1
|
Lu P, Gao J, Liu W. DMNAG: Prediction of disease-metabolite associations based on Neighborhood Aggregation Graph Transformer. Comput Biol Chem 2025; 115:108320. [PMID: 39746265 DOI: 10.1016/j.compbiolchem.2024.108320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025]
Abstract
The metabolic level within an organism typically reflects its health status. Studying the relationship between human diseases and metabolites helps enhance medical professionals' ability for early disease diagnosis and risk prediction. However, traditional biological experimental methods often require substantial resources and manpower, and there is still room for improvement in the performance of existing predictive models. To tackle these, we propose a novel method based on the Neighborhood Aggregation Graph Transformer (NAGphormer) to predict potential associations between diseases and metabolites (DMNAG), aiming to provide guidance for biological experiments and improve experimental efficiency. First, we calculated the Gaussian kernel similarity of diseases and the physicochemical similarity of metabolites, and combined them with known associations to construct a bipartite heterogeneous network. We then calculated the semantic similarity of diseases and the Mol2vec similarity of metabolites, using them respectively as the similarity feature vectors for the disease nodes and metabolite nodes. Meanwhile, we calculate the positional information features of nodes and combine them with similarity features as the initial features of the nodes. Next, we input the bipartite heterogeneous network and node initial features into the Hop2Token module to capture multihop neighborhood information between nodes. Finally, we input the multi-hop features of nodes into the Transformer model for training and obtain the edge prediction probabilities through the decoder. Through experiments, our model achieved an AUC value of 0.9801 and an AUPR value of 0.9818 in five-fold cross-validation. In case studies, most DMNAG-predicted associations have been validated, showcasing the model's reliability and superiority.
Collapse
Affiliation(s)
- Pengli Lu
- School of Computer and Communication, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Jiajie Gao
- School of Computer and Communication, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Wenzhi Liu
- School of Computer and Communication, Lanzhou University of Technology, Lanzhou 730050, China.
| |
Collapse
|
2
|
Thakur A, Kumar M. Computational Resources for lncRNA Functions and Targetome. Methods Mol Biol 2025; 2883:299-323. [PMID: 39702714 DOI: 10.1007/978-1-0716-4290-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Long non-coding RNAs (lncRNAs) are a type of non-coding RNA molecules exceeding 200 nucleotides in length and that do not encode proteins. The dysregulated expression of lncRNAs has been identified in various diseases, holding therapeutic significance. Over the past decade, numerous computational resources have been published in the field of lncRNA. In this chapter, we have provided a comprehensive review of the databases as well as predictive tools, that is, lncRNA databases, machine learning based algorithms, and tools predicting lncRNAs utilizing different techniques. The chapter will focus on the importance of lncRNA resources developed for different organisms specifically for humans, mouse, plants, and other model organisms. We have enlisted important databases, primarily focusing on comprehensive information related to lncRNA registries, associations with diseases, differential expression, lncRNA transcriptome, target regulations, and all-in-one resources. Further, we have also included the updated version of lncRNA resources. Additionally, computational identification of lncRNAs using algorithms like Deep learning, Support Vector Machine (SVM), and Random Forest (RF) was also discussed. In conclusion, this comprehensive overview concludes by summarizing vital in silico resources, empowering biologists to choose the most suitable tools for their lncRNA research endeavors. This chapter serves as a valuable guide, emphasizing the significance of computational approaches in understanding lncRNAs and their implications in various biological contexts.
Collapse
Affiliation(s)
- Anamika Thakur
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Manoj Kumar
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
3
|
Zhang B, Wang H, Ma C, Huang H, Fang Z, Qu J. LDAGM: prediction lncRNA-disease asociations by graph convolutional auto-encoder and multilayer perceptron based on multi-view heterogeneous networks. BMC Bioinformatics 2024; 25:332. [PMID: 39407120 PMCID: PMC11481433 DOI: 10.1186/s12859-024-05950-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) can prevent, diagnose, and treat a variety of complex human diseases, and it is crucial to establish a method to efficiently predict lncRNA-disease associations. RESULTS In this paper, we propose a prediction method for the lncRNA-disease association relationship, named LDAGM, which is based on the Graph Convolutional Autoencoder and Multilayer Perceptron model. The method first extracts the functional similarity and Gaussian interaction profile kernel similarity of lncRNAs and miRNAs, as well as the semantic similarity and Gaussian interaction profile kernel similarity of diseases. It then constructs six homogeneous networks and deeply fuses them using a deep topology feature extraction method. The fused networks facilitate feature complementation and deep mining of the original association relationships, capturing the deep connections between nodes. Next, by combining the obtained deep topological features with the similarity network of lncRNA, disease, and miRNA interactions, we construct a multi-view heterogeneous network model. The Graph Convolutional Autoencoder is employed for nonlinear feature extraction. Finally, the extracted nonlinear features are combined with the deep topological features of the multi-view heterogeneous network to obtain the final feature representation of the lncRNA-disease pair. Prediction of the lncRNA-disease association relationship is performed using the Multilayer Perceptron model. To enhance the performance and stability of the Multilayer Perceptron model, we introduce a hidden layer called the aggregation layer in the Multilayer Perceptron model. Through a gate mechanism, it controls the flow of information between each hidden layer in the Multilayer Perceptron model, aiming to achieve optimal feature extraction from each hidden layer. CONCLUSIONS Parameter analysis, ablation studies, and comparison experiments verified the effectiveness of this method, and case studies verified the accuracy of this method in predicting lncRNA-disease association relationships.
Collapse
Grants
- No. 62172123 National Natural Science Foundation, China
- No. 62172123 National Natural Science Foundation, China
- No. 62172123 National Natural Science Foundation, China
- No. 62172123 National Natural Science Foundation, China
- No. 62172123 National Natural Science Foundation, China
- No. 62172123 National Natural Science Foundation, China
- Grant No. 2022ZX01A36 the Key Research and Development Program of Heilongjiang
- Grant No. 2022ZX01A36 the Key Research and Development Program of Heilongjiang
- Grant No. 2022ZX01A36 the Key Research and Development Program of Heilongjiang
- Grant No. 2022ZX01A36 the Key Research and Development Program of Heilongjiang
- Grant No. 2022ZX01A36 the Key Research and Development Program of Heilongjiang
- Grant No. 2022ZX01A36 the Key Research and Development Program of Heilongjiang
- No. ZY20B11 the Special projects for the central government to guide the development of local science and technology, China
- No. ZY20B11 the Special projects for the central government to guide the development of local science and technology, China
- No. ZY20B11 the Special projects for the central government to guide the development of local science and technology, China
- No. ZY20B11 the Special projects for the central government to guide the development of local science and technology, China
- No. ZY20B11 the Special projects for the central government to guide the development of local science and technology, China
- No. ZY20B11 the Special projects for the central government to guide the development of local science and technology, China
- No. CXRC20221104236 the Harbin Manufacturing Technology Innovation Talent Project
- No. CXRC20221104236 the Harbin Manufacturing Technology Innovation Talent Project
- No. CXRC20221104236 the Harbin Manufacturing Technology Innovation Talent Project
- No. CXRC20221104236 the Harbin Manufacturing Technology Innovation Talent Project
- No. CXRC20221104236 the Harbin Manufacturing Technology Innovation Talent Project
- No. CXRC20221104236 the Harbin Manufacturing Technology Innovation Talent Project
Collapse
Affiliation(s)
- Bing Zhang
- Harbin University of Science and Technology, Harbin, 150006, Heilongjiang province, China
| | - Haoyu Wang
- Harbin University of Science and Technology, Harbin, 150006, Heilongjiang province, China.
| | - Chao Ma
- Harbin University of Science and Technology, Harbin, 150006, Heilongjiang province, China
| | - Hai Huang
- Harbin University of Science and Technology, Harbin, 150006, Heilongjiang province, China
| | - Zhou Fang
- Cyberspace Research Center, Harbin, 150001, Heilongjiang province, China
| | - Jiaxing Qu
- Cyberspace Research Center, Harbin, 150001, Heilongjiang province, China
| |
Collapse
|
4
|
Su Y, Liu J, Wu Q, Gao Z, Wang J, Li H, Zheng C. AMPFLDAP: Adaptive Message Passing and Feature Fusion on Heterogeneous Network for LncRNA-Disease Associations Prediction. Interdiscip Sci 2024; 16:608-622. [PMID: 38581626 DOI: 10.1007/s12539-024-00610-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 04/08/2024]
Abstract
Exploration of the intricate connections between long noncoding RNA (lncRNA) and diseases, referred to as lncRNA-disease associations (LDAs), plays a pivotal and indispensable role in unraveling the underlying molecular mechanisms of diseases and devising practical treatment approaches. It is imperative to employ computational methods for predicting lncRNA-disease associations to circumvent the need for superfluous experimental endeavors. Graph-based learning models have gained substantial popularity in predicting these associations, primarily because of their capacity to leverage node attributes and relationships within the network. Nevertheless, there remains much room for enhancing the performance of these techniques by incorporating and harmonizing the node attributes more effectively. In this context, we introduce a novel model, i.e., Adaptive Message Passing and Feature Fusion (AMPFLDAP), for forecasting lncRNA-disease associations within a heterogeneous network. Firstly, we constructed a heterogeneous network involving lncRNA, microRNA (miRNA), and diseases based on established associations and employing Gaussian interaction profile kernel similarity as a measure. Then, an adaptive topological message passing mechanism is suggested to address the information aggregation for heterogeneous networks. The topological features of nodes in the heterogeneous network were extracted based on the adaptive topological message passing mechanism. Moreover, an attention mechanism is applied to integrate both topological and semantic information to achieve the multimodal features of biomolecules, which are further used to predict potential LDAs. The experimental results demonstrated that the performance of the proposed AMPFLDAP is superior to seven state-of-the-art methods. Furthermore, to validate its efficacy in practical scenarios, we conducted detailed case studies involving three distinct diseases, which conclusively demonstrated AMPFLDAP's effectiveness in the prediction of LDAs.
