1
|
Xu X, Xi L, Zhu J, Feng C, Zhou P, Liu K, Shang Z, Shao Z. Intelligent Diagnosis of Cervical Lymph Node Metastasis Using a CNN Model. J Dent Res 2025:220345251322508. [PMID: 40271993 DOI: 10.1177/00220345251322508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025] Open
Abstract
Lymph node (LN) metastasis is a prevalent cause of recurrence in oral squamous cell carcinoma (OSCC). However, accurately identifying metastatic LNs (LNs+) remains challenging. This prospective clinical study aims to test the effectiveness of our convolutional neural network (CNN) model for identifying OSCC cervical LN+ in contrast-enhanced computed tomography (CECT) in clinical practice. A CNN model was developed and trained using a dataset of 8,380 CECT images from previous OSCC patients. It was then prospectively validated on 17,777 preoperative CECT images from 354 OSCC patients between October 17, 2023, and August 31, 2024. The model's predicted LN results were provided to the surgical team without influencing surgical or treatment plans. During surgery, the predicted LN+ were identified and sent for separate pathological examination. The accuracy of the model's predictions was compared with those of human experts and verified against pathology reports. The capacity of the model to assist radiologists in LN+ diagnosis was also assessed. The CNN model was trained over 40 epochs and successfully validated after each. Compared with human experts (2 radiologists, 2 surgeons, and 2 students), the CNN model achieved higher sensitivity (81.89% vs. 81.48%, 46.91%, 50.62%), specificity (99.31% vs. 99.15%, 98.36%, 96.27%), LN+ accuracy (76.19% vs. 75.43%, P = 0.854; 40.64%, P < 0.001; 37.44%, P < 0.001), and clinical accuracy (86.16% vs. 83%, 61%, 56%). With the model's assistance, the radiologists surpassed both the previous predictive results without the model's support and the model's performance alone. The CNN model demonstrated an accuracy comparable to that of radiologists in identifying, locating, and predicting cervical LN+ in OSCC patients. Furthermore, the model has the potential to assist radiologists in making more accurate diagnoses.
Collapse
Affiliation(s)
- X Xu
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Day Surgery Center, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - L Xi
- School of Computer Science, Wuhan University, Wuhan, China
| | - J Zhu
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Geriatric Dentistry, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - C Feng
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - P Zhou
- Department of Radiology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - K Liu
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial Head Neck Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Z Shang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Z Shao
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Day Surgery Center, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Du Y, Niu J, Xing Y, Li B, Calhoun VD. Neuroimage Analysis Methods and Artificial Intelligence Techniques for Reliable Biomarkers and Accurate Diagnosis of Schizophrenia: Achievements Made by Chinese Scholars Around the Past Decade. Schizophr Bull 2025; 51:325-342. [PMID: 38982882 PMCID: PMC11908864 DOI: 10.1093/schbul/sbae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
BACKGROUND AND HYPOTHESIS Schizophrenia (SZ) is characterized by significant cognitive and behavioral disruptions. Neuroimaging techniques, particularly magnetic resonance imaging (MRI), have been widely utilized to investigate biomarkers of SZ, distinguish SZ from healthy conditions or other mental disorders, and explore biotypes within SZ or across SZ and other mental disorders, which aim to promote the accurate diagnosis of SZ. In China, research on SZ using MRI has grown considerably in recent years. STUDY DESIGN The article reviews advanced neuroimaging and artificial intelligence (AI) methods using single-modal or multimodal MRI to reveal the mechanism of SZ and promote accurate diagnosis of SZ, with a particular emphasis on the achievements made by Chinese scholars around the past decade. STUDY RESULTS Our article focuses on the methods for capturing subtle brain functional and structural properties from the high-dimensional MRI data, the multimodal fusion and feature selection methods for obtaining important and sparse neuroimaging features, the supervised statistical analysis and classification for distinguishing disorders, and the unsupervised clustering and semi-supervised learning methods for identifying neuroimage-based biotypes. Crucially, our article highlights the characteristics of each method and underscores the interconnections among various approaches regarding biomarker extraction and neuroimage-based diagnosis, which is beneficial not only for comprehending SZ but also for exploring other mental disorders. CONCLUSIONS We offer a valuable review of advanced neuroimage analysis and AI methods primarily focused on SZ research by Chinese scholars, aiming to promote the diagnosis, treatment, and prevention of SZ, as well as other mental disorders, both within China and internationally.
Collapse
Affiliation(s)
- Yuhui Du
- School of Computer and Information Technology, Shanxi University, Taiyuan, 030006, China
| | - Ju Niu
- School of Computer and Information Technology, Shanxi University, Taiyuan, 030006, China
| | - Ying Xing
- School of Computer and Information Technology, Shanxi University, Taiyuan, 030006, China
| | - Bang Li
- School of Computer and Information Technology, Shanxi University, Taiyuan, 030006, China
| | - Vince D Calhoun
- The Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, 30303, GA, USA
| |
Collapse
|
3
|
Zhu C, Tan Y, Yang S, Miao J, Zhu J, Huang H, Yao D, Luo C. Temporal Dynamic Synchronous Functional Brain Network for Schizophrenia Classification and Lateralization Analysis. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:4307-4318. [PMID: 38917293 DOI: 10.1109/tmi.2024.3419041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Available evidence suggests that dynamic functional connectivity can capture time-varying abnormalities in brain activity in resting-state cerebral functional magnetic resonance imaging (rs-fMRI) data and has a natural advantage in uncovering mechanisms of abnormal brain activity in schizophrenia (SZ) patients. Hence, an advanced dynamic brain network analysis model called the temporal brain category graph convolutional network (Temporal-BCGCN) was employed. Firstly, a unique dynamic brain network analysis module, DSF-BrainNet, was designed to construct dynamic synchronization features. Subsequently, a revolutionary graph convolution method, TemporalConv, was proposed based on the synchronous temporal properties of features. Finally, the first modular test tool for abnormal hemispherical lateralization in deep learning based on rs-fMRI data, named CategoryPool, was proposed. This study was validated on COBRE and UCLA datasets and achieved 83.62% and 89.71% average accuracies, respectively, outperforming the baseline model and other state-of-the-art methods. The ablation results also demonstrate the advantages of TemporalConv over the traditional edge feature graph convolution approach and the improvement of CategoryPool over the classical graph pooling approach. Interestingly, this study showed that the lower-order perceptual system and higher-order network regions in the left hemisphere are more severely dysfunctional than in the right hemisphere in SZ, reaffirmings the importance of the left medial superior frontal gyrus in SZ. Our code was available at: https://github.com/swfen/Temporal-BCGCN.
