1
|
Xiong L, Zhang Y, He B, Zhang K, Zhu J, Lang X. Optimum Parameters in Ultrasound Coherent Plane Wave Compounding for High LPWV Estimation: Validation on Phantom and Feasibility in 10 Subjects. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2024; 43:1469-1487. [PMID: 38700113 DOI: 10.1002/jum.16469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 05/05/2024]
Abstract
OBJECTIVES The aim of this study is to determine the optimum and fine values of the number and transmission angles of tilted plane waves for coherent plane-wave compounding (CPWC)-based high local pulse wave velocity (LPWV) estimation. METHODS A Verasonics system incorporating a linear array probe L14-5/38 with 128 elements and a pulsatile pump, CompuFlow1000, were used to acquire radio frequency data of 3, 5, 7, and 9 tilted plane wave sequences with angle intervals from 0° to 12° with a coarse interval increment step of 1°, and the angle intervals from 0° to 2° with a fine interval increment step of 0.25° from a carotid vessel phantom with the LPWV of 13.42 ± 0.90 m/s. The mean value, standard deviation, and coefficients of variation (CV) of the estimated LPWVs were calculated to quantitatively assess the performance of different configurations for CPWC-based LPWV estimation. Ten healthy human subjects of two age groups were recruited to assess the in vivo feasibility of the optimum parameter values. RESULTS The CPWC technique with three plane waves (PRF of 12 kHz corresponding to a frame rate of 4000 Hz) with an interval of 0.75° had LPWVs of 13.52 ± 0.08 m/s with the lowest CV of 1.84% on the phantom, and 5.49 ± 1.46 m/s with the lowest CV of 12.35% on 10 subjects. CONCLUSIONS The optimum parameters determined in this study show the best repeatability of the LPWV measurements with a vessel phantom and 10 healthy subjects, which support further studies on larger datasets for potential applications.
Collapse
Affiliation(s)
- Li Xiong
- Department of Electronic Engineering, Information School, Yunnan University, Kunming, China
| | - Yufeng Zhang
- Department of Electronic Engineering, Information School, Yunnan University, Kunming, China
| | - Bingbing He
- Department of Electronic Engineering, Information School, Yunnan University, Kunming, China
| | - Kexin Zhang
- The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jingying Zhu
- Department of Electronic Engineering, Information School, Yunnan University, Kunming, China
| | - Xun Lang
- Department of Electronic Engineering, Information School, Yunnan University, Kunming, China
| |
Collapse
|
2
|
Mukaddim RA, Liu Y, Graham M, Eickhoff JC, Weichmann AM, Tattersall MC, Korcarz CE, Stein JH, Varghese T, Eliceiri KW, Mitchell C. In Vivo Adaptive Bayesian Regularized Lagrangian Carotid Strain Imaging for Murine Carotid Arteries and Its Associations With Histological Findings. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:2103-2112. [PMID: 37400303 PMCID: PMC10527160 DOI: 10.1016/j.ultrasmedbio.2023.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 07/05/2023]
Abstract
OBJECTIVES Non-invasive methods for monitoring arterial health and identifying early injury to optimize treatment for patients are desirable. The objective of this study was to demonstrate the use of an adaptive Bayesian regularized Lagrangian carotid strain imaging (ABR-LCSI) algorithm for monitoring of atherogenesis in a murine model and examine associations between the ultrasound strain measures and histology. METHODS Ultrasound radiofrequency (RF) data were acquired from both the right and left common carotid artery (CCA) of 10 (5 male and 5 female) ApoE tm1Unc/J mice at 6, 16 and 24 wk. Lagrangian accumulated axial, lateral and shear strain images and three strain indices-maximum accumulated strain index (MASI), peak mean strain of full region of interest (ROI) index (PMSRI) and strain at peak axial displacement index (SPADI)-were estimated using the ABR-LCSI algorithm. Mice were euthanized (n = 2 at 6 and 16 wk, n = 6 at 24 wk) for histology examination. RESULTS Sex-specific differences in strain indices of mice at 6, 16 and 24 wk were observed. For male mice, axial PMSRI and SPADI changed significantly from 6 to 24 wk (mean axial PMSRI at 6 wk = 14.10 ± 5.33% and that at 24 wk = -3.03 ± 5.61%, p < 0.001). For female mice, lateral MASI increased significantly from 6 to 24 wk (mean lateral MASI at 6 wk = 10.26 ± 3.13% and that at 24 wk = 16.42 ± 7.15%, p = 0.048). Both cohorts exhibited strong associations with ex vivo histological findings (male mice: correlation between number of elastin fibers and axial PMSRI: rs = 0.83, p = 0.01; female mice: correlation between shear MASI and plaque score: rs = 0.77, p = 0.009). CONCLUSION The results indicate that ABR-LCSI can be used to measure arterial wall strain in a murine model and that changes in strain are associated with changes in arterial wall structure and plaque formation.