Collapse
Affiliation(s)
- Yansen Su
- Key Laboratory of Intelligent Computing and Signal Processing, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, China.
| | - Jingjing Liu
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, 5089 Wangjiang West Road, Hefei, 230088, Anhui, China
| | - Qingwen Wu
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, 5089 Wangjiang West Road, Hefei, 230088, Anhui, China
| | - Zhen Gao
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, 5089 Wangjiang West Road, Hefei, 230088, Anhui, China
| | - Jing Wang
- Key Laboratory of Intelligent Computing and Signal Processing, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, 5089 Wangjiang West Road, Hefei, 230088, Anhui, China
| | - Haitao Li
- Key Laboratory of Intelligent Computing and Signal Processing, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, China
| | - Chunhou Zheng
- Key Laboratory of Intelligent Computing and Signal Processing, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, China
| |
Collapse
|
5
|
Biyu H, Mengshan L, Yuxin H, Ming Z, Nan W, Lixin G. A miRNA-disease association prediction model based on tree-path global feature extraction and fully connected artificial neural network with multi-head self-attention mechanism. BMC Cancer 2024; 24:683. [PMID: 38840078 PMCID: PMC11151537 DOI: 10.1186/s12885-024-12420-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 05/23/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) emerge in various organisms, ranging from viruses to humans, and play crucial regulatory roles within cells, participating in a variety of biological processes. In numerous prediction methods for miRNA-disease associations, the issue of over-dependence on both similarity measurement data and the association matrix still hasn't been improved. In this paper, a miRNA-Disease association prediction model (called TP-MDA) based on tree path global feature extraction and fully connected artificial neural network (FANN) with multi-head self-attention mechanism is proposed. The TP-MDA model utilizes an association tree structure to represent the data relationships, multi-head self-attention mechanism for extracting feature vectors, and fully connected artificial neural network with 5-fold cross-validation for model training. RESULTS The experimental results indicate that the TP-MDA model outperforms the other comparative models, AUC is 0.9714. In the case studies of miRNAs associated with colorectal cancer and lung cancer, among the top 15 miRNAs predicted by the model, 12 in colorectal cancer and 15 in lung cancer were validated respectively, the accuracy is as high as 0.9227. CONCLUSIONS The model proposed in this paper can accurately predict the miRNA-disease association, and can serve as a valuable reference for data mining and association prediction in the fields of life sciences, biology, and disease genetics, among others.
Collapse
Affiliation(s)
- Hou Biyu
- College of Physics and Electronic Information, Gannan Normal University, Ganzhou, Jiangxi, 341000, China
| | - Li Mengshan
- College of Physics and Electronic Information, Gannan Normal University, Ganzhou, Jiangxi, 341000, China.
| | - Hou Yuxin
- College of Computer Science and Engineering, Shanxi Datong University, Datong, Shanxi, 037000, China
| | - Zeng Ming
- College of Physics and Electronic Information, Gannan Normal University, Ganzhou, Jiangxi, 341000, China
| | - Wang Nan
- College of Life Sciences, Jiaying University, Meizhou, Guangdong, 514000, China
| | - Guan Lixin
- College of Physics and Electronic Information, Gannan Normal University, Ganzhou, Jiangxi, 341000, China
| |
Collapse
|
6
|
He J, Li M, Qiu J, Pu X, Guo Y. HOPEXGB: A Consensual Model for Predicting miRNA/lncRNA-Disease Associations Using a Heterogeneous Disease-miRNA-lncRNA Information Network. J Chem Inf Model 2024; 64:2863-2877. [PMID: 37604142 DOI: 10.1021/acs.jcim.3c00856] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Predicting disease-related microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) is crucial to find new biomarkers for the prevention, diagnosis, and treatment of complex human diseases. Computational predictions for miRNA/lncRNA-disease associations are of great practical significance, since traditional experimental detection is expensive and time-consuming. In this paper, we proposed a consensual machine-learning technique-based prediction approach to identify disease-related miRNAs and lncRNAs by high-order proximity preserved embedding (HOPE) and eXtreme Gradient Boosting (XGB), named HOPEXGB. By connecting lncRNA, miRNA, and disease nodes based on their correlations and relationships, we first created a heterogeneous disease-miRNA-lncRNA (DML) information network to achieve an effective fusion of information on similarities, correlations, and interactions among miRNAs, lncRNAs, and diseases. In addition, a more rational negative data set was generated based on the similarities of unknown associations with the known ones, so as to effectively reduce the false negative rate in the data set for model construction. By 10-fold cross-validation, HOPE shows better performance than other graph embedding methods. The final consensual HOPEXGB model yields robust performance with a mean prediction accuracy of 0.9569 and also demonstrates high sensitivity and specificity advantages compared to lncRNA/miRNA-specific predictions. Moreover, it is superior to other existing methods and gives promising performance on the external testing data, indicating that integrating the information on lncRNA-miRNA interactions and the similarities of lncRNAs/miRNAs is beneficial for improving the prediction performance of the model. Finally, case studies on lung, stomach, and breast cancers indicate that HOPEXGB could be a powerful tool for preclinical biomarker detection and bioexperiment preliminary screening for the diagnosis and prognosis of cancers. HOPEXGB is publicly available at https://github.com/airpamper/HOPEXGB.
Collapse
Affiliation(s)
- Jian He
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Menglong Li
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jiangguo Qiu
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xuemei Pu
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yanzhi Guo
- College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
7
|
Peng L, Yang Y, Yang C, Li Z, Cheong N. HRGCNLDA: Forecasting of lncRNA-disease association based on hierarchical refinement graph convolutional neural network. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:4814-4834. [PMID: 38872515 DOI: 10.3934/mbe.2024212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Long non-coding RNA (lncRNA) is considered to be a crucial regulator involved in various human biological processes, including the regulation of tumor immune checkpoint proteins. It has great potential as both a cancer biomolecular biomarker and therapeutic target. Nevertheless, conventional biological experimental techniques are both resource-intensive and laborious, making it essential to develop an accurate and efficient computational method to facilitate the discovery of potential links between lncRNAs and diseases. In this study, we proposed HRGCNLDA, a computational approach utilizing hierarchical refinement of graph convolutional neural networks for forecasting lncRNA-disease potential associations. This approach effectively addresses the over-smoothing problem that arises from stacking multiple layers of graph convolutional neural networks. Specifically, HRGCNLDA enhances the layer representation during message propagation and node updates, thereby amplifying the contribution of hidden layers that resemble the ego layer while reducing discrepancies. The results of the experiments showed that HRGCNLDA achieved the highest AUC-ROC (area under the receiver operating characteristic curve, AUC for short) and AUC-PR (area under the precision versus recall curve, AUPR for short) values compared to other methods. Finally, to further demonstrate the reliability and efficacy of our approach, we performed case studies on the case of three prevalent human diseases, namely, breast cancer, lung cancer and gastric cancer.
Collapse
Affiliation(s)
- Li Peng
- College of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Key Laboratory for Service Computing and Novel Software Technology, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yujie Yang
- College of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Cheng Yang
- College of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Zejun Li
- School of Computer Science and Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Ngai Cheong
- Faculty of Applied Sciences, Macao Polytechnic University, Macau 999078, China
| |
Collapse
|
8
|
Ye C, Wu Q, Chen S, Zhang X, Xu W, Wu Y, Zhang Y, Yue Y. ECDEP: identifying essential proteins based on evolutionary community discovery and subcellular localization. BMC Genomics 2024; 25:117. [PMID: 38279081 PMCID: PMC10821549 DOI: 10.1186/s12864-024-10019-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND In cellular activities, essential proteins play a vital role and are instrumental in comprehending fundamental biological necessities and identifying pathogenic genes. Current deep learning approaches for predicting essential proteins underutilize the potential of gene expression data and are inadequate for the exploration of dynamic networks with limited evaluation across diverse species. RESULTS We introduce ECDEP, an essential protein identification model based on evolutionary community discovery. ECDEP integrates temporal gene expression data with a protein-protein interaction (PPI) network and employs the 3-Sigma rule to eliminate outliers at each time point, constructing a dynamic network. Next, we utilize edge birth and death information to establish an interaction streaming source to feed into the evolutionary community discovery algorithm and then identify overlapping communities during the evolution of the dynamic network. SVM recursive feature elimination (RFE) is applied to extract the most informative communities, which are combined with subcellular localization data for classification predictions. We assess the performance of ECDEP by comparing it against ten centrality methods, four shallow machine learning methods with RFE, and two deep learning methods that incorporate multiple biological data sources on Saccharomyces. Cerevisiae (S. cerevisiae), Homo sapiens (H. sapiens), Mus musculus, and Caenorhabditis elegans. ECDEP achieves an AP value of 0.86 on the H. sapiens dataset and the contribution ratio of community features in classification reaches 0.54 on the S. cerevisiae (Krogan) dataset. CONCLUSIONS Our proposed method adeptly integrates network dynamics and yields outstanding results across various datasets. Furthermore, the incorporation of evolutionary community discovery algorithms amplifies the capacity of gene expression data in classification.
Collapse
Affiliation(s)
- Chen Ye
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui, 230036, China
- Anhui Beidou Precision Agriculture Information Engineering Research Center, Anhui Agricultural University, Hefei, 230036, China
| | - Qi Wu
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui, 230036, China
- Anhui Beidou Precision Agriculture Information Engineering Research Center, Anhui Agricultural University, Hefei, 230036, China
| | - Shuxia Chen
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui, 230036, China
- Anhui Beidou Precision Agriculture Information Engineering Research Center, Anhui Agricultural University, Hefei, 230036, China
| | - Xuemei Zhang
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui, 230036, China
- Anhui Beidou Precision Agriculture Information Engineering Research Center, Anhui Agricultural University, Hefei, 230036, China
| | - Wenwen Xu
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui, 230036, China
- Anhui Beidou Precision Agriculture Information Engineering Research Center, Anhui Agricultural University, Hefei, 230036, China
| | - Yunzhi Wu
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui, 230036, China
- Anhui Beidou Precision Agriculture Information Engineering Research Center, Anhui Agricultural University, Hefei, 230036, China
| | - Youhua Zhang
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui, 230036, China
- Anhui Beidou Precision Agriculture Information Engineering Research Center, Anhui Agricultural University, Hefei, 230036, China
| | - Yi Yue
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui, 230036, China.
