1
|
Bui NT, Kazemi A, Chen JJ, Larson NB, Sit AJ, Zhang X. Analysis wave speed of optic nerve and optic nerve head for assessing normal tension glaucoma by using vibro-elastography technique. Clin Biomech (Bristol, Avon) 2025; 124:106493. [PMID: 40127612 PMCID: PMC11993321 DOI: 10.1016/j.clinbiomech.2025.106493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 03/26/2025]
Abstract
BACKGROUND This research aims to evaluate wave speed and viscoelasticity of ocular tissues including the optic nerve and optic nerve head of human eyes between normal tension glaucoma patients and healthy controls by using vibro-elastography techniques. METHODS Participants included 12 patients and 12 controls. Wave speed was measured at the optic nerve and optic nerve head in each subject and viscoelasticity was estimated by using Voigt model. Wave speed and viscoelasticity of the optic nerve and optic nerve head were compared between patients and controls by linear mixed models via a restricted maximum likelihood method. The correlation between intraocular pressure and wave speed, elasticity, and viscosity of patients was performed using the Pearson correlation coefficient. FINDINGS Significant differences in wave speed (p < 0.0005), elasticity (p = 0.0001) and viscosity p < 0.0001) between patients and controls at the optic nerve head. There was a moderate negative correlation (r = -0.50, p < 0.05) between wave speed and elasticity and intraocular pressure at the optic nerve of patients but no correlation (p > 0.05) between wave speed, elasticity, and viscosity and intraocular pressure at the optic nerve head of patients. No significant difference and correlation among wave speed, elasticity, and viscosity vs. intraocular pressure of the control group at the optic nerve and optic nerve head. INTERPRETATION Ultrasound vibro-elastography is useful for noninvasive measurement of viscoelasticity of ocular structures. The glaucoma patient is associated with biomechanical property changes in the optic nerve and optic nerve head, suggesting another way to assess glaucoma focusing on the optic nerve and optic nerve head.
Collapse
Affiliation(s)
- Ngoc Thang Bui
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Arash Kazemi
- Department of Ophthalmology, Mayo Clinic, Rochester, MN, USA
| | - John J Chen
- Department of Ophthalmology, Mayo Clinic, Rochester, MN, USA
| | - Nicholas B Larson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Arthur J Sit
- Department of Ophthalmology, Mayo Clinic, Rochester, MN, USA
| | - Xiaoming Zhang
- Department of Radiology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
2
|
Sun X, Chang CF, Zhang J, Zeng Y, Li B, Sun Y, Kang H, Liu HC, Zhou Q. Four-Dimensional (4D) Ultrasound Shear Wave Elastography Using Sequential Excitation. IEEE Trans Biomed Eng 2025; 72:786-793. [PMID: 39356609 PMCID: PMC11875905 DOI: 10.1109/tbme.2024.3472689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
OBJECTIVE Current shear wave elastography methods primarily focus on 2D imaging. To explore mechanical properties of biological tissues in 3D, a four-dimensional (4D, x, y, z, t) ultrasound shear wave elastography is required. However, 4D ultrasound shear wave elastography is still challenging due to the limitation of the hardware of standard ultrasound acquisition systems. In this study, we introduce a novel method to achieve 4D shear wave elastography, named sequential-based excitation shear wave elastography (SE-SWE). This method can achieve 4D elastography implemented by a 1024-element 2D array with a standard ultrasound 256-channel system. METHODS The SE-SWE method employs sequential excitation to generate shear waves, and utilizes a 2D array, dividing it into four sub-sections, to capture shear waves across multiple planes. This process involves sequentially exciting each sub-section to capture shear waves, followed by compounding the acquired data from these subsections. RESULTS The phantom studies showed strong concordance between the shear wave speeds (SWS) measured by SE-SWE and expected values, confirming the accuracy of this method and potential to differentiate tissues by stiffness. In ex vivo chicken breast experiments, SE-SWE effectively distinguished between orientations relative to muscle fibers, highlighting its ability to capture the anisotropic properties of tissues. CONCLUSION The SE-SWE method advances shear wave elastography significantly by using a 2D array divided into four subsections and sequential excitation, achieving high-resolution volumetric imaging at 1.6mm resolution. SIGNIFICANCE The SE-SWE method offers a straightforward and effective approach for 3D shear volume imaging of tissue biological properties.