Collapse
|
4
|
Zhou M, Mao J, Li X, Li Y, Yang X. Intelligent analysis and measurement of semicircular canal spatial attitude. Front Neurol 2024; 15:1396513. [PMID: 39350970 PMCID: PMC11439643 DOI: 10.3389/fneur.2024.1396513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024] Open
Abstract
Objective The primary aim of this investigation was to devise an intelligent approach for interpreting and measuring the spatial orientation of semicircular canals based on cranial MRI. The ultimate objective is to employ this intelligent method to construct a precise mathematical model that accurately represents the spatial orientation of the semicircular canals. Methods Using a dataset of 115 cranial MRI scans, this study employed the nnDetection deep learning algorithm to perform automated segmentation of the semicircular canals and the eyeballs (left and right). The center points of each semicircular canal were organized into an ordered structure using point characteristic analysis. Subsequently, a point-by-point plane fit was performed along these centerlines, and the normal vector of the semicircular canals was computed using the singular value decomposition method and calibrated to a standard spatial coordinate system whose transverse planes were the top of the common crus and the bottom of the eyeballs. Results The nnDetection target recognition segmentation algorithm achieved Dice values of 0.9585 and 0.9663. The direction angles of the unit normal vectors for the left anterior, lateral, and posterior semicircular canal planes were [80.19°, 124.32°, 36.08°], [169.88°, 100.04°, 91.32°], and [79.33°, 130.63°, 137.4°], respectively. For the right side, the angles were [79.03°, 125.41°, 142.42°], [171.45°, 98.53°, 89.43°], and [80.12°, 132.42°, 44.11°], respectively. Conclusion This study successfully achieved real-time automated understanding and measurement of the spatial orientation of semicircular canals, providing a solid foundation for personalized diagnosis and treatment optimization of vestibular diseases. It also establishes essential tools and a theoretical basis for future research into vestibular function and related diseases.
Collapse
Affiliation(s)
| | | | | | | | - Xiaokai Yang
- Third Affiliated Hospital of Shanghai University (Wenzhou People’s Hospital), School of Medicine, Shanghai University, Wenzhou, China
| |
Collapse
|
5
|
Weng T, Zheng Y, Xie Y, Qin W, Guo L. Diagnosing schizophrenia using deep learning: Novel interpretation approaches and multi-site validation. Brain Res 2024; 1833:148876. [PMID: 38513996 DOI: 10.1016/j.brainres.2024.148876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/28/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Schizophrenia is a profound and enduring mental disorder that imposes significant negative impacts on individuals, their families, and society at large. The development of more accurate and objective diagnostic tools for schizophrenia can be expedited through the employment of deep learning (DL), that excels at deciphering complex hierarchical non-linear patterns. However, the limited interpretability of deep learning has eroded confidence in the model and restricted its clinical utility. At the same time, if the data source is only derived from a single center, the model's generalizability is difficult to test. To enhance the model's reliability and applicability, leave-one-center-out validation with a large and diverse sample from multiple centers is crucial. In this study, we utilized Nine different global centers to train and test the 3D Resnet model's generalizability, resulting in an 82% classification performance (area under the curve) on all datasets sourced from different countries, employing a leave-one-center-out-validation approach. Per our approximation of the feature significance of each region on the atlas, we identified marked differences in the thalamus, pallidum, and inferior frontal gyrus between individuals with schizophrenia and healthy controls, lending credence to prior research findings. At the same time, in order to translate the model's output into clinically applicable insights, the SHapley Additive exPlanations (SHAP) permutation explainer method with an anatomical atlas have been refined, thereby offering precise neuroanatomical and functional interpretations of different brain regions.
Collapse
Affiliation(s)
- Tingting Weng
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Yuemei Zheng
- Department of Medical Imaging, Affiliated Hospital of Jining Medical University, Shandong 100038, China
| | - Yingying Xie
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Li Guo
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China.
| |
Collapse
|
6
|
Chen L, Shao X, Yu P. Machine learning prediction models for diabetic kidney disease: systematic review and meta-analysis. Endocrine 2024; 84:890-902. [PMID: 38141061 DOI: 10.1007/s12020-023-03637-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Machine learning is increasingly recognized as a viable approach for identifying risk factors associated with diabetic kidney disease (DKD). However, the current state of real-world research lacks a comprehensive systematic analysis of the predictive performance of machine learning (ML) models for DKD. OBJECTIVES The objectives of this study were to systematically summarize the predictive capabilities of various ML methods in forecasting the onset and the advancement of DKD, and to provide a basic outline for ML methods in DKD. METHODS We have searched mainstream databases, including PubMed, Web of Science, Embase, and MEDLINE databases to obtain the eligible studies. Subsequently, we categorized various ML techniques and analyzed the differences in their performance in predicting DKD. RESULTS Logistic regression (LR) was the prevailing ML method, yielding an overall pooled area under the receiver operating characteristic curve (AUROC) of 0.83. On the other hand, the non-LR models also performed well with an overall pooled AUROC of 0.80. Our t-tests showed no statistically significant difference in predicting ability between LR and non-LR models (t = 1.6767, p > 0.05). CONCLUSION All ML predicting models yielded relatively satisfied DKD predicting ability with their AUROCs greater than 0.7. However, we found no evidence that non-LR models outperformed the LR model. LR exhibits high performance or accuracy in practice, while it is known for algorithmic simplicity and computational efficiency compared to others. Thus, LR may be considered a cost-effective ML model in practice.
