1
|
Ramadan B, Van Waes V. Evaluating the efficacy of transcranial direct current stimulation (tDCS) in managing neuropathic pain-induced emotional consequences: Insights from animal models. Neurophysiol Clin 2025; 55:103055. [PMID: 39884008 DOI: 10.1016/j.neucli.2025.103055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 02/01/2025] Open
Abstract
Neuropathic pain is a global health concern due to its severity and its detrimental impact on patients' quality of life. It is primarily characterized by sensory alterations, most commonly hyperalgesia and allodynia. As the disease progresses, patients with neuropathic pain develop co-occurring emotional disorders, such as anxiety and depression, which further complicate therapeutic management. While pharmacotherapy remains the first-line treatment, limitations in its efficacy and the prevalence of side effects often leave patients with insufficient pain relief. Transcranial direct current stimulation (tDCS), a non-invasive brain stimulation technique, has recently emerged as a promising alternative for chronic pain management. This review provides an overview of preclinical studies examining the effects of tDCS in rodent models of neuropathic pain. It specifically highlights the potential of tDCS to modulate the emotional-affective component of pain, with a focus on identifying optimal cortical targets for stimulation to enhance the translational application of tDCS in managing pain-related emotional disorders.
Collapse
Affiliation(s)
- Bahrie Ramadan
- Université Marie et Louis Pasteur, INSERM, UMR 1322 LINC, F-25000 Besançon, France.
| | - Vincent Van Waes
- Université Marie et Louis Pasteur, INSERM, UMR 1322 LINC, F-25000 Besançon, France.
| |
Collapse
|
2
|
Liu T, Mao Y, Dou H, Zhang W, Yang J, Wu P, Li D, Mu X. Emerging Wearable Acoustic Sensing Technologies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408653. [PMID: 39749384 PMCID: PMC11809411 DOI: 10.1002/advs.202408653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/08/2024] [Indexed: 01/04/2025]
Abstract
Sound signals not only serve as the primary communication medium but also find application in fields such as medical diagnosis and fault detection. With public healthcare resources increasingly under pressure, and challenges faced by disabled individuals on a daily basis, solutions that facilitate low-cost private healthcare hold considerable promise. Acoustic methods have been widely studied because of their lower technical complexity compared to other medical solutions, as well as the high safety threshold of the human body to acoustic energy. Furthermore, with the recent development of artificial intelligence technology applied to speech recognition, speech recognition devices, and systems capable of assisting disabled individuals in interacting with scenes are constantly being updated. This review meticulously summarizes the sensing mechanisms, materials, structural design, and multidisciplinary applications of wearable acoustic devices applied to human health and human-computer interaction. Further, the advantages and disadvantages of the different approaches used in flexible acoustic devices in various fields are examined. Finally, the current challenges and a roadmap for future research are analyzed based on existing research progress to achieve more comprehensive and personalized healthcare.
Collapse
Affiliation(s)
- Tao Liu
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of EducationInternational R&D Center of Micro‐Nano Systems and New Materials TechnologyChongqing UniversityChongqing400044China
| | - Yuchen Mao
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of EducationInternational R&D Center of Micro‐Nano Systems and New Materials TechnologyChongqing UniversityChongqing400044China
| | - Hanjie Dou
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of EducationInternational R&D Center of Micro‐Nano Systems and New Materials TechnologyChongqing UniversityChongqing400044China
| | - Wangyang Zhang
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of EducationInternational R&D Center of Micro‐Nano Systems and New Materials TechnologyChongqing UniversityChongqing400044China
| | - Jiaqian Yang
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of EducationInternational R&D Center of Micro‐Nano Systems and New Materials TechnologyChongqing UniversityChongqing400044China
| | - Pengfan Wu
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of EducationInternational R&D Center of Micro‐Nano Systems and New Materials TechnologyChongqing UniversityChongqing400044China
| | - Dongxiao Li
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of EducationInternational R&D Center of Micro‐Nano Systems and New Materials TechnologyChongqing UniversityChongqing400044China
