1
|
Tang Y, Wang N, Dong Z, Lowerison M, Del Aguila A, Johnston N, Vu T, Ma C, Xu Y, Yang W, Song P, Yao J. Non-Invasive Deep-Brain Imaging With 3D Integrated Photoacoustic Tomography and Ultrasound Localization Microscopy (3D-PAULM). IEEE TRANSACTIONS ON MEDICAL IMAGING 2025; 44:994-1004. [PMID: 39383084 PMCID: PMC11892115 DOI: 10.1109/tmi.2024.3477317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Photoacoustic computed tomography (PACT) is a proven technology for imaging hemodynamics in deep brain of small animal models. PACT is inherently compatible with ultrasound (US) imaging, providing complementary contrast mechanisms. While PACT can quantify the brain's oxygen saturation of hemoglobin (sO , US imaging can probe the blood flow based on the Doppler effect. Further, by tracking gas-filled microbubbles, ultrasound localization microscopy (ULM) can map the blood flow velocity with sub-diffraction spatial resolution. In this work, we present a 3D deep-brain imaging system that seamlessly integrates PACT and ULM into a single device, 3D-PAULM. Using a low ultrasound frequency of 4 MHz, 3D-PAULM is capable of imaging the brain hemodynamic functions with intact scalp and skull in a totally non-invasive manner. Using 3D-PAULM, we studied the mouse brain functions with ischemic stroke. Multi-spectral PACT, US B-mode imaging, microbubble-enhanced power Doppler (PD), and ULM were performed on the same mouse brain with intrinsic image co-registration. From the multi-modality measurements, we further quantified blood perfusion, sO2, vessel density, and flow velocity of the mouse brain, showing stroke-induced ischemia, hypoxia, and reduced blood flow. We expect that 3D-PAULM can find broad applications in studying deep brain functions on small animal models.
Collapse
|
2
|
Wang X, Wu D, Xie Y, Bi Y, Xu Y, Zhang J, Luo Q, Jiang H. Enhancing image reconstruction in photoacoustic imaging using spatial coherence mean-to-standard-deviation factor beamforming. BIOMEDICAL OPTICS EXPRESS 2024; 15:6682-6696. [PMID: 39679409 PMCID: PMC11640575 DOI: 10.1364/boe.542710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 12/17/2024]
Abstract
In photoacoustic imaging (PAI), a delay-and-sum (DAS) beamforming reconstruction algorithm is widely used due to its ease of implementation and fast execution. However, it is plagued by issues such as high sidelobe artifacts and low contrast, that significantly hinder the ability to differentiate various structures in the reconstructed images. In this study, we propose an adaptive weighting factor called spatial coherence mean-to-standard deviation factor (scMSF) in DAS, which is extended into the spatial frequency domain. By combining scMSF with a minimum variance (MV) algorithm, the clutter level is reduced, thereby enhancing the image contrast. Quantitative results obtained from the phantom experiment demonstrate that our proposed method improves contrast ratio (CR) by 30.15 dB and signal-to-noise ratio (SNR) by 8.62 dB compared to DAS while also improving full-width at half maxima (FWHM) by 56%. From the in-vivo experiments, the scMSF-based reconstruction image exhibits a higher generalized contrast-to-noise ratio (gCNR), indicating improved target detectability with a 25.6% enhancement over DAS and a 22.5% improvement over MV.
Collapse
Affiliation(s)
- Xinsheng Wang
- School of Optoelectronic, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Dan Wu
- School of Optoelectronic, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Yonghua Xie
- School of Optoelectronic, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Yuanyuan Bi
- School of Optoelectronic, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Yunqing Xu
- School of Optoelectronic, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Jing Zhang
- School of Optoelectronic, Chongqing University of Posts and Telecommunications, Chongqing, China
- Department of Ultrasound Imaging, The Fifth People's Hospital of Chengdu, Chengdu, China
| | - Qing Luo
- School of Optoelectronic, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Huabei Jiang
- School of Optoelectronic, Chongqing University of Posts and Telecommunications, Chongqing, China
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
3
|
Takamiya S, Malvea A, Ishaque AH, Pedro K, Fehlings MG. Advances in imaging modalities for spinal tumors. Neurooncol Adv 2024; 6:iii13-iii27. [PMID: 39430391 PMCID: PMC11485884 DOI: 10.1093/noajnl/vdae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Abstract
The spinal cord occupies a narrow region and is tightly surrounded by osseous and ligamentous structures; spinal tumors can damage this structure and deprive patients of their ability to independently perform activities of daily living. Hence, imaging is vital for the prompt detection and accurate diagnosis of spinal tumors, as well as determining the optimal treatment and follow-up plan. However, many clinicians may not be familiar with the imaging characteristics of spinal tumors due to their rarity. In addition, spinal surgeons might not fully utilize imaging for the surgical planning and management of spinal tumors because of the complex heterogeneity of these lesions. In the present review, we focus on conventional and advanced spinal tumor imaging techniques. These imaging modalities include computed tomography, positron emission tomography, digital subtraction angiography, conventional and microstructural magnetic resonance imaging, and high-resolution ultrasound. We discuss the advantages and disadvantages of conventional and emerging imaging modalities, followed by an examination of cutting-edge medical technology to complement current needs in the field of spinal tumors. Moreover, machine learning and artificial intelligence are anticipated to impact the application of spinal imaging techniques. Through this review, we discuss the importance of conventional and advanced spinal tumor imaging, and the opportunity to combine advanced technologies with conventional modalities to better manage patients with these lesions.
