1
|
Gentili PL, Stano P. Living cells and biological mechanisms as prototypes for developing chemical artificial intelligence. Biochem Biophys Res Commun 2024; 720:150060. [PMID: 38754164 DOI: 10.1016/j.bbrc.2024.150060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/25/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024]
Abstract
Artificial Intelligence (AI) is having a revolutionary impact on our societies. It is helping humans in facing the global challenges of this century. Traditionally, AI is developed in software or through neuromorphic engineering in hardware. More recently, a brand-new strategy has been proposed. It is the so-called Chemical AI (CAI), which exploits molecular, supramolecular, and systems chemistry in wetware to mimic human intelligence. In this work, two promising approaches for boosting CAI are described. One regards designing and implementing neural surrogates that can communicate through optical or chemical signals and give rise to networks for computational purposes and to develop micro/nanorobotics. The other approach concerns "bottom-up synthetic cells" that can be exploited for applications in various scenarios, including future nano-medicine. Both topics are presented at a basic level, mainly to inform the broader audience of non-specialists, and so favour the rise of interest in these frontier subjects.
Collapse
Affiliation(s)
- Pier Luigi Gentili
- Department of Chemistry, Biology, and Biotechnology, Università degli Studi di Perugia, Perugia, Italy.
| | - Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy.
| |
Collapse
|
2
|
Tomassoli L, Silva-Dias L, Dolnik M, Epstein IR, Germani R, Gentili PL. Neuromorphic Engineering in Wetware: Discriminating Acoustic Frequencies through Their Effects on Chemical Waves. J Phys Chem B 2024; 128:1241-1255. [PMID: 38285636 DOI: 10.1021/acs.jpcb.3c08429] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Some features of the human nervous system can be mimicked not only through software or hardware but also through liquid solutions of chemical systems maintained under out-of-equilibrium conditions. We describe the possibility of exploiting a thin layer of the Belousov-Zhabotinsky (BZ) reaction as a surrogate for the cochlea for sensing acoustic frequencies. Experiments and simulations demonstrate that, as in the human ear where the cochlea transduces the mechanical energy of the acoustic frequencies into the electrochemical energy of neural action potentials and the basilar membrane originates topographic representations of sounds, our bioinspired chemoacoustic system, based on the BZ reaction, gives rise to spatiotemporal patterns as the representation of distinct acoustic bands through transduction of mechanical energy into chemical energy. Acoustic frequencies in the range 10-2000 Hz are partitioned into seven distinct bands based on three attributes of the emerging spatiotemporal patterns: (1) the types and frequencies of the chemical waves, (2) their velocities, and (3) the Faraday waves' wavelengths.
Collapse
Affiliation(s)
- Laura Tomassoli
- Department of Chemistry, Biology, and Biotechnology, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Leonardo Silva-Dias
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454-9110, United States
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo 13.565-905, Brazil
| | - Milos Dolnik
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454-9110, United States
| | - Irving R Epstein
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454-9110, United States
| | - Raimondo Germani
- Department of Chemistry, Biology, and Biotechnology, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Pier Luigi Gentili
- Department of Chemistry, Biology, and Biotechnology, Università degli Studi di Perugia, 06123 Perugia, Italy
| |
Collapse
|
3
|
Kumar S, Sharma PK, Bhatnagar MR. Game-Theoretic Analysis of Fusion Rules Over Molecular Reporting Channels. IEEE Trans Nanobioscience 2024; 23:101-108. [PMID: 37410640 DOI: 10.1109/tnb.2023.3290609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
This work adopts a game theoretic approach to analyze the behavior of transmitter nanomachines (TNMs) in a diffusive 3-dimensional (3-D) channel. In order to communicate the local observations about the region of interest (RoI) to a common supervisor nanomachine (SNM), TNMs transmit information-carrying molecules to SNM. For the production of information-carrying molecules, all the TNMs share the common food molecular budget (CFMB). The TNMs apply cooperative and greedy strategic efforts to get their share from the CFMB. In the cooperative case, all the TNMs communicate to SNM as a group, therefore they cooperatively consume the CFMB to increase the group outcome, whereas, in the greedy scenario, all TNMs decide to perform alone and thus greedily consume the CFMB to increase their individual outcomes. The performance is evaluated in terms of the average rate of success, the average probability of error, and the receiver operating characteristic (ROC) of RoI detection. The derived results are verified through Monte-Carlo and particle-based simulations (PBS).