- Anhui Beidou Precision Agriculture Information Engineering Research Center, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
9
|
Zhang Y, Cai G, Li X, Chen M. GCN-Based Heterogeneous Complex Feature Learning to Enhance Predictability for LncRNA-Disease Associations. ACS OMEGA 2024; 9:1472-1484. [PMID: 38222651 PMCID: PMC10785310 DOI: 10.1021/acsomega.3c07923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 01/16/2024]
Abstract
Using computational models to predict potential lncRNA-disease associations (LDAs) has emerged as an effective supplement to bioexperiments for exploring the pathogenesis of diseases. However, current computational models still face limitations in their ability to learn the complex features of bionetworks. In this study, HGCNLDA, a model which combines graph convolutional network (GCN)-based aggregation, heterogeneous information fusion, and a bilinear-decoder to infer LDAs was proposed. Recognizing the need to extract essential features during data processing, our HGCNLDA explored four key steps for uncovering interaction patterns within the bionetwork: (1) a novel type of tripartite heterogeneous network, known as the lncRNA-disease-miRNA network (LDMN), was constructed using computed similarities and known associations. (2) Homogeneous and heterogeneous features of nodes were extracted from domains within the LDMN by a GCN-based encoder. (3) Feature fusions, including bipolymerization operations and attention mechanism, were employed to capture a more accurate and comprehensive representation of nodes. (4) Bilinear-decoder was used to rebuild the edge type (or rating type) for a specific node pair, resulting in the predicted association score. Through a 5-fold cross-validation on two data sets, namely, data set1 and data set2, our HGCNLDA consistently demonstrated superior performance compared to five related models. It almost achieved the highest AUROC and AUPR values on both data sets, especially on data set2 where the results obtained were more challenging and objective. Case studies involving three real cancer scenarios further validated the practicality of HGCNLDA in identifying potential LDAs in real-world contexts. The source code and data for this study are available at https://github.com/zywait/HGCNLDA.
Collapse
Affiliation(s)
- Yi Zhang
- Guilin
University of Technology, Guilin 541004, China
- Guangxi Key Laboratory of Embedded Technology
and Intelligent System, Guilin University
of Technology, Guilin 541004, China
| | - Gangsheng Cai
- Guilin
University of Technology, Guilin 541004, China
- Guangxi Key Laboratory of Embedded Technology
and Intelligent System, Guilin University
of Technology, Guilin 541004, China
| | - Xin Li
- Guilin
University of Technology, Guilin 541004, China
- Guangxi Key Laboratory of Embedded Technology
and Intelligent System, Guilin University
of Technology, Guilin 541004, China
| | - Min Chen
- School
of Computer Science and Technology, Hunan
Institute of Technology, Hengyang 421010, China
| |
Collapse
|
10
|
Yao D, Li B, Zhan X, Zhan X, Yu L. GCNFORMER: graph convolutional network and transformer for predicting lncRNA-disease associations. BMC Bioinformatics 2024; 25:5. [PMID: 38166659 PMCID: PMC10763317 DOI: 10.1186/s12859-023-05625-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND A growing body of researches indicate that the disrupted expression of long non-coding RNA (lncRNA) is linked to a range of human disorders. Therefore, the effective prediction of lncRNA-disease association (LDA) can not only suggest solutions to diagnose a condition but also save significant time and labor costs. METHOD In this work, we proposed a novel LDA predicting algorithm based on graph convolutional network and transformer, named GCNFORMER. Firstly, we integrated the intraclass similarity and interclass connections between miRNAs, lncRNAs and diseases, and built a graph adjacency matrix. Secondly, to completely obtain the features between various nodes, we employed a graph convolutional network for feature extraction. Finally, to obtain the global dependencies between inputs and outputs, we used a transformer encoder with a multiheaded attention mechanism to forecast lncRNA-disease associations. RESULTS The results of fivefold cross-validation experiment on the public dataset revealed that the AUC and AUPR of GCNFORMER achieved 0.9739 and 0.9812, respectively. We compared GCNFORMER with six advanced LDA prediction models, and the results indicated its superiority over the other six models. Furthermore, GCNFORMER's effectiveness in predicting potential LDAs is underscored by case studies on breast cancer, colon cancer and lung cancer. CONCLUSIONS The combination of graph convolutional network and transformer can effectively improve the performance of LDA prediction model and promote the in-depth development of this research filed.
Collapse
Affiliation(s)
- Dengju Yao
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, 150080, China.
| | - Bailin Li
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, 150080, China
| | - Xiaojuan Zhan
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, 150080, China
- College of Computer Science and Technology, Heilongjiang Institute of Technology, Harbin, 150050, China
| | - Xiaorong Zhan
- Department of Endocrinology and Metabolism, Hospital of South, University of Science and Technology, Shenzhen, 518055, China
| | - Liyang Yu
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, 150080, China
| |
Collapse
|
11
|
Zeng M, Wu Y, Li Y, Yin R, Lu C, Duan J, Li M. LncLocFormer: a Transformer-based deep learning model for multi-label lncRNA subcellular localization prediction by using localization-specific attention mechanism. Bioinformatics 2023; 39:btad752. [PMID: 38109668 PMCID: PMC10749772 DOI: 10.1093/bioinformatics/btad752] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/13/2023] [Accepted: 12/17/2023] [Indexed: 12/20/2023] Open
Abstract
MOTIVATION There is mounting evidence that the subcellular localization of lncRNAs can provide valuable insights into their biological functions. In the real world of transcriptomes, lncRNAs are usually localized in multiple subcellular localizations. Furthermore, lncRNAs have specific localization patterns for different subcellular localizations. Although several computational methods have been developed to predict the subcellular localization of lncRNAs, few of them are designed for lncRNAs that have multiple subcellular localizations, and none of them take motif specificity into consideration. RESULTS In this study, we proposed a novel deep learning model, called LncLocFormer, which uses only lncRNA sequences to predict multi-label lncRNA subcellular localization. LncLocFormer utilizes eight Transformer blocks to model long-range dependencies within the lncRNA sequence and shares information across the lncRNA sequence. To exploit the relationship between different subcellular localizations and find distinct localization patterns for different subcellular localizations, LncLocFormer employs a localization-specific attention mechanism. The results demonstrate that LncLocFormer outperforms existing state-of-the-art predictors on the hold-out test set. Furthermore, we conducted a motif analysis and found LncLocFormer can capture known motifs. Ablation studies confirmed the contribution of the localization-specific attention mechanism in improving the prediction performance. AVAILABILITY AND IMPLEMENTATION The LncLocFormer web server is available at http://csuligroup.com:9000/LncLocFormer. The source code can be obtained from https://github.com/CSUBioGroup/LncLocFormer.
Collapse
Affiliation(s)
- Min Zeng
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Yifan Wu
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Yiming Li
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Rui Yin
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL 32603, United States
| | - Chengqian Lu
- School of Computer Science, Key Laboratory of Intelligent Computing and Information Processing, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Junwen Duan
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Min Li
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
12
|
Khanna NN, Singh M, Maindarkar M, Kumar A, Johri AM, Mentella L, Laird JR, Paraskevas KI, Ruzsa Z, Singh N, Kalra MK, Fernandes JFE, Chaturvedi S, Nicolaides A, Rathore V, Singh I, Teji JS, Al-Maini M, Isenovic ER, Viswanathan V, Khanna P, Fouda MM, Saba L, Suri JS. Polygenic Risk Score for Cardiovascular Diseases in Artificial Intelligence Paradigm: A Review. J Korean Med Sci 2023; 38:e395. [PMID: 38013648 PMCID: PMC10681845 DOI: 10.3346/jkms.2023.38.e395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/15/2023] [Indexed: 11/29/2023] Open
Abstract
Cardiovascular disease (CVD) related mortality and morbidity heavily strain society. The relationship between external risk factors and our genetics have not been well established. It is widely acknowledged that environmental influence and individual behaviours play a significant role in CVD vulnerability, leading to the development of polygenic risk scores (PRS). We employed the PRISMA search method to locate pertinent research and literature to extensively review artificial intelligence (AI)-based PRS models for CVD risk prediction. Furthermore, we analyzed and compared conventional vs. AI-based solutions for PRS. We summarized the recent advances in our understanding of the use of AI-based PRS for risk prediction of CVD. Our study proposes three hypotheses: i) Multiple genetic variations and risk factors can be incorporated into AI-based PRS to improve the accuracy of CVD risk predicting. ii) AI-based PRS for CVD circumvents the drawbacks of conventional PRS calculators by incorporating a larger variety of genetic and non-genetic components, allowing for more precise and individualised risk estimations. iii) Using AI approaches, it is possible to significantly reduce the dimensionality of huge genomic datasets, resulting in more accurate and effective disease risk prediction models. Our study highlighted that the AI-PRS model outperformed traditional PRS calculators in predicting CVD risk. Furthermore, using AI-based methods to calculate PRS may increase the precision of risk predictions for CVD and have significant ramifications for individualized prevention and treatment plans.