| | - Xiaojing Mu
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of EducationInternational R&D Center of Micro‐Nano Systems and New Materials TechnologyChongqing UniversityChongqing400044China
| |
Collapse
|
3
|
Huang Z, Charalambous CC, Chen M, Kim T, Sokhadze E, Song A, Jung SH, Shekhar S, Feld JA, Jiang X, Feng W. Low intensity focused ultrasound stimulation in stroke: A phase I safety & feasibility trial. Brain Stimul 2025; 18:179-187. [PMID: 39842609 DOI: 10.1016/j.brs.2025.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/30/2024] [Accepted: 01/18/2025] [Indexed: 01/24/2025] Open
Abstract
OBJECTIVE We aimed to determine the maximum safe spatial-peak pulse-average intensity (ISPPA) of low-intensity focused ultrasound stimulation (LIFUS) in stroke patients and explore its effect on motor learning and corticospinal excitability. METHODS We adopted the classic 3 + 3 design to escalate ISPPA (estimated in-vivo transcranial value) from 0, 1, 2, 4, 6, to 8 W/cm2. Stopping rules were pre-defined: 2nd-degree scalp burn, clinical seizure, new lesion on diffusion-weighted imaging or major reduction in apparent diffusion coefficient, and participant discontinuation due to any reason. We applied 12-min LIFUS over the ipsilesional motor cortex while participants were concurrently practicing 3 blocks of a motor sequence learning (MSL) task using the affected hand. We measured MSL (response time) and corticospinal excitability (motor evoked potential) pre- and post-stimulation and compared MSL and corticospinal excitability between the LOW (0, 1, and 2 W/cm2) and HIGH (4, 6, and 8 W/cm2) groups. RESULTS ISPPA was escalated to 8 W/cm2 with 18 stroke participants without meeting the stopping rules. Compared to the LOW, more participants in the HIGH performed better on MSL (6/9 vs. 0/9, p = 0.009) and showed a sign of greater corticospinal excitability (7/9 vs. 5/9, p = 0.62). INTERPRETATION Our phase-I safety study suggests that one session of LIFUS up to 8 W/cm2 ISPPA is safe and feasible in stroke patients, and LIFUS at high intensity induces positive changes in both MSL and corticospinal excitability. The next logical step is to conduct a phase-II trial testing the efficacy of LIFUS and continuously monitoring its safety profiles.
Collapse
Affiliation(s)
- Ziping Huang
- Department of Neurology, Duke University School of Medicine, USA; Department of Biomedical Engineering, Duke University, USA
| | | | - Mengyue Chen
- Department of Mechanical and Aerospace Engineering, North Carolina State University, USA
| | - Taewon Kim
- Department of Physical Medicine and Rehabilitation, Penn State College of Medicine, USA; Department of Kinesiology, Pennsylvania State University, USA
| | - Estate Sokhadze
- Department of Neurology, Duke University School of Medicine, USA
| | - Allen Song
- Duke Brain Imaging and Analysis Center, Duke University School of Medicine, USA
| | - Sin-Ho Jung
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, USA
| | - Shashank Shekhar
- Department of Neurology, Duke University School of Medicine, USA
| | - Jody A Feld
- Department of Neurology, Duke University School of Medicine, USA; Department of Orthopedic Surgery, Duke University School of Medicine, USA
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, USA
| | - Wuwei Feng
- Department of Neurology, Duke University School of Medicine, USA; Department of Biomedical Engineering, Duke University, USA
| |
Collapse
|
4
|
Feng J, Li Z. Progress in Noninvasive Low-Intensity Focused Ultrasound Neuromodulation. Stroke 2024; 55:2547-2557. [PMID: 39145391 DOI: 10.1161/strokeaha.124.046679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Low-intensity focused ultrasound represents groundbreaking medical advancements, characterized by its noninvasive feature, safety, precision, and broad neuromodulatory capabilities. This technology operates through mechanisms, for example, acoustic radiation force, cavitation, and thermal effects. Notably, with the evolution of medical technology, ultrasound neuromodulation has been gradually applied in treating central nervous system diseases, especially stroke. Furthermore, burgeoning research areas such as sonogenetics and nanotechnology show promising potential. Despite the benefit of low-intensity focused ultrasound the precise biophysical mechanism of ultrasound neuromodulation still need further exploration. This review discusses the recent and ongoing developments of low-intensity focused ultrasound for neurological regulation, covering the underlying rationale to current utility and the challenges that impede its further development and broader adoption of this promising alternative to noninvasive therapy.