Collapse
Affiliation(s)
- Rashid Al Mukaddim
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Yuming Liu
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA
| | - Melissa Graham
- Research Animal Resources and Compliance, Comparative Pathology Laboratory, University of Wisconsin-Madison, Madison, WI, USA
| | - Jens C Eickhoff
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Ashley M Weichmann
- Small Animal Imaging and Radiotherapy Facility, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Claudia E Korcarz
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - James H Stein
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Tomy Varghese
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Kevin W Eliceiri
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA; Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA; Small Animal Imaging and Radiotherapy Facility, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Morgridge Institute for Research, Madison, WI, USA
| | - Carol Mitchell
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
3
|
Karageorgos GM, Liang P, Mobadersany N, Gami P, Konofagou EE. Unsupervised deep learning-based displacement estimation for vascular elasticity imaging applications. Phys Med Biol 2023; 68:10.1088/1361-6560/ace0f0. [PMID: 37348487 PMCID: PMC10528442 DOI: 10.1088/1361-6560/ace0f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 06/22/2023] [Indexed: 06/24/2023]
Abstract
Objective. Arterial wall stiffness can provide valuable information on the proper function of the cardiovascular system. Ultrasound elasticity imaging techniques have shown great promise as a low-cost and non-invasive tool to enable localized maps of arterial wall stiffness. Such techniques rely upon motion detection algorithms that provide arterial wall displacement estimation.Approach. In this study, we propose an unsupervised deep learning-based approach, originally proposed for image registration, in order to enable improved quality arterial wall displacement estimation at high temporal and spatial resolutions. The performance of the proposed network was assessed through phantom experiments, where various models were trained by using ultrasound RF signals, or B-mode images, as well as different loss functions.Main results. Using the mean square error (MSE) for the training process provided the highest signal-to-noise ratio when training on the B-modes images (30.36 ± 1.14 dB) and highest contrast-to-noise ratio when training on the RF signals (32.84 ± 1.89 dB). In addition, training the model on RF signals demonstrated the capability of providing accurate localized pulse wave velocity (PWV) maps, with a mean relative error (MREPWV) of 3.32 ± 1.80% and anR2 of 0.97 ± 0.03. Finally, the developed model was tested in human common carotid arteriesin vivo, providing accurate tracking of the distension pulse wave propagation, with an MREPWV= 3.86 ± 2.69% andR2 = 0.95 ± 0.03.Significance. In conclusion, a novel displacement estimation approach was presented, showing promise in improving vascular elasticity imaging techniques.
Collapse
Affiliation(s)
- Grigorios M Karageorgos
- Biomedical Engineering Department, Columbia University, New York, NY, United States of America
| | - Pengcheng Liang
- Biomedical Engineering Department, Columbia University, New York, NY, United States of America
| | - Nima Mobadersany
- Department of Radiology, Columbia University, New York, NY, United States of America
| | - Parth Gami
- Biomedical Engineering Department, Columbia University, New York, NY, United States of America
| | - Elisa E Konofagou
- Biomedical Engineering Department, Columbia University, New York, NY, United States of America
- Department of Radiology, Columbia University, New York, NY, United States of America
| |
Collapse
|
4
|
Torun SG, Munoz PDM, Crielaard H, Verhagen HJM, Kremers GJ, van der Steen AFW, Akyildiz AC. Local Characterization of Collagen Architecture and Mechanical Failure Properties of Fibrous Plaque Tissue of Atherosclerotic Human Carotid Arteries. Acta Biomater 2023; 164:293-302. [PMID: 37086826 DOI: 10.1016/j.actbio.2023.04.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 04/24/2023]
Abstract
Atherosclerotic plaque rupture in carotid arteries is a major cause of cerebrovascular events. Plaque rupture is the mechanical failure of the heterogeneous fibrous plaque tissue. Local characterization of the tissue's failure properties and the collagen architecture are of great importance to have insights in plaque rupture for clinical event prevention. Previous studies were limited to average rupture properties and global structural characterization, and did not provide the necessary local information. In this study, we assessed the local collagen architecture and failure properties of fibrous plaque tissue, by analyzing 30 tissue strips from 18 carotid plaques. Our study framework entailed second harmonic generation imaging for local