serving as valuable tools for validating efficacy. In the present study, the feasibility of a homogeneous agar-based breast-shaped phantom as a tool for the preclinical evaluation of HIFU systems dedicated to breast cancer was assessed. Specifically, the effect of the increased phantom curvature on temperature increase was examined through sonications executed on two sides having varied curvatures. MATERIALS AND METHODS Assessment was performed utilizing a 1.1 MHz focused transducer. Sonications on the two phantom sides were executed at varied acoustical power in both a laboratory setting and inside a 1.5 T magnetic resonance imaging scanner. Sonications were independently performed on two identical phantoms for repeatability purposes. RESULTS Temperature changes between 7.1°C-34.3°C and 5.1°C-21.5°C were recorded within the decreased and increased curvature sides, respectively, for acoustical power of 3.75-10 W. High-power sonications created lesions which were approximately symmetrically formed around the focal point at the decreased curvature side, while they were shifted away from the focal point at the increased curvature side. CONCLUSIONS The present findings indicate that increased curvature of the breast phantom results in deformed focal shapes and decreased temperatures induced at the focal area, thus suggesting treatment correction requirements in the form of focus control or accurate robotic movement. The developed breast-shaped phantom can be utilized as an evaluation tool of HIFU systems dedicated to breast cancer since it can visually verify the efficacy of any system.
Collapse
Affiliation(s)
- Antria Filippou
- Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Christakis Damianou
- Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
8
|
Kim YH, Kang KC, Kim JN, Park KK, Firouzi K, Khuri-Yakub BT. High-spatial-resolution transcranial focused ultrasound neuromodulation using frequency-modulated pattern interference radiation force. ULTRASONICS 2024; 140:107298. [PMID: 38531115 DOI: 10.1016/j.ultras.2024.107298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/28/2023] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
Stimulating the brain in a precise location is crucial in ultrasound neuromodulation. However, improving the resolution proves a challenge owing to the characteristics of transcranial focused ultrasound. In this paper, we present a new neuromodulation system that overcomes the existing limitations based on an acoustic radiation force with a frequency-modulated waveform and standing waves. By using the frequency-modulated pattern interference radiation force (FM-PIRF), the axial spatial resolution can be reduced to a single wavelength level and the target location can be controlled in axial direction electronically. A linear frequency-modulated chirp waveform used in the experiment was designed based on the simulation results. The displacement of the polydimethylsiloxane (PDMS) cantilever was measured at intervals of 0.1 mm to visualize the distribution of radiation force. These results and methods experimentally show that FM-PIRF has improved spatial resolution and capability of electrical movement.
Collapse
Affiliation(s)
- Young Hun Kim
- Mechanical Convergence Engineering, Hanyang University, Seoul 04763, Republic of Korea; Edward. L. Ginzton Lab, Stanford University, Stanford, CA 94305, USA
| | - Ki Chang Kang
- Mechanical Convergence Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jeong Nyeon Kim
- Edward. L. Ginzton Lab, Stanford University, Stanford, CA 94305, USA
| | - Kwan Kyu Park
- Edward. L. Ginzton Lab, Stanford University, Stanford, CA 94305, USA.
| | - Kamyar Firouzi
- Edward. L. Ginzton Lab, Stanford University, Stanford, CA 94305, USA
| | - Butrus T Khuri-Yakub
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
9
|
Richards N, Christensen D, Hillyard J, Kline M, Johnson S, Odéen H, Payne A. Evaluation of acoustic-thermal simulations of in vivo magnetic resonance guided focused ultrasound ablative therapy. Int J Hyperthermia 2024; 41:2301489. [PMID: 38234019 PMCID: PMC10903184 DOI: 10.1080/02656736.2023.2301489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/19/2024] Open
Abstract
PURPOSE To evaluate numerical simulations of focused ultrasound (FUS) with a rabbit model, comparing simulated heating characteristics with magnetic resonance temperature imaging (MRTI) data collected during in vivo treatment. METHODS A rabbit model was treated with FUS sonications in the biceps femoris with 3D MRTI collected. Acoustic and thermal properties of the rabbit muscle were determined experimentally. Numerical models of the rabbits were created, and tissue-type-specific properties were assigned. FUS simulations were performed using both the hybrid angular spectrum (HAS) method and k-Wave. Simulated power deposition patterns were converted to temperature maps using a Pennes' bioheat equation-based thermal solver. Agreement of pressure between the simulation techniques and temperature between the simulation and experimental heating was evaluated. Contributions of scattering and absorption attenuation were considered. RESULTS Simulated peak pressures derived using the HAS method exceeded the simulated peak pressures from k-Wave by 1.6 ± 2.7%. The location and FWHM of the peak pressure calculated from HAS and k-Wave showed good agreement. When muscle acoustic absorption value in the simulations was adjusted to approximately 54% of the measured attenuation, the average root-mean-squared error between simulated and experimental spatial-average temperature profiles was 0.046 ± 0.019 °C/W. Mean distance between simulated and experimental COTMs was 3.25 ± 1.37 mm. Transverse FWHMs of simulated sonications were smaller than in in vivo sonications. Longitudinal FWHMs were similar. CONCLUSIONS Presented results demonstrate agreement between HAS and k-Wave simulations and that FUS simulations can accurately predict focal position and heating for in vivo applications in soft tissue.