Collapse
Affiliation(s)
- Lianqin Chen
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Xian Shao
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Pei Yu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
| |
Collapse
|
7
|
Yasin P, Mardan M, Abliz D, Xu T, Keyoumu N, Aimaiti A, Cai X, Sheng W, Mamat M. The Potential of a CT-Based Machine Learning Radiomics Analysis to Differentiate Brucella and Pyogenic Spondylitis. J Inflamm Res 2023; 16:5585-5600. [PMID: 38034044 PMCID: PMC10683663 DOI: 10.2147/jir.s429593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023] Open
Abstract
Background Pyogenic spondylitis (PS) and Brucella spondylitis (BS) are common spinal infections with similar manifestations, making their differentiation challenging. This study aimed to explore the potential of CT-based radiomics features combined with machine learning algorithms to differentiate PS from BS. Methods This retrospective study involved the collection of clinical and radiological information from 138 patients diagnosed with either PS or BS in our hospital between January 2017 and December 2022, based on histopathology examination and/or germ isolations. The region of interest (ROI) was defined by two radiologists using a 3D Slicer open-source platform, utilizing blind analysis of sagittal CT images against histopathological examination results. PyRadiomics, a Python package, was utilized to extract ROI features. Several methods were performed to reduce the dimensionality of the extracted features. Machine learning algorithms were trained and evaluated using techniques like the area under the receiver operating characteristic curve (AUC; confusion matrix-related metrics, calibration plot, and decision curve analysis to assess their ability to differentiate PS from BS. Additionally, permutation feature importance (PFI; local interpretable model-agnostic explanations (LIME; and Shapley additive explanation (SHAP) techniques were utilized to gain insights into the interpretabilities of the models that are otherwise considered opaque black-boxes. Results A total of 15 radiomics features were screened during the analysis. The AUC value and Brier score of best the model were 0.88 and 0.13, respectively. The calibration plot and decision curve analysis displayed higher clinical efficiency in the differential diagnosis. According to the interpretation results, the most impactful features on the model output were wavelet LHL small dependence low gray-level emphasis (GLDN). Conclusion The CT-based radiomics models that we developed have proven to be useful in reliably differentiating between PS and BS at an early stage and can provide a reliable explanation for the classification results.
Collapse
Affiliation(s)
- Parhat Yasin
- Department of Spine Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, People’s Republic of China
| | - Muradil Mardan
- School of Medicine, Tongji University, Shanghai, 200092, People’s Republic of China
| | - Dilxat Abliz
- Department of Orthopedic, The Eighth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, People’s Republic of China
| | - Tao Xu
- Department of Spine Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, People’s Republic of China
| | - Nuerbiyan Keyoumu
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, People’s Republic of China
| | - Abasi Aimaiti
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, People’s Republic of China
| | - Xiaoyu Cai
- Department of Spine Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, People’s Republic of China
| | - Weibin Sheng
- Department of Spine Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, People’s Republic of China
| | - Mardan Mamat
- Department of Spine Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, People’s Republic of China
| |
Collapse
|
8
|
Yu Y, Bezerianos A, Cichocki A, Li J. Latent Space Coding Capsule Network for Mental Workload Classification. IEEE Trans Neural Syst Rehabil Eng 2023; 31:3417-3427. [PMID: 37607136 DOI: 10.1109/tnsre.2023.3307481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Mental workload can be monitored in real time, which helps us improve work efficiency by maintaining an appropriate workload level. Based on previous studies, we have known that features, such as band power and brain connectivity, can be utilized to classify the levels of mental workload. As band power and brain connectivity represent different but complementary information related to mental workload, it is helpful to integrate them together for workload classification. Although deep learning models have been utilized for workload classification based on EEG, the classification performance is not satisfactory. This is because the current models cannot well tackle variances in the features extracted from non-stationary EEG. In order to address this problem, we, in this study, proposed a novel deep learning model, called latent space coding capsule network (LSCCN). The features of band power and brain connectivity were fused and then modelled in a latent space. The subsequent convolutional and capsule modules were used for workload classification. The proposed LSCCN was compared to the state-of-the-art methods. The results demonstrated that the proposed LSCCN was superior to the compared methods. LSCCN achieved a higher testing accuracy with a relatively smaller standard deviation, indicating a more reliable classification across participants. In addition, we explored the distribution of the features and found that top discriminative features were localized in the frontal, parietal, and occipital regions. This study not only provides a novel deep learning model but also informs further studies in workload classification and promotes practical usage of workload monitoring.
Collapse
|
9
|
Teng J, Mi C, Shi J, Li N. Brain disease research based on functional magnetic resonance imaging data and machine learning: a review. Front Neurosci 2023; 17:1227491. [PMID: 37662098 PMCID: PMC10469689 DOI: 10.3389/fnins.2023.1227491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/13/2023] [Indexed: 09/05/2023] Open
Abstract
Brain diseases, including neurodegenerative diseases and neuropsychiatric diseases, have long plagued the lives of the affected populations and caused a huge burden on public health. Functional magnetic resonance imaging (fMRI) is an excellent neuroimaging technology for measuring brain activity, which provides new insight for clinicians to help diagnose brain diseases. In recent years, machine learning methods have displayed superior performance in diagnosing brain diseases compared to conventional methods, attracting great attention from researchers. This paper reviews the representative research of machine learning methods in brain disease diagnosis based on fMRI data in the recent three years, focusing on the most frequent four active brain disease studies, including Alzheimer's disease/mild cognitive impairment, autism spectrum disorders, schizophrenia, and Parkinson's disease. We summarize these 55 articles from multiple perspectives, including the effect of the size of subjects, extracted features, feature selection methods, classification models, validation methods, and corresponding accuracies. Finally, we analyze these articles and introduce future research directions to provide neuroimaging scientists and researchers in the interdisciplinary fields of computing and medicine with new ideas for AI-aided brain disease diagnosis.