Collapse
|
3
|
Wu YC, Xu GX, Chen C, Chuang YH, Huang CC. Estimating the viscoelastic anisotropy of human skin through high-frequency ultrasound elastography. Med Phys 2024; 51:8060-8073. [PMID: 39225581 DOI: 10.1002/mp.17372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/10/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The skin is the largest organ of the human body and serves distinct functions in protecting the body. The viscoelastic properties of the skin play a key role in supporting the skin-healing process, also it may be changed due to some skin diseases. PROPOSE In this study, high-frequency ultrasound (HFUS) elastography based on a Lamb wave model was used to noninvasively assess the viscoelastic anisotropy of human skin. METHOD Elastic waves were generated through an external vibrator, and the wave propagation velocity was measured through 40 MHz ultrafast HFUS imaging. Through the use of a thin-layer gelatin phantom, HFUS elastography was verified to produce highly accurate estimates of elasticity and viscosity. In a human study involving five volunteers, viscoelastic anisotropy was assessed by rotating an ultrasound transducer 360°. RESULTS An oval-shaped pattern in the elasticity of human forearm skin was identified, indicating the high elastic anisotropy of skin; the average elastic moduli were 24.90 ± 6.63 and 13.64 ± 2.67 kPa along and across the collagen fiber orientation, respectively. The average viscosity of all the recruited volunteers was 3.23 ± 0.93 Pa·s. CONCLUSIONS Although the examined skin exhibited elastic anisotropy, no evident viscosity anisotropy was observed.
Collapse
Affiliation(s)
- Yu-Chen Wu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Guo-Xuan Xu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chien Chen
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Hsiang Chuang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Chung Huang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
4
|
Zhang Y, Wang Y, Han X, Luo J, Lin C, Zhang Q, He X. Characterization of Limbus Biomechanical Properties Using Optical Coherence Elastography. JOURNAL OF BIOPHOTONICS 2024; 17:e202400275. [PMID: 39225054 DOI: 10.1002/jbio.202400275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/31/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
The elasticity of the limbus is crucial for ocular health, yet it remains inadequately explored. This study employs acoustic radiation force optical coherence elastography (ARF-OCE) to evaluate the biomechanical properties of the limbus under varying intraocular pressures. The method was validated using a heterogeneous phantom and subsequently applied to ex vivo porcine limbus samples. Elastic wave velocity at specific locations within the limbus was calculated, and the corresponding Young's modulus values were obtained. Spatial elasticity distribution maps were generated by correlating Young's modulus values with their respective locations in the two-dimensional structural images. The results indicate that ARF-OCE enhances the understanding of limbus biomechanical behavior and holds potential for diagnosing regional variations caused by ocular diseases.
Collapse
Affiliation(s)
- Yubao Zhang
- Key Laboratory for Optoelectronic Information Perception and Instrumentation of Jiangxi Province, Nanchang Hangkong University, Nanchang, People's Republic of China
| | - Yue Wang
- Faculty of Artificial Intelligence in Education, Central China Normal University, Wuhan, People's Republic of China
- Jiangxi Xinjian No.2 Secondary School, Nanchang, People's Republic of China
| | - Xiao Han
- Key Laboratory for Optoelectronic Information Perception and Instrumentation of Jiangxi Province, Nanchang Hangkong University, Nanchang, People's Republic of China
| | - Jiahui Luo
- Key Laboratory for Optoelectronic Information Perception and Instrumentation of Jiangxi Province, Nanchang Hangkong University, Nanchang, People's Republic of China
| | - Chuanqi Lin
- Key Laboratory for Optoelectronic Information Perception and Instrumentation of Jiangxi Province, Nanchang Hangkong University, Nanchang, People's Republic of China
| | - Qin Zhang
- Key Laboratory for Optoelectronic Information Perception and Instrumentation of Jiangxi Province, Nanchang Hangkong University, Nanchang, People's Republic of China
| | - Xingdao He
- Key Laboratory for Optoelectronic Information Perception and Instrumentation of Jiangxi Province, Nanchang Hangkong University, Nanchang, People's Republic of China
| |
Collapse
|
5
|
Li GY, Feng X, Yun SH. In Vivo Optical Coherence Elastography Unveils Spatial Variation of Human Corneal Stiffness. IEEE Trans Biomed Eng 2024; 71:1418-1429. [PMID: 38032780 PMCID: PMC11086014 DOI: 10.1109/tbme.2023.3338086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
OBJECTIVE The mechanical properties of corneal tissues play a crucial role in determining corneal shape and have significant implications in vision care. This study aimed to address the challenge of obtaining accurate in vivo data for the human cornea. METHODS We have developed a high-frequency optical coherence elastography (OCE) technique using shear-like antisymmetric (A0)-mode Lamb waves at frequencies above 10 kHz. RESULTS By incorporating an anisotropic, nonlinear constitutive model and utilizing the acoustoelastic theory, we gained quantitative insights into the influence of corneal tension on wave speeds and elastic moduli. Our study revealed significant spatial variations in the shear modulus of the corneal stroma on healthy subjects for the first time. Over an age span from 21 to 34 (N = 6), the central corneas exhibited a mean shear modulus of 87 kPa, while the corneal periphery showed a significant decrease to 44 kPa. The central cornea's shear modulus decreases with age with a slope of -19 +/- 8 kPa per decade, whereas the periphery showed non-significant age dependence. The limbus demonstrated an increased shear modulus exceeding 100 kPa. We obtained wave displacement profiles that are consistent with highly anisotropic corneal tissues. CONCLUSION Our approach enabled precise measurement of corneal tissue elastic moduli in situ with high precision (<7%) and high spatial resolution (<1 mm). Our results revealed significant stiffness variation from the central to peripheral corneas. SIGNIFICANCE The high-frequency OCE technique holds promise for biomechanical evaluation in clinical settings, providing valuable information for refractive surgeries, degenerative disorder diagnoses, and intraocular pressure assessments.