Collapse
|
4
|
Stano P. Chemical Systems for Wetware Artificial Life: Selected Perspectives in Synthetic Cell Research. Int J Mol Sci 2023; 24:14138. [PMID: 37762444 PMCID: PMC10532297 DOI: 10.3390/ijms241814138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
The recent and important advances in bottom-up synthetic biology (SB), in particular in the field of the so-called "synthetic cells" (SCs) (or "artificial cells", or "protocells"), lead us to consider the role of wetware technologies in the "Sciences of Artificial", where they constitute the third pillar, alongside the more well-known pillars hardware (robotics) and software (Artificial Intelligence, AI). In this article, it will be highlighted how wetware approaches can help to model life and cognition from a unique perspective, complementary to robotics and AI. It is suggested that, through SB, it is possible to explore novel forms of bio-inspired technologies and systems, in particular chemical AI. Furthermore, attention is paid to the concept of semantic information and its quantification, following the strategy recently introduced by Kolchinsky and Wolpert. Semantic information, in turn, is linked to the processes of generation of "meaning", interpreted here through the lens of autonomy and cognition in artificial systems, emphasizing its role in chemical ones.
Collapse
Affiliation(s)
- Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy
| |
Collapse
|
5
|
Stano P, Gentili PL, Damiano L, Magarini M. A Role for Bottom-Up Synthetic Cells in the Internet of Bio-Nano Things? Molecules 2023; 28:5564. [PMID: 37513436 PMCID: PMC10385758 DOI: 10.3390/molecules28145564] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/29/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The potential role of bottom-up Synthetic Cells (SCs) in the Internet of Bio-Nano Things (IoBNT) is discussed. In particular, this perspective paper focuses on the growing interest in networks of biological and/or artificial objects at the micro- and nanoscale (cells and subcellular parts, microelectrodes, microvessels, etc.), whereby communication takes place in an unconventional manner, i.e., via chemical signaling. The resulting "molecular communication" (MC) scenario paves the way to the development of innovative technologies that have the potential to impact biotechnology, nanomedicine, and related fields. The scenario that relies on the interconnection of natural and artificial entities is briefly introduced, highlighting how Synthetic Biology (SB) plays a central role. SB allows the construction of various types of SCs that can be designed, tailored, and programmed according to specific predefined requirements. In particular, "bottom-up" SCs are briefly described by commenting on the principles of their design and fabrication and their features (in particular, the capacity to exchange chemicals with other SCs or with natural biological cells). Although bottom-up SCs still have low complexity and thus basic functionalities, here, we introduce their potential role in the IoBNT. This perspective paper aims to stimulate interest in and discussion on the presented topics. The article also includes commentaries on MC, semantic information, minimal cognition, wetware neuromorphic engineering, and chemical social robotics, with the specific potential they can bring to the IoBNT.