Collapse
Affiliation(s)
- Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
- Asia Pacific Vascular Society, New Delhi, India
| | - Manasvi Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
- Bennett University, Greater Noida, India
| | - Mahesh Maindarkar
- Asia Pacific Vascular Society, New Delhi, India
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
- School of Bioengineering Sciences and Research, Maharashtra Institute of Technology's Art, Design and Technology University, Pune, India
| | | | - Amer M Johri
- Department of Medicine, Division of Cardiology, Queen's University, Kingston, Canada
| | - Laura Mentella
- Department of Medicine, Division of Cardiology, University of Toronto, Toronto, Canada
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA, USA
| | | | - Zoltan Ruzsa
- Invasive Cardiology Division, University of Szeged, Szeged, Hungary
| | - Narpinder Singh
- Department of Food Science and Technology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | | | | | - Seemant Chaturvedi
- Department of Neurology & Stroke Program, University of Maryland, Baltimore, MD, USA
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, Cyprus
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA, USA
| | - Inder Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| | - Jagjit S Teji
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Mostafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON, Canada
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, National Institute of The Republic of Serbia, University of Belgrade, Beograd, Serbia
| | | | - Puneet Khanna
- Department of Anaesthesiology, AIIMS, New Delhi, India
| | - Mostafa M Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID, USA
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, Cagliari, Italy
| | - Jasjit S Suri
- Asia Pacific Vascular Society, New Delhi, India
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
- Department of Computer Engineering, Graphic Era Deemed to be University, Dehradun, India.
| |
Collapse
|
13
|
Deng L, Ren S, Zhang J. Prediction of lncRNA functions using deep neural networks based on multiple networks. BMC Genomics 2023; 23:865. [PMID: 37946156 PMCID: PMC10636874 DOI: 10.1186/s12864-023-09578-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/10/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND More and more studies show that lncRNA is widely involved in various physiological processes of the organism. However, the functions of the vast majority of them continue to be unknown. In addition, data related to lncRNAs in biological databases are constantly increasing. Therefore, it is quite urgent to develop a computing method to make the utmost of these data. RESULTS In this paper, we propose a new computational method based on global heterogeneous networks to predict the functions of lncRNAs, called DNGRGO. DNGRGO first calculates the similarities among proteins, miRNAs, and lncRNAs, and annotates the functions of lncRNAs according to its similar protein-coding genes, which have been labeled with gene ontology (GO). To evaluate the performance of DNGRGO, we manually annotated GO terms to lncRNAs and implemented our method on these data. Compared with the existing methods, the results of DNGRGO show superior predictive performance of maximum F-measure and coverage. CONCLUSIONS DNGRGO is able to annotate lncRNAs through capturing the low-dimensional features of the heterogeneous network. Moreover, the experimental results show that integrating miRNA data can help to improve the predictive performance of DNGRGO.
Collapse
Affiliation(s)
- Lei Deng
- School of Computer Science and Engineering, Central South University, 410075, Changsha, China
| | - Shengli Ren
- School of Computer Science and Engineering, Central South University, 410075, Changsha, China
| | - Jingpu Zhang
- School of Computer and Data Science, Henan University of Urban Construction, 467000, Pingdingshan, China.
| |
Collapse
|
14
|
Zhang J, Lang M, Zhou Y, Zhang Y. Predicting RNA structures and functions by artificial intelligence. Trends Genet 2023; 40:S0168-9525(23)00229-9. [PMID: 39492264 DOI: 10.1016/j.tig.2023.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/22/2023] [Accepted: 10/03/2023] [Indexed: 11/05/2024]
Abstract
RNA functions by interacting with its intended targets structurally. However, due to the dynamic nature of RNA molecules, RNA structures are difficult to determine experimentally or predict computationally. Artificial intelligence (AI) has revolutionized many biomedical fields and has been progressively utilized to deduce RNA structures, target binding, and associated functionality. Integrating structural and target binding information could also help improve the robustness of AI-based RNA function prediction and RNA design. Given the rapid development of deep learning (DL) algorithms, AI will provide an unprecedented opportunity to elucidate the sequence-structure-function relation of RNAs.
Collapse
Affiliation(s)
- Jun Zhang
- National Engineering Laboratory for Big Data System Computing Technology, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Mei Lang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518106, China
| | - Yaoqi Zhou
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518106, China.
| | - Yang Zhang
- School of Science, Harbin Institute of Technology, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
15
|
Sheng N, Wang Y, Huang L, Gao L, Cao Y, Xie X, Fu Y. Multi-task prediction-based graph contrastive learning for inferring the relationship among lncRNAs, miRNAs and diseases. Brief Bioinform 2023; 24:bbad276. [PMID: 37529914 DOI: 10.1093/bib/bbad276] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 08/03/2023] Open
Abstract
MOTIVATION Identifying the relationships among long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and diseases is highly valuable for diagnosing, preventing, treating and prognosing diseases. The development of effective computational prediction methods can reduce experimental costs. While numerous methods have been proposed, they often to treat the prediction of lncRNA-disease associations (LDAs), miRNA-disease associations (MDAs) and lncRNA-miRNA interactions (LMIs) as separate task. Models capable of predicting all three relationships simultaneously remain relatively scarce. Our aim is to perform multi-task predictions, which not only construct a unified framework, but also facilitate mutual complementarity of information among lncRNAs, miRNAs and diseases. RESULTS In this work, we propose a novel unsupervised embedding method called graph contrastive learning for multi-task prediction (GCLMTP). Our approach aims to predict LDAs, MDAs and LMIs by simultaneously extracting embedding representations of lncRNAs, miRNAs and diseases. To achieve this, we first construct a triple-layer lncRNA-miRNA-disease heterogeneous graph (LMDHG) that integrates the complex relationships between these entities based on their similarities and correlations. Next, we employ an unsupervised embedding model based on graph contrastive learning to extract potential topological feature of lncRNAs, miRNAs and diseases from the LMDHG. The graph contrastive learning leverages graph convolutional network architectures to maximize the mutual information between patch representations and corresponding high-level summaries of the LMDHG. Subsequently, for the three prediction tasks, multiple classifiers are explored to predict LDA, MDA and LMI scores. Comprehensive experiments are conducted on two datasets (from older and newer versions of the database, respectively). The results show that GCLMTP outperforms other state-of-the-art methods for the disease-related lncRNA and miRNA prediction tasks. Additionally, case studies on two datasets further demonstrate the ability of GCLMTP to accurately discover new associations. To ensure reproducibility of this work, we have made the datasets and source code publicly available at https://github.com/sheng-n/GCLMTP.
Collapse
Affiliation(s)
- Nan Sheng
- Key laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 130012 Changchun, China
| | - Yan Wang
- Key laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 130012 Changchun, China
- School of Artificial Intelligence, Jilin University, 130012 Changchun, China
| | - Lan Huang
- Key laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 130012 Changchun, China
| | - Ling Gao
- Key laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 130012 Changchun, China
| | - Yangkun Cao
- School of Artificial Intelligence, Jilin University, 130012 Changchun, China
| | - Xuping Xie
- Key laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 130012 Changchun, China
| | - Yuan Fu
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, UK
| |
Collapse
|
16
|
Biyu H, GuangWen T, Ming Z, Lixin G, Mengshan L. A lncRNA-disease association prediction model based on the two-step PU learning and fully connected neural networks. Heliyon 2023; 9:e17726. [PMID: 37539215 PMCID: PMC10395133 DOI: 10.1016/j.heliyon.2023.e17726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/13/2023] [Accepted: 06/26/2023] [Indexed: 08/05/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been shown to play a regulatory role in various processes of human diseases. However, lncRNA experiments are inefficient, time-consuming and highly subjective, so that the number of experimentally verified associations between lncRNA and diseases is limited. In the era of big data, numerous machine learning methods have been proposed to predict the potential association between lncRNA and diseases, but the characteristics of the associated data were seldom explored. In these methods, negative samples are randomly selected for model training and the model is prone to learn the potential positive association error, thus affecting the prediction accuracy. In this paper, we proposed a cyclic optimization model of predicting lncRNA-disease associations (COPTLDA in short). In COPTLDA, the two-step training strategy is adopted to search for the samples with the greater probability of being negative examples from unlabeled samples and the determined samples are treated as negative samples, which are combined together with known positive samples to train the model. The searching and training steps are repeated until the best model is obtained as the final prediction model. In order to evaluate the performance of the model, 30% of the known positive samples are used to calculate the model accuracy and 10% of positive samples are used to calculate the recall rate of the model. The sampling strategy used in this paper can improve the accuracy and the AUC value reaches 0.9348. The results of case studies showed that the model could predict the potential associations between lncRNA and malignant tumors such as colorectal cancer, gastric cancer, and breast cancer. The predicted top 20 associated lncRNAs included 10 colorectal cancer lncRNAs, 2 gastric cancer lncRNAs, and 8 breast cancer lncRNAs.
Collapse
Affiliation(s)
| | | | | | | | - Li Mengshan
- Corresponding author. Gannan Normal University, China.
| |
Collapse
|
17
|
Kim Y, Lee M. Deep Learning Approaches for lncRNA-Mediated Mechanisms: A Comprehensive Review of Recent Developments. Int J Mol Sci 2023; 24:10299. [PMID: 37373445 DOI: 10.3390/ijms241210299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
This review paper provides an extensive analysis of the rapidly evolving convergence of deep learning and long non-coding RNAs (lncRNAs). Considering the recent advancements in deep learning and the increasing recognition of lncRNAs as crucial components in various biological processes, this review aims to offer a comprehensive examination of these intertwined research areas. The remarkable progress in deep learning necessitates thoroughly exploring its latest applications in the study of lncRNAs. Therefore, this review provides insights into the growing significance of incorporating deep learning methodologies to unravel the intricate roles of lncRNAs. By scrutinizing the most recent research spanning from 2021 to 2023, this paper provides a comprehensive understanding of how deep learning techniques are employed in investigating lncRNAs, thereby contributing valuable insights to this rapidly evolving field. The review is aimed at researchers and practitioners looking to integrate deep learning advancements into their lncRNA studies.