Collapse
|
6
|
Kim GS, Moon HH, Lee HS, Jeong JS. Compound Acoustic Radiation Force Impulse Imaging of Bovine Eye by Using Phase-Inverted Ultrasound Transducer. SENSORS (BASEL, SWITZERLAND) 2024; 24:2700. [PMID: 38732804 PMCID: PMC11085659 DOI: 10.3390/s24092700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024]
Abstract
In general, it is difficult to visualize internal ocular structure and detect a lesion such as a cataract or glaucoma using the current ultrasound brightness-mode (B-mode) imaging. This is because the internal structure of the eye is rich in moisture, resulting in a lack of contrast between tissues in the B-mode image, and the penetration depth is low due to the attenuation of the ultrasound wave. In this study, the entire internal ocular structure of a bovine eye was visualized in an ex vivo environment using the compound acoustic radiation force impulse (CARFI) imaging scheme based on the phase-inverted ultrasound transducer (PIUT). In the proposed method, the aperture of the PIUT is divided into four sections, and the PIUT is driven by the out-of-phase input signal capable of generating split-focusing at the same time. Subsequently, the compound imaging technique was employed to increase signal-to-noise ratio (SNR) and to reduce displacement error. The experimental results demonstrated that the proposed technique could provide an acoustic radiation force impulse (ARFI) image of the bovine eye with a broader depth-of-field (DOF) and about 80% increased SNR compared to the conventional ARFI image obtained using the in-phase input signal. Therefore, the proposed technique can be one of the useful techniques capable of providing the image of the entire ocular structure to diagnose various eye diseases.
Collapse
Affiliation(s)
| | | | | | - Jong Seob Jeong
- Department of Biomedical Engineering, Dongguk University, Seoul 04620, Republic of Korea; (G.S.K.); (H.H.M.); (H.S.L.)
| |
Collapse
|
7
|
Zhao Y, Zhu Y, Yan Y, Yang H, Liu J, Lu Y, Li Y, Huang G. In Vivo Evaluation of Corneal Biomechanics Following Cross-Linking Surgeries Using Optical Coherence Elastography in a Rabbit Model of Keratoconus. Transl Vis Sci Technol 2024; 13:15. [PMID: 38376862 PMCID: PMC10883337 DOI: 10.1167/tvst.13.2.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 12/30/2023] [Indexed: 02/21/2024] Open
Abstract
Purpose Validation of the feasibility of novel acoustic radiation force optical coherence elastography (ARF-OCE) for the evaluation of biomechanical enhancement of the in vivo model of keratoconus by clinical cross-linking (CXL) surgery. Methods Twelve in vivo rabbit corneas were randomly divided into two groups. Both groups were treated with collagenase type II, and a keratoconus model was obtained. Then, the two groups were treated with CXL procedures with different irradiation energy of 15 J and 30 J (CXL-15 J and CXL-30 J, respectively). An ARF-OCE probe with an ultrasmall ultrasound transducer was used to detect the biomechanical properties of cornea. An antisymmetric Lamb wave model was combined with the frequency dispersion relationship to achieve depth-resolved elastography. Results Compared with the phase velocity of the Lamb wave in healthy corneas (approximately 3.96 ± 0.27 m/s), the phase velocity of the Lamb wave was lower in the keratoconus region (P < 0.05), with an average value of 3.12 ± 0.12 m/s. Moreover, the corneal stiffness increased after CXL treatment (P < 0.05), and the average phase velocity of the Lamb wave was 4.3 ± 0.19 m/s and 4.54 ± 0.13 m/s after CXL-15 J and CXL-30 J treatment. Conclusions The Young's moduli of the keratoconus regions were significantly lower than the healthy corneas. Moreover, the Young's modulus of the keratoconus regions was significantly higher after CXL-30 J treatment than after CXL-15 J treatment. We demonstrated that the ARF-OCE technique has great potential in screening keratoconus and guiding clinical CXL treatment. Translational Relevance This work accelerates the clinical translation of OCE systems using ultrasmall ultrasound transducers and is used to guide CXL procedures.