Collapse
Affiliation(s)
- Nicholas Richards
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, 84112, USA. USA
| | - Douglas Christensen
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, 84112, USA. USA
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah, 84132, USA
| | - Joshua Hillyard
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, 84112, USA. USA
| | - Michelle Kline
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, 84132
| | - Sara Johnson
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, 84132
| | - Henrik Odéen
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, 84132
| | - Allison Payne
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, 84132
| |
Collapse
|
10
|
Yeats E, Hall TL. Aberration correction in abdominal histotripsy. Int J Hyperthermia 2023; 40:2266594. [PMID: 37813397 PMCID: PMC10637766 DOI: 10.1080/02656736.2023.2266594] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023] Open
Abstract
In transabdominal histotripsy, ultrasound pulses are focused on the body to noninvasively destroy soft tissues via cavitation. However, the ability to focus is limited by phase aberration, or decorrelation of the ultrasound pulses due to spatial variation in the speed of sound throughout heterogeneous tissue. Phase aberration shifts, broadens, and weakens the focus, thereby reducing the safety and efficacy of histotripsy therapy. This paper reviews and discusses aberration effects in histotripsy and in related therapeutic ultrasound techniques (e.g., high intensity focused ultrasound), with an emphasis on aberration by soft tissues. Methods for aberration correction are reviewed and can be classified into two groups: model-based methods, which use segmented images of the tissue as input to an acoustic propagation model to predict and compensate phase differences, and signal-based methods, which use a receive-capable therapy array to detect phase differences by sensing acoustic signals backpropagating from the focus. The relative advantages and disadvantages of both groups of methods are discussed. Importantly, model-based methods can correct focal shift, while signal-based methods can restore substantial focal pressure, suggesting that both methods should be combined in a 2-step approach. Aberration correction will be critical to improving histotripsy treatments and expanding the histotripsy treatment envelope to enable non-invasive, non-thermal histotripsy therapy for more patients.
Collapse
Affiliation(s)
- Ellen Yeats
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States
| | - Timothy L. Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
11
|
Sadeghi-Goughari M, Han SW, Kwon HJ. Real-time monitoring of focused ultrasound therapy using intelligence-based thermography: A feasibility study. ULTRASONICS 2023; 134:107100. [PMID: 37421699 DOI: 10.1016/j.ultras.2023.107100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/10/2023]
Abstract
Focused ultrasound (FUS) therapy has been widely studied for breast cancer treatment due to its potential as a fully non-invasive method to improve cosmetic and oncologic results. However, real-time imaging and monitoring of the therapeutic ultrasound delivered to the target area remain challenges for precision breast cancer therapy. The main objective of this study is to propose and evaluate a novel intelligence-based thermography (IT) method that can monitor and control FUS treatment using thermal imaging with the fusion of artificial intelligence (AI) and advanced heat transfer modeling. In the proposed method, a thermal camera is integrated into FUS system for thermal imaging of the breast surface, and an AI model is employed for the inverse analysis of the surface thermal monitoring, thereby estimating the features of the focal region. This paper presents experimental and computational studies conducted to assess the feasibility and efficiency of IT-guided FUS (ITgFUS). Tissue phantoms, designed to mimic the properties of breast tissue, were used in the experiments to investigate detectability and the impact of temperature rise at the focal region on the tissue surface. Additionally, an AI computational analysis employing an artificial neural network (ANN) and FUS simulation was carried out to provide a quantitative estimation of the temperature rise at the focal region. This estimation was based on the observed temperature profile on the breast model's surface. The results proved that the effects of temperature rise at the focused area could be detected by the thermal images acquired with thermography. Moreover, it was demonstrated that the AI analysis of the surface temperature measurement could result in near real-time monitoring of FUS by quantitative estimation of the temporal and spatial temperature rise profiles at the focal region.