Collapse
Affiliation(s)
- Jing Teng
- School of Control and Computer Engineering, North China Electric Power University, Beijing, China
| | - Chunlin Mi
- School of Control and Computer Engineering, North China Electric Power University, Beijing, China
| | - Jian Shi
- Department of Hematology and Critical Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Na Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
10
|
Porter A, Fei S, Damme KSF, Nusslock R, Gratton C, Mittal VA. A meta-analysis and systematic review of single vs. multimodal neuroimaging techniques in the classification of psychosis. Mol Psychiatry 2023; 28:3278-3292. [PMID: 37563277 PMCID: PMC10618094 DOI: 10.1038/s41380-023-02195-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Psychotic disorders are characterized by structural and functional abnormalities in brain networks. Neuroimaging techniques map and characterize such abnormalities using unique features (e.g., structural integrity, coactivation). However, it is unclear if a specific method, or a combination of modalities, is particularly effective in identifying differences in brain networks of someone with a psychotic disorder. METHODS A systematic meta-analysis evaluated machine learning classification of schizophrenia spectrum disorders in comparison to healthy control participants using various neuroimaging modalities (i.e., T1-weighted imaging (T1), diffusion tensor imaging (DTI), resting state functional connectivity (rs-FC), or some combination (multimodal)). Criteria for manuscript inclusion included whole-brain analyses and cross-validation to provide a complete picture regarding the predictive ability of large-scale brain systems in psychosis. For this meta-analysis, we searched Ovid MEDLINE, PubMed, PsychInfo, Google Scholar, and Web of Science published between inception and March 13th 2023. Prediction results were averaged for studies using the same dataset, but parallel analyses were run that included studies with pooled sample across many datasets. We assessed bias through funnel plot asymmetry. A bivariate regression model determined whether differences in imaging modality, demographics, and preprocessing methods moderated classification. Separate models were run for studies with internal prediction (via cross-validation) and external prediction. RESULTS 93 studies were identified for quantitative review (30 T1, 9 DTI, 40 rs-FC, and 14 multimodal). As a whole, all modalities reliably differentiated those with schizophrenia spectrum disorders from controls (OR = 2.64 (95%CI = 2.33 to 2.95)). However, classification was relatively similar across modalities: no differences were seen across modalities in the classification of independent internal data, and a small advantage was seen for rs-FC studies relative to T1 studies in classification in external datasets. We found large amounts of heterogeneity across results resulting in significant signs of bias in funnel plots and Egger's tests. Results remained similar, however, when studies were restricted to those with less heterogeneity, with continued small advantages for rs-FC relative to structural measures. Notably, in all cases, no significant differences were seen between multimodal and unimodal approaches, with rs-FC and unimodal studies reporting largely overlapping classification performance. Differences in demographics and analysis or denoising were not associated with changes in classification scores. CONCLUSIONS The results of this study suggest that neuroimaging approaches have promise in the classification of psychosis. Interestingly, at present most modalities perform similarly in the classification of psychosis, with slight advantages for rs-FC relative to structural modalities in some specific cases. Notably, results differed substantially across studies, with suggestions of biased effect sizes, particularly highlighting the need for more studies using external prediction and large sample sizes. Adopting more rigorous and systematized standards will add significant value toward understanding and treating this critical population.
Collapse
Affiliation(s)
- Alexis Porter
- Department of Psychology, Northwestern University, Evanston, IL, USA.
| | - Sihan Fei
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Katherine S F Damme
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Institute for Innovations in Developmental Sciences, Northwestern University, Evanston and Chicago, IL, USA
| | - Robin Nusslock
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Caterina Gratton
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Vijay A Mittal
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Institute for Innovations in Developmental Sciences, Northwestern University, Evanston and Chicago, IL, USA
- Department of Psychiatry, Northwestern University, Chicago, IL, USA
- Medical Social Sciences, Northwestern University, Chicago, IL, USA
- Institute for Policy Research, Northwestern University, Chicago, IL, USA
| |
Collapse
|
11
|
Chen Z, Hu B, Liu X, Becker B, Eickhoff SB, Miao K, Gu X, Tang Y, Dai X, Li C, Leonov A, Xiao Z, Feng Z, Chen J, Chuan-Peng H. Sampling inequalities affect generalization of neuroimaging-based diagnostic classifiers in psychiatry. BMC Med 2023; 21:241. [PMID: 37400814 DOI: 10.1186/s12916-023-02941-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/13/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND The development of machine learning models for aiding in the diagnosis of mental disorder is recognized as a significant breakthrough in the field of psychiatry. However, clinical practice of such models remains a challenge, with poor generalizability being a major limitation. METHODS Here, we conducted a pre-registered meta-research assessment on neuroimaging-based models in the psychiatric literature, quantitatively examining global and regional sampling issues over recent decades, from a view that has been relatively underexplored. A total of 476 studies (n = 118,137) were included in the current assessment. Based on these findings, we built a comprehensive 5-star rating system to quantitatively evaluate the quality of existing machine learning models for psychiatric diagnoses. RESULTS A global sampling inequality in these models was revealed quantitatively (sampling Gini coefficient (G) = 0.81, p < .01), varying across different countries (regions) (e.g., China, G = 0.47; the USA, G = 0.58; Germany, G = 0.78; the UK, G = 0.87). Furthermore, the severity of this sampling inequality was significantly predicted by national economic levels (β = - 2.75, p < .001, R2adj = 0.40; r = - .84, 95% CI: - .41 to - .97), and was plausibly predictable for model performance, with higher sampling inequality for reporting higher classification accuracy. Further analyses showed that lack of independent testing (84.24% of models, 95% CI: 81.0-87.5%), improper cross-validation (51.68% of models, 95% CI: 47.2-56.2%), and poor technical transparency (87.8% of models, 95% CI: 84.9-90.8%)/availability (80.88% of models, 95% CI: 77.3-84.4%) are prevailing in current diagnostic classifiers despite improvements over time. Relating to these observations, model performances were found decreased in studies with independent cross-country sampling validations (all p < .001, BF10 > 15). In light of this, we proposed a purpose-built quantitative assessment checklist, which demonstrated that the overall ratings of these models increased by publication year but were negatively associated with model performance. CONCLUSIONS Together, improving sampling economic equality and hence the quality of machine learning models may be a crucial facet to plausibly translating neuroimaging-based diagnostic classifiers into clinical practice.
Collapse
Affiliation(s)
- Zhiyi Chen
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China.