Collapse
Affiliation(s)
- Soichiro Takamiya
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Anahita Malvea
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Abdullah H Ishaque
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Karlo Pedro
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Michael G Fehlings
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Li X, Cheng X, Xu Y, Jiao Y, Huang W, Cui Y, Shen J, Shao W. Multi-Frequency Ultrasound Imaging Fusion Method Based on Wavelet Transform for Guided Screw Insertion. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:395-407. [PMID: 38157462 DOI: 10.1109/tuffc.2023.3348100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Intraosseous ultrasound imaging can serve as a guiding tool for the placement of pedicle screws during spinal fusion surgery; thus far, there has been limited scholarly exploration of methods for intraosseous multifrequency ultrasound imaging, which can achieve simultaneous high resolution and deep penetration. The proposed method introduced a dynamic fusion strategy grounded in wavelet transformation for multifrequency image decomposition. This strategy accomplished the effective amalgamation of high-frequency ultrasound images and low-frequency ultrasound images, enabling the obtaining of fused images with enhanced details and better overall image quality. A novel near-field effect elimination method was also proposed to improve the quality of ultrasound imaging in the near-field region. Experimental evaluations were conducted on isolated bovine circle bone and sheep spine with pedicle screw tracks. The fusion images are capable of effectively detecting areas within the pedicle screw track that have either ruptured or are in close proximity to rupture, even measuring the size of breaches. Evaluation criteria, including information entropy (IE), spatial frequency (SF), average gradient (AG), mutual information (MI), structural similarity index (SSIM), and edge information-based image fusion quality metric (QAB/F), were employed to assess the fusion performance; moreover, the influence of mother wavelet function selection and decomposition levels on computational complexity and fusion image quality was thoroughly discussed. The proposed method exhibited promising potential for intraosseous imaging navigation, which can aid in accurate diagnosis, treatment planning, and monitoring in fields such as orthopedics, surgery, and interventional procedures.
Collapse
|
5
|
Riksen JJM, Nikolaev AV, van Soest G. Photoacoustic imaging on its way toward clinical utility: a tutorial review focusing on practical application in medicine. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:121205. [PMID: 37304059 PMCID: PMC10249868 DOI: 10.1117/1.jbo.28.12.121205] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023]
Abstract
Significance Photoacoustic imaging (PAI) enables the visualization of optical contrast with ultrasonic imaging. It is a field of intense research, with great promise for clinical application. Understanding the principles of PAI is important for engineering research and image interpretation. Aim In this tutorial review, we lay out the imaging physics, instrumentation requirements, standardization, and some practical examples for (junior) researchers, who have an interest in developing PAI systems and applications for clinical translation or applying PAI in clinical research. Approach We discuss PAI principles and implementation in a shared context, emphasizing technical solutions that are amenable to broad clinical deployment, considering factors such as robustness, mobility, and cost in addition to image quality and quantification. Results Photoacoustics, capitalizing on endogenous contrast or administered contrast agents that are approved for human use, yields highly informative images in clinical settings, which can support diagnosis and interventions in the future. Conclusion PAI offers unique image contrast that has been demonstrated in a broad set of clinical scenarios. The transition of PAI from a "nice-to-have" to a "need-to-have" modality will require dedicated clinical studies that evaluate therapeutic decision-making based on PAI and consideration of the actual value for patients and clinicians, compared with the associated cost.
Collapse
Affiliation(s)
- Jonas J. M. Riksen
- Erasmus University Medical Center, Department of Cardiology, Rotterdam, The Netherlands
| | - Anton V. Nikolaev
- Erasmus University Medical Center, Department of Cardiology, Rotterdam, The Netherlands
| | - Gijs van Soest
- Erasmus University Medical Center, Department of Cardiology, Rotterdam, The Netherlands
| |
Collapse
|
6
|
Leblond L, Godio-Raboutet Y, Tomi F, Glard Y, La Greca R, Clement T, Evin M. Sliding on cortical shell: Biomechanical characterization of the vertebral cannulation for pedicle screw insertion. Clin Biomech (Bristol, Avon) 2023; 110:106102. [PMID: 37769380 DOI: 10.1016/j.clinbiomech.2023.106102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 09/30/2023]
Abstract
BACKGROUND Pedicular screws pull-out has been well studied unlike their insertion. A need for characterizing cannulation before pedicle screw implantation is highlighted in literature and offers promising prospects for future intra-operation instrumentation. A reliable cannulation protocol for ex-vivo testing in swine and cadaver vertebrae is presented in this work to predict extra pedicular perforation. METHODS An MTS Acumen 3 A/T electrodynamic device, with a tri-axis 3 kN Kistler load cell mounted on a surgical tool was used to reproduce surgeon's gesture by moving at a constant rotational speed of 10°/mm and performing a three-section test. Perforation of the pedicle's cortical shell was planned through a design of experiment on the surgical tool angle at the entry point. Samples were scanned before and after mechanical tests and reproducibility of the protocol was tested on synthetic foam. Computation of the angle between cannulation tool and pedicle cortical shell was performed as well as cannulation coefficient of each perforation section. FINDINGS A total of 68 pedicles were tested: 19 perforated and 21 non-perforated human pedicles, 17 perforated and 16 non-perforated swine pedicles. The reproducibility of the protocol for cannulation coefficient computation resulted in an intraclass correlation coefficient of 0.979. Cannulation coefficients results presented variability within spinal levels as well as between swine and human model. Correlation between bone density and cannulation coefficient was found significant (p < 0.005). Torque measurement was found to be the best predictor of perforation. Threshold of angle for prediction of perforation was found to be 21.7°. INTERPRETATION Characterizing pedicle cannulation enables to predict extra pedicular perforation. Influence of bone mineral density and patient-specific morphology on pedicle cannulation has been highlighted together with a comparison of swine and cadaver models.