Collapse
Affiliation(s)
- Moslem Sadeghi-Goughari
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
| | - Sang-Wook Han
- Department of Automotive Engineering, Shinhan University, 95 Hoam-ro, Uijeongbu, Gyeonggi-do 480-701, Republic of Korea
| | - Hyock-Ju Kwon
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
12
|
Odéen H, Hofstetter LW, Payne AH, Guiraud L, Dumont E, Parker DL. Simultaneous proton resonance frequency T 1 - MR shear wave elastography for MR-guided focused ultrasound multiparametric treatment monitoring. Magn Reson Med 2023; 89:2171-2185. [PMID: 36656135 PMCID: PMC10940047 DOI: 10.1002/mrm.29587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 01/20/2023]
Abstract
PURPOSE To develop an efficient MRI pulse sequence to simultaneously measure multiple parameters that have been shown to correlate with tissue nonviability following thermal therapies. METHODS A 3D segmented EPI pulse sequence was used to simultaneously measure proton resonance frequency shift (PRFS) MR thermometry (MRT), T1 relaxation time, and shear wave velocity induced by focused ultrasound (FUS) push pulses. Experiments were performed in tissue mimicking gelatin phantoms and ex vivo bovine liver. Using a carefully designed FUS triggering scheme, a heating duty cycle of approximately 65% was achieved by interleaving FUS ablation pulses with FUS push pulses to induce shear waves in the tissue. RESULTS In phantom studies, temperature increases measured with PRFS MRT and increases in T1 correlated with decreased shear wave velocity, consistent with material softening with increasing temperature. During ablation in ex vivo liver, temperature increase measured with PRFS MRT initially correlated with increasing T1 and decreasing shear wave velocity, and after tissue coagulation with decreasing T1 and increasing shear wave velocity. This is consistent with a previously described hysteresis in T1 versus PRFS curves and increased tissue stiffness with tissue coagulation. CONCLUSION An efficient approach for simultaneous and dynamic measurements of PRSF, T1 , and shear wave velocity during treatment is presented. This approach holds promise for providing co-registered dynamic measures of multiple parameters, which correlates to tissue nonviability during and following thermal therapies, such as FUS.
Collapse
Affiliation(s)
- Henrik Odéen
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Lorne W. Hofstetter
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Allison H. Payne
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| | | | | | - Dennis L. Parker
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
13
|
Adams-Tew SI, Johnson S, Odéen H, Parker DL, Payne A. Validation of a drift-corrected 3D MR temperature imaging sequence for breast MR-guided focused ultrasound treatments. Magn Reson Imaging 2023; 96:126-134. [PMID: 36496098 PMCID: PMC9810259 DOI: 10.1016/j.mri.2022.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/11/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Real-time temperature monitoring is critical to the success of thermally ablative therapies. This work validates a 3D thermometry sequence with k-space field drift correction designed for use in magnetic resonance-guided focused ultrasound treatments for breast cancer. Fiberoptic probes were embedded in tissue-mimicking phantoms, and temperature change measurements from the probes were compared with the magnetic resonance temperature imaging measurements following heating with focused ultrasound. Precision and accuracy of measurements were also evaluated in free-breathing healthy volunteers (N = 3) under a non-heating condition. MR temperature measurements agreed closely with those of fiberoptic probes, with a 95% confidence interval of measurement difference from -2.0 °C to 1.4 °C. Field drift-corrected measurements in vivo had a precision of 1.1 ± 0.7 °C and were accurate within 1.3 ± 0.9 °C across the three volunteers. The field drift correction method improved precision and accuracy by an average of 46 and 42%, respectively, when compared to the uncorrected data. This temperature imaging sequence can provide accurate measurements of temperature change in aqueous tissues in the breast and support the use of this sequence in clinical investigations of focused ultrasound treatments for breast cancer.