Collapse
Affiliation(s)
- Yanzhi Zhao
- Eye Center, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yirui Zhu
- School of Physics, University of Nanjing, Nanjing, Jiangsu, China
- School of Testing and Opto-electronic Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, China
| | - Yange Yan
- Yujiang District People's Hospital, Jiangxi, China
| | - Hongwei Yang
- Eye Center, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jingchao Liu
- Department of Ophthalmology, Nanchang First Hospital, Nanchang, Jiangxi, China
| | - Yongan Lu
- Department of Ophthalmology, Nanchang First Hospital, Nanchang, Jiangxi, China
| | - Yingjie Li
- Department of Ophthalmology, Nanchang First Hospital, Nanchang, Jiangxi, China
| | - Guofu Huang
- Eye Center, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
8
|
Callejas A, Faris I, Torres J, Rus G. Nonlinear fourth-order elastic characterization of the cornea using torsional wave elastography. Phys Eng Sci Med 2023; 46:1489-1501. [PMID: 37642939 DOI: 10.1007/s13246-023-01314-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/26/2023] [Indexed: 08/31/2023]
Abstract
Measuring the mechanical nonlinear properties of the cornea remains challenging due to the lack of consensus in the methodology and in the models that effectively predict its behaviour. This study proposed developing a procedure to reconstruct nonlinear fourth-order elastic properties of the cornea based on a mathematical model derived from the theory of Hamilton et al. and using the torsional wave elastography (TWE) technique. In order to validate its diagnostic capability of simulated pathological conditions, two different groups were studied, non-treated cornea samples (n=7), and ammonium hydroxide ([Formula: see text]) treated samples (n=7). All the samples were measured in-plane by a torsional wave device by increasing IOP from 5 to 25 mmHg with 5 mmHg steps. The results show a nonlinear variation of the shear wave speed with the IOP, with higher values for higher IOPs. Moreover, the shear wave speed values of the control group were higher than those of the treated group. The study also revealed significant differences between the control and treated groups for the Lamé parameter [Formula: see text] (25.9-6.52 kPa), third-order elastic constant A (215.09-44.85 kPa), and fourth-order elastic constant D (523.5-129.63 kPa), with p-values of 0.010, 0.024, and 0.032, respectively. These findings demonstrate that the proposed procedure can distinguish between healthy and damaged corneas, making it a promising technique for detecting diseases associated with IOP alteration, such as corneal burns, glaucoma, or ocular hypertension.
Collapse
Affiliation(s)
- Antonio Callejas
- Ultrasonics Lab (TEP-959), Department of Structural Mechanics, University of Granada, Granada, 18071, Spain.
- TEC-12 group, Instituto de Investigación Biosanitaria, ibs.Granada, 18001, Spain.
| | - Inas Faris
- Ultrasonics Lab (TEP-959), Department of Structural Mechanics, University of Granada, Granada, 18071, Spain
- TEC-12 group, Instituto de Investigación Biosanitaria, ibs.Granada, 18001, Spain
| | - Jorge Torres
- Ultrasonics Lab (TEP-959), Department of Structural Mechanics, University of Granada, Granada, 18071, Spain
- TEC-12 group, Instituto de Investigación Biosanitaria, ibs.Granada, 18001, Spain
| | - Guillermo Rus
- Ultrasonics Lab (TEP-959), Department of Structural Mechanics, University of Granada, Granada, 18071, Spain
- TEC-12 group, Instituto de Investigación Biosanitaria, ibs.Granada, 18001, Spain
- Excellence Research Unit "ModelingNature" (MNat), Universidad de Granada, Granada, 18001, Spain
| |
Collapse
|
9
|
Xu GX, Chen PY, Huang CC. Visualization of Human Hand Tendon Mechanical Anisotropy in 3-D Using High- Frequency Dual-Direction Shear Wave Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:1457-1469. [PMID: 37669211 DOI: 10.1109/tuffc.2023.3312273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
High-resolution ultrasound shear wave elastography has been used to determine the mechanical properties of hand tendons. However, because of fiber orientation, tendons have anisotropic properties; this results in differences in shear wave velocity (SWV) between ultrasound scanning cross sections. Rotating transducers can be used to achieve full-angle scanning. However, this technique is inconvenient to implement in clinical settings. Therefore, in this study, high-frequency ultrasound (HFUS) dual-direction shear wave imaging (DDSWI) based on two external vibrators was used to create both transverse and longitudinal shear waves in the human flexor carpi radialis tendon. SWV maps from two directions were obtained using 40-MHz ultrafast imaging at the same scanning cross section. The anisotropic map was calculated pixel by pixel, and 3-D information was obtained using mechanical scanning. A standard phantom experiment was then conducted to verify the performance of the proposed HFUS DDSWI technique. Human studies were also conducted where volunteers assumed three hand postures: relaxed (Rel), full fist (FF), and tabletop (TT). The experimental results indicated that both the transverse and longitudinal SWVs increased due to tendon flexion. The transverse SWV surpassed the longitudinal SWV in all cases. The average anisotropic ratios for the Rel, FF, and TT hand postures were 1.78, 2.01, and 2.21, respectively. Both the transverse and the longitudinal SWVs were higher at the central region of the tendon than at the surrounding region. In conclusion, the proposed HFUS DDSWI technique is a high-resolution imaging technique capable of characterizing the anisotropic properties of tendons in clinical applications.