- Faculty of Psychology, Southwest University, Chongqing, China.
| | - Bowen Hu
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Xuerong Liu
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, Chengdu, China
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kuan Miao
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Xingmei Gu
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Yancheng Tang
- School of Business and Management, Shanghai International Studies University, Shanghai, China
| | - Xin Dai
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Chao Li
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangdong, China
| | - Artemiy Leonov
- School of Psychology, Clark University, Worcester, MA, USA
| | - Zhibing Xiao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Zhengzhi Feng
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Ji Chen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China.
- Department of Psychiatry, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
| | - Hu Chuan-Peng
- School of Psychology, Nanjing Normal University, Nanjing, China
| |
Collapse
|
12
|
DeSilvio T, Antunes JT, Bera K, Chirra P, Le H, Liska D, Stein SL, Marderstein E, Hall W, Paspulati R, Gollamudi J, Purysko AS, Viswanath SE. Region-specific deep learning models for accurate segmentation of rectal structures on post-chemoradiation T2w MRI: a multi-institutional, multi-reader study. Front Med (Lausanne) 2023; 10:1149056. [PMID: 37250635 PMCID: PMC10213753 DOI: 10.3389/fmed.2023.1149056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/27/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction For locally advanced rectal cancers, in vivo radiological evaluation of tumor extent and regression after neoadjuvant therapy involves implicit visual identification of rectal structures on magnetic resonance imaging (MRI). Additionally, newer image-based, computational approaches (e.g., radiomics) require more detailed and precise annotations of regions such as the outer rectal wall, lumen, and perirectal fat. Manual annotations of these regions, however, are highly laborious and time-consuming as well as subject to inter-reader variability due to tissue boundaries being obscured by treatment-related changes (e.g., fibrosis, edema). Methods This study presents the application of U-Net deep learning models that have been uniquely developed with region-specific context to automatically segment each of the outer rectal wall, lumen, and perirectal fat regions on post-treatment, T2-weighted MRI scans. Results In multi-institutional evaluation, region-specific U-Nets (wall Dice = 0.920, lumen Dice = 0.895) were found to perform comparably to multiple readers (wall inter-reader Dice = 0.946, lumen inter-reader Dice = 0.873). Additionally, when compared to a multi-class U-Net, region-specific U-Nets yielded an average 20% improvement in Dice scores for segmenting each of the wall, lumen, and fat; even when tested on T2-weighted MRI scans that exhibited poorer image quality, or from a different plane, or were accrued from an external institution. Discussion Developing deep learning segmentation models with region-specific context may thus enable highly accurate, detailed annotations for multiple rectal structures on post-chemoradiation T2-weighted MRI scans, which is critical for improving evaluation of tumor extent in vivo and building accurate image-based analytic tools for rectal cancers.
Collapse
Affiliation(s)
- Thomas DeSilvio
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Jacob T. Antunes
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Kaustav Bera
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Prathyush Chirra
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Hoa Le
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - David Liska
- Department of Colorectal Surgery, Cleveland Clinic, Cleveland, OH, United States
| | - Sharon L. Stein
- Department of Surgery, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Eric Marderstein
- Northeast Ohio Veterans Affairs Medical Center, Cleveland, OH, United States
| | - William Hall
- Department of Radiation Oncology and Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Rajmohan Paspulati
- Department of Diagnostic Imaging and Interventional Radiology, Moffitt Cancer Center, Tampa, FL, United States
| | | | - Andrei S. Purysko
- Section of Abdominal Imaging and Nuclear Radiology Department, Cleveland Clinic, Cleveland, OH, United States
| | - Satish E. Viswanath
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
13
|
Chen Z, Liu X, Yang Q, Wang YJ, Miao K, Gong Z, Yu Y, Leonov A, Liu C, Feng Z, Chuan-Peng H. Evaluation of Risk of Bias in Neuroimaging-Based Artificial Intelligence Models for Psychiatric Diagnosis: A Systematic Review. JAMA Netw Open 2023; 6:e231671. [PMID: 36877519 PMCID: PMC9989906 DOI: 10.1001/jamanetworkopen.2023.1671] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
IMPORTANCE Neuroimaging-based artificial intelligence (AI) diagnostic models have proliferated in psychiatry. However, their clinical applicability and reporting quality (ie, feasibility) for clinical practice have not been systematically evaluated. OBJECTIVE To systematically assess the risk of bias (ROB) and reporting quality of neuroimaging-based AI models for psychiatric diagnosis. EVIDENCE REVIEW PubMed was searched for peer-reviewed, full-length articles published between January 1, 1990, and March 16, 2022. Studies aimed at developing or validating neuroimaging-based AI models for clinical diagnosis of psychiatric disorders were included. Reference lists were further searched for suitable original studies. Data extraction followed the CHARMS (Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modeling Studies) and PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) guidelines. A closed-loop cross-sequential design was used for quality control. The PROBAST (Prediction Model Risk of Bias Assessment Tool) and modified CLEAR (Checklist for Evaluation of Image-Based Artificial Intelligence Reports) benchmarks were used to systematically evaluate ROB and reporting quality. FINDINGS A total of 517 studies presenting 555 AI models were included and evaluated. Of these models, 461 (83.1%; 95% CI, 80.0%-86.2%) were rated as having a high overall ROB based on the PROBAST. The ROB was particular high in the analysis domain, including inadequate sample size (398 of 555 models [71.7%; 95% CI, 68.0%-75.6%]), poor model performance examination (with 100% of models lacking calibration examination), and lack of handling data complexity (550 of 555 models [99.1%; 95% CI, 98.3%-99.9%]). None of the AI models was perceived to be applicable to clinical practices. Overall reporting completeness (ie, number of reported items/number of total items) for the AI models was 61.2% (95% CI, 60.6%-61.8%), and the completeness was poorest for the technical assessment domain with 39.9% (95% CI, 38.8%-41.1%). CONCLUSIONS AND RELEVANCE This systematic review found that the clinical applicability and feasibility of neuroimaging-based AI models for psychiatric diagnosis were challenged by a high ROB and poor reporting quality. Particularly in the analysis domain, ROB in AI diagnostic models should be addressed before clinical application.