Collapse
Affiliation(s)
| | | | - Florent Tomi
- Aix Marseille Univ. Univ Gustave Eiffel, LBA, Marseille, France
| | - Yann Glard
- Department of Paediatric Orthopaedics, Saint Joseph Hospital, Marseille, France
| | | | - Thomas Clement
- Aix Marseille Univ. Univ Gustave Eiffel, LBA, Marseille, France
| | - Morgane Evin
- Aix Marseille Univ. Univ Gustave Eiffel, LBA, Marseille, France.
| |
Collapse
|
7
|
Choi JH, Lee YS, Hwang KT, Jo YH, Shin HS, Kim J, Park KC. Usefulness of a drill stopper to prevent iatrogenic soft tissue injury in orthopedic surgery. Heliyon 2023; 9:e20772. [PMID: 37860561 PMCID: PMC10582358 DOI: 10.1016/j.heliyon.2023.e20772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023] Open
Abstract
Objective This study introduces a novel technique utilizing a drill stopper to limit drill penetration depth and to prevent iatrogenic injuries, specifically neurovascular damage, in orthopedic surgeries. Orthopedic surgeries frequently involve the use of drills, which are essential tools for various procedures. However, improper handling of drills can lead to iatrogenic soft tissue injuries, causing severe consequences such as permanent disability or life-threatening complications. To address this issue, we propose the use of a drill stopper as a safeguard to prevent excessive drill penetration and reduce the risk of soft tissue damage during surgery. Materials and Methods The study involved 32 orthopedic surgeons, half of whom were experienced and the other half inexperienced. Synthetic femur bone models (Synbone) were used for drilling exercises, employing four configurations: a sharp drill bit without a stopper (SF, Sharp Free), a sharp drill bit with a stopper (SS, Sharp Stopper), a blunt drill bit without a stopper (BF, Blunt Free), and a blunt drill bit with a stopper (BS, Blunt Stopper). Each participant conducted three trials for each configuration, and the penetration depth was measured after each trial. Results For experienced surgeons, the average penetration depths were 3.83 (±1.826)mm for SF, 11.02 (±3.461)mm for BF, 2.88 (±0.334)mm for SS, and 2.75 (±0.601)mm for BS. In contrast, inexperienced surgeons had average depths of 8.52 (±4.608)mm for SF, 18.75 (±4.305)mm for BF, 2.96 (±0.683)mm for SS, and 2.83 (±0.724)mm for BS. Conclusion The use of a drill stopper was highly effective in controlling drill penetration depth and preventing iatrogenic injuries during orthopedic surgeries. We recommend its incorporation, particularly when using a blunt drill bit or when an inexperienced surgeon operates in an anatomically unfamiliar area. Using the drill stopper, the risk of severe injuries from excessive drill penetration can be minimized, leading to improved patient safety and better surgical outcomes.
Collapse
Affiliation(s)
- Jung Hwan Choi
- Department of Orthopaedic Surgery, Hanyang University Guri Hospital, Guri, Republic of Korea
| | - Young Seok Lee
- Department of Orthopaedic Surgery, Hanyang University Guri Hospital, Guri, Republic of Korea
| | - Kyu-Tae Hwang
- Department of Orthopaedic Surgery, Hanyang University Hospital, Seoul, Republic of Korea
| | - Young-Hoon Jo
- Department of Orthopaedic Surgery, Hanyang University Guri Hospital, Guri, Republic of Korea
| | - Hyun Sik Shin
- Department of Orthopaedic Surgery, Hanyang University Hospital, Seoul, Republic of Korea
| | - Jihwan Kim
- Department of Orthopaedic Surgery, Hanyang University Guri Hospital, Guri, Republic of Korea
| | - Ki-Chul Park
- Department of Orthopaedic Surgery, Hanyang University Guri Hospital, Guri, Republic of Korea
| |
Collapse
|
8
|
Li R, Davoodi A, Cai Y, Niu K, Borghesan G, Cavalcanti N, Massalimova A, Carrillo F, Laux CJ, Farshad M, Fürnstahl P, Poorten EV. Robot-assisted ultrasound reconstruction for spine surgery: from bench-top to pre-clinical study. Int J Comput Assist Radiol Surg 2023; 18:1613-1623. [PMID: 37171662 DOI: 10.1007/s11548-023-02932-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023]
Abstract
PURPOSE Robot-assisted ultrasound (rUS) systems have already been used to provide non-radiative three-dimensional (3D) reconstructions that form the basis for guiding spine surgical procedures. Despite promising studies on this technology, there are few studies that offer insight into the robustness and generality of the approach by verifying performance in various testing scenarios. Therefore, this study aims at providing an assessment of a rUS system, with technical details from experiments starting at the bench-top to the pre-clinical study. METHODS A semi-automatic control strategy was proposed to ensure continuous and smooth robotic scanning. Next, a U-Net-based segmentation approach was developed to automatically process the anatomic features and derive a high-quality 3D US reconstruction. Experiments were conducted on synthetic phantoms and human cadavers to validate the proposed approach. RESULTS Average deviations of scanning force were found to be 2.84±0.45 N on synthetic phantoms and to be 5.64±1.10 N on human cadavers. The anatomic features could be reliably reconstructed at mean accuracy of 1.28±0.87 mm for the synthetic phantoms and of 1.74±0.89 mm for the human cadavers. CONCLUSION The results and experiments demonstrate the feasibility of the proposed system in a pre-clinical setting. This work is complementary to previous work, encouraging further exploration of the potential of this technology in in vivo studies.