Collapse
|
10
|
Li R, Qian X, Gong C, Zhang J, Liu Y, Xu B, Humayun MS, Zhou Q. Simultaneous Assessment of the Whole Eye Biomechanics Using Ultrasonic Elastography. IEEE Trans Biomed Eng 2023; 70:1310-1317. [PMID: 36260593 PMCID: PMC10365545 DOI: 10.1109/tbme.2022.3215498] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Current elastography techniques in the field of ophthalmology usually target one specific tissue, such as the cornea or the sclera. However, the eye is an inter-related organ, and some ocular diseases can alter the biomechanical properties of multiple anatomical structures. Hence, there is a need to develop an imaging tool that can non-invasively, quantitatively, and accurately characterize dynamic changes among these biomechanical properties. METHODS A high resolution ultrasound elastography system was developed to achieve this goal. The efficacy and accuracy of the system was first validated on tissue-mimicking phantoms while mechanical testing measurements served as the gold standard. Next, an in vivo elevated intraocular pressure (IOP) model was established in rabbits to further test our system. In particular, elastography measurements were obtained at 5 IOP levels, ranging from 10 mmHg to 30 mmHg in 5 mmHg increments. Spatial-temporal maps of the multiple ocular tissues (cornea, lens, iris, optic nerve head, and peripapillary sclera) were obtained. RESULTS The spatial-temporal maps were acquired simultaneously for the ocular tissues at the 5 different IOP levels. The statistical analysis of the elastic wave speed was presented for ocular tissues. Finally, the mapping for the elastic wave speed of each ocular component was acquired at each IOP level. CONCLUSION Our elastography system can concurrently assess the biomechanical properties of multiple ocular structures and detect changes in biomechanical properties associated with changes in IOP. SIGNIFICANCE This system provides a novel tool to measure and quantify the biomechanical properties of the whole eye.
Collapse
|
11
|
Rayes A, Zhang J, Lu G, Qian X, Schroff ST, Ryu R, Jiang X, Zhou Q. Estimating Thrombus Elasticity by Shear Wave Elastography to Evaluate Ultrasound Thrombolysis for Thrombus With Different Stiffness. IEEE Trans Biomed Eng 2023; 70:135-143. [PMID: 35759590 PMCID: PMC10370280 DOI: 10.1109/tbme.2022.3186586] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE There is uncertainty about deep vein thrombosis standard treatment as thrombus stiffness alters each case. Here, we investigated thrombus' stiffness of different compositions and ages using shear wave elastography (SWE). We then studied the effectiveness of ultrasound-thrombolysis on different thrombus compositions. METHODS Shear waves generated through mechanical shaker and traveled along thrombus of different hematocrit (HCT) levels, whereas 18-MHz ultrasound array used to detect wave propagation. Thrombus' stiffness was identified by the shear wave speed (SWS). In thrombolysis, a 3.2 MHz focused transducer was applied to different thrombus compositions using different powers. The thrombolysis rate was defined as the percentage of weight loss. RESULTS The estimated average SWS of 20%, 40%, and 60% HCT thrombus were 0.75 m/s, 0.44 m/s, and 0.32 m/s, respectively. For Thrombolysis, the percentage weight loss at 8 MPa Negative pressure for the same HCT groups were 23.1%, 35.29%, and 39.66% respectively. CONCLUSION SWS is inversely related to HCT level and positively related to thrombus age. High HCT thrombus had higher weight loss compared to low HCT. However, the difference between 20% and 40% HCT was more significant than between 40% and 60% HCT in both studies. Our results suggest that thrombus with higher SWS require more power to achieve the same thrombolysis rate as thrombus with lower SWS. SIGNIFICANCE Characterizing thrombus elastic property undergoing thrombolysis enables evaluation of ultrasound efficacy for fractionating thrombus and reveals the appropriate ultrasound parameters selection to achieve a certain thrombolysis rate in the case of a specific thrombus stiffness.
Collapse
Affiliation(s)
- Adnan Rayes
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Junhang Zhang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Gengxi Lu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Xuejun Qian
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Stuart T. Schroff
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | - Robert Ryu
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | - Xiaoning Jiang
- department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Qifa Zhou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
12
|
Zhang J, Murgoitio-Esandi J, Qian X, Li R, Gong C, Nankali A, Hao L, Xu BY, Kirk Shung K, Oberai A, Zhou Q. High-Frequency Ultrasound Elastography to Assess the Nonlinear Elastic Properties of the Cornea and Ciliary Body. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:2621-2629. [PMID: 35820015 PMCID: PMC9547080 DOI: 10.1109/tuffc.2022.3190400] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Mechanical properties of the anterior anatomical structures of the eye, such as the cornea and ciliary body, play a key role in the ocular function and homeostasis. However, measuring the biomechanical properties of the anterior ocular structures, especially deeper structures, such as the ciliary body, remains a challenge due to the lack of high-resolution imaging tools. Herein, we implement a mechanical shaker-based high-frequency ultrasound elastography technique that can track the induced elastic wave propagation to assess the linear and nonlinear elastic properties of anterior ocular structures. The findings of this study advance our understanding of the role of anterior ocular structures in the pathogenesis of different ocular disorders, such as glaucoma.