Collapse
Affiliation(s)
- Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy
| | - Pier Luigi Gentili
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Luisa Damiano
- Department of Communication, Arts and Media, IULM University, 20143 Milan, Italy
| | - Maurizio Magarini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| |
Collapse
|
6
|
Stano P. Exploring Information and Communication Theories for Synthetic Cell Research. Front Bioeng Biotechnol 2022; 10:927156. [PMID: 35910013 PMCID: PMC9334554 DOI: 10.3389/fbioe.2022.927156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/24/2022] [Indexed: 01/17/2023] Open
Affiliation(s)
- Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| |
Collapse
|
7
|
Barros MT, Veletić M, Kanada M, Pierobon M, Vainio S, Balasingham I, Balasubramaniam S. Molecular Communications in Viral Infections Research: Modeling, Experimental Data, and Future Directions. IEEE TRANSACTIONS ON MOLECULAR, BIOLOGICAL, AND MULTI-SCALE COMMUNICATIONS 2021; 7:121-141. [PMID: 35782714 PMCID: PMC8544950 DOI: 10.1109/tmbmc.2021.3071780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 12/22/2022]
Abstract
Hundreds of millions of people worldwide are affected by viral infections each year, and yet, several of them neither have vaccines nor effective treatment during and post-infection. This challenge has been highlighted by the COVID-19 pandemic, showing how viruses can quickly spread and impact society as a whole. Novel interdisciplinary techniques must emerge to provide forward-looking strategies to combat viral infections, as well as possible future pandemics. In the past decade, an interdisciplinary area involving bioengineering, nanotechnology and information and communication technology (ICT) has been developed, known as Molecular Communications. This new emerging area uses elements of classical communication systems to molecular signalling and communication found inside and outside biological systems, characterizing the signalling processes between cells and viruses. In this paper, we provide an extensive and detailed discussion on how molecular communications can be integrated into the viral infectious diseases research, and how possible treatment and vaccines can be developed considering molecules as information carriers. We provide a literature review on molecular communications models for viral infection (intra-body and extra-body), a deep analysis on their effects on immune response, how experimental can be used by the molecular communications community, as well as open issues and future directions.
Collapse
Affiliation(s)
- Michael Taynnan Barros
- CBIG/BioMediTechTampere University33014TampereFinland
- School of Computer Science and Electronic EngineeringUniversity of EssexColchesterCO4 3SQU.K.
| | - Mladen Veletić
- Intervention CentreOslo University Hospital0424OsloNorway
- Department of Electronic SystemsNorwegian University of Science and Technology7491TrondheimNorway
| | - Masamitsu Kanada
- Department of Pharmacology and ToxicologyInstitute for Quantitative Health Science and Engineering, Michigan State UniversityEast LansingMI48824USA
| | - Massimiliano Pierobon
- Department of Computer Science and EngineeringUniversity of Nebraska–LincolnLincolnNE68588USA
| | - Seppo Vainio
- InfoTech OuluKvantum Institute, Faculty of Biochemistry and Molecular Medicine, Laboratory of Developmental Biology, Oulu University90570OuluFinland
| | - Ilangko Balasingham
- Intervention CentreOslo University Hospital0424OsloNorway
- Department of Electronic SystemsNorwegian University of Science and Technology7491TrondheimNorway
| | | |
Collapse
|
8
|
Awan H, Balasubramaniam S, Odysseos A. A Voxel Model to Decipher the Role of Molecular Communication in the Growth of Glioblastoma Multiforme. IEEE Trans Nanobioscience 2021; 20:296-310. [PMID: 33830926 DOI: 10.1109/tnb.2021.3071922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Glioblastoma Multiforme (GBM), the most malignant human tumour, can be defined by the evolution of growing bio-nanomachine networks within an interplay between self-renewal (Grow) and invasion (Go) potential of mutually exclusive phenotypes of transmitter and receiver cells. Herein, we present a mathematical model for the growth of GBM tumour driven by molecule-mediated inter-cellular communication between two populations of evolutionary bio-nanomachines representing the Glioma Stem Cells (GSCs) and Glioma Cells (GCs). The contribution of each subpopulation to tumour growth is quantified by a voxel model representing the end to end inter-cellular communication models for GSCs and progressively evolving invasiveness levels of glioma cells within a network of diverse cell configurations. Mutual information, information propagation speed and the impact of cell numbers and phenotypes on the communication output and GBM growth are studied by using analysis from information theory. The numerical simulations show that the progression of GBM is directly related to higher mutual information and higher input information flow of molecules between the GSCs and GCs, resulting in an increased tumour growth rate. These fundamental findings contribute to deciphering the mechanisms of tumour growth and are expected to provide new knowledge towards the development of future bio-nanomachine-based therapeutic approaches for GBM.