Collapse
Affiliation(s)
- Zhiyi Chen
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Xuerong Liu
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Qingwu Yang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yan-Jiang Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Kuan Miao
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Zheng Gong
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Yang Yu
- School of Psychology, Third Military Medical University, Chongqing, China
| | - Artemiy Leonov
- Department of Psychology, Clark University, Worcester, Massachusetts
| | - Chunlei Liu
- School of Psychology, Qufu Normal University, Qufu, China
| | - Zhengzhi Feng
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Hu Chuan-Peng
- School of Psychology, Nanjing Normal University, Nanjing, China
| |
Collapse
|
14
|
Wang Z, Chen C, Li J, Wan F, Sun Y, Wang H. ST-CapsNet: Linking Spatial and Temporal Attention With Capsule Network for P300 Detection Improvement. IEEE Trans Neural Syst Rehabil Eng 2023; 31:991-1000. [PMID: 37021904 DOI: 10.1109/tnsre.2023.3237319] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A brain-computer interface (BCI), which provides an advanced direct human-machine interaction, has gained substantial research interest in the last decade for its great potential in various applications including rehabilitation and communication. Among them, the P300-based BCI speller is a typical application that is capable of identifying the expected stimulated characters. However, the applicability of the P300 speller is hampered for the low recognition rate partially attributed to the complex spatio-temporal characteristics of the EEG signals. Here, we developed a deep-learning analysis framework named ST-CapsNet to overcome the challenges regarding better P300 detection using a capsule network with both spatial and temporal attention modules. Specifically, we first employed spatial and temporal attention modules to obtain refined EEG signals by capturing event-related information. Then the obtained signals were fed into the capsule network for discriminative feature extraction and P300 det- ection. In order to quantitatively assess the performance of the proposed ST-CapsNet, two publicly-available datasets (i.e., Dataset IIb of BCI Competition 2003 and Dataset II of BCI Competition III) were applied. A new metric of averaged symbols under repetitions (ASUR) was adopted to evaluate the cumulative effect of symbol recognition under different repetitions. In comparison with several widely-used methods (i.e., LDA, ERP-CapsNet, CNN, MCNN, SWFP, and MsCNN-TL-ESVM), the proposed ST-CapsNet framework significantly outperformed the state-of-the-art methods in terms of ASUR. More interestingly, the absolute values of the spatial filters learned by ST-CapsNet are higher in the parietal lobe and occipital region, which is consistent with the generation mechanism of P300.
Collapse
|
15
|
Reilly GP, Dunton CJ, Bullock RG, Ure DR, Fritsche H, Ghosh S, Pappas TC, Phan RT. Validation of a deep neural network-based algorithm supporting clinical management of adnexal mass. Front Med (Lausanne) 2023; 10:1102437. [PMID: 36756174 PMCID: PMC9900123 DOI: 10.3389/fmed.2023.1102437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/02/2023] [Indexed: 01/24/2023] Open
Abstract
Background Conservative management of adnexal mass is warranted when there is imaging-based and clinical evidence of benign characteristics. Malignancy risk is, however, a concern due to the mortality rate of ovarian cancer. Malignancy occurs in 10-15% of adnexal masses that go to surgery, whereas the rate of malignancy is much lower in masses clinically characterized as benign or indeterminate. Additional diagnostic tests could assist conservative management of these patients. Here we report the clinical validation of OvaWatch, a multivariate index assay, with real-world evidence of performance that supports conservative management of adnexal masses. Methods OvaWatch utilizes a previously characterized neural network-based algorithm combining serum biomarkers and clinical covariates and was used to examine malignancy risk in prospective and retrospective samples of patients with an adnexal mass. Retrospective data sets were assembled from previous studies using patients who had adnexal mass and were scheduled for surgery. The prospective study was a multi-center trial of women with adnexal mass as identified on clinical examination and indeterminate or asymptomatic by imaging. The performance to detect ovarian malignancy was evaluated at a previously validated score threshold. Results In retrospective, low prevalence (N = 1,453, 1.5% malignancy rate) data from patients that received an independent physician assessment of benign, OvaWatch has a sensitivity of 81.8% [95% confidence interval (CI) 65.1-92.7] for identifying a histologically confirmed malignancy, and a negative predictive value (NPV) of 99.7%. OvaWatch identified 18/22 malignancies missed by physician assessment. A prospective data set had 501 patients where 106 patients with adnexal mass went for surgery. The prevalence was 2% (10 malignancies). The sensitivity of OvaWatch for malignancy was 40% (95% CI: 16.8-68.7%), and the specificity was 87% (95% CI: 83.7-89.7) when patients were included in the analysis who did not go to surgery and were evaluated as benign. The NPV remained 98.6% (95% CI: 97.0-99.4%). An independent analysis set with a high prevalence (45.8%) the NPV value was 87.8% (95% CI: 95% CI: 75.8-94.3%). Conclusion OvaWatch demonstrated high NPV across diverse data sets and promises utility as an effective diagnostic test supporting management of suspected benign or indeterminate mass to safely decrease or delay unnecessary surgeries.
Collapse
Affiliation(s)
| | | | | | | | | | - Srinka Ghosh
- Aspira Women’s Health, Austin, TX, United States
| | | | - Ryan T. Phan
- Aspira Women’s Health, Austin, TX, United States
| |
Collapse
|
16
|
Safron A. Integrated world modeling theory expanded: Implications for the future of consciousness. Front Comput Neurosci 2022; 16:642397. [PMID: 36507308 PMCID: PMC9730424 DOI: 10.3389/fncom.2022.642397] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 10/24/2022] [Indexed: 11/27/2022] Open
Abstract
Integrated world modeling theory (IWMT) is a synthetic theory of consciousness that uses the free energy principle and active inference (FEP-AI) framework to combine insights from integrated information theory (IIT) and global neuronal workspace theory (GNWT). Here, I first review philosophical principles and neural systems contributing to IWMT's integrative perspective. I then go on to describe predictive processing models of brains and their connections to machine learning architectures, with particular emphasis on autoencoders (perceptual and active inference), turbo-codes (establishment of shared latent spaces for multi-modal integration and inferential synergy), and graph neural networks (spatial and somatic modeling and control). Future directions for IIT and GNWT are considered by exploring ways in which modules and workspaces may be evaluated as both complexes of integrated information and arenas for iterated Bayesian model selection. Based on these considerations, I suggest novel ways in which integrated information might be estimated using concepts from probabilistic graphical models, flow networks, and game theory. Mechanistic and computational principles are also considered with respect to the ongoing debate between IIT and GNWT regarding the physical substrates of different kinds of conscious and unconscious phenomena. I further explore how these ideas might relate to the "Bayesian blur problem," or how it is that a seemingly discrete experience can be generated from probabilistic modeling, with some consideration of analogies from quantum mechanics as potentially revealing different varieties of inferential dynamics. I go on to describe potential means of addressing critiques of causal structure theories based on network unfolding, and the seeming absurdity of conscious expander graphs (without cybernetic symbol grounding). Finally, I discuss future directions for work centered on attentional selection and the evolutionary origins of consciousness as facilitated "unlimited associative learning." While not quite solving the Hard problem, this article expands on IWMT as a unifying model of consciousness and the potential future evolution of minds.