Collapse
Affiliation(s)
- Ruixuan Li
- Robot-Assisted Surgery group, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium.
| | - Ayoob Davoodi
- Robot-Assisted Surgery group, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Yuyu Cai
- Robot-Assisted Surgery group, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Kenan Niu
- Robotics and Mechatronics, University of Twente, Enschede, The Netherlands
| | - Gianni Borghesan
- Robot-Assisted Surgery group, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
- Core Lab ROB, Flanders Make, Leuven, Belgium
| | - Nicola Cavalcanti
- Research in Orthopedic Computer Science, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
| | - Aidana Massalimova
- Research in Orthopedic Computer Science, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
| | - Fabio Carrillo
- Research in Orthopedic Computer Science, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
| | - Christoph J Laux
- University Spine Center Zurich, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
| | - Mazda Farshad
- University Spine Center Zurich, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
| | - Philipp Fürnstahl
- Research in Orthopedic Computer Science, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
| | - Emmanuel Vander Poorten
- Robot-Assisted Surgery group, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
John S, Hester S, Basij M, Paul A, Xavierselvan M, Mehrmohammadi M, Mallidi S. Niche preclinical and clinical applications of photoacoustic imaging with endogenous contrast. PHOTOACOUSTICS 2023; 32:100533. [PMID: 37636547 PMCID: PMC10448345 DOI: 10.1016/j.pacs.2023.100533] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/30/2023] [Accepted: 07/14/2023] [Indexed: 08/29/2023]
Abstract
In the past decade, photoacoustic (PA) imaging has attracted a great deal of popularity as an emergent diagnostic technology owing to its successful demonstration in both preclinical and clinical arenas by various academic and industrial research groups. Such steady growth of PA imaging can mainly be attributed to its salient features, including being non-ionizing, cost-effective, easily deployable, and having sufficient axial, lateral, and temporal resolutions for resolving various tissue characteristics and assessing the therapeutic efficacy. In addition, PA imaging can easily be integrated with the ultrasound imaging systems, the combination of which confers the ability to co-register and cross-reference various features in the structural, functional, and molecular imaging regimes. PA imaging relies on either an endogenous source of contrast (e.g., hemoglobin) or those of an exogenous nature such as nano-sized tunable optical absorbers or dyes that may boost imaging contrast beyond that provided by the endogenous sources. In this review, we discuss the applications of PA imaging with endogenous contrast as they pertain to clinically relevant niches, including tissue characterization, cancer diagnostics/therapies (termed as theranostics), cardiovascular applications, and surgical applications. We believe that PA imaging's role as a facile indicator of several disease-relevant states will continue to expand and evolve as it is adopted by an increasing number of research laboratories and clinics worldwide.
Collapse
Affiliation(s)
- Samuel John
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Scott Hester
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Maryam Basij
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Avijit Paul
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | | | - Mohammad Mehrmohammadi
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Wilmot Cancer Institute, Rochester, NY, USA
| | - Srivalleesha Mallidi
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
10
|
Zhang J, Wiacek A, Feng Z, Ding K, Lediju Bell MA. Flexible array transducer for photoacoustic-guided interventions: phantom and ex vivo demonstrations. BIOMEDICAL OPTICS EXPRESS 2023; 14:4349-4368. [PMID: 37799699 PMCID: PMC10549736 DOI: 10.1364/boe.491406] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 10/07/2023]
Abstract
Photoacoustic imaging has demonstrated recent promise for surgical guidance, enabling visualization of tool tips during surgical and non-surgical interventions. To receive photoacoustic signals, most conventional transducers are rigid, while a flexible array is able to deform and provide complete contact on surfaces with different geometries. In this work, we present photoacoustic images acquired with a flexible array transducer in multiple concave shapes in phantom and ex vivo bovine liver experiments targeted toward interventional photoacoustic applications. We validate our image reconstruction equations for known sensor geometries with simulated data, and we provide empirical elevation field-of-view, target position, and image quality measurements. The elevation field-of-view was 6.08 mm at a depth of 4 cm and greater than 13 mm at a depth of 5 cm. The target depth agreement with ground truth ranged 98.35-99.69%. The mean lateral and axial target sizes when imaging 600 μm-core-diameter optical fibers inserted within the phantoms ranged 0.98-2.14 mm and 1.61-2.24 mm, respectively. The mean ± one standard deviation of lateral and axial target sizes when surrounded by liver tissue were 1.80±0.48 mm and 2.17±0.24 mm, respectively. Contrast, signal-to-noise, and generalized contrast-to-noise ratios ranged 6.92-24.42 dB, 46.50-67.51 dB, and 0.76-1, respectively, within the elevational field-of-view. Results establish the feasibility of implementing photoacoustic-guided surgery with a flexible array transducer.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Alycen Wiacek
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ziwei Feng
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kai Ding
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Medicine, Baltimore, MD 21287, USA