Collapse
Affiliation(s)
- Yoojoong Kim
- School of Computer Science and Information Engineering, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Minhyeok Lee
- School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
18
|
Lu C, Xie M. LDAEXC: LncRNA-Disease Associations Prediction with Deep Autoencoder and XGBoost Classifier. Interdiscip Sci 2023:10.1007/s12539-023-00573-z. [PMID: 37308797 DOI: 10.1007/s12539-023-00573-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 06/14/2023]
Abstract
Numerous scientific evidences have revealed that long non-coding RNAs (lncRNAs) are involved in the progression of human complex diseases and biological life activities. Therefore, identifying novel and potential disease-related lncRNAs is helpful to diagnosis, prognosis and therapy of many human complex diseases. Since traditional laboratory experiments are cost and time-consuming, a great quantity of computer algorithms have been proposed for predicting the relationships between lncRNAs and diseases. However, there are still much room for the improvement. In this paper, we introduce an accurate framework named LDAEXC to infer LncRNA-Disease Associations with deep autoencoder and XGBoost Classifier. LDAEXC utilizes different similarity views of lncRNAs and human diseases to construct features for each data sources. Then, the reduced features are obtained by feeding the constructed feature vectors into a deep autoencoder, and at last an XGBoost classifier is leveraged to calculate the latent lncRNA-disease-associated scores using reduced features. The fivefold cross-validation experiments on four datasets showed that LDAEXC reached AUC scores of 0.9676 ± 0.0043, 0.9449 ± 0.022, 0.9375 ± 0.0331 and 0.9556 ± 0.0134, respectively, significantly higher than other advanced similar computer methods. Extensive experiment results and case studies of two complex diseases (colon and breast cancers) further indicated the practicability and excellent prediction performance of LDAEXC in inferring unknown lncRNA-disease associations. TLDAEXC utilizes disease semantic similarity, lncRNA expression similarity, and Gaussian interaction profile kernel similarity of lncRNAs and diseases for feature construction. The constructed features are fed to a deep autoencoder to extract reduced features, and an XGBoost classifier is used to predict the lncRNA-disease associations based on the reduced features. The fivefold and tenfold cross-validation experiments on a benchmark dataset showed that LDAEXC could achieve AUC scores of 0.9676 and 0.9682, respectively, significantly higher than other state-of-the-art similar methods.
Collapse
Affiliation(s)
- Cuihong Lu
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Minzhu Xie
- College of Information Science and Engineering, Hunan Normal University, Changsha, China.
| |
Collapse
|
19
|
Ye J, Li A, Zheng H, Yang B, Lu Y. Machine Learning Advances in Predicting Peptide/Protein-Protein Interactions Based on Sequence Information for Lead Peptides Discovery. Adv Biol (Weinh) 2023; 7:e2200232. [PMID: 36775876 DOI: 10.1002/adbi.202200232] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/30/2022] [Indexed: 02/14/2023]
Abstract
Peptides have shown increasing advantages and significant clinical value in drug discovery and development. With the development of high-throughput technologies and artificial intelligence (AI), machine learning (ML) methods for discovering new lead peptides have been expanded and incorporated into rational drug design. Predictions of peptide-protein interactions (PepPIs) and protein-protein interactions (PPIs) are both opportunities and challenges in computational biology, which will help to better understand the mechanisms of disease and provide the impetus for the discovery of lead peptides. This paper comprehensively reviews computational models for PepPI and PPI predictions. It begins with an introduction of various databases of peptide ligands and target proteins. Then it discusses data formats and feature representations for proteins and peptides. Furthermore, classical ML methods and emerging deep learning (DL) methods that can be used to train prediction models of PepPI and PPI are classified into four categories, and their advantages and disadvantages are analyzed. To assess the relative performance of different models, different validation protocols and evaluation indexes are discussed. The goal of this review is to help researchers quickly get started to develop computational frameworks using these integrated resources and eventually promote the discovery of lead peptides.
Collapse
Affiliation(s)
- Jiahao Ye
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - An Li
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Hao Zheng
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Banghua Yang
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yiming Lu
- School of Medicine, Shanghai University, Shanghai, 200444, China
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| |
Collapse
|
20
|
Zhu Y, Zhang F, Zhang S, Yi M. Predicting latent lncRNA and cancer metastatic event associations via variational graph auto-encoder. Methods 2023; 211:1-9. [PMID: 36709790 DOI: 10.1016/j.ymeth.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/05/2022] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Long non-coding RNA (lncRNA) are shown to be closely associated with cancer metastatic events (CME, e.g., cancer cell invasion, intravasation, extravasation, proliferation) that collaboratively accelerate malignant cancer spread and cause high mortality rate in patients. Clinical trials may accurately uncover the relationships between lncRNAs and CMEs; however, it is time-consuming and expensive. With the accumulation of data, there is an urgent need to find efficient ways to identify these relationships. Herein, a graph embedding representation-based predictor (VGEA-LCME) for exploring latent lncRNA-CME associations is introduced. In VGEA-LCME, a heterogeneous combined network is constructed by integrating similarity and linkage matrix that can maintain internal and external characteristics of networks, and a variational graph auto-encoder serves as a feature generator to represent arbitrary lncRNA and CME pair. The final robustness predicted result is obtained by ensemble classifier strategy via cross-validation. Experimental comparisons and literature verification show better remarkable performance of VGEA-LCME, although the similarities between CMEs are challenging to calculate. In addition, VGEA-LCME can further identify organ-specific CMEs. To the best of our knowledge, this is the first computational attempt to discover the potential relationships between lncRNAs and CMEs. It may provide support and new insight for guiding experimental research of metastatic cancers. The source code and data are available at https://github.com/zhuyuan-cug/VGAE-LCME.
Collapse
Affiliation(s)
- Yuan Zhu
- School of Automation, China University of Geosciences, 388 Lumo Road, Hongshan District, 430074, Wuhan, Hubei, China; Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems, 388 Lumo Road, Hongshan District, 430074, Wuhan, Hubei, China; Engineering Research Center of Intelligent Technology for Geo-Exploration, 388 Lumo Road, Hongshan District, 430074, Wuhan, Hubei, China
| | - Feng Zhang
- School of Mathematics and Physics, China University of Geosciences, 388 Lumo Road, Hongshan District, 430074, Wuhan, Hubei, China
| | - Shihua Zhang
- College of Life Science and Health, Wuhan University of Science and Technology, 974 Heping Avenue, Qingshan District, 430081, Wuhan, Hubei, China.
| | - Ming Yi
- School of Mathematics and Physics, China University of Geosciences, 388 Lumo Road, Hongshan District, 430074, Wuhan, Hubei, China.
| |
Collapse
|
21
|
Recent advances in predicting lncRNA-disease associations based on computational methods. Drug Discov Today 2023; 28:103432. [PMID: 36370992 DOI: 10.1016/j.drudis.2022.103432] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/19/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
Abstract
Mutations in and dysregulation of long non-coding RNAs (lncRNAs) are closely associated with the development of various human complex diseases, but only a few lncRNAs have been experimentally confirmed to be associated with human diseases. Predicting new potential lncRNA-disease associations (LDAs) will help us to understand the pathogenesis of human diseases and to detect disease markers, as well as in disease diagnosis, prevention and treatment. Computational methods can effectively narrow down the screening scope of biological experiments, thereby reducing the duration and cost of such experiments. In this review, we outline recent advances in computational methods for predicting LDAs, focusing on LDA databases, lncRNA/disease similarity calculations, and advanced computational models. In addition, we analyze the limitations of various computational models and discuss future challenges and directions for development.
Collapse
|
22
|
Sheng N, Huang L, Lu Y, Wang H, Yang L, Gao L, Xie X, Fu Y, Wang Y. Data resources and computational methods for lncRNA-disease association prediction. Comput Biol Med 2023; 153:106527. [PMID: 36610216 DOI: 10.1016/j.compbiomed.2022.106527] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/08/2022] [Accepted: 12/31/2022] [Indexed: 01/03/2023]
Abstract
Increasing interest has been attracted in deciphering the potential disease pathogenesis through lncRNA-disease association (LDA) prediction, regarding to the diverse functional roles of lncRNAs in genome regulation. Whilst, computational models and algorithms benefit systematic biology research, even facilitate the classical biological experimental procedures. In this review, we introduce representative diseases associated with lncRNAs, such as cancers, cardiovascular diseases, and neurological diseases. Current publicly available resources related to lncRNAs and diseases have also been included. Furthermore, all of the 64 computational methods for LDA prediction have been divided into 5 groups, including machine learning-based methods, network propagation-based methods, matrix factorization- and completion-based methods, deep learning-based methods, and graph neural network-based methods. The common evaluation methods and metrics in LDA prediction have also been discussed. Finally, the challenges and future trends in LDA prediction have been discussed. Recent advances in LDA prediction approaches have been summarized in the GitHub repository at https://github.com/sheng-n/lncRNA-disease-methods.
Collapse
Affiliation(s)
- Nan Sheng
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
| | - Lan Huang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China.
| | - Yuting Lu
- School of Artificial Intelligence, Jilin University, Changchun, China
| | - Hao Wang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lili Yang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China; Department of Obstetrics, The First Hospital of Jilin University, Changchun, China
| | - Ling Gao
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
| | - Xuping Xie
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
| | - Yuan Fu
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, United Kingdom
| | - Yan Wang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China; School of Artificial Intelligence, Jilin University, Changchun, China.
| |
Collapse
|
23
|
Liang Q, Zhang W, Wu H, Liu B. LncRNA-disease association identification using graph auto-encoder and learning to rank. Brief Bioinform 2023; 24:6955271. [PMID: 36545805 DOI: 10.1093/bib/bbac539] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/18/2022] [Accepted: 11/08/2022] [Indexed: 12/24/2022] Open
Abstract
Discovering the relationships between long non-coding RNAs (lncRNAs) and diseases is significant in the treatment, diagnosis and prevention of diseases. However, current identified lncRNA-disease associations are not enough because of the expensive and heavy workload of wet laboratory experiments. Therefore, it is greatly important to develop an efficient computational method for predicting potential lncRNA-disease associations. Previous methods showed that combining the prediction results of the lncRNA-disease associations predicted by different classification methods via Learning to Rank (LTR) algorithm can be effective for predicting potential lncRNA-disease associations. However, when the classification results are incorrect, the ranking results will inevitably be affected. We propose the GraLTR-LDA predictor based on biological knowledge graphs and ranking framework for predicting potential lncRNA-disease associations. Firstly, homogeneous graph and heterogeneous graph are constructed by integrating multi-source biological information. Then, GraLTR-LDA integrates graph auto-encoder and attention mechanism to extract embedded features from the constructed graphs. Finally, GraLTR-LDA incorporates the embedded features into the LTR via feature crossing statistical strategies to predict priority order of diseases associated with query lncRNAs. Experimental results demonstrate that GraLTR-LDA outperforms the other state-of-the-art predictors and can effectively detect potential lncRNA-disease associations. Availability and implementation: Datasets and source codes are available at http://bliulab.net/GraLTR-LDA.