Collapse
|
13
|
Dong Z, Kim J, Huang C, Lowerison MR, Lok UW, Chen S, Song P. Three-Dimensional Shear Wave Elastography Using a 2D Row Column Addressing (RCA) Array. BME FRONTIERS 2022; 2022:9879632. [PMID: 37850186 PMCID: PMC10521701 DOI: 10.34133/2022/9879632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 05/18/2022] [Indexed: 10/19/2023] Open
Abstract
Objective. To develop a 3D shear wave elastography (SWE) technique using a 2D row column addressing (RCA) array, with either external vibration or acoustic radiation force (ARF) as the shear wave source. Impact Statement. The proposed method paves the way for clinical translation of 3D SWE based on the 2D RCA, providing a low-cost and high volume rate solution that is compatible with existing clinical systems. Introduction. SWE is an established ultrasound imaging modality that provides a direct and quantitative assessment of tissue stiffness, which is significant for a wide range of clinical applications including cancer and liver fibrosis. SWE requires high frame rate imaging for robust shear wave tracking. Due to the technical challenges associated with high volume rate imaging in 3D, current SWE techniques are typically confined to 2D. Advancing SWE from 2D to 3D is significant because of the heterogeneous nature of tissue, which demands 3D imaging for accurate and comprehensive evaluation. Methods. A 3D SWE method using a RCA array was developed with a volume rate up to 2000 Hz. The performance of the proposed method was systematically evaluated on tissue-mimicking elasticity phantoms and in an in vivo case study. Results. 3D shear wave motion induced by either external vibration or ARF was successfully detected with the proposed method. Robust 3D shear wave speed maps were reconstructed for phantoms and in vivo. Conclusion. The high volume rate 3D imaging provided by the 2D RCA array provides a robust and practical solution for 3D SWE with a clear pathway for future clinical translation.
Collapse
Affiliation(s)
- Zhijie Dong
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jihun Kim
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Division of ICT Convergence Engineering/Major in Electronic Engineering, Kangnam University, Republic of Korea
| | - Chengwu Huang
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Matthew R. Lowerison
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - U-Wai Lok
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Shigao Chen
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Pengfei Song
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
14
|
Clinical Value and Imaging Features of Bedside High-Frequency Ultrasound Imaging in the Diagnosis of Neonatal Pneumonia. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:4805300. [PMID: 35833070 PMCID: PMC9246586 DOI: 10.1155/2022/4805300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 11/17/2022]
Abstract
The aim is to solve the problem of the urgent need of a nonradiation, noninvasive, and simple-to-operate diagnostic method for neonatal pneumonia that can indicate the severity of the disease and dynamically monitor the outcome of the disease. The authors propose a bedside high-frequency ultrasound technique based on methods for evaluation in the detection and treatment of neonatal pneumonia. The results obtained are as follows: the sensitivity of neonatal lung ultrasound in the diagnosis of neonatal pneumonia was 96.6%, the specificity was 93.3%, the positive predictive value was 93.5%, and the negative predictive value was 96.5%. The sensitivity of chest X-ray in the diagnosis of neonatal pneumonia was 93.3%. Compared with the lung ultrasound and chest X-ray in the diagnosis of neonatal pneumonia, the two had a good correlation. The neonatal respiratory score was positively correlated with the lung ultrasound score, and the higher the lung ultrasound score, the more severe the disease. The score decreased by 35% after 3 days of treatment and 68% after 7 days of treatment, indicating that the lung high-frequency ultrasound score can be very effective in characterizing the treatment situation. It has been demonstrated that the lung ultrasound can be used as an imaging method for the diagnosis of neonatal pneumonia. The higher the lung ultrasound score, the more severe the disease, and the lung ultrasound score was positively correlated with the disease severity. With dynamic monitoring of the lung ultrasound and the gradual improvement of clinical symptoms after treatment, the lung ultrasound score gradually decreased; therefore, the lung ultrasound can be used for re-examination of neonatal pneumonia to evaluate the treatment effect and guidance.