collagen orientation and dispersion, and uniaxial tensile testing and digital image correlation for local tissue mechanics. The results showed that 87% of the imaged locations had collagen orientation close to the circumferential direction (0°) of the artery, and substantial dispersion locally. All regions combined, median [Q1:Q3] of the predominant angle measurements was -2° [-16°:16°]. The stretch ratio measurements clearly demonstrated a nonuniform stretch ratio distribution in the tissue under uniaxial loading. The rupture initiation regions had significantly higher stretch ratios (1.26 [1.15-1.40]) than the tissue average stretch ratio (1.11 [1.10-1.16]). No significant difference in collagen direction and dispersion was identified between the rupture regions and the rest of the tissue. The presented study forms an initial step towards gaining better insights into the characterization of local structural and mechanical fingerprints of fibrous plaque tissue in order to aid improved assessment of plaque rupture risk. STATEMENT OF SIGNIFICANCE: Plaque rupture risk assessment, critical to prevent cardiovascular events, requires knowledge on local failure properties and structure of collagenous plaque tissue. Our current knowledge is unfortunately limited to tissue's overall ultimate failure properties with scarce information on collagen architecture. In this study, local failure properties and collagen architecture of fibrous plaque tissue were obtained. We found predominant circumferential alignment of collagen fibers with substantial local dispersion. The tissue showed nonuniform stretch distribution under uniaxial tensile loading, with high stretches at rupture spots. This study highlights the significance of local mechanical and structural assessment for better insights into plaque rupture and the potential use of local stretches as risk marker for plaque rupture for patient-specific clinical applications.
Collapse
Affiliation(s)
- Su Guvenir Torun
- Department of Biomedical Engineering, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Pablo de Miguel Munoz
- Department of Biomedical Engineering, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Hanneke Crielaard
- Department of Biomedical Engineering, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Hence J M Verhagen
- Department of Vascular Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Gert-Jan Kremers
- Erasmus Optical Imaging Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Antonius F W van der Steen
- Department of Biomedical Engineering, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Ali C Akyildiz
- Department of Biomedical Engineering, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
5
|
Li H, Bhatt M, Qu Z, Zhang S, Hartel MC, Khademhosseini A, Cloutier G. Deep learning in ultrasound elastography imaging: A review. Med Phys 2022; 49:5993-6018. [PMID: 35842833 DOI: 10.1002/mp.15856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 02/04/2022] [Accepted: 07/06/2022] [Indexed: 11/11/2022] Open
Abstract
It is known that changes in the mechanical properties of tissues are associated with the onset and progression of certain diseases. Ultrasound elastography is a technique to characterize tissue stiffness using ultrasound imaging either by measuring tissue strain using quasi-static elastography or natural organ pulsation elastography, or by tracing a propagated shear wave induced by a source or a natural vibration using dynamic elastography. In recent years, deep learning has begun to emerge in ultrasound elastography research. In this review, several common deep learning frameworks in the computer vision community, such as multilayer perceptron, convolutional neural network, and recurrent neural network are described. Then, recent advances in ultrasound elastography using such deep learning techniques are revisited in terms of algorithm development and clinical diagnosis. Finally, the current challenges and future developments of deep learning in ultrasound elastography are prospected. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hongliang Li
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center, Montréal, Québec, Canada.,Institute of Biomedical Engineering, University of Montreal, Montréal, Québec, Canada
| | - Manish Bhatt
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center, Montréal, Québec, Canada
| | - Zhen Qu
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center, Montréal, Québec, Canada
| | - Shiming Zhang
- California Nanosystems Institute, University of California, Los Angeles, California, USA
| | - Martin C Hartel
- California Nanosystems Institute, University of California, Los Angeles, California, USA
| | - Ali Khademhosseini
- California Nanosystems Institute, University of California, Los Angeles, California, USA
| | - Guy Cloutier