Collapse
Affiliation(s)
- Jinru Feng
- Division of Vascular Neurology, Department of Neurology (J.F., Z.L.), Beijing Tiantan Hospital, Capital Medical University, China
| | - Zixiao Li
- Division of Vascular Neurology, Department of Neurology (J.F., Z.L.), Beijing Tiantan Hospital, Capital Medical University, China
- China National Clinical Research Center for Neurological Diseases (Z.L.), Beijing Tiantan Hospital, Capital Medical University, China
- Chinese Institute for Brain Research, Beijing, China (Z.L.)
| |
Collapse
|
5
|
Hu H, Hu C, Guo W, Zhu B, Wang S. Wearable ultrasound devices: An emerging era for biomedicine and clinical translation. ULTRASONICS 2024; 142:107401. [PMID: 39004039 DOI: 10.1016/j.ultras.2024.107401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
In recent years, personalized diagnosis and treatment have gained significant recognition and rapid development in the biomedicine and healthcare. Due to the flexibility, portability and excellent compatibility, wearable ultrasound (WUS) devices have become emerging personalized medical devices with great potential for development. Currently, with the development of the ongoing advancements in materials and structural design of the ultrasound transducers, WUS devices have improved performance and are increasingly applied in the medical field. In this review, we provide an overview of the design and structure of WUS devices, focusing on their application for diagnosis and treatment of various diseases from a clinical application perspective, and then explore the issues that need to be addressed before clinical translation. Finally, we summarize the progress made in the development of WUS devices, and discuss the current challenges and the future direction of their development. In conclusion, WUS devices usher an emerging era for biomedicine with great clinical promise.
Collapse
Affiliation(s)
- Haoyuan Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Cardiovascular Research Institute, Wuhan University, China; Hubei Key Laboratory of Cardiology, China
| | - Changhao Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Cardiovascular Research Institute, Wuhan University, China; Hubei Key Laboratory of Cardiology, China
| | - Wei Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Cardiovascular Research Institute, Wuhan University, China; Hubei Key Laboratory of Cardiology, China
| | - Benpeng Zhu
- School of Optical and Electronic Information, Huazhong University of Science and Technology, China.
| | - Songyun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Cardiovascular Research Institute, Wuhan University, China; Hubei Key Laboratory of Cardiology, China.
| |
Collapse
|
6
|
Kim S, Jo Y, Im GH, Lee C, Oh C, Kook G, Kim SG, Lee HJ. Miniaturized MR-compatible ultrasound system for real-time monitoring of acoustic effects in mice using high-resolution MRI. Neuroimage 2023; 276:120201. [PMID: 37269955 DOI: 10.1016/j.neuroimage.2023.120201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/05/2023] Open
Abstract
Visualization of focused ultrasound in high spatial and temporal resolution is crucial for accurately and precisely targeting brain regions noninvasively. Magnetic resonance imaging (MRI) is the most widely used noninvasive tool for whole-brain imaging. However, focused ultrasound studies employing high-resolution (> 9.4 T) MRI in small animals are limited by the small size of the radiofrequency (RF) volume coil and the noise sensitivity of the image to external systems such as bulky ultrasound transducers. This technical note reports a miniaturized ultrasound transducer system packaged directly above a mouse brain for monitoring ultrasound-induced effects using high-resolution 9.4 T MRI. Our miniaturized system integrates MR-compatible materials with electromagnetic (EM) noise reduction techniques to demonstrate echo-planar imaging (EPI) signal changes in the mouse brain at various ultrasound acoustic intensities. The proposed ultrasound-MRI system will enable extensive research in the expanding field of ultrasound therapeutics.