Collapse
Affiliation(s)
- Qi Liang
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Wenxiang Zhang
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Hao Wu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Bin Liu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China.,Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
24
|
Zhou Y, Wang X, Yao L, Zhu M. LDAformer: predicting lncRNA-disease associations based on topological feature extraction and Transformer encoder. Brief Bioinform 2022; 23:6696138. [PMID: 36094081 DOI: 10.1093/bib/bbac370] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/27/2022] [Accepted: 08/06/2022] [Indexed: 12/14/2022] Open
Abstract
The identification of long noncoding RNA (lncRNA)-disease associations is of great value for disease diagnosis and treatment, and it is now commonly used to predict potential lncRNA-disease associations with computational methods. However, the existing methods do not sufficiently extract key features during data processing, and the learning model parts are either less powerful or overly complex. Therefore, there is still potential to achieve better predictive performance by improving these two aspects. In this work, we propose a novel lncRNA-disease association prediction method LDAformer based on topological feature extraction and Transformer encoder. We construct the heterogeneous network by integrating the associations between lncRNAs, diseases and micro RNAs (miRNAs). Intra-class similarities and inter-class associations are presented as the lncRNA-disease-miRNA weighted adjacency matrix to unify semantics. Next, we design a topological feature extraction process to further obtain multi-hop topological pathway features latent in the adjacency matrix. Finally, to capture the interdependencies between heterogeneous pathways, a Transformer encoder based on the global self-attention mechanism is employed to predict lncRNA-disease associations. The efficient feature extraction and the intuitive and powerful learning model lead to ideal performance. The results of computational experiments on two datasets show that our method outperforms the state-of-the-art baseline methods. Additionally, case studies further indicate its capability to discover new associations accurately.
Collapse
Affiliation(s)
- Yi Zhou
- College of Computer Science, Sichuan University, 1st Ring Road South 1 Section, 610065, Chengdu, China
| | - Xinyi Wang
- College of Computer Science, Sichuan University, 1st Ring Road South 1 Section, 610065, Chengdu, China
| | - Lin Yao
- College of Computer Science, Sichuan University, 1st Ring Road South 1 Section, 610065, Chengdu, China
| | - Min Zhu
- College of Computer Science, Sichuan University, 1st Ring Road South 1 Section, 610065, Chengdu, China
| |
Collapse
|
25
|
Wu QW, Cao RF, Xia JF, Ni JC, Zheng CH, Su YS. Extra Trees Method for Predicting LncRNA-Disease Association Based On Multi-Layer Graph Embedding Aggregation. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:3171-3178. [PMID: 34529571 DOI: 10.1109/tcbb.2021.3113122] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lots of experimental studies have revealed the significant associations between lncRNAs and diseases. Identifying accurate associations will provide a new perspective for disease therapy. Calculation-based methods have been developed to solve these problems, but these methods have some limitations. In this paper, we proposed an accurate method, named MLGCNET, to discover potential lncRNA-disease associations. Firstly, we reconstructed similarity networks for both lncRNAs and diseases using top k similar information, and constructed a lncRNA-disease heterogeneous network (LDN). Then, we applied Multi-Layer Graph Convolutional Network on LDN to obtain latent feature representations of nodes. Finally, the Extra Trees was used to calculate the probability of association between disease and lncRNA. The results of extensive 5-fold cross-validation experiments show that MLGCNET has superior prediction performance compared to the state-of-the-art methods. Case studies confirm the performance of our model on specific diseases. All the experiment results prove the effectiveness and practicality of MLGCNET in predicting potential lncRNA-disease associations.
Collapse
|
26
|
Zhang Y, Wang Y, Li X, Liu Y, Chen M. Identifying lncRNA–disease association based on GAT multiple-operator aggregation and inductive matrix completion. Front Genet 2022; 13:1029300. [DOI: 10.3389/fgene.2022.1029300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Computable models as a fundamental candidate for traditional biological experiments have been applied in inferring lncRNA–disease association (LDA) for many years, without time-consuming and laborious limitations. However, sparsity inherently existing in known heterogeneous bio-data is an obstacle to computable models to improve prediction accuracy further. Therefore, a new computational model composed of multiple mechanisms for lncRNA–disease association (MM-LDA) prediction was proposed, based on the fusion of the graph attention network (GAT) and inductive matrix completion (IMC). MM-LDA has two key steps to improve prediction accuracy: first, a multiple-operator aggregation was designed in the n-heads attention mechanism of the GAT. With this step, features of lncRNA nodes and disease nodes were enhanced. Second, IMC was introduced into the enhanced node features obtained in the first step, and then the LDA network was reconstructed to solve the cold start problem when data deficiency of the entire row or column happened in a known association matrix. Our MM-LDA achieved the following progress: first, using the Adam optimizer that adaptively adjusted the model learning rate could increase the convergent speed and not fall into local optima as well. Second, more excellent predictive ability was achieved against other similar models (with an AUC value of 0.9395 and an AUPR value of 0.8057 obtained from 5-fold cross-validation). Third, a 6.45% lower time cost was consumed against the advanced model GAMCLDA. In short, our MM-LDA achieved a more comprehensive prediction performance in terms of prediction accuracy and time cost.
Collapse
|
27
|
Zhang Y, Ye F, Gao X. MCA-Net: Multi-Feature Coding and Attention Convolutional Neural Network for Predicting lncRNA-Disease Association. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:2907-2919. [PMID: 34283719 DOI: 10.1109/tcbb.2021.3098126] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With the advent of the era of big data, it is troublesome to accurately predict the associations between lncRNAs and diseases based on traditional biological experiments due to its time-consuming and subjective. In this paper, we propose a novel deep learning method for predicting lncRNA-disease associations using multi-feature coding and attention convolutional neural network (MCA-Net). We first calculate six similarity features to extract different types of lncRNA and disease feature information. Second, a multi-feature coding method is proposed to construct the feature vectors of lncRNA-disease association samples by integrating the six similarity features. Furthermore, an attention convolutional neural network is developed to identify lncRNA-disease associations under 10-fold cross-validation. Finally, we evaluate the performance of MCA-Net from different perspectives including the effects of the model parameters, distinct deep learning models, and the necessity of attention mechanism. We also compare MCA-Net with several state-of-the-art methods on three publicly available datasets, i.e., LncRNADisease, Lnc2Cancer, and LncRNADisease2.0. The results show that our MCA-Net outperforms the state-of-the-art methods on all three dataset. Besides, case studies on breast cancer and lung cancer further verify that MCA-Net is effective and accurate for the lncRNA-disease association prediction.
Collapse
|
28
|
Yue Y, Ye C, Peng PY, Zhai HX, Ahmad I, Xia C, Wu YZ, Zhang YH. A deep learning framework for identifying essential proteins based on multiple biological information. BMC Bioinformatics 2022; 23:318. [PMID: 35927611 PMCID: PMC9351218 DOI: 10.1186/s12859-022-04868-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/29/2022] [Indexed: 11/15/2022] Open
Abstract
Background Essential Proteins are demonstrated to exert vital functions on cellular processes and are indispensable for the survival and reproduction of the organism. Traditional centrality methods perform poorly on complex protein–protein interaction (PPI) networks. Machine learning approaches based on high-throughput data lack the exploitation of the temporal and spatial dimensions of biological information. Results We put forward a deep learning framework to predict essential proteins by integrating features obtained from the PPI network, subcellular localization, and gene expression profiles. In our model, the node2vec method is applied to learn continuous feature representations for proteins in the PPI network, which capture the diversity of connectivity patterns in the network. The concept of depthwise separable convolution is employed on gene expression profiles to extract properties and observe the trends of gene expression over time under different experimental conditions. Subcellular localization information is mapped into a long one-dimensional vector to capture its characteristics. Additionally, we use a sampling method to mitigate the impact of imbalanced learning when training the model. With experiments carried out on the data of Saccharomyces cerevisiae, results show that our model outperforms traditional centrality methods and machine learning methods. Likewise, the comparative experiments have manifested that our process of various biological information is preferable. Conclusions Our proposed deep learning framework effectively identifies essential proteins by integrating multiple biological data, proving a broader selection of subcellular localization information significantly improves the results of prediction and depthwise separable convolution implemented on gene expression profiles enhances the performance.