Collapse
|
9
|
Jing D, Li Y, Hang R, Wu Z, Zhang H. ISI-mitigating modulation scheme using ion reaction for molecular communications. IET Nanobiotechnol 2020; 13:674-681. [PMID: 31573535 DOI: 10.1049/iet-nbt.2018.5272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, according to the type-based modulation technique, the authors develop a novel modulation scheme by utilising ion collision and reaction to mitigate inter-symbol interference (ISI) in diffusive molecular communication (MC) systems. Two types of ions are employed as messenger molecules that cause a chemical reaction in the medium. According to the residual molecules and chemical reaction, the proposed modulation scheme adaptively adjusts the number of emitted molecules, thereby guaranteeing that the number of molecules that arrived at the receiver remains at a stable level. The authors evaluate the performance of the proposed scheme by comparing it with the conventional binary molecule shift keying (BMoSK), BMoSK with power adjustment (BMoSK-PA), and ideal BMoSK (without ISI) modulation techniques via diffusion. Numerical results show that the bit error probability and channel capacity of the proposed modulation scheme are much closer to the ideal BMoSK modulation scheme compared to the conventional BMoSK and the BMoSK-PA modulation schemes.
Collapse
Affiliation(s)
- Dongliang Jing
- State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an, 710071, People's Republic of China
| | - Yongzhao Li
- State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an, 710071, People's Republic of China.
| | - Rongnan Hang
- State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an, 710071, People's Republic of China
| | - Zhenqiang Wu
- School of Computer Science, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Hailin Zhang
- State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an, 710071, People's Republic of China
| |
Collapse
|
10
|
L Adonias G, Yastrebova A, Barros MT, Koucheryavy Y, Cleary F, Balasubramaniam S. Utilizing Neurons for Digital Logic Circuits: A Molecular Communications Analysis. IEEE Trans Nanobioscience 2020; 19:224-236. [PMID: 32092011 DOI: 10.1109/tnb.2020.2975942] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
With the advancement of synthetic biology, several new tools have been conceptualized over the years as alternative treatments for current medical procedures. As part of this work, we investigate how synthetically engineered neurons can operate as digital logic gates that can be used towards bio-computing inside the brain and its impact on epileptic seizure-like behaviour. We quantify the accuracy of logic gates under high firing rates amid a network of neurons and by how much it can smooth out uncontrolled neuronal firings. To test the efficacy of our method, simulations composed of computational models of neurons connected in a structure that represents a logic gate are performed. Our simulations demonstrate the accuracy of performing the correct logic operation, and how specific properties such as the firing rate can play an important role in the accuracy. As part of the analysis, the mean squared error is used to quantify the quality of our proposed model and predict the accurate operation of a gate based on different sampling frequencies. As an application, the logic gates were used to smooth out epileptic seizure-like activity in a biological neuronal network, where the results demonstrated the effectiveness of reducing its mean firing rate. Our proposed system has the potential to be used in future approaches to treating neurological conditions in the brain.
Collapse
|
11
|
What is the resource footprint of a computer science department? Place, people, and Pedagogy. DATA & POLICY 2020. [DOI: 10.1017/dap.2020.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
AbstractInternet and Communication Technology/electrical and electronic equipment (ICT/EEE) form the bedrock of today’s knowledge economy. This increasingly interconnected web of products, processes, services, and infrastructure is often invisible to the user, as are the resource costs behind them. This ecosystem of machine-to-machine and cyber-physical-system technologies has a myriad of (in)direct impacts on the lithosphere, biosphere, atmosphere, and hydrosphere. As key determinants of tomorrow’s digital world, academic institutions are critical sites for exploring ways to mitigate and/or eliminate negative impacts. This Report is a self-deliberation provoked by the questionHow do we create more resilient and healthier computer science departments: living laboratories for teaching and learning about resource-constrained computing, computation, and communication?Our response for University College London (UCL) Computer Science is to reflect on how, when, and where resources—energy, (raw) materials including water, space, and time—are consumed by the building (place), its occupants (people), and their activities (pedagogy). This perspective and attendant first-of-its-kind assessment outlines a roadmap and proposes high-level principles to aid our efforts, describing challenges and difficulties hindering quantification of the Department’s resource footprint. Qualitatively, we find a need to rematerialise the ICT/EEE ecosystem: to reveal the full costs of the seemingly intangible information society by interrogating the entire life history of paraphernalia from smartphones through servers to underground/undersea cables; another approach is demonstrating the corporeality of commonplace phrases and Nature-inspired terms such as artificial intelligence, social media, Big Data, smart cities/farming, the Internet, the Cloud, and the Web. We sketch routes to realising three interlinked aims: cap annual power consumption and greenhouse gas emissions, become a zero waste institution, and rejuvenate and (re)integrate the natural and built environments.