Collapse
Affiliation(s)
- Subeen Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Yehhyun Jo
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Geun Ho Im
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, South Korea
| | - Chanhee Lee
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, South Korea
| | - Chaerin Oh
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Geon Kook
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, South Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, South Korea; Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Hyunjoo J Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea; KAIST Institute for Nano Century (KINC), Daejeon 34141, South Korea.
| |
Collapse
|
7
|
Kook G, Jo Y, Oh C, Liang X, Kim J, Lee SM, Kim S, Choi JW, Lee HJ. Multifocal skull-compensated transcranial focused ultrasound system for neuromodulation applications based on acoustic holography. MICROSYSTEMS & NANOENGINEERING 2023; 9:45. [PMID: 37056421 PMCID: PMC10085992 DOI: 10.1038/s41378-023-00513-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/20/2023] [Accepted: 02/14/2023] [Indexed: 06/05/2023]
Abstract
Transcranial focused ultrasound stimulation is a promising therapeutic modality for human brain disorders because of its noninvasiveness, long penetration depth, and versatile spatial control capability through beamforming and beam steering. However, the skull presents a major hurdle for successful applications of ultrasound stimulation. Specifically, skull-induced focal aberration limits the capability for accurate and versatile targeting of brain subregions. In addition, there lacks a fully functional preclinical neuromodulation system suitable to conduct behavioral studies. Here, we report a miniature ultrasound system for neuromodulation applications that is capable of highly accurate multiregion targeting based on acoustic holography. Our work includes the design and implementation of an acoustic lens for targeting brain regions with compensation for skull aberration through time-reversal recording and a phase conjugation mirror. Moreover, we utilize MEMS and 3D-printing technology to implement a 0.75-g lightweight neuromodulation system and present in vivo characterization of the packaged system in freely moving mice. This preclinical system is capable of accurately targeting the desired individual or multitude of brain regions, which will enable versatile and explorative behavior studies using ultrasound neuromodulation to facilitate widespread clinical adoption.
Collapse
Affiliation(s)
- Geon Kook
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 South Korea
| | - Yehhyun Jo
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 South Korea
| | - Chaerin Oh
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 South Korea
| | - Xiaojia Liang
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 South Korea
| | - Jaewon Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 South Korea
| | - Sang-Mok Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 South Korea
| | - Subeen Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 South Korea
| | - Jung-Woo Choi
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 South Korea
| | - Hyunjoo Jenny Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 South Korea
- KAIST Institute for NanoCentury (KINC), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| |
Collapse
|
8
|
Kim E, Kim HC, Van Reet J, Böhlke M, Yoo SS, Lee W. Transcranial focused ultrasound-mediated unbinding of phenytoin from plasma proteins for suppression of chronic temporal lobe epilepsy in a rodent model. Sci Rep 2023; 13:4128. [PMID: 36914775 PMCID: PMC10011522 DOI: 10.1038/s41598-023-31383-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
The efficacy of many anti-epileptic drugs, including phenytoin (PHT), is reduced by plasma protein binding (PPB) that sequesters therapeutically active drug molecules within the bloodstream. An increase in systemic dose elevates the risk of drug side effects, which demands an alternative technique to increase the unbound concentration of PHT in a region-specific manner. We present a low-intensity focused ultrasound (FUS) technique that locally enhances the efficacy of PHT by transiently disrupting its binding to albumin. We first identified the acoustic parameters that yielded the highest PHT unbinding from albumin among evaluated parameter sets using equilibrium dialysis. Then, rats with chronic mesial temporal lobe epilepsy (mTLE) received four sessions of PHT injection, each followed by 30 min of FUS delivered to the ictal region, across 2 weeks. Two additional groups of mTLE rats underwent the same procedure, but without receiving PHT or FUS. Assessment of electrographic seizure activities revealed that FUS accompanying administration of PHT effectively reduced the number and mean duration of ictal events compared to other conditions, without damaging brain tissue or the blood-brain barrier. Our results demonstrated that the FUS technique enhanced the anti-epileptic efficacy of PHT in a chronic mTLE rodent model by region-specific PPB disruption.