| | - Muyinatu A. Lediju Bell
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
11
|
Tang Y, Dong Z, Wang N, Del Aguila A, Johnston N, Vu T, Ma C, Xu Y, Yang W, Song P, Yao J. Non-invasive Deep-Brain Imaging with 3D Integrated Photoacoustic Tomography and Ultrasound Localization Microscopy (3D-PAULM). ARXIV 2023:arXiv:2307.14572v1. [PMID: 37547654 PMCID: PMC10402205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Photoacoustic computed tomography (PACT) is a proven technology for imaging hemodynamics in deep brain of small animal models. PACT is inherently compatible with ultrasound (US) imaging, providing complementary contrast mechanisms. While PACT can quantify the brain's oxygen saturation of hemoglobin (sO2), US imaging can probe the blood flow based on the Doppler effect. Further, by tracking gas-filled microbubbles, ultrasound localization microscopy (ULM) can map the blood flow velocity with sub-diffraction spatial resolution. In this work, we present a 3D deep-brain imaging system that seamlessly integrates PACT and ULM into a single device, 3D-PAULM. Using a low ultrasound frequency of 4 MHz, 3D-PAULM is capable of imaging the whole-brain hemodynamic functions with intact scalp and skull in a totally non-invasive manner. Using 3D-PAULM, we studied the mouse brain functions with ischemic stroke. Multi-spectral PACT, US B-mode imaging, microbubble-enhanced power Doppler (PD), and ULM were performed on the same mouse brain with intrinsic image co-registration. From the multi-modality measurements, we future quantified blood perfusion, sO2, vessel density, and flow velocity of the mouse brain, showing stroke-induced ischemia, hypoxia, and reduced blood flow. We expect that 3D-PAULM can find broad applications in studying deep brain functions on small animal models.
Collapse
Affiliation(s)
- Yuqi Tang
- Department of Biomedical Engineering, Duke University, Durham, NC 27703 USA
| | - Zhijie Dong
- Beckman Institute for Advanced Science and Technology and the Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
| | - Nanchao Wang
- Department of Biomedical Engineering, Duke University, Durham, NC 27703 USA
| | - Angela Del Aguila
- Brain Protection Program, Department of Anesthesiology, School of Medicine, Duke University, Durham 27710, NC, USA
| | - Natalie Johnston
- Department of Biomedical Engineering, Duke University, Durham, NC 27703 USA
| | - Tri Vu
- Department of Biomedical Engineering, Duke University, Durham, NC 27703 USA
| | - Chenshuo Ma
- Department of Biomedical Engineering, Duke University, Durham, NC 27703 USA
| | - Yirui Xu
- Department of Biomedical Engineering, Duke University, Durham, NC 27703 USA
| | - Wei Yang
- Brain Protection Program, Department of Anesthesiology, School of Medicine, Duke University, Durham 27710, NC, USA
| | - Pengfei Song
- Beckman Institute for Advanced Science and Technology and the Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC 27703 USA
| |
Collapse
|
12
|
Gonzalez EA, Bell MAL. Photoacoustic Imaging and Characterization of Bone in Medicine: Overview, Applications, and Outlook. Annu Rev Biomed Eng 2023; 25:207-232. [PMID: 37000966 DOI: 10.1146/annurev-bioeng-081622-025405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Photoacoustic techniques have shown promise in identifying molecular changes in bone tissue and visualizing tissue microstructure. This capability represents significant advantages over gold standards (i.e., dual-energy X-ray absorptiometry) for bone evaluation without requiring ionizing radiation. Instead, photoacoustic imaging uses light to penetrate through bone, followed by acoustic pressure generation, resulting in highly sensitive optical absorption contrast in deep biological tissues. This review covers multiple bone-related photoacoustic imaging contributions to clinical applications, spanning bone cancer, joint pathologies, spinal disorders, osteoporosis, bone-related surgical guidance, consolidation monitoring, and transsphenoidal and transcranial imaging. We also present a summary of photoacoustic-based techniques for characterizing biomechanical properties of bone, including temperature, guided waves, spectral parameters, and spectroscopy. We conclude with a future outlook based on the current state of technological developments, recent achievements, and possible new directions.
Collapse
Affiliation(s)
- Eduardo A Gonzalez
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Muyinatu A Lediju Bell
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Electrical and Computer Engineering and Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, USA;
| |
Collapse
|
13
|
Losch MS, Kardux F, Dankelman J, Hendriks BHW. Diffuse reflectance spectroscopy of the spine: improved breach detection with angulated fibers. BIOMEDICAL OPTICS EXPRESS 2023; 14:739-750. [PMID: 36874502 PMCID: PMC9979673 DOI: 10.1364/boe.471725] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 06/18/2023]
Abstract
Accuracy in spinal fusion varies greatly depending on the experience of the physician. Real-time tissue feedback with diffuse reflectance spectroscopy has been shown to provide cortical breach detection using a conventional probe with two parallel fibers. In this study, Monte Carlo simulations and optical phantom experiments were conducted to investigate how angulation of the emitting fiber affects the probed volume to allow for the detection of acute breaches. Difference in intensity magnitude between cancellous and cortical spectra increased with the fiber angle, suggesting that outward angulated fibers are beneficial in acute breach scenarios. Proximity to the cortical bone could be detected best with fibers angulated at θ f = 45 ∘ for impending breaches between θ p = 0 ∘ and θ p = 45 ∘ . An orthopedic surgical device comprising a third fiber perpendicular to the device axis could thus cover the full impending breach range from θ p = 0 ∘ to θ p = 90 ∘ .