Collapse
Affiliation(s)
- Samuel I Adams-Tew
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
| | - Sara Johnson
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA.
| | - Henrik Odéen
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA.
| | - Dennis L Parker
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA.
| | - Allison Payne
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
14
|
Lyu C, Li W, Li S, Mao Y, Yang B. Design of Ultra-Wideband Phased Array Applicator for Breast Cancer Hyperthermia Therapy. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23031051. [PMID: 36772091 PMCID: PMC9921499 DOI: 10.3390/s23031051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 05/14/2023]
Abstract
Focused microwave-hyperthermia therapy has recently emerged as a key technology in the treatment of breast cancer due to non-invasive treatment. An applicator of a three-ring phased array consisting of ultra-wideband (UWB) microstrip antennas was designed for breast cancer therapy and operates at 0.915 GHz and 2.45 GHz. The proposed antenna has an ultra-wideband from 0.7 GHz to 5.5 GHz with resonant frequencies of 0.915 GHz and 2.45 GHz and dimensions of 15 × 43.5 × 1.575 mm3. The number of each ring was chosen to be 12 based on the SAR distribution and the performance indicators of tumor off-center focusing results for four different numbers of single-ring arrays. The homogeneous breast model is applied to a three-ring phased array consisting of 36 elements for focused simulation, and 1 cm3 and 2 cm3 tumors are placed in three different locations in the breast. The simulation results show that the proposed phased array has good performance and the capability to raise the temperature of different volumes of breast cancer above 42.5 °C after choosing a suitable operating frequency. The proposed applicator allows for precise treatment of tumors by selecting the appropriate operating frequency based on the size of the malignant tumor.
Collapse
Affiliation(s)
- Cheng Lyu
- College of Information and Communication Engineering, Harbin Engineering University, Harbin 150000, China
| | - Wenxing Li
- College of Information and Communication Engineering, Harbin Engineering University, Harbin 150000, China
| | - Si Li
- Ocean College, Jiangsu University of Science and Technology, Zhenjiang 212003, China
- Correspondence: ; Tel.: +86-15754502374
| | - Yunlong Mao
- Ocean College, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Bin Yang
- School of Cyberspace, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
15
|
Parker DL, Payne A, Odéen H. A k-space-based method to measure and correct for temporal B 0 field variations in MR temperature imaging. Magn Reson Med 2022; 88:1098-1111. [PMID: 35576148 PMCID: PMC11034809 DOI: 10.1002/mrm.29275] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 11/10/2022]
Abstract
PURPOSE Present a method to use change in phase in repeated Cartesian k-space measurements to monitor the change in magnetic field for dynamic MR temperature imaging. METHODS The method is applied to focused ultrasound heating experiments in a gelatin phantom and an ex vivo salt pork sample, without and with simulated respiratory motion. RESULTS In each experiment, phase variations due to B0 field drift and respiration were readily apparent in the measured phase difference. With correction, the SD of the temperature over time was reduced from 0.18°C to 0.14°C (no breathing) and from 0.81°C to 0.22°C (with breathing) for the gelatin phantom, and from 0.68°C to 0.13°C (no breathing) and from 1.06°C to 0.17°C (with breathing) for the pork sample. The accuracy in nonheated regions, assessed as the RMS error deviation from 0°C, improved from 1.70°C to 1.11°C (no breathing) and from 4.73°C to 1.47°C (with breathing) for the gelatin phantom, and from 5.95°C to 0.88°C (no breathing) and from 13.40°C to 1.73°C (with breathing) for the pork sample. The correction did not affect the temperature measurement accuracy in the heated regions. CONCLUSION This work demonstrates that phase changes resulting from variations in B0 due to drift and respiration, commonly seen in MR thermometry applications, can be measured directly from 3D Cartesian acquisition methods. The correction of temporal field variations using the presented technique improved temperature accuracy, reduced variability in nonheated regions, and did not reduce accuracy in heated regions.