Collapse
Affiliation(s)
- Evgenii Kim
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Hyun-Chul Kim
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
- Department of Artificial Intelligence, Kyungpook National University, Daegu, South Korea
| | - Jared Van Reet
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Mark Böhlke
- Massachusetts College of Pharmacy and Health Sciences University, Boston, MA, USA
| | - Seung-Schik Yoo
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Wonhye Lee
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
9
|
He J, Zhu Y, Wu C, Wu J, Chen Y, Yuan M, Cheng Z, Zeng L, Ji X. Simultaneous multi-target ultrasound neuromodulation in freely-moving mice based on a single-element ultrasound transducer. J Neural Eng 2023; 20. [PMID: 36608340 DOI: 10.1088/1741-2552/acb104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 01/06/2023] [Indexed: 01/07/2023]
Abstract
Objective.Ultrasound neuromodulation has become an emerging method for the therapy of neurodegenerative and psychiatric diseases. The phased array ultrasonic transducer enables multi-target ultrasound neuromodulation in small animals, but the relatively large size and mass and the thick cables of the array limit the free movement of small animals. Furthermore, spatial interference may occur during multi-target ultrasound brain stimulation with multiple micro transducers.Approach.In this study, we developed a miniature power ultrasound transducer and used the virtual source time inversion method and 3D printing technology to design, optimize, and manufacture the acoustic holographic lens to construct a multi-target ultrasound neuromodulation system for free-moving mice. The feasibility of the system was verified byin vitrotranscranial ultrasound field measurements,in vivodual-target blood-brain barrier (BBB) opening experiments, andin vivodual-target ultrasound neuromodulation experiments.Main results.The developed miniature transducer had a diameter of 4.0 mm, a center frequency of 1.1 MHz, and a weight of 1.25 g. The developed miniature acoustic holographic lens had a weight of 0.019 g to generate dual-focus transcranial ultrasound. The ultrasonic field measurements' results showed that the bifocal's horizontal distance was 3.0 mm, the -6 dB focal spot width in thex-direction was 2.5 and 2.25 mm, and 2.12 and 2.24 mm in they-direction. Finally, thein vivoexperimental results showed that the system could achieve dual-target BBB opening and ultrasound neuromodulation in freely-moving mice.Significance.The ultrasonic neuromodulation system based on a miniature single-element transducer and the miniature acoustic holographic lens could achieve dual-target neuromodulation in awake small animals, which is expected to be applied to the research of non-invasive dual-target ultrasonic treatment of brain diseases in awake small animals.
Collapse
Affiliation(s)
- Jiaru He
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Yiyue Zhu
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Canwen Wu
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Junwei Wu
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Yan Chen
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Maodan Yuan
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Zhongwen Cheng
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Lvming Zeng
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Xuanrong Ji
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| |
Collapse
|
10
|
Jo Y, Lee S, Jung T, Park G, Lee C, Im GH, Lee S, Park JS, Oh C, Kook G, Kim H, Kim S, Lee BC, Suh GS, Kim S, Kim J, Lee HJ. General-Purpose Ultrasound Neuromodulation System for Chronic, Closed-Loop Preclinical Studies in Freely Behaving Rodents. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202345. [PMID: 36259285 PMCID: PMC9731702 DOI: 10.1002/advs.202202345] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/20/2022] [Indexed: 05/11/2023]
Abstract
Transcranial focused ultrasound stimulation (tFUS) is an effective noninvasive treatment modality for brain disorders with high clinical potential. However, the therapeutic effects of ultrasound neuromodulation are not widely explored due to limitations in preclinical systems. The current preclinical studies are head-fixed, anesthesia-dependent, and acute, limiting clinical translatability. Here, this work reports a general-purpose ultrasound neuromodulation system for chronic, closed-loop preclinical studies in freely behaving rodents. This work uses microelectromechanical systems (MEMS) technology to design and fabricate a small and lightweight transducer capable of artifact-free stimulation and simultaneous neural recording. Using the general-purpose system, it can be observed that state-dependent ultrasound neuromodulation of the prefrontal cortex increases rapid eye movement (REM) sleep and protects spatial working memory to REM sleep deprivation. The system will allow explorative studies in brain disease therapeutics and neuromodulation using ultrasound stimulation for widespread clinical adoption.