Collapse
Affiliation(s)
- Merle S. Losch
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Famke Kardux
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Jenny Dankelman
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Benno H. W. Hendriks
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
- Image Guided Therapy and Ultrasound Devices
and System Department, Philips Research,
Royal Philips NV, Eindhoven, The
Netherlands
| |
Collapse
|
14
|
Wen Y, Guo D, Zhang J, Liu X, Liu T, Li L, Jiang S, Wu D, Jiang H. Clinical photoacoustic/ultrasound dual-modal imaging: Current status and future trends. Front Physiol 2022; 13:1036621. [PMID: 36388111 PMCID: PMC9651137 DOI: 10.3389/fphys.2022.1036621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/05/2022] [Indexed: 08/24/2023] Open
Abstract
Photoacoustic tomography (PAT) is an emerging biomedical imaging modality that combines optical and ultrasonic imaging, providing overlapping fields of view. This hybrid approach allows for a natural integration of PAT and ultrasound (US) imaging in a single platform. Due to the similarities in signal acquisition and processing, the combination of PAT and US imaging creates a new hybrid imaging for novel clinical applications. Over the recent years, particular attention is paid to the development of PAT/US dual-modal systems highlighting mutual benefits in clinical cases, with an aim of substantially improving the specificity and sensitivity for diagnosis of diseases. The demonstrated feasibility and accuracy in these efforts open an avenue of translating PAT/US imaging to practical clinical applications. In this review, the current PAT/US dual-modal imaging systems are discussed in detail, and their promising clinical applications are presented and compared systematically. Finally, this review describes the potential impacts of these combined systems in the coming future.
Collapse
Affiliation(s)
- Yanting Wen
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Dan Guo
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
| | - Jing Zhang
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Xiaotian Liu
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
| | - Ting Liu
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
| | - Lu Li
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
| | - Shixie Jiang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Dan Wu
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Huabei Jiang
- Department of Medical Engineering, University of South Florida, Tampa, FL, United States
| |
Collapse
|
15
|
Liu L, Zhao Y, Li A, Yu X, Xiao X, Liu S, Meng MQH. A photoacoustics-enhanced drilling probe for radiation-free pedicle screw implantation in spinal surgery. Front Bioeng Biotechnol 2022; 10:1000950. [PMID: 36185423 PMCID: PMC9520603 DOI: 10.3389/fbioe.2022.1000950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/15/2022] [Indexed: 12/02/2022] Open
Abstract
This article proposes a novel intra-operative navigation and sensing system that optimizes the functional accuracy of spinal pedicle screw implantation. It does so by incorporating radiation-free and multi-scale macroscopic 3D ultrasound (US) imaging and local tissue-awareness from in situ photoacoustic (PA) sensing at a clinically relevant mesoscopic scale. More specifically, 3D US imaging is employed for online status updates of spinal segment posture to determine the appropriate entry point and coarse drilling path once non-negligible or relative patient motion occurs between inter-vertebral segments in the intra-operative phase. Furthermore, a sophisticated sensor-enhanced drilling probe has been developed to facilitate fine-grained local navigation that integrates a PA endoscopic imaging component for in situ tissue sensing. The PA signals from a sideways direction to differentiate cancellous bone from harder cortical bone, or to indicate weakened osteoporotic bone within the vertebrae. In so doing it prevents cortical breaches, strengthens implant stability, and mitigates iatrogenic injuries of the neighboring artery and nerves. To optimize this PA-enhanced endoscopic probe design, the light absorption spectrum of cortical bone and cancellous bone are measured in vitro, and the associated PA signals are characterized. Ultimately, a pilot study is performed on an ex vivo bovine spine to validate our developed multi-scale navigation and sensing system. The experimental results demonstrate the clinical feasibility, and hence the great potential, for functionally accurate screw implantation in complex spinal stabilization interventions.