Collapse
Affiliation(s)
- Dennis L Parker
- Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Allison Payne
- Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Henrik Odéen
- Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
16
|
A new versatile MR-guided high-intensity focused ultrasound (HIFU) device for the treatment of musculoskeletal tumors. Sci Rep 2022; 12:9095. [PMID: 35641597 PMCID: PMC9156664 DOI: 10.1038/s41598-022-13213-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/23/2022] [Indexed: 11/08/2022] Open
Abstract
Magnetic Resonance (MR) Imaging-guided High Intensity focused Ultrasound (MRgHIFU) is a non-invasive, non-ionizing thermal ablation therapy that is particularly interesting for the palliative or curative treatment of musculoskeletal tumors. We introduce a new modular MRgHIFU device that allows the ultrasound transducer to be positioned precisely and interactively over the body part to be treated. A flexible, MR-compatible supporting structure allows free positioning of the transducer under MRI/optical fusion imaging guidance. The same structure can be rigidified using pneumatic depression, holding the transducer rigidly in place. Targeting accuracy was first evaluated in vitro. The average targeting error of the complete process was found to be equal to 5.4 ± 2.2 mm in terms of focus position, and 4.7° ± 2° in terms of transducer orientation. First-in-man feasibility is demonstrated on a patient suffering from important, uncontrolled pain from a bone metastasis located in the forearm. The 81 × 47 × 34 mm3 lesion was successfully treated using five successive positions of the transducer, under real-time monitoring by MR Thermometry. Significant pain palliation was observed 3 days after the intervention. The system described and characterized in this study is a particularly interesting modular, low-cost MRgHIFU device for musculoskeletal tumor therapy.
Collapse
|
17
|
Holman R, Lorton O, Guillemin PC, Desgranges S, Santini F, Preso DB, Farhat M, Contino-Pépin C, Salomir R. Perfluorocarbon emulsion enhances MR-ARFI displacement and temperature in vitro: Evaluating the response with MRI, NMR, and hydrophone. Front Oncol 2022; 12:1025481. [PMID: 36713528 PMCID: PMC9880467 DOI: 10.3389/fonc.2022.1025481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/18/2022] [Indexed: 01/15/2023] Open
Abstract
Sonosensitive perfluorocarbon F8TAC18-PFOB emulsion is under development to enhance heating, increase thermal contrast, and reduce treatment times during focused ultrasound tumor ablation of highly perfused tissue. The emulsion previously showed enhanced heating during ex vivo and in vitro studies. Experiments were designed to observe the response in additional scenarios by varying focused ultrasound conditions, emulsion concentrations, and surfactants. Most notably, changes in acoustic absorption were assessed with MR-ARFI. Phantoms were developed to have thermal, elastic, and relaxometry properties similar to those of ex vivo pig tissue. The phantoms were embedded with varying amounts of F8TAC18-PFOB emulsion or lecithin-PFOB emulsion, between about 0.0-0.3% v:w, in 0.05% v:w increments. MR-ARFI measurements were performed using a FLASH-ARFI-MRT sequence to obtain simultaneous displacement and temperature measurements. A Fabry-Perot hydrophone was utilized to observe the acoustic emissions. Susceptibility-weighted imaging and relaxometry mapping were performed to observe concentration-dependent effects. 19F diffusion-ordered spectroscopy NMR was used to measure the diffusion coefficient of perfluorocarbon droplets in a water emulsion. Increased displacement and temperature were observed with higher emulsion concentration. In semi-rigid MR-ARFI phantoms, a linear response was observed with low-duty cycle MR-ARFI sonications and a mono-exponential saturating response was observed with sustained sonications. The emulsifiers did not have a significant effect on acoustic absorption in semi-rigid gels. Stable cavitation might also contribute to enhanced heating.