Collapse
Affiliation(s)
- Yehhyun Jo
- School of Electrical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Sang‐Mok Lee
- School of Electrical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Taesub Jung
- Korea Brain Research Institute (KBRI)Daegu41068Republic of Korea
| | - Gijae Park
- Department of Electrical EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Chanhee Lee
- Center for Neuroscience Imaging ResearchInstitute for Basic ScienceSuwon16419Republic of Korea
| | - Geun Ho Im
- Center for Neuroscience Imaging ResearchInstitute for Basic ScienceSuwon16419Republic of Korea
| | - Seongju Lee
- Department of Biological SciencesKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Jin Soo Park
- Department of Electrical EngineeringKorea UniversitySeoul02841Republic of Korea
- Creative Research Center for Brain ScienceKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Chaerin Oh
- School of Electrical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Geon Kook
- School of Electrical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Hyunggug Kim
- School of Electrical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Seongyeon Kim
- School of Electrical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Byung Chul Lee
- Creative Research Center for Brain ScienceKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Greg S.B. Suh
- Department of Biological SciencesKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Seong‐Gi Kim
- Center for Neuroscience Imaging ResearchInstitute for Basic ScienceSuwon16419Republic of Korea
- Department of Biomedical EngineeringSungkyunkwan UniversitySuwon16419Republic of Korea
- Department of Intelligent Precision Healthcare ConvergenceSungkyunkwan UniversitySuwon16419Republic of Korea
| | - Jeongyeon Kim
- Korea Brain Research Institute (KBRI)Daegu41068Republic of Korea
| | - Hyunjoo J. Lee
- School of Electrical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- KAIST Institute for Health Science and Technology (KIHST)Daejeon34141Republic of Korea
| |
Collapse
|
11
|
Kim E, Kum J, Lee SH, Kim H. Development of a wireless ultrasonic brain stimulation system for concurrent bilateral neuromodulation in freely moving rodents. Front Neurosci 2022; 16:1011699. [PMID: 36213731 PMCID: PMC9539445 DOI: 10.3389/fnins.2022.1011699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Bilateral brain stimulation is an important modality used to investigate brain circuits and treat neurological conditions. Recently, low-intensity pulsed ultrasound (LIPUS) received significant attention as a novel non-invasive neurostimulation technique with high spatial specificity. Despite the growing interest, the typical ultrasound brain stimulation study, especially for small animals, is limited to a single target of sonication. The constraint is associated with the complexity and the cost of the hardware system required to achieve multi-regional sonication. This work presented the development of a low-cost LIPUS system with a pair of single-element ultrasound transducers to address the above problem. The system was built with a multicore processor with an RF amplifier circuit. In addition, LIPUS device was incorporated with a wireless module (bluetooth low energy) and powered by a single 3.7 V battery. As a result, we achieved an ultrasound transmission with a central frequency of 380 kHz and a peak-to-peak pressure of 480 kPa from each ultrasound transducer. The developed system was further applied to anesthetized rats to investigate the difference between uni- and bilateral stimulation. A significant difference in cortical power density extracted from electroencephalogram signals was observed between uni- and bilateral LIPUS stimulation. The developed device provides an affordable solution to investigate the effects of LIPUS on functional interhemispheric connection.
Collapse
Affiliation(s)
- Evgenii Kim
- Biomedical Research Division, Bionics Research Center, Korea Institute of Science and Technology, Seoul, South Korea
| | - Jeungeun Kum
- Biomedical Research Division, Bionics Research Center, Korea Institute of Science and Technology, Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, South Korea
| | - Seung Hyun Lee
- Biomedical Research Division, Bionics Research Center, Korea Institute of Science and Technology, Seoul, South Korea
| | - Hyungmin Kim
- Biomedical Research Division, Bionics Research Center, Korea Institute of Science and Technology, Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, South Korea
- *Correspondence: Hyungmin Kim,
| |
Collapse
|
12
|
Yao L, Chen R, Ji H, Wang X, Zhang X, Yuan Y. Preventive and Therapeutic Effects of Low-Intensity Ultrasound Stimulation on Migraine in Rats. IEEE Trans Neural Syst Rehabil Eng 2022; 30:2332-2340. [PMID: 35981071 DOI: 10.1109/tnsre.2022.3199813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study sought to systematically evaluate the prophylactic and therapeutic effects of low-intensity transcranial ultrasound stimulation on migraine in rats. We used video recordings to assess the head scratching behavior and laser speckle contrast imaging to record the changes in cerebral blood flow velocity of freely moving rats in a healthy group, migraine group, migraine group with ultrasound prevention, and migraine group with ultrasound therapy. Results demonstrated that (1) head scratching during migraine attacks in rats was accompanied by an decrease in cerebral blood flow; (2) both ultrasound prevention and therapy significantly reduced the number of head scratches but did not reduce the cerebral blood flow velocity; and (3) the number of head scratches in the ultrasound stimulation groups was not affected by the auditory effect. These results reveal that low-intensity ultrasound has the potential to be used clinically in the prevention and therapeutic treatment of migraine.