Collapse
|
12
|
Dambri OA, Cherkaoui S. Performance Enhancement of Diffusion-Based Molecular Communication. IEEE Trans Nanobioscience 2019; 19:48-58. [PMID: 31647441 DOI: 10.1109/tnb.2019.2949261] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Inter-Symbol Interference (ISI) is one of the challenges of bio-inspired diffusion-based molecular communication. The degradation of the remaining molecules from a previous transmission is the solution that biological systems use to mitigate this ISI. While most prior work has proposed the use of enzymes to catalyze the molecules degradation, enzymes also degrade the molecules carrying the information, which drastically decreases the signal strength. In this paper, we propose the use of photolysis reactions, which use the light to instantly transform the emitted molecules so they no longer be recognized after their detection. The light will be emitted in an optimal time, allowing the receiver to detect as many molecules as possible, which increases both the signal strength and ISI mitigation. A lower bound expression on the expectation of the observed molecules number at the receiver is derived. Bit error probability expression is also formulated, and both expressions are validated with simulation results, which show a visible enhancement when using photolysis reactions. The performance of the proposed method is evaluated using Interference-to-Total-Received molecules metric (ITR) and the derived bit error probability.
Collapse
|
13
|
Kim E, Li J, Kang M, Kelly DL, Chen S, Napolitano A, Panzella L, Shi X, Yan K, Wu S, Shen J, Bentley WE, Payne GF. Redox Is a Global Biodevice Information Processing Modality. PROCEEDINGS OF THE IEEE. INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS 2019; 107:1402-1424. [PMID: 32095023 PMCID: PMC7036710 DOI: 10.1109/jproc.2019.2908582] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Biology is well-known for its ability to communicate through (i) molecularly-specific signaling modalities and (ii) a globally-acting electrical modality associated with ion flow across biological membranes. Emerging research suggests that biology uses a third type of communication modality associated with a flow of electrons through reduction/oxidation (redox) reactions. This redox signaling modality appears to act globally and has features of both molecular and electrical modalities: since free electrons do not exist in aqueous solution, the electrons must flow through molecular intermediates that can be switched between two states - with electrons (reduced) or without electrons (oxidized). Importantly, this global redox modality is easily accessible through its electrical features using convenient electrochemical instrumentation. In this review, we explain this redox modality, describe our electrochemical measurements, and provide four examples demonstrating that redox enables communication between biology and electronics. The first two examples illustrate how redox probing can acquire biologically relevant information. The last two examples illustrate how redox inputs can transduce biologically-relevant transitions for patterning and the induction of a synbio transceiver for two-hop molecular communication. In summary, we believe redox provides a unique ability to bridge bio-device communication because simple electrochemical methods enable global access to biologically meaningful information. Further, we envision that redox may facilitate the application of information theory to the biological sciences.