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center, Montréal, Québec, Canada.,Institute of Biomedical Engineering, University of Montreal, Montréal, Québec, Canada.,Department of Radiology, Radio-Oncology and Nuclear Medicine, University of Montreal, Montréal, Québec, Canada
| |
Collapse
|
6
|
Liu P, de Hoop H, Schwab HM, Lopata RGP. High frame rate multi-perspective cardiac ultrasound imaging using phased array probes. ULTRASONICS 2022; 123:106701. [PMID: 35189524 DOI: 10.1016/j.ultras.2022.106701] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 12/14/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Ultrasound (US) imaging is used to assess cardiac disease by assessing the geometry and function of the heart utilizing its high spatial and temporal resolution. However, because of physical constraints, drawbacks of US include limited field-of-view, refraction, resolution and contrast anisotropy. These issues cannot be resolved when using a single probe. Here, an interleaved multi-perspective 2-D US imaging system was introduced, aiming at improved imaging of the left ventricle (LV) of the heart by acquiring US data from two separate phased array probes simultaneously at a high frame rate. In an ex-vivo experiment of a beating porcine heart, parasternal long-axis and apical views of the left ventricle were acquired using two phased array probes. Interleaved multi-probe US data were acquired at a frame rate of 170 frames per second (FPS) using diverging wave imaging under 11 angles. Image registration and fusion algorithms were developed to align and fuse the US images from two different probes. First- and second-order speckle statistics were computed to characterize the resulting probability distribution function and point spread function of the multi-probe image data. First-order speckle analysis showed less overlap of the histograms (reduction of 34.4%) and higher contrast-to-noise ratio (CNR, increase of 27.3%) between endocardium and myocardium in the fused images. Autocorrelation results showed an improved and more isotropic resolution for the multi-perspective images (single-perspective: 0.59 mm × 0.21 mm, multi-perspective: 0.35 mm × 0.18 mm). Moreover, mean gradient (MG) (increase of 74.4%) and entropy (increase of 23.1%) results indicated that image details of the myocardial tissue can be better observed after fusion. To conclude, interleaved multi-perspective high frame rate US imaging was developed and demonstrated in an ex-vivo experimental setup, revealing enlarged field-of-view, and improved image contrast and resolution of cardiac images.
Collapse
Affiliation(s)
- Peilu Liu
- Photoacoustics & Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands.
| | - Hein de Hoop
- Photoacoustics & Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Hans-Martin Schwab
- Photoacoustics & Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Richard G P Lopata
- Photoacoustics & Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
7
|
van Hal VHJ, De Hoop H, Muller JW, van Sambeek MRHM, Schwab HM, Lopata RGP. Multiperspective Bistatic Ultrasound Imaging and Elastography of the Ex Vivo Abdominal Aorta. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:604-616. [PMID: 34780324 DOI: 10.1109/tuffc.2021.3128227] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Knowledge of aneurysm geometry and local mechanical wall parameters using ultrasound (US) can contribute to a better prediction of rupture risk in abdominal aortic aneurysms (AAAs). However, aortic strain imaging using conventional US is limited by the lateral lumen-wall contrast and resolution. In this study, ultrafast multiperspective bistatic (MP BS) imaging is used to improve aortic US, in which two curved array transducers receive simultaneously on each transmit event. The advantage of such bistatic US imaging on both image quality and strain estimations was investigated by comparing it to single-perspective monostatic (SP MS) and MP monostatic (MP MS) imaging, i.e., alternately transmitting and receiving with either transducer. Experimental strain imaging was performed in US simulations and in an experimental study on porcine aortas. Different compounding strategies were tested to retrieve the most useful information from each received US signal. Finally, apart from the conventional sector grid in curved array US imaging, a polar grid with respect to the vessel's local coordinate system is introduced. This new reconstruction method demonstrated improved displacement estimations in aortic US. The US simulations showed increased strain estimation accuracy using MP BS imaging bistatic imaging compared to MP MS imaging, with a decrease in the average relative error between 41% and 84% in vessel wall regions between transducers. In the experimental results, the mean image contrast-to-noise ratio was improved by up to 8 dB in the vessel wall regions between transducers. This resulted in an increased mean elastographic signal-to-noise ratio by about 15 dB in radial strain and 6 dB in circumferential strain.