Collapse
Affiliation(s)
- Adam Safron
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Center for Psychedelic and Consciousness Research, Baltimore, MD, United States
- Cognitive Science Program, Indiana University, Bloomington, IN, United States
- Institute for Advanced Consciousness Studies (IACS), Santa Monica, CA, United States
| |
Collapse
|
17
|
Wang J, El-Jayyousi Y, Ozden I. A neural network model for timing control with reinforcement. Front Comput Neurosci 2022; 16:918031. [PMID: 36277612 PMCID: PMC9579423 DOI: 10.3389/fncom.2022.918031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
How do humans and animals perform trial-and-error learning when the space of possibilities is infinite? In a previous study, we used an interval timing production task and discovered an updating strategy in which the agent adjusted the behavioral and neuronal noise for exploration. In the experiment, human subjects proactively generated a series of timed motor outputs. Positive or negative feedback was provided after each response based on the timing accuracy. We found that the sequential motor timing varied at two temporal scales: long-term correlation around the target interval due to memory drifts and short-term adjustments of timing variability according to feedback. We have previously described these two key features of timing variability with an augmented Gaussian process, termed reward-sensitive Gaussian process (RSGP). In a nutshell, the temporal covariance of the timing variable was updated based on the feedback history to recreate the two behavioral characteristics mentioned above. However, the RSGP was mainly descriptive and lacked a neurobiological basis of how the reward feedback can be used by a neural circuit to adjust motor variability. Here we provide a mechanistic model and simulate the process by borrowing the architecture of recurrent neural networks (RNNs). While recurrent connection provided the long-term serial correlation in motor timing, to facilitate reward-driven short-term variations, we introduced reward-dependent variability in the network connectivity, inspired by the stochastic nature of synaptic transmission in the brain. Our model was able to recursively generate an output sequence incorporating internal variability and external reinforcement in a Bayesian framework. We show that the model can generate the temporal structure of the motor variability as a basis for exploration and exploitation trade-off. Unlike other neural network models that search for unique network connectivity for the best match between the model prediction and observation, this model can estimate the uncertainty associated with each outcome and thus did a better job in teasing apart adjustable task-relevant variability from unexplained variability. The proposed artificial neural network model parallels the mechanisms of information processing in neural systems and can extend the framework of brain-inspired reinforcement learning (RL) in continuous state control.
Collapse
Affiliation(s)
| | | | - Ilker Ozden
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, MO, United States
| |
Collapse
|
18
|
Wang Y, Li C, Yuan M, Ren B, Liu C, Zheng J, Lin Z, Ren F, Gao D. Development of a complete blood count with differential-based prediction model for in-hospital mortality among patients with acute myocardial infarction in the coronary care unit. Front Cardiovasc Med 2022; 9:1001356. [PMID: 36277791 PMCID: PMC9581274 DOI: 10.3389/fcvm.2022.1001356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose In recent years, the complete blood count with differential (CBC w/diff) test has drawn strong interest because of its prognostic value in cardiovascular diseases. We aimed to develop a CBC w/diff-based prediction model for in-hospital mortality among patients with severe acute myocardial infarction (AMI) in the coronary care unit (CCU). Materials and methods This single-center retrospective study used data from a public database. The neural network method was applied. The performance of the model was assessed by discrimination and calibration. The discrimination performance of our model was compared to that of seven other classical machine learning models and five well-studied CBC w/diff clinical indicators. Finally, a permutation test was applied to evaluate the importance rank of the predictor variables. Results A total of 2,231 patient medical records were included. With a mean area under the curve (AUC) of 0.788 [95% confidence interval (CI), 0.736-0.838], our model outperformed all other models and indices. Furthermore, it performed well in calibration. Finally, the top three predictors were white blood cell count (WBC), red blood cell distribution width-coefficient of variation (RDW-CV), and neutrophil percentage. Surprisingly, after dropping seven variables with poor prediction values, the AUC of our model increased to 0.812 (95% CI, 0.762-0.859) (P < 0.05). Conclusion We used a neural network method to develop a risk prediction model for in-hospital mortality among patients with AMI in the CCU based on the CBC w/diff test, which performed well and would aid in early clinical decision-making. The top three important predictors were WBC, RDW-CV and neutrophil percentage.