Collapse
Affiliation(s)
- Li Liu
- Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
- *Correspondence: Li Liu, ; Siyu Liu,
| | - Yongjian Zhao
- Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ang Li
- Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xianghu Yu
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Xiao Xiao
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Siyu Liu
- School of Science, Nanjing University of Science and Technology, Nanjing, China
- *Correspondence: Li Liu, ; Siyu Liu,
| | - Max Q.-H. Meng
- Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
16
|
Gonzalez EA, Lediju Bell MA. Dual-wavelength photoacoustic atlas method to estimate fractional methylene blue and hemoglobin contents. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-220093GR. [PMID: 36050818 PMCID: PMC9433893 DOI: 10.1117/1.jbo.27.9.096002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
SIGNIFICANCE Methylene blue (MB) is an exogenous contrast agent that has the potential to assist with visualization and penetration challenges in photoacoustic imaging. However, monitoring the local concentration between MB and endogenous chromophores is critical for avoiding unnecessary MB accumulations that could lead to adverse effects such as hemolysis when exposed to increased dose and photodamage when exposed to high laser energies. AIM We developed a modified version of a previously proposed acoustic-based atlas method to estimate concentration levels from a mixture of two photoacoustic-sensitive materials after two laser wavelength emissions. APPROACH Photoacoustic data were acquired from mixtures of 100-μM MB and either human or porcine blood (Hb) injected in a plastisol phantom, using laser wavelengths of 710 and 870 nm. An algorithm to perform linear regression of the acoustic frequency response from an atlas composed of pure concentrations was designed to assess the concentration levels from photoacoustic samples obtained from 11 known MB/Hb volume mixtures. The mean absolute error (MAE), coefficient of determination (i.e., R2), and Spearman's correlation coefficient (i.e., ρ) between the estimated results and ground-truth labels were calculated to assess the algorithm performance, linearity, and monotonicity, respectively. RESULTS The overall MAE, R2, and ρ were 12.68%, 0.80, and 0.89, respectively, for the human Hb dataset and 9.92%, 0.86, and 0.93, respectively, for the porcine Hb dataset. In addition, a similarly linear relationship was observed between the acoustic frequency response at 2.3 MHz and 870-nm laser wavelength and the ground-truth concentrations, with R2 and | ρ | values of 0.76 and 0.88, respectively. CONCLUSIONS Contrast agent concentration monitoring is feasible with the proposed approach. The potential for minimal data acquisition times with only two wavelength emissions is advantageous toward real-time implementation in the operating room.
Collapse
Affiliation(s)
- Eduardo A. Gonzalez
- Johns Hopkins University, School of Medicine, Department of Biomedical Engineering, Baltimore, Maryland, United States
| | - Muyinatu A. Lediju Bell
- Johns Hopkins University, School of Medicine, Department of Biomedical Engineering, Baltimore, Maryland, United States
- Johns Hopkins University, Whiting School of Engineering, Department of Electrical and Computer Engineering, Baltimore, Maryland, United States
- Johns Hopkins University, Whiting School of Engineering, Department of Computer Science, Baltimore, Maryland, United States
| |
Collapse
|
17
|
Gubbi MR, Gonzalez EA, Bell MAL. Theoretical Framework to Predict Generalized Contrast-to-Noise Ratios of Photoacoustic Images With Applications to Computer Vision. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:2098-2114. [PMID: 35446763 DOI: 10.1109/tuffc.2022.3169082] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The successful integration of computer vision, robotic actuation, and photoacoustic imaging to find and follow targets of interest during surgical and interventional procedures requires accurate photoacoustic target detectability. This detectability has traditionally been assessed with image quality metrics, such as contrast, contrast-to-noise ratio, and signal-to-noise ratio (SNR). However, predicting target tracking performance expectations when using these traditional metrics is difficult due to unbounded values and sensitivity to image manipulation techniques like thresholding. The generalized contrast-to-noise ratio (gCNR) is a recently introduced alternative target detectability metric, with previous work dedicated to empirical demonstrations of applicability to photoacoustic images. In this article, we present theoretical approaches to model and predict the gCNR of photoacoustic images with an associated theoretical framework to analyze relationships between imaging system parameters and computer vision task performance. Our theoretical gCNR predictions are validated with histogram-based gCNR measurements from simulated, experimental phantom, ex vivo, and in vivo datasets. The mean absolute errors between predicted and measured gCNR values ranged from 3.2 ×10-3 to 2.3 ×10-2 for each dataset, with channel SNRs ranging -40 to 40 dB and laser energies ranging 0.07 [Formula: see text] to 68 mJ. Relationships among gCNR, laser energy, target and background image parameters, target segmentation, and threshold levels were also investigated. Results provide a promising foundation to enable predictions of photoacoustic gCNR and visual servoing segmentation accuracy. The efficiency of precursory surgical and interventional tasks (e.g., energy selection for photoacoustic-guided surgeries) may also be improved with the proposed framework.
Collapse
|
18
|
Annular Fiber Probe for Interstitial Illumination in Photoacoustic Guidance of Radiofrequency Ablation. SENSORS 2021; 21:s21134458. [PMID: 34209996 PMCID: PMC8271966 DOI: 10.3390/s21134458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/19/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022]
Abstract
Unresectable liver tumors are commonly treated with percutaneous radiofrequency ablation (RFA). However, this technique is associated with high recurrence rates due to incomplete tumor ablation. Accurate image guidance of the RFA procedure contributes to successful ablation, but currently used imaging modalities have shortcomings in device guidance and treatment monitoring. We explore the potential of using photoacoustic (PA) imaging combined with conventional ultrasound (US) imaging for real-time RFA guidance. To overcome the low penetration depth of light in tissue, we have developed an annular fiber probe (AFP), which can be inserted into tissue enabling interstitial illumination of tissue. The AFP is a cannula with 72 optical fibers that allows an RFA device to slide through its lumen, thereby enabling PA imaging for RFA device guidance and ablation monitoring. We show that the PA signal from interstitial illumination is not affected by absorber-to-surface depth compared to extracorporeal illumination. We also demonstrate successful imaging of the RFA electrodes, a blood vessel mimic, a tumor-mimicking phantom, and ablated liver tissue boundaries in ex vivo chicken and bovine liver samples. PA-assisted needle guidance revealed clear needle tip visualization, a notable improvement to current US needle guidance. Our probe shows potential for RFA device guidance and ablation detection, which potentially aids in real-time monitoring.