Collapse
Affiliation(s)
- Ryan Holman
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Orane Lorton
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pauline C Guillemin
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Stéphane Desgranges
- Avignon Université, Equipe Systèmes Amphiphiles bioactifs et Formulations Eco-compatibles, Unité Propre de Recherche et d'Innovation (UPRI), Avignon, France
| | - Francesco Santini
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Davide Bernardo Preso
- Institute of Mechanical Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mohamed Farhat
- Institute of Mechanical Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Christiane Contino-Pépin
- Avignon Université, Equipe Systèmes Amphiphiles bioactifs et Formulations Eco-compatibles, Unité Propre de Recherche et d'Innovation (UPRI), Avignon, France
| | - Rares Salomir
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Radiology Department, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
18
|
Zheng X, Li F, Xuan ZD, Wang Y, Zhang L. Combination of shear wave elastography and BI-RADS in identification of solid breast masses. BMC Med Imaging 2021; 21:183. [PMID: 34852775 PMCID: PMC8638471 DOI: 10.1186/s12880-021-00702-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To explore the value of quantitative shear wave elastography (SWE) plus the Breast Imaging Reporting and Data System (BI-RADS) in the identification of solid breast masses. METHODS A total of 108 patients with 120 solid breast masses admitted to our hospital from January 2019 to January 2020 were enrolled in this study. The pathological examination served as the gold standard for definitive diagnosis. Both SWE and BI-RADS grading were performed. RESULTS Out of the 120 solid breast masses in 108 patients, 75 benign and 45 malignant masses were pathologically confirmed. The size, shape, margin, internal echo, microcalcification, lateral acoustic shadow, and posterior acoustic enhancement of benign and malignant masses were significantly different (all P < 0.05). The E mean, E max, SD, and E ratio of benign and malignant masses were significantly different (all P < 0.05). The E min was similar between benign and malignant masses (P > 0.05). The percentage of Adler grade II-III of the benign masses was lower than that of the malignant masses (P < 0.05). BI-RADS plus SWE yielded higher diagnostic specificity and positive predictive value than either BI-RADS or SWE; BI-RADS plus SWE yielded the highest diagnostic accuracy among the three methods (all P < 0.05). CONCLUSION SWE plus routine ultrasonography BI-RADS has a higher value in differentiating benign from malignant breast masses than color doppler or SWE alone, which should be further promoted in clinical practice.
Collapse
Affiliation(s)
- Xue Zheng
- Pediatric Hospital Ultrasound Department, Cangzhou Central Hospital, Cangzhou, Hebei Province, China.
| | - Fei Li
- Department of Pulmonary and Critical Care Medicine (PCCM) Ward II, Cangzhou Central Hospital, Cangzhou, Hebei Province, China
| | - Zhi-Dong Xuan
- Department of Ultrasound III, Cangzhou Central Hospital, Cangzhou, Hebei Province, China
| | - Yu Wang
- Pediatric Hospital Ultrasound Department, Cangzhou Central Hospital, Cangzhou, Hebei Province, China
| | - Lei Zhang
- Department of Clinical Laboratory, Cangzhou Central Hospital, Cangzhou, Hebei Province, China
| |
Collapse
|
19
|
McLean M, Parker DL, Odéen H, Payne A. A T1-based correction method for proton resonance frequency shift thermometry in breast tissue. Med Phys 2021; 48:4719-4729. [PMID: 34265109 DOI: 10.1002/mp.15085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 11/06/2022] Open
Abstract
PURPOSE Develop and evaluate the effectiveness of a T1-based correction method for errors in proton resonant frequency shift thermometry due to non-local field effects caused by heating in fatty breast tissues. METHODS Computational models of human breast tissue were created by segmenting MRI data from a healthy human volunteer. MR-guided focused ultrasound (MRgFUS) heating and MR thermometry measurements were simulated in several locations in the heterogeneous segmented breast models. A T1-based correction method for PRF thermometry errors was applied and the maximum positive and negative errors and the root mean squared error (RMSE) in a region around each heating location was evaluated with and without correction. The method uses T1 measurements to estimate the temperature change in fatty tissues and correct for their influence. Experimental data from a heating study in cadaver breast tissue were analyzed, and the expected PRFS error computed. RESULTS The simulated MR thermometry had maximum single voxel errors ranging between 10% and 18% when no correction was applied. Applying the correction led to a considerable improvement, lowering the maximum error range to 2%-5%. The 5th to 95th percentile interval of the temperature error distribution was also lowered with correction, from approximately 3.5 to 1°C. This correction worked even when T1 times were uniformly raised or lowered by 5%-10%. The experimental data showed predicted errors of 15%. CONCLUSIONS This simulation study demonstrates that the T1-based correction method reduces MR thermometry errors due to non-local effects from heating in fatty tissues, potentially improving the accuracy of thermometry measurements during MRgFUS treatments. The presented correction method is reliant on having a patient-specific 3D model of the breast, and may be limited by the accuracy of the fat temperatures which in turn may be limited by noise or bias present in the T1 measurements.