Collapse
Affiliation(s)
- Yu Wang
- Department of Cardiology, Xi’an Jiaotong University Second Affiliated Hospital, Xi’an, China
| | - Changfu Li
- Department of Digestive Medicine, Daqing Longnan Hospital, Daqing, China
| | - Miao Yuan
- Department of Cardiology, Xi’an Jiaotong University Second Affiliated Hospital, Xi’an, China
| | - Bincheng Ren
- Department of Cardiology, Xi’an Jiaotong University Second Affiliated Hospital, Xi’an, China
| | - Chang Liu
- Department of Cardiology, Xi’an Jiaotong University Second Affiliated Hospital, Xi’an, China
| | - Jiawei Zheng
- Department of Cardiology, Xi’an Jiaotong University Second Affiliated Hospital, Xi’an, China
| | - Zehao Lin
- Department of Cardiology, Xi’an Jiaotong University Second Affiliated Hospital, Xi’an, China
| | - Fuxian Ren
- Department of Cardiology, Meishan Branch of the Third Affiliated Hospital, Yanan University School of Medical, Meishan, China
| | - Dengfeng Gao
- Department of Cardiology, Xi’an Jiaotong University Second Affiliated Hospital, Xi’an, China
| |
Collapse
|
19
|
Lee C, Zhang Z, Janušonis S. Brain serotonergic fibers suggest anomalous diffusion-based dropout in artificial neural networks. Front Neurosci 2022; 16:949934. [PMID: 36267232 PMCID: PMC9577023 DOI: 10.3389/fnins.2022.949934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Random dropout has become a standard regularization technique in artificial neural networks (ANNs), but it is currently unknown whether an analogous mechanism exists in biological neural networks (BioNNs). If it does, its structure is likely to be optimized by hundreds of millions of years of evolution, which may suggest novel dropout strategies in large-scale ANNs. We propose that the brain serotonergic fibers (axons) meet some of the expected criteria because of their ubiquitous presence, stochastic structure, and ability to grow throughout the individual's lifespan. Since the trajectories of serotonergic fibers can be modeled as paths of anomalous diffusion processes, in this proof-of-concept study we investigated a dropout algorithm based on the superdiffusive fractional Brownian motion (FBM). The results demonstrate that serotonergic fibers can potentially implement a dropout-like mechanism in brain tissue, supporting neuroplasticity. They also suggest that mathematical theories of the structure and dynamics of serotonergic fibers can contribute to the design of dropout algorithms in ANNs.
Collapse
Affiliation(s)
- Christian Lee
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Zheng Zhang
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Skirmantas Janušonis
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
20
|
Di Gregorio F, La Porta F, Petrone V, Battaglia S, Orlandi S, Ippolito G, Romei V, Piperno R, Lullini G. Accuracy of EEG Biomarkers in the Detection of Clinical Outcome in Disorders of Consciousness after Severe Acquired Brain Injury: Preliminary Results of a Pilot Study Using a Machine Learning Approach. Biomedicines 2022; 10:biomedicines10081897. [PMID: 36009445 PMCID: PMC9405912 DOI: 10.3390/biomedicines10081897] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/04/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022] Open
Abstract
Accurate outcome detection in neuro-rehabilitative settings is crucial for appropriate long-term rehabilitative decisions in patients with disorders of consciousness (DoC). EEG measures derived from high-density EEG can provide helpful information regarding diagnosis and recovery in DoC patients. However, the accuracy rate of EEG biomarkers to predict the clinical outcome in DoC patients is largely unknown. This study investigated the accuracy of psychophysiological biomarkers based on clinical EEG in predicting clinical outcomes in DoC patients. To this aim, we extracted a set of EEG biomarkers in 33 DoC patients with traumatic and nontraumatic etiologies and estimated their accuracy to discriminate patients’ etiologies and predict clinical outcomes 6 months after the injury. Machine learning reached an accuracy of 83.3% (sensitivity = 92.3%, specificity = 60%) with EEG-based functional connectivity predicting clinical outcome in nontraumatic patients. Furthermore, the combination of functional connectivity and dominant frequency in EEG activity best predicted clinical outcomes in traumatic patients with an accuracy of 80% (sensitivity = 85.7%, specificity = 71.4%). These results highlight the importance of functional connectivity in predicting recovery in DoC patients. Moreover, this study shows the high translational value of EEG biomarkers both in terms of feasibility and accuracy for the assessment of DoC.
Collapse
Affiliation(s)
- Francesco Di Gregorio
- UO Medicina Riabilitativa e Neuroriabilitazione, Azienda Unità Sanitaria Locale, 40133 Bologna, Italy
| | - Fabio La Porta
- IRCCS Istituto delle Scienze Neurologiche di Bologna
- Correspondence:
| | | | - Simone Battaglia
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, Campus di Cesena, 47521 Cesena, Italy
- Dipartimento di Psicologia, Università di Torino, 10124 Torino, Italy
| | - Silvia Orlandi
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”, University of Bologna, Viale Risorgimento, 2, 40136 Bologna, Italy
| | - Giuseppe Ippolito
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, Campus di Cesena, 47521 Cesena, Italy
| | - Vincenzo Romei
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, Campus di Cesena, 47521 Cesena, Italy
| | | | - Giada Lullini
- IRCCS Istituto delle Scienze Neurologiche di Bologna
| |
Collapse
|
21
|
Sadeghi D, Shoeibi A, Ghassemi N, Moridian P, Khadem A, Alizadehsani R, Teshnehlab M, Gorriz JM, Khozeimeh F, Zhang YD, Nahavandi S, Acharya UR. An overview of artificial intelligence techniques for diagnosis of Schizophrenia based on magnetic resonance imaging modalities: Methods, challenges, and future works. Comput Biol Med 2022; 146:105554. [DOI: 10.1016/j.compbiomed.2022.105554] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 12/21/2022]
|
22
|
Duan F, Lv Y, Sun Z, Li J. Multi-scale Learning for Multimodal Neurophysiological Signals: Gait Pattern Classification as an Example. Neural Process Lett 2022. [DOI: 10.1007/s11063-021-10738-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Akbari H, Ghofrani S, Zakalvand P, Tariq Sadiq M. Schizophrenia recognition based on the phase space dynamic of EEG signals and graphical features. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
Li J. Editorial: Recent Developments of Deep Learning in Analyzing, Decoding, and Understanding Neuroimaging Signals. Front Neurosci 2021; 15:652073. [PMID: 34093112 PMCID: PMC8175846 DOI: 10.3389/fnins.2021.652073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/16/2021] [Indexed: 11/23/2022] Open
Affiliation(s)
- Junhua Li
- Laboratory for Brain-Bionic Intelligence and Computational Neuroscience, Wuyi University, Jiangmen, China.,School of Computer Science and Electronic Engineering, University of Essex, Colchester, United Kingdom
| |
Collapse
|
25
|
Gong S, Xing K, Cichocki A, Li J. Deep Learning in EEG: Advance of the Last Ten-Year Critical Period. IEEE Trans Cogn Dev Syst 2021. [DOI: 10.1109/tcds.2021.3079712] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|