Collapse
|
8
|
Karageorgos GM, Apostolakis IZ, Nauleau P, Gatti V, Weber R, Kemper P, Konofagou EE. Pulse Wave Imaging Coupled With Vector Flow Mapping: A Phantom, Simulation, and In Vivo Study. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2516-2531. [PMID: 33950838 PMCID: PMC8477914 DOI: 10.1109/tuffc.2021.3074113] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Pulse wave imaging (PWI) is an ultrasound imaging modality that estimates the wall stiffness of an imaged arterial segment by tracking the pulse wave propagation. The aim of the present study is to integrate PWI with vector flow imaging, enabling simultaneous and co-localized mapping of vessel wall mechanical properties and 2-D flow patterns. Two vector flow imaging techniques were implemented using the PWI acquisition sequence: 1) multiangle vector Doppler and 2) a cross-correlation-based vector flow imaging (CC VFI) method. The two vector flow imaging techniques were evaluated in vitro using a vessel phantom with an embedded plaque, along with spatially registered fluid structure interaction (FSI) simulations with the same geometry and inlet flow as the phantom setup. The flow magnitude and vector direction obtained through simulations and phantom experiments were compared in a prestenotic and stenotic segment of the phantom and at five different time frames. In most comparisons, CC VFI provided significantly lower bias or precision than the vector Doppler method ( ) indicating better performance. In addition, the proposed technique was applied to the carotid arteries of nonatherosclerotic subjects of different ages to investigate the relationship between PWI-derived compliance of the arterial wall and flow velocity in vivo. Spearman's rank-order test revealed positive correlation between compliance and peak flow velocity magnitude ( rs = 0.90 and ), while significantly lower compliance ( ) and lower peak flow velocity magnitude ( ) were determined in older (54-73 y.o.) compared with young (24-32 y.o.) subjects. Finally, initial feasibility was shown in an atherosclerotic common carotid artery in vivo. The proposed imaging modality successfully provided information on blood flow patterns and arterial wall stiffness and is expected to provide additional insight in studying carotid artery biomechanics, as well as aid in carotid artery disease diagnosis and monitoring.
Collapse
|
9
|
Ran D, Dong J, Li H, Lee WN. Spontaneous extension wave for in vivo assessment of arterial wall anisotropy. Am J Physiol Heart Circ Physiol 2021; 320:H2429-H2437. [PMID: 33961508 DOI: 10.1152/ajpheart.00756.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Another type of natural wave, traced from longitudinal wall motion and propagation along the artery, is observed in our in vivo human carotid artery experiments. We coin it as extension wave (EW) and hypothesize that EW velocity (EWV) is associated with arterial longitudinal stiffness. The EW is thus assumed to complement the pulse wave (PW), whose velocity (PWV) is tracked from the radial wall displacement and linked to arterial circumferential stiffness through the Moens-Korteweg equation, as indicators for arterial mechanical anisotropy quantification by noninvasive high-frame-rate ultrasound. The relationship between directional arterial stiffnesses and the two natural wave speeds was investigated in wave theory, finite-element simulations based on isotropic and anisotropic arterial models, and in vivo human common carotid artery (n = 10) experiments. Excellent agreement between the theory and simulations showed that EWV was 2.57 and 1.03 times higher than PWV in an isotropic and an anisotropic carotid artery model, respectively, whereas in vivo EWV was consistently lower than PWV in all 10 healthy human subjects. A strong linear correlation was substantiated in vivo between EWV and arterial longitudinal stiffness quantified by a well-validated vascular-guided wave imaging technique (VGWI). We thereby proposed a novel index calculated as EWV2/PWV2 as an alternative to assess arterial mechanical anisotropy. Simulations and in vivo results corroborated the effect of mechanical anisotropy on the propagation of spontaneous waves along the arterial wall. The proposed anisotropy index demonstrated the feasibility of the concurrent EW and PW imaged by high frame-rate ultrasound in grading of arterial wall anisotropy.NEW & NOTEWORTHY An extension wave formed by longitudinal wall displacements was observed by high-frame-rate ultrasound in the human common carotid artery in vivo. A strong correlation between extension wave velocity and arterial longitudinal stiffness complements the well-established pulse wave, which is linked to circumferential stiffness, to noninvasively assess direction-dependent wall elasticity of the major artery. The proposed anisotropy index, which directly reflects arterial wall microstructure and function, might be a potential risk factor for screening (sub-) clinical cardiovascular diseases.