Collapse
|
15
|
Tsai WY, Hsueh YY, Chen PY, Hung KS, Huang CC. High-Frequency Ultrasound Elastography for Assessing Elastic Properties of Skin and Scars. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1871-1880. [PMID: 35201987 DOI: 10.1109/tuffc.2022.3154235] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Scars are a type of fibrous tissue that typically forms during the wound healing process to replace damaged skin. Because studies have indicated a high correlation between scar stiffness and clinical symptoms, assessing the mechanical properties of scar is crucial for determining an appropriate treatment strategy and evaluating the treatment's efficacy. Shear wave elastography (SWE) is a common technique for measuring tissue elasticity. Because scars are typically a few millimeters thick, they are thin-layer tissues, and therefore, the dispersion effect must be considered to accurately estimate their elasticity. In this study, high-frequency ultrasound (HFUS) elastography was proposed for estimating the elastic properties of scars by using the Lamb wave model (LWM). An external vibrator was used to generate elastic waves in scar tissue and skin, and the propagation of the elastic waves was tracked through 40-MHz ultrafast ultrasound imaging. The elasticity was estimated through shear wave models (SWMs) and LWMs. The effectiveness of using HFUS elastography was verified through phantom and human studies. The phantom experiments involved bulk phantoms with gelatin concentrations of 7% and 15% and 2-4-mm-thick thin-layer 15% gelatin phantoms. The studies of three patients with eight cases of scarring were also conducted. The phantom experimental results demonstrated that the elasticity estimation biases for the thin-layer mediums were approximately -36% to -50% and 3% to -9% in the SWMs and LWMs, respectively, and the estimated shear moduli were 12.8 ± 5.4 kPa and 74.8 ± 26.8 kPa for healthy skin and scar tissue, respectively. All the results demonstrated that the proposed HFUS elastography has a great potential for improving the accuracy of elasticity estimations in clinical dermatological diagnoses.
Collapse
|
16
|
Torres J, H Faris I, Callejas A, Reyes-Ortega F, Melchor J, Gonzalez-Andrades M, Rus G. Torsional wave elastography to assess the mechanical properties of the cornea. Sci Rep 2022; 12:8354. [PMID: 35589817 PMCID: PMC9120141 DOI: 10.1038/s41598-022-12151-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 05/05/2022] [Indexed: 12/13/2022] Open
Abstract
Corneal mechanical changes are believed to occur before any visible structural alterations observed during routine clinical evaluation. This study proposed developing an elastography technique based on torsional waves (TWE) adapted to the specificities of the cornea. By measuring the displacements in the propagation plane perpendicular to the axis of the emitter, the effect of guided waves in plate-like media was proven negligible. Ex vivo experiments were carried out on porcine corneal samples considering a group of control and one group of alkali burn treatment ([Formula: see text]OH) that modified the mechanical properties. Phase speed was recovered as a function of intraocular pressure (IOP), and a Kelvin-Voigt rheological model was fitted to the dispersion curves to estimate viscoelastic parameters. A comparison with uniaxial tensile testing with thin-walled assumptions was also performed. Both shear elasticity and viscosity correlated positively with IOP, being the elasticity lower and the viscosity higher for the treated group. The viscoelastic parameters ranged from 21.33 to 63.17 kPa, and from 2.82 to 5.30 Pa s, for shear elasticity and viscosity, respectively. As far as the authors know, no other investigations have studied this mechanical plane under low strain ratios, typical of dynamic elastography in corneal tissue. TWE reflected mechanical properties changes after treatment, showing a high potential for clinical diagnosis due to its rapid performance time and paving the way for future in vivo studies.
Collapse
Affiliation(s)
- Jorge Torres
- Ultrasonics Lab (TEP-959), Department of Structural Mechanics, University of Granada, Granada, Spain
- Biomechanics Group (TEC-12), Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Spain
| | - Inas H Faris
- Ultrasonics Lab (TEP-959), Department of Structural Mechanics, University of Granada, Granada, Spain.
- Biomechanics Group (TEC-12), Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Spain.
| | - Antonio Callejas
- Ultrasonics Lab (TEP-959), Department of Structural Mechanics, University of Granada, Granada, Spain
- Biomechanics Group (TEC-12), Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Spain
| | - Felisa Reyes-Ortega
- Department of Ophthalmology, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Juan Melchor
- Biomechanics Group (TEC-12), Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Spain
- Excellence Research Unit "ModelingNature" (MNat), Universidad de Granada, Granada, Spain
- Department of Statistics and Operations Research, University of Granada, Granada, Spain
| | - Miguel Gonzalez-Andrades
- Department of Ophthalmology, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain.