Collapse
|
13
|
Yuan Y, Long A, Wu Y, Li X. Closed-loop transcranial ultrasound stimulation with a fuzzy controller for modulation of motor response and neural activity of mice. J Neural Eng 2022; 19. [PMID: 35700694 DOI: 10.1088/1741-2552/ac7893] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/14/2022] [Indexed: 11/12/2022]
Abstract
Objective. We propose a closed-loop transcranial ultrasound stimulation (TUS) with a fuzzy controller to realize real-time and precise control of the motor response and neural activity of mice.Approach. The mean absolute value (MAV) of the electromyogram (EMG) and peak value (PV) of the local field potential (LFP) were measured under different ultrasound intensities. A model comprising the characteristics of the MAV of the EMG, PV of the LFP, and ultrasound intensity was built using a neural network, and a fuzzy controller, proportional-integral-derivative (PID) controller, and immune feedback controller were proposed to adjust the ultrasound intensity using the feedback of the EMG MAV and the LFP PV.Main results. In simulation, the quantitative calculation indicated that the maximum relative errors between the simulated EMG MAV and the expected values were 17% (fuzzy controller), 110% (PID control), 66% (immune feedback control); furthermore, the corresponding values of the LFP PV were 12% (fuzzy controller), 53% (PID control), 55% (immune feedback control). The average relative errors of fuzzy controller, PID control, immune feedback control were 4.97%, 13.15%, 11.52%, in the EMG closed-loop experiment and 7.76%, 11.84%, 13.56%, in the LFP closed-loop experiment.Significance. The simulation and experimental results demonstrate that the closed-loop TUS with a fuzzy controller can realize the tracking control of the motor response and neural activity of mice.
Collapse
Affiliation(s)
- Yi Yuan
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, People's Republic of China.,Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Ai Long
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, People's Republic of China.,Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Yongkang Wu
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, People's Republic of China.,Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
14
|
Zhu S, Meng B, Jiang J, Wang X, Luo N, Liu N, Shen H, Wang L, Li Q. The Updated Role of Transcranial Ultrasound Neuromodulation in Ischemic Stroke: From Clinical and Basic Research. Front Cell Neurosci 2022; 16:839023. [PMID: 35221926 PMCID: PMC8873076 DOI: 10.3389/fncel.2022.839023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/17/2022] [Indexed: 12/31/2022] Open
Abstract
Ischemic stroke is a common cause of death and disability worldwide, which leads to serious neurological and physical dysfunction and results in heavy economic and social burdens. For now, timely and effective dissolution of thrombus, and ultimately improvement in the recovery of neurological functions, is the treatment strategy focus. Recently, many studies have reported that transcranial ultrasound stimulation (TUS), as a non-invasive method, can dissolve thrombus, improve cerebral blood circulation, and exert a neuroprotective effect post-stroke. TUS can promote functional recovery and improve rehabilitation efficacy among patients with ischemic stroke. This mini-review summarizes the potential mechanism and limitation of TUS in stroke aims to provide a new strategy for the future treatment of patients with ischemic stroke.