Collapse
Affiliation(s)
- Yi Yue
- Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, 230036, China. .,School of Information and Computer, Anhui Agricultural University, Hefei, 230036, China. .,School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China. .,State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China.
| | - Chen Ye
- Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, 230036, China.,School of Information and Computer, Anhui Agricultural University, Hefei, 230036, China
| | - Pei-Yun Peng
- Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, 230036, China.,School of Information and Computer, Anhui Agricultural University, Hefei, 230036, China
| | - Hui-Xin Zhai
- Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, 230036, China.,School of Information and Computer, Anhui Agricultural University, Hefei, 230036, China
| | - Iftikhar Ahmad
- Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, 230036, China.,School of Information and Computer, Anhui Agricultural University, Hefei, 230036, China
| | - Chuan Xia
- Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, 230036, China.,School of Information and Computer, Anhui Agricultural University, Hefei, 230036, China
| | - Yun-Zhi Wu
- Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, 230036, China.,School of Information and Computer, Anhui Agricultural University, Hefei, 230036, China.,State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - You-Hua Zhang
- Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, 230036, China. .,School of Information and Computer, Anhui Agricultural University, Hefei, 230036, China. .,School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
29
|
Yang M, Huang ZA, Gu W, Han K, Pan W, Yang X, Zhu Z. Prediction of biomarker-disease associations based on graph attention network and text representation. Brief Bioinform 2022; 23:6651308. [PMID: 35901464 DOI: 10.1093/bib/bbac298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/06/2023] Open
Abstract
MOTIVATION The associations between biomarkers and human diseases play a key role in understanding complex pathology and developing targeted therapies. Wet lab experiments for biomarker discovery are costly, laborious and time-consuming. Computational prediction methods can be used to greatly expedite the identification of candidate biomarkers. RESULTS Here, we present a novel computational model named GTGenie for predicting the biomarker-disease associations based on graph and text features. In GTGenie, a graph attention network is utilized to characterize diverse similarities of biomarkers and diseases from heterogeneous information resources. Meanwhile, a pretrained BERT-based model is applied to learn the text-based representation of biomarker-disease relation from biomedical literature. The captured graph and text features are then integrated in a bimodal fusion network to model the hybrid entity representation. Finally, inductive matrix completion is adopted to infer the missing entries for reconstructing relation matrix, with which the unknown biomarker-disease associations are predicted. Experimental results on HMDD, HMDAD and LncRNADisease data sets showed that GTGenie can obtain competitive prediction performance with other state-of-the-art methods. AVAILABILITY The source code of GTGenie and the test data are available at: https://github.com/Wolverinerine/GTGenie.
Collapse
Affiliation(s)
- Minghao Yang
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, 518000, China
| | - Zhi-An Huang
- Center for Computer Science and Information Technology, City University of Hong Kong Dongguan Research Institute, Dongguan, China
| | - Wenhao Gu
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, 518000, China.,GeneGenieDx Corp, 160 E Tasman Dr, San Jose, CA 95134
| | - Kun Han
- GeneGenieDx Corp, 160 E Tasman Dr, San Jose, CA 95134
| | - Wenying Pan
- GeneGenieDx Corp, 160 E Tasman Dr, San Jose, CA 95134
| | - Xiao Yang
- GeneGenieDx Corp, 160 E Tasman Dr, San Jose, CA 95134
| | - Zexuan Zhu
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, 518000, China
| |
Collapse
|
30
|
Wang B, Liu R, Zheng X, Du X, Wang Z. lncRNA-disease association prediction based on matrix decomposition of elastic network and collaborative filtering. Sci Rep 2022; 12:12700. [PMID: 35882886 PMCID: PMC9325687 DOI: 10.1038/s41598-022-16594-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022] Open
Abstract
In recent years, with the continuous development and innovation of high-throughput biotechnology, more and more evidence show that lncRNA plays an essential role in biological life activities and is related to the occurrence of various diseases. However, due to the high cost and time-consuming of traditional biological experiments, the number of associations between lncRNAs and diseases that rely on experiments to verify is minimal. Computer-aided study of lncRNA-disease association is an important method to study the development of the lncRNA-disease association. Using the existing data to establish a prediction model and predict the unknown lncRNA-disease association can make the biological experiment targeted and improve its accuracy of the biological experiment. Therefore, we need to find an accurate and efficient method to predict the relationship between lncRNA and diseases and help biologists complete the diagnosis and treatment of diseases. Most of the current lncRNA-disease association predictions do not consider the model instability caused by the actual data. Also, predictive models may produce data that overfit is not considered. This paper proposes a lncRNA-disease association prediction model (ENCFLDA) that combines an elastic network with matrix decomposition and collaborative filtering. This method uses the existing lncRNA-miRNA association data and miRNA-disease association data to predict the association between unknown lncRNA and disease, updates the matrix by matrix decomposition combined with the elastic network, and then obtains the final prediction matrix by collaborative filtering. This method uses the existing lncRNA-miRNA association data and miRNA-disease association data to predict the association of unknown lncRNAs with diseases. First, since the known lncRNA-disease association matrix is very sparse, the cosine similarity and KNN are used to update the lncRNA-disease association matrix. The matrix is then updated by matrix decomposition combined with an elastic net algorithm, to increase the stability of the overall prediction model and eliminate data overfitting. The final prediction matrix is then obtained through collaborative filtering based on lncRNA.Through simulation experiments, the results show that the AUC value of ENCFLDA can reach 0.9148 under the framework of LOOCV, which is higher than the prediction result of the latest model.
Collapse
Affiliation(s)
- Bo Wang
- College of Computer and Control, Qiqihar University, Qiqihar, 161006, China.
| | - RunJie Liu
- College of Computer and Control, Qiqihar University, Qiqihar, 161006, China
| | - XiaoDong Zheng
- College of Computer and Control, Qiqihar University, Qiqihar, 161006, China
| | - XiaoXin Du
- College of Computer and Control, Qiqihar University, Qiqihar, 161006, China
| | - ZhengFei Wang
- College of Computer and Control, Qiqihar University, Qiqihar, 161006, China
| |
Collapse
|
31
|
Liang Z, Zheng R, Chen S, Yan X, Li M. A deep matrix factorization based approach for single-cell RNA-seq data clustering. Methods 2022; 205:114-122. [PMID: 35777719 DOI: 10.1016/j.ymeth.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/28/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
The rapid development of single-cell sequencing technologies makes it possible to analyze cellular heterogeneity at the single-cell level. Cell clustering is one of the most fundamental and common steps in the heterogeneity analysis. However, due to the high noise level, high dimensionality and high sparsity, accurate cell clustering is still challengeable. Here, we present DeepCI, a new clustering approach for scRNA-seq data. Using two autoencoders to obtain cell embedding and gene embedding, DeepCI can simultaneously learn cell low-dimensional representation and clustering. In addition, the recovered gene expression matrix can be obtained by the matrix multiplication of cell and gene embedding. To evaluate the performance of DeepCI, we performed it on several real scRNA-seq datasets for clustering and visualization analysis. The experimental results show that DeepCI obtains the overall better performance than several popular single cell analysis methods. We also evaluated the imputation performance of DeepCI by a dedicated experiment. The corresponding results show that the imputed gene expression of known specific marker gene can greatly improve the accuracy of cell type classification.
Collapse
Affiliation(s)
- Zhenlan Liang
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Ruiqing Zheng
- School of Computer Science and Engineering, Central South University, Changsha 410083, China.
| | - Siqi Chen
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Xuhua Yan
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Min Li
- School of Computer Science and Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
32
|
Liang Y, Zhang ZQ, Liu NN, Wu YN, Gu CL, Wang YL. MAGCNSE: predicting lncRNA-disease associations using multi-view attention graph convolutional network and stacking ensemble model. BMC Bioinformatics 2022; 23:189. [PMID: 35590258 PMCID: PMC9118755 DOI: 10.1186/s12859-022-04715-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/05/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Many long non-coding RNAs (lncRNAs) have key roles in different human biologic processes and are closely linked to numerous human diseases, according to cumulative evidence. Predicting potential lncRNA-disease associations can help to detect disease biomarkers and perform disease analysis and prevention. Establishing effective computational methods for lncRNA-disease association prediction is critical. RESULTS In this paper, we propose a novel model named MAGCNSE to predict underlying lncRNA-disease associations. We first obtain multiple feature matrices from the multi-view similarity graphs of lncRNAs and diseases utilizing graph convolutional network. Then, the weights are adaptively assigned to different feature matrices of lncRNAs and diseases using the attention mechanism. Next, the final representations of lncRNAs and diseases is acquired by further extracting features from the multi-channel feature matrices of lncRNAs and diseases using convolutional neural network. Finally, we employ a stacking ensemble classifier, consisting of multiple traditional machine learning classifiers, to make the final prediction. The results of ablation studies in both representation learning methods and classification methods demonstrate the validity of each module. Furthermore, we compare the overall performance of MAGCNSE with that of six other state-of-the-art models, the results show that it outperforms the other methods. Moreover, we verify the effectiveness of using multi-view data of lncRNAs and diseases. Case studies further reveal the outstanding ability of MAGCNSE in the identification of potential lncRNA-disease associations. CONCLUSIONS The experimental results indicate that MAGCNSE is a useful approach for predicting potential lncRNA-disease associations.
Collapse
Affiliation(s)
- Ying Liang
- College of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Ze-Qun Zhang
- College of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Nian-Nian Liu
- College of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Ya-Nan Wu
- College of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Chang-Long Gu
- College of Information Science and Engineering, Hunan University, Changsha, China
| | - Ying-Long Wang
- College of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
33
|
Liu Y, Yang H, Zheng C, Wang K, Yan J, Cao H, Zhang Y. NCP-BiRW: A Hybrid Approach for Predicting Long Noncoding RNA-Disease Associations by Network Consistency Projection and Bi-Random Walk. Front Genet 2022; 13:862272. [PMID: 35495166 PMCID: PMC9043107 DOI: 10.3389/fgene.2022.862272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/21/2022] [Indexed: 12/06/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play significant roles in the disease process. Understanding the pathological mechanisms of lncRNAs during the course of various diseases will help clinicians prevent and treat diseases. With the emergence of high-throughput techniques, many biological experiments have been developed to study lncRNA-disease associations. Because experimental methods are costly, slow, and laborious, a growing number of computational models have emerged. Here, we present a new approach using network consistency projection and bi-random walk (NCP-BiRW) to infer hidden lncRNA-disease associations. First, integrated similarity networks for lncRNAs and diseases were constructed by merging similarity information. Subsequently, network consistency projection was applied to calculate space projection scores for lncRNAs and diseases, which were then introduced into a bi-random walk method for association prediction. To test model performance, we employed 5- and 10-fold cross-validation, with the area under the receiver operating characteristic curve as the evaluation indicator. The computational results showed that our method outperformed the other five advanced algorithms. In addition, the novel method was applied to another dataset in the Mammalian ncRNA-Disease Repository (MNDR) database and showed excellent performance. Finally, case studies were carried out on atherosclerosis and leukemia to confirm the effectiveness of our method in practice. In conclusion, we could infer lncRNA-disease associations using the NCP-BiRW model, which may benefit biomedical studies in the future.