| | - Guillermo Rus
- Ultrasonics Lab (TEP-959), Department of Structural Mechanics, University of Granada, Granada, Spain
- Biomechanics Group (TEC-12), Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Spain
- Excellence Research Unit "ModelingNature" (MNat), Universidad de Granada, Granada, Spain
| |
Collapse
|
17
|
Lu JY, Lee PY, Huang CC. Improving Image Quality for Single-Angle Plane Wave Ultrasound Imaging With Convolutional Neural Network Beamformer. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1326-1336. [PMID: 35175918 DOI: 10.1109/tuffc.2022.3152689] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ultrafast ultrasound imaging based on plane wave (PW) compounding has been proposed for use in various clinical and preclinical applications, including shear wave imaging and super resolution blood flow imaging. Because the image quality afforded by PW imaging is highly dependent on the number of PW angles used for compounding, a tradeoff between image quality and frame rate occurs. In the present study, a convolutional neural network (CNN) beamformer based on a combination of the GoogLeNet and U-Net architectures was developed to replace the conventional delay-and-sum (DAS) algorithm to obtain high-quality images at a high frame rate. RF channel data are used as the inputs for the CNN beamformers. The outputs are in-phase and quadrature data. Simulations and phantom experiments revealed that the images predicted by the CNN beamformers had higher resolution and contrast than those predicted by conventional single-angle PW imaging with the DAS approach. In in vivo studies, the contrast-to-noise ratios (CNRs) of carotid artery images predicted by the CNN beamformers using three or five PWs as ground truths were approximately 12 dB in the transverse view, considerably higher than the CNR obtained using the DAS beamformer (3.9 dB). Most tissue speckle information was retained in the in vivo images produced by the CNN beamformers. In conclusion, only a single PW at 0° was fired, but the quality of the output image was proximal to that of an image generated using three or five PW angles. In other words, the quality-frame rate tradeoff of coherence compounding could be mitigated through the use of the proposed CNN for beamforming.
Collapse
|
18
|
Xu GX, Chen PY, Jiang X, Huang CC. Visualization of Human Skeletal Muscle Anisotropy by Using Dual-Direction Shear Wave Imaging. IEEE Trans Biomed Eng 2022; 69:2745-2754. [PMID: 35192460 DOI: 10.1109/tbme.2022.3152896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Ultrasound (US) shear wave elasticity imaging (SWEI) is a mature technique for diagnosing the elasticity of isotropic tissues. However, the elasticity of anisotropic tissues, such as muscle and tendon, cannot be diagnosed correctly using SWEI because the shear wave velocity (SWV) varies with tissue fiber orientations. Recently, SWEI has been studied for measuring the anisotropic properties of muscles by rotating the transducer; however, this is difficult for clinical practice. METHODS In this study, a novel dual-direction shear wave imaging (DDSWI) technique was proposed for visualizing the mechanical anisotropy of muscles without rotation. Longitudinal and transverse shear waves were created by a specially designed external vibrator and supersonic pushing beam, respectively; the SWVs were then tracked using ultrafast US imaging. Subsequently, the SWV maps of two directions were obtained at the same scanning cross section, and the mechanical anisotropy was represented as the ratio between them at each pixel. RESULTS The performance of DDSWI was verified using a standard phantom, and human experiments were performed on the gastrocnemius and biceps brachii. Experimental results of phantom revealed DDSWI exhibited a high precision of <0.81 % and a low bias of <3.88 % in SWV measurements. The distribution of anisotropic properties in muscle was visualized with the anisotropic ratios of 1.54 and 2.27 for the gastrocnemius and biceps brachii, respectively. CONCLUSION The results highlight the potential of this novel anisotropic imaging in clinical applications because the conditions of musculoskeletal fiber orientation can be easily and accurately evaluated in real time by DDSWI.
Collapse
|
19
|
Ex Vivo Evaluation of Mechanical Anisotropic Tissues with High-Frequency Ultrasound Shear Wave Elastography. SENSORS 2022; 22:s22030978. [PMID: 35161728 PMCID: PMC8838528 DOI: 10.3390/s22030978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 01/01/2023]
Abstract
The use of imaging devices to assess directional mechanics of tissues is highly desirable. This is because the directional mechanics depend on fiber orientation, and altered directional mechanics are closely related to the pathological status of tissues. However, measuring directional mechanics in tissues with high-stiffness is challenging due to the difficulty of generating localized displacement in these tissues using acoustic radiation force, a general method for generating displacement in ultrasound-based elastography. In addition, common ultrasound probes do not provide rotational function, which makes the measurement of directional mechanics inaccurate and unreliable. Therefore, we developed a high-frequency ultrasound mechanical wave elastography system that can accommodate a wide range of tissue stiffness and is also equipped with a motorized rotation stage for precise imaging of directional mechanics. A mechanical shaker was applied to the elastography system to measure tissues with high-stiffness. Phantom and ex vivo experiments were performed. In the phantom experiments, the lateral and axial resolution of the system were determined to be 144 μm and 168 μm, respectively. In the ex vivo experiments, we used swine heart and cartilage, both of which are considered stiff. The elastography system allows us to acquire the directional mechanics with high angular resolution in the heart and cartilage. The results demonstrate that the developed elastography system is capable of imaging a wide range of tissues and has high angular resolution. Therefore, this system might be useful for the diagnostics of mechanically anisotropic tissues via ex vivo tests.
Collapse
|