Collapse
Affiliation(s)
- Shuiping Zhu
- Department of Geriatric Medicine, Rongjun Hospital, Jiaxing, China
| | - Bin Meng
- Department of Ultrasound, Rongjun Hospital, Jiaxing, China
| | - Jianping Jiang
- Department of Geriatric Medicine, Rongjun Hospital, Jiaxing, China
| | - Xiaotao Wang
- Department of Ultrasound, Rongjun Hospital, Jiaxing, China
| | - Na Luo
- Department of Ultrasound, Rongjun Hospital, Jiaxing, China
| | - Ning Liu
- Department of Ultrasound, Rongjun Hospital, Jiaxing, China
| | - Huaping Shen
- Department of Ultrasound, Rongjun Hospital, Jiaxing, China
| | - Lu Wang
- Starbody Plastic Surgery Clinic, Hangzhou, China
| | - Qian Li
- Department of Ultrasound, Rongjun Hospital, Jiaxing, China
| |
Collapse
|
15
|
Kim E, Kum J, Kim H. Trans-Spinal Focused Ultrasound Stimulation Selectively Modulates Descending Motor Pathway. IEEE Trans Neural Syst Rehabil Eng 2022; 30:314-320. [PMID: 35108206 DOI: 10.1109/tnsre.2022.3148877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Compared to current non-invasive methods utilizing magnetic and electrical means, focused ultrasound provides greater spatial resolution and penetration depth. Despite the broad application of ultrasound stimulation, there is a lack of studies dedicated to the investigation of acoustic neuromodulation on the spinal cord. This study aims to apply focused ultrasound on the spinal cord to modulate the descending pathways in a non-invasive fashion. The application of trans-spinal focused ultrasound (tsFUS) was examined on the motor deficit mouse model. tsFUS was achieved using a single-element focused ultrasound transducer operating at 3 MHz. The sonication was performed on anesthetized 6 week-old mice targeting T12 and L3 vertebrae. The effect was analyzed by comparing electromyography responses from the hindlimb induced by electrical stimulation of the motor cortex. Further, the mouse model with the Harmaline-induced essential tremor was selected to investigate the potential clinical application of tsFUS. The safety was verified by histological assessment. Sonication at the T12 area inhibited motor response, while sonication over the L3 region provided signal enhancement. Sonication of T12 of the ET mouse also showed the ability of ultrasound to suppress tremors. Meanwhile, the histological examination did not show any abnormalities with the highest applied acoustic pressure. In this work, a non-invasive motor signal modulation was achieved using tsFUS. Moreover, the results showed the ability of focused ultrasound to manage tremors in a safe manner. This study provides a stepping stone for the trans-spinal application of focused ultrasound to motor-related disorders.
Collapse
|
16
|
Seok C, Yamaner FY, Sahin M, Oralkan O. A Wearable Ultrasonic Neurostimulator - Part I: A 1D CMUT Phased Array System for Chronic Implantation in Small Animals. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2021; 15:692-704. [PMID: 34314360 PMCID: PMC9579984 DOI: 10.1109/tbcas.2021.3100458] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, we present a wireless ultrasonic neurostimulator, aiming at a truly wearable device for brain stimulation in small behaving animals. A 1D 5-MHz capacitive micromachined ultrasonic transducer (CMUT) array is adopted to implement a head-mounted stimulation device. A companion ASIC with integrated 16-channel high-voltage (60-V) pulsers was designed to drive the 16-element CMUT array. The ASIC can generate excitation signals with element-wise programmable phases and amplitudes: 1) programmable sixteen phase delays enable electrical beam focusing and steering, and 2) four scalable amplitude levels, implemented with a symmetric pulse-width-modulation technique, are sufficient to suppress unwanted sidelobes (apodization). The ASIC was fabricated in the TSMC 0.18- μm HV BCD process within a die size of 2.5 × 2.5 mm2. To realize a completely wearable system, the system is partitioned into two parts for weight distribution: 1) a head unit (17 mg) with the CMUT array, 2) a backpack unit (19.7 g) that includes electronics such as the ASIC, a power management unit, a wireless module, and a battery. Hydrophone-based acoustic measurements were performed to demonstrate the focusing and beam steering capability of the proposed system. Also, we achieved a peak-to-peak pressure of 2.1 MPa, which corresponds to a spatial peak pulse average intensity ( ISPPA) of 33.5 W/cm2, with a lateral full width at half maximum (FWHM) of 0.6 mm at a depth of 3.5 mm.
Collapse
|