Collapse
Affiliation(s)
- Eunkyoung Kim
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, MD 20742, USA
| | - Jinyang Li
- Institute for Bioscience & Biotechnology Research, Fischell Department of Bioengineering University of Maryland, College Park, MD 20742, USA
| | - Mijeong Kang
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, MD 20742, USA
| | - Deanna L Kelly
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | - Shuo Chen
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126 Naples, Italy
| | - Lucia Panzella
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126 Naples, Italy
| | - Xiaowen Shi
- School of Resource and Environmental Science, Hubei Biomass-Resource Chemistry, Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China
| | - Kun Yan
- School of Resource and Environmental Science, Hubei Biomass-Resource Chemistry, Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China
| | - Si Wu
- School of Resource and Environmental Science, Hubei Biomass-Resource Chemistry, Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - William E Bentley
- Institute for Bioscience & Biotechnology Research, Fischell Department of Bioengineering University of Maryland, College Park, MD 20742, USA
| | - Gregory F Payne
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
14
|
Huang Y, Wen M, Yang LL, Chae CB, Ji F. Spatial Modulation for Molecular Communication. IEEE Trans Nanobioscience 2019; 18:381-395. [PMID: 30892218 DOI: 10.1109/tnb.2019.2905254] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this paper, we propose an energy-efficient spatial modulation-based molecular communication (SM-MC) scheme, in which a transmitted symbol is composed of two parts, i.e., a space derived symbol and a concentration derived symbol. The space symbol is transmitted by embedding the information into the index of a single activated transmitter nanomachine. The concentration symbol is drawn according to the conventional concentration shift keying (CSK) constellation. Benefiting from a single active transmitter during each symbol period, SM-MC can avoid the inter-link interference problem existing in the current multiple-input multiple-output (MIMO) based MC schemes, which hence enables low-complexity symbol detection and performance improvement. Correspondingly, we propose a low-complexity scheme, which first detects the space symbol by energy comparison, and then detects the concentration symbol by the maximum ratio combining assisted CSK demodulation. In this paper, we analyze the symbol error rate (SER) of the SM-MC and of its special case, namely the space shift keying-based MC (SSK-MC), where only space symbol is transmitted and no CSK modulation is invoked. Finally, the analytical results are validated by computer simulations. Our studies demonstrate that both the SSK-MC and SM-MC are capable of achieving better SER performance than the conventional MIMO-MC and single-input single-output-based MC, when given the same symbol rate.
Collapse
|
15
|
Awan H, Chou CT. Molecular Communications With Molecular Circuit-Based Transmitters and Receivers. IEEE Trans Nanobioscience 2019; 18:146-155. [PMID: 30640621 DOI: 10.1109/tnb.2019.2892229] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The performance of a communication link can be improved by maximizing the mutual information between the input and output signals. This paper considers this maximization problem in a molecular communication link where both the transmitter and the receiver are molecular circuit. This general optimization is hard to solve. We simplify the problem by limiting to reactions with linear reaction rates and molecular circuits with a limited number of species. We derive an expression of mutual information and use it for numerical maximization. We show that our parameterized transmitter circuit is able to give mutual information that is close to upper bound obtained in our earlier work.
Collapse
|
16
|
Stano P. Is Research on "Synthetic Cells" Moving to the Next Level? Life (Basel) 2018; 9:E3. [PMID: 30587790 PMCID: PMC6463193 DOI: 10.3390/life9010003] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/15/2022] Open
Abstract
"Synthetic cells" research focuses on the construction of cell-like models by using solute-filled artificial microcompartments with a biomimetic structure. In recent years this bottom-up synthetic biology area has considerably progressed, and the field is currently experiencing a rapid expansion. Here we summarize some technical and theoretical aspects of synthetic cells based on gene expression and other enzymatic reactions inside liposomes, and comment on the most recent trends. Such a tour will be an occasion for asking whether times are ripe for a sort of qualitative jump toward novel SC prototypes: is research on "synthetic cells" moving to a next level?
Collapse
Affiliation(s)
- Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento; Ecotekne-S.P. Lecce-Monteroni, I-73100 Lecce, Italy.
| |
Collapse
|
17
|
Abstract
The authors of this paper have been involved in molecular communication since its conception. They describe their decade-and-a-half long personal journey of the molecular communication research and share their observations and thoughts on how the molecular communication research started and expanded to flourish. The authors also share their thoughts on research challenges that they hope the molecular communication research community addresses in the coming decade.
Collapse
|