Collapse
|
20
|
Campwala Z, Szewczyk B, Maietta T, Trowbridge R, Tarasek M, Bhushan C, Fiveland E, Ghoshal G, Heffter T, Gandomi K, Carvalho PA, Nycz C, Jeannotte E, Staudt M, Nalwalk J, Hellman A, Zhao Z, Burdette EC, Fischer G, Yeo D, Pilitsis JG. Predicting ablation zones with multislice volumetric 2-D magnetic resonance thermal imaging. Int J Hyperthermia 2021; 38:907-915. [PMID: 34148489 PMCID: PMC9284994 DOI: 10.1080/02656736.2021.1936215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
BACKGROUND High-intensity focused ultrasound (HIFU) serves as a noninvasive stereotactic system for the ablation of brain metastases; however, treatments are limited to simple geometries and energy delivery is limited by the high acoustic attenuation of the calvarium. Minimally-invasive magnetic resonance-guided robotically-assisted (MRgRA) needle-based therapeutic ultrasound (NBTU) using multislice volumetric 2-D magnetic resonance thermal imaging (MRTI) overcomes these limitations and has potential to produce less collateral tissue damage than current methods. OBJECTIVE To correlate multislice volumetric 2-D MRTI volumes with histologically confirmed regions of tissue damage in MRgRA NBTU. METHODS Seven swine underwent a total of 8 frontal MRgRA NBTU lesions. MRTI ablation volumes were compared to histologic tissue damage on brain sections stained with 2,3,5-triphenyltetrazolium chloride (TTC). Bland-Altman analyses and correlation trends were used to compare MRTI and TTC ablation volumes. RESULTS Data from the initial and third swine's ablations were excluded due to sub-optimal tissue staining. For the remaining ablations (n = 6), the limits of agreement between the MRTI and histologic volumes ranged from -0.149 cm3 to 0.252 cm3 with a mean difference of 0.052 ± 0.042 cm3 (11.1%). There was a high correlation between the MRTI and histology volumes (r2 = 0.831) with a strong linear relationship (r = 0.868). CONCLUSION We used a volumetric MRTI technique to accurately track thermal changes during MRgRA NBTU in preparation for human trials. Improved volumetric coverage with MRTI enhanced our delivery of therapy and has far-reaching implications for focused ultrasound in the broader clinical setting.
Collapse
Affiliation(s)
- Zahabiya Campwala
- Department of Neuroscience and Experimental Therapeutics, Albany Medical Center, Albany, NY, USA
| | - Benjamin Szewczyk
- Department of Neurosurgery, Albany Medical Center, Albany, NY, USA.,Robotics Engineering Department, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Teresa Maietta
- Department of Neuroscience and Experimental Therapeutics, Albany Medical Center, Albany, NY, USA
| | - Rachel Trowbridge
- Department of Neuroscience and Experimental Therapeutics, Albany Medical Center, Albany, NY, USA
| | | | | | | | | | | | - Katie Gandomi
- Robotics Engineering Department, Worcester Polytechnic Institute, Worcester, MA, USA
| | | | - Christopher Nycz
- Robotics Engineering Department, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Erin Jeannotte
- Animal Resources Facility, Albany Medical Center, Albany, NY, USA
| | - Michael Staudt
- Department of Neurosurgery, Albany Medical Center, Albany, NY, USA
| | - Julia Nalwalk
- Department of Neuroscience and Experimental Therapeutics, Albany Medical Center, Albany, NY, USA
| | - Abigail Hellman
- Department of Neuroscience and Experimental Therapeutics, Albany Medical Center, Albany, NY, USA
| | - Zhanyue Zhao
- Robotics Engineering Department, Worcester Polytechnic Institute, Worcester, MA, USA
| | | | - Gregory Fischer
- Robotics Engineering Department, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Desmond Yeo
- GE Global Research Center, Niskayuna, NY, USA
| | - Julie G Pilitsis
- Department of Neuroscience and Experimental Therapeutics, Albany Medical Center, Albany, NY, USA.,Department of Neurosurgery, Albany Medical Center, Albany, NY, USA
| |
Collapse
|
21
|
Payne A, Chopra R, Ellens N, Chen L, Ghanouni P, Sammet S, Diederich C, Ter Haar G, Parker D, Moonen C, Stafford J, Moros E, Schlesinger D, Benedict S, Wear K, Partanen A, Farahani K. AAPM Task Group 241: A medical physicist's guide to MRI-guided focused ultrasound body systems. Med Phys 2021; 48:e772-e806. [PMID: 34224149 DOI: 10.1002/mp.15076] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 04/28/2021] [Accepted: 06/21/2021] [Indexed: 11/07/2022] Open
Abstract