Collapse
Affiliation(s)
- Yanling Liu
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
- Department of Mathematics, Changzhi Medical College, Changzhi, China
| | - Hong Yang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Chu Zheng
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Ke Wang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Jingjing Yan
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Hongyan Cao
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Yanbo Zhang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Major Diseases Risk Assessment, Taiyuan, China
- School of Health and Service Management, Shanxi University of Chinese Medicine, Taiyuan, China
- *Correspondence:Yanbo Zhang,
| |
Collapse
|
34
|
Wang L, Zhong C. gGATLDA: lncRNA-disease association prediction based on graph-level graph attention network. BMC Bioinformatics 2022; 23:11. [PMID: 34983363 PMCID: PMC8729153 DOI: 10.1186/s12859-021-04548-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/21/2021] [Indexed: 01/20/2023] Open
Abstract
Background Long non-coding RNAs (lncRNAs) are related to human diseases by regulating gene expression. Identifying lncRNA-disease associations (LDAs) will contribute to diagnose, treatment, and prognosis of diseases. However, the identification of LDAs by the biological experiments is time-consuming, costly and inefficient. Therefore, the development of efficient and high-accuracy computational methods for predicting LDAs is of great significance. Results In this paper, we propose a novel computational method (gGATLDA) to predict LDAs based on graph-level graph attention network. Firstly, we extract the enclosing subgraphs of each lncRNA-disease pair. Secondly, we construct the feature vectors by integrating lncRNA similarity and disease similarity as node attributes in subgraphs. Finally, we train a graph neural network (GNN) model by feeding the subgraphs and feature vectors to it, and use the trained GNN model to predict lncRNA-disease potential association scores. The experimental results show that our method can achieve higher area under the receiver operation characteristic curve (AUC), area under the precision recall curve (AUPR), accuracy and F1-Score than the state-of-the-art methods in five fold cross-validation. Case studies show that our method can effectively identify lncRNAs associated with breast cancer, gastric cancer, prostate cancer, and renal cancer. Conclusion The experimental results indicate that our method is a useful approach for predicting potential LDAs.
Collapse
Affiliation(s)
- Li Wang
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, China.,School of Computer, Electronics and Information, Guangxi University, Nanning, China
| | - Cheng Zhong
- School of Computer, Electronics and Information, Guangxi University, Nanning, China. .,Key Laboratory of Parallel and Distributed Computing in Guangxi Colleges and Universities, Guangxi University, Nanning, China.
| |
Collapse
|
35
|
Duan T, Kuang Z, Wang J, Ma Z. GBDTLRL2D Predicts LncRNA-Disease Associations Using MetaGraph2Vec and K-Means Based on Heterogeneous Network. Front Cell Dev Biol 2021; 9:753027. [PMID: 34977011 PMCID: PMC8718797 DOI: 10.3389/fcell.2021.753027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/22/2021] [Indexed: 12/16/2022] Open
Abstract
In recent years, the long noncoding RNA (lncRNA) has been shown to be involved in many disease processes. The prediction of the lncRNA-disease association is helpful to clarify the mechanism of disease occurrence and bring some new methods of disease prevention and treatment. The current methods for predicting the potential lncRNA-disease association seldom consider the heterogeneous networks with complex node paths, and these methods have the problem of unbalanced positive and negative samples. To solve this problem, a method based on the Gradient Boosting Decision Tree (GBDT) and logistic regression (LR) to predict the lncRNA-disease association (GBDTLRL2D) is proposed in this paper. MetaGraph2Vec is used for feature learning, and negative sample sets are selected by using K-means clustering. The innovation of the GBDTLRL2D is that the clustering algorithm is used to select a representative negative sample set, and the use of MetaGraph2Vec can better retain the semantic and structural features in heterogeneous networks. The average area under the receiver operating characteristic curve (AUC) values of GBDTLRL2D obtained on the three datasets are 0.98, 0.98, and 0.96 in 10-fold cross-validation.
Collapse
Affiliation(s)
| | - Zhufang Kuang
- School of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha, China
| | | | | |
Collapse
|
36
|
Bamunu Mudiyanselage T, Lei X, Senanayake N, Zhang Y, Pan Y. Predicting CircRNA disease associations using novel node classification and link prediction models on Graph Convolutional Networks. Methods 2021; 198:32-44. [PMID: 34748953 DOI: 10.1016/j.ymeth.2021.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/21/2021] [Accepted: 10/22/2021] [Indexed: 12/17/2022] Open
Abstract
Accumulated studies have discovered that circular RNAs (CircRNAs) are closely related to many complex human diseases. Due to this close relationship, CircRNAs can be used as good biomarkers for disease diagnosis and therapeutic targets for treatments. However, the number of experimentally verified circRNA-disease associations are still fewer and also conducting wet-lab experiments are constrained by the small scale and cost of time and labour. Therefore, effective computational methods are required to predict associations between circRNAs and diseases which will be promising candidates for small scale biological and clinical experiments. In this paper, we propose novel computational models based on Graph Convolution Networks (GCN) for the potential circRNA-disease association prediction. Currently most of the existing prediction methods use shallow learning algorithms. Instead, the proposed models combine the strengths of deep learning and graphs for the computation. First, they integrate multi-source similarity information into the association network. Next, models predict potential associations using graph convolution which explore this important relational knowledge of that network structure. Two circRNA-disease association prediction models, GCN based Node Classification (GCN-NC) and GCN based Link Prediction (GCN-LP) are introduced in this work and they demonstrate promising results in various experiments and outperforms other existing methods. Further, a case study proves that some of the predicted results of the novel computational models were confirmed by published literature and all top results could be verified using gene-gene interaction networks.
Collapse
Affiliation(s)
| | - Xiujuan Lei
- School of Computer Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Nipuna Senanayake
- Department of Computer Science, Georgia State University, Atlanta, USA.
| | - Yanqing Zhang
- Department of Computer Science, Georgia State University, Atlanta, USA.
| | - Yi Pan
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
37
|
SVDNVLDA: predicting lncRNA-disease associations by Singular Value Decomposition and node2vec. BMC Bioinformatics 2021; 22:538. [PMID: 34727886 PMCID: PMC8561941 DOI: 10.1186/s12859-021-04457-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/18/2021] [Indexed: 11/10/2022] Open
Abstract
Background Numerous studies on discovering the roles of long non-coding RNAs (lncRNAs) in the occurrence, development and prognosis progresses of various human diseases have drawn substantial attentions. Since only a tiny portion of lncRNA-disease associations have been properly annotated, an increasing number of computational methods have been proposed for predicting potential lncRNA-disease associations. However, traditional predicting models lack the ability to precisely extract features of biomolecules, it is urgent to find a model which can identify potential lncRNA-disease associations with both efficiency and accuracy. Results In this study, we proposed a novel model, SVDNVLDA, which gained the linear and non-linear features of lncRNAs and diseases with Singular Value Decomposition (SVD) and node2vec methods respectively. The integrated features were constructed from connecting the linear and non-linear features of each entity, which could effectively enhance the semantics contained in ultimate representations. And an XGBoost classifier was employed for identifying potential lncRNA-disease associations eventually. Conclusions We propose a novel model to predict lncRNA-disease associations. This model is expected to identify potential relationships between lncRNAs and diseases and further explore the disease mechanisms at the lncRNA molecular level. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04457-1.
Collapse
|
38
|
Zeng M, Wu Y, Lu C, Zhang F, Wu FX, Li M. DeepLncLoc: a deep learning framework for long non-coding RNA subcellular localization prediction based on subsequence embedding. Brief Bioinform 2021; 23:6366323. [PMID: 34498677 DOI: 10.1093/bib/bbab360] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 11/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a class of RNA molecules with more than 200 nucleotides. A growing amount of evidence reveals that subcellular localization of lncRNAs can provide valuable insights into their biological functions. Existing computational methods for predicting lncRNA subcellular localization use k-mer features to encode lncRNA sequences. However, the sequence order information is lost by using only k-mer features. We proposed a deep learning framework, DeepLncLoc, to predict lncRNA subcellular localization. In DeepLncLoc, we introduced a new subsequence embedding method that keeps the order information of lncRNA sequences. The subsequence embedding method first divides a sequence into some consecutive subsequences and then extracts the patterns of each subsequence, last combines these patterns to obtain a complete representation of the lncRNA sequence. After that, a text convolutional neural network is employed to learn high-level features and perform the prediction task. Compared with traditional machine learning models, popular representation methods and existing predictors, DeepLncLoc achieved better performance, which shows that DeepLncLoc could effectively predict lncRNA subcellular localization. Our study not only presented a novel computational model for predicting lncRNA subcellular localization but also introduced a new subsequence embedding method which is expected to be applied in other sequence-based prediction tasks. The DeepLncLoc web server is freely accessible at http://bioinformatics.csu.edu.cn/DeepLncLoc/, and source code and datasets can be downloaded from https://github.com/CSUBioGroup/DeepLncLoc.
Collapse
Affiliation(s)
- Min Zeng
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Yifan Wu
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Chengqian Lu
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Fuhao Zhang
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Fang-Xiang Wu
- Division of Biomedical Engineering and Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, S7N 5A9, Canada
| | - Min Li
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| |
Collapse
|