Collapse
Affiliation(s)
- Dan Ran
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Jinping Dong
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - He Li
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Wei-Ning Lee
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China.,Biomedical Engineering Programme, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
10
|
Petterson N, Sjoerdsma M, van Sambeek M, van de Vosse F, Lopata R. Mechanical characterization of abdominal aortas using multi-perspective ultrasound imaging. J Mech Behav Biomed Mater 2021; 119:104509. [PMID: 33865067 DOI: 10.1016/j.jmbbm.2021.104509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/13/2021] [Accepted: 03/30/2021] [Indexed: 11/17/2022]
Abstract
Mechanical characterization of abdominal aortic aneurysms using personalized biomechanical models is being widely investigated as an alternative criterion to assess risk of rupture. These methods rely on accurate wall motion detection and appropriate model boundary conditions. In this study, multi-perspective ultrasound is combined with finite element models to perform mechanical characterization of abdominal aortas in volunteers. Multi-perspective biplane radio frequency ultrasound recordings were made under seven angles (-45° to 45°) in one phantom set-up and eight volunteers, which were merged using automatic image registration. 2-D displacement fields were estimated in the seven longitudinal ultrasound views, creating a sparse, high resolution 3-D map of the wall motion at relatively high frame rates (20-27 Hz). The displacements were used to personalize the subject-specific finite element model of which the geometry of the aorta, spine, and surrounding tissue were determined from a single 3-D ultrasound acquisition. Automatic registration of the multi-perspective images was successful in six out of eight cases with an average error of 5.4° compared to the ground truth. Displacements of the aortic wall were measured and cyclic strain of the aortic diameter was found ranging from 4.2% to 8.6%. The subject-specific mesh and inverse FE analysis was performed yielding shear moduli estimates for the wall between 104 and 215 kPa. Comparative results from a single-perspective workflow revealed very low aortic wall motion signal, which resulted in relatively high modulus estimates, between 230 and 754 kPa. Multi-perspective biplane ultrasound imaging was used to personalize finite element models of the abdominal aorta and its surroundings, and performing mechanical characterization of the aortic shear modulus. The method was found to be a more robust method compared to a single-perspective 3-D ultrasound approach. Future research will focus on investigating the use of multiple 3-D ultrasound acquisitions, the feasibility of free-hand scanning, the creation of a full 3-D automatic registration process, and with that, enable a clinical continuation of this study.
Collapse
Affiliation(s)
- Niels Petterson
- Photoacoustics & Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | - Marloes Sjoerdsma
- Photoacoustics & Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands.
| | - Marc van Sambeek
- Photoacoustics & Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands; Department of Vascular Surgery, Catharina Hospital Eindhoven, Michelangelolaan 2, 5623 EJ, Eindhoven, the Netherlands
| | - Frans van de Vosse
- Cardiovascular Biomechanics Group, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | - Richard Lopata
- Photoacoustics & Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| |
Collapse
|
11
|
Petterson NJ, van Sambeek MRHM, van de Vosse FN, Lopata RGP. Enhancing Lateral Contrast Using Multi-perspective Ultrasound Imaging of Abdominal Aortas. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:535-545. [PMID: 33349515 DOI: 10.1016/j.ultrasmedbio.2020.09.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 09/14/2020] [Accepted: 09/26/2020] [Indexed: 06/12/2023]
Abstract
Vascular ultrasound imaging is inherently hampered by low lateral resolution and contrast. Steering of the ultrasound beams can be used to overcome these limitations in superficial artery imaging because the aperture-to-depth ratio is relatively high. However, in arteries located at larger depths, the steered beams do not overlap for larger steering angles. In this study, the ultrasound probe is physically translated over the abdomen to create large angles between acquisitions, while maintaining overlap on the abdominal aorta. In one phantom setup and 11 volunteers, 2-D cross-sectional multi-perspective ultrasound images of the abdominal aorta were acquired using seven angles between -45° and +45°. Automatic registration of the recorded images was performed by automatic feature detection of the aorta and spine. This automatic detection was successful in 62 out of 77 image sets. Compounded multi-perspective images showed an increase of contrast-to-noise ratios from 0.6 ± 0.1 to 1.2 ± 0.2 over the entire heart cycle in volunteers.
Collapse
Affiliation(s)
- Niels J Petterson
- Photoacoustics & Ultrasound Lab Eindhoven, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Marc R H M van Sambeek
- Photoacoustics & Ultrasound Lab Eindhoven, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Frans N van de Vosse
- Photoacoustics & Ultrasound Lab Eindhoven, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Richard G P Lopata
- Photoacoustics & Ultrasound Lab Eindhoven, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
12
|
de Hoop H, Petterson NJ, van de Vosse FN, van Sambeek MRHM, Schwab HM, Lopata RGP. Multiperspective Ultrasound Strain Imaging of the Abdominal Aorta. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:3714-3724. [