Magnetic resonance-guided focused ultrasound (MRgFUS) is a completely non-invasive technology that has been approved by FDA to treat several diseases. This report, prepared by the American Association of Physicist in Medicine (AAPM) Task Group 241, provides background on MRgFUS technology with a focus on clinical body MRgFUS systems. The report addresses the issues of interest to the medical physics community, specific to the body MRgFUS system configuration, and provides recommendations on how to successfully implement and maintain a clinical MRgFUS program. The following sections describe the key features of typical MRgFUS systems and clinical workflow and provide key points and best practices for the medical physicist. Commonly used terms, metrics and physics are defined and sources of uncertainty that affect MRgFUS procedures are described. Finally, safety and quality assurance procedures are explained, the recommended role of the medical physicist in MRgFUS procedures is described, and regulatory requirements for planning clinical trials are detailed. Although this report is limited in scope to clinical body MRgFUS systems that are approved or currently undergoing clinical trials in the United States, much of the material presented is also applicable to systems designed for other applications.
Collapse
Affiliation(s)
- Allison Payne
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Rajiv Chopra
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Lili Chen
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Pejman Ghanouni
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Steffen Sammet
- Department of Radiology, University of Chicago, Chicago, IL, USA
| | - Chris Diederich
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | | | - Dennis Parker
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Chrit Moonen
- Imaging Division, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jason Stafford
- Department of Imaging Physics, MD Anderson Cancer Center, Houston, TX, USA
| | - Eduardo Moros
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - David Schlesinger
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA
| | | | - Keith Wear
- U.S. Food and Drug Administration, Silver Spring, MD, USA
| | | | - Keyvan Farahani
- National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
22
|
Hansen M, Christensen D, Payne A. Experimental validation of acoustic and thermal modeling in heterogeneous phantoms using the hybrid angular spectrum method. Int J Hyperthermia 2021; 38:1617-1626. [PMID: 34763581 PMCID: PMC8672870 DOI: 10.1080/02656736.2021.2000046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/10/2021] [Accepted: 10/25/2021] [Indexed: 11/14/2022] Open
Abstract
PURPOSE The aim was to quantitatively validate the hybrid angular spectrum (HAS) algorithm, a rapid wave propagation technique for heterogeneous media, with both pressure and temperature measurements. METHODS Heterogeneous tissue-mimicking phantoms were used to evaluate the accuracy of the HAS acoustic modeling algorithm in predicting pressure and thermal patterns. Acoustic properties of the phantom components were measured by a through-transmission technique while thermal properties were measured with a commercial probe. Numerical models of each heterogeneous phantom were segmented from 3D MR images. Cylindrical phantoms 30-mm thick were placed in the pre-focal field of a focused ultrasound beam and 2D pressure measurements obtained with a scanning hydrophone. Peak pressure, full width at half maximum, and normalized root mean squared difference (RMSDn) between the measured and simulated patterns were compared. MR-guided sonications were performed on 150-mm phantoms to obtain MR temperature measurements. Using HAS-predicted power density patterns, temperature simulations were performed. Experimental and simulated temperature patterns were directly compared using peak and mean temperature plots, RMSDn metrics, and accuracy of heating localization. RESULTS The average difference between simulated and hydrophone-measured peak pressures was 9.0% with an RMSDn of 11.4%. Comparison of the experimental MRI-derived and simulated temperature patterns showed RMSDn values of 10.2% and 11.1% and distance differences between the centers of thermal mass of 2.0 and 2.2 mm. CONCLUSIONS These results show that the computationally rapid hybrid angular spectrum method can predict pressure and temperature patterns in heterogeneous models, including uncertainties in property values and other parameters, to within approximately 10%.
Collapse
Affiliation(s)
- Megan Hansen
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Douglas Christensen
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, USA
| | - Allison Payne
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|