Collapse
|
19
|
Wiacek A, Lediju Bell MA. Photoacoustic-guided surgery from head to toe [Invited]. BIOMEDICAL OPTICS EXPRESS 2021; 12:2079-2117. [PMID: 33996218 PMCID: PMC8086464 DOI: 10.1364/boe.417984] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 05/04/2023]
Abstract
Photoacoustic imaging-the combination of optics and acoustics to visualize differences in optical absorption - has recently demonstrated strong viability as a promising method to provide critical guidance of multiple surgeries and procedures. Benefits include its potential to assist with tumor resection, identify hemorrhaged and ablated tissue, visualize metal implants (e.g., needle tips, tool tips, brachytherapy seeds), track catheter tips, and avoid accidental injury to critical subsurface anatomy (e.g., major vessels and nerves hidden by tissue during surgery). These benefits are significant because they reduce surgical error, associated surgery-related complications (e.g., cancer recurrence, paralysis, excessive bleeding), and accidental patient death in the operating room. This invited review covers multiple aspects of the use of photoacoustic imaging to guide both surgical and related non-surgical interventions. Applicable organ systems span structures within the head to contents of the toes, with an eye toward surgical and interventional translation for the benefit of patients and for use in operating rooms and interventional suites worldwide. We additionally include a critical discussion of complete systems and tools needed to maximize the success of surgical and interventional applications of photoacoustic-based technology, spanning light delivery, acoustic detection, and robotic methods. Multiple enabling hardware and software integration components are also discussed, concluding with a summary and future outlook based on the current state of technological developments, recent achievements, and possible new directions.
Collapse
Affiliation(s)
- Alycen Wiacek
- Department of Electrical and Computer Engineering, 3400 N. Charles St., Johns Hopkins University, Baltimore, MD 21218, USA
| | - Muyinatu A. Lediju Bell
- Department of Electrical and Computer Engineering, 3400 N. Charles St., Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, 3400 N. Charles St., Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Computer Science, 3400 N. Charles St., Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
20
|
Huang J, Wiacek A, Kempski KM, Palmer T, Izzi J, Beck S, Lediju Bell MA. Empirical assessment of laser safety for photoacoustic-guided liver surgeries. BIOMEDICAL OPTICS EXPRESS 2021; 12:1205-1216. [PMID: 33796347 PMCID: PMC7984790 DOI: 10.1364/boe.415054] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 05/03/2023]
Abstract
Photoacoustic imaging is a promising technique to provide guidance during multiple surgeries and procedures. One challenge with this technique is that major blood vessels in the liver are difficult to differentiate from surrounding tissue within current safety limits, which only exist for human skin and eyes. In this paper, we investigate the safety of raising this limit for liver tissue excited with a 750 nm laser wavelength and approximately 30 mJ laser energy (corresponding to approximately 150 mJ/cm2 fluence). Laparotomies were performed on six swine to empirically investigate potential laser-related liver damage. Laser energy was applied for temporal durations of 1 minute, 10 minutes, and 20 minutes. Lasered liver lobes were excised either immediately after laser application (3 swine) or six weeks after surgery (3 swine). Cell damage was assessed using liver damage blood biomarkers and histopathology analyses of 41 tissue samples total. The biomarkers were generally normal over a 6 week post-surgical in vivo study period. Histopathology revealed no cell death, although additional pathology was present (i.e., hemorrhage, inflammation, fibrosis) due to handling, sample resection, and fibrous adhesions as a result of the laparotomy. These results support a new protocol for studying laser-related liver damage, indicating the potential to raise the safety limit for liver photoacoustic imaging to approximately 150 mJ/cm2 with a laser wavelength of 750 nm and for imaging durations up to 10 minutes without causing cell death. This investigation and protocol may be applied to other tissues and extended to additional wavelengths and energies, which is overall promising for introducing new tissue-specific laser safety limits for photoacoustic-guided surgery.
Collapse
Affiliation(s)
- Jiaqi Huang
- Department of Biomedical Engineering,
Johns Hopkins University, Baltimore, MD
21218, USA
| | - Alycen Wiacek
- Department of Electrical and Computer
Engineering, Johns Hopkins University,
Baltimore, MD 21218, USA
| | - Kelley M. Kempski
- Department of Biomedical Engineering,
Johns Hopkins University, Baltimore, MD
21218, USA
| | - Theron Palmer
- Department of Biomedical Engineering,
Johns Hopkins University, Baltimore, MD
21218, USA
| | - Jessica Izzi
- Department of Molecular and Comparative
Pathobiology, Johns Hopkins University,
Baltimore, MD 21218, USA
| | - Sarah Beck
- Department of Molecular and Comparative
Pathobiology, Johns Hopkins University,
Baltimore, MD 21218, USA
| | - Muyinatu A. Lediju Bell
- Department of Biomedical Engineering,
Johns Hopkins University, Baltimore, MD
21218, USA
- Department of Electrical and Computer
Engineering, Johns Hopkins University,
Baltimore, MD 21218, USA
- Department of Computer Science,
Johns Hopkins University, Baltimore, MD
21218, USA
| |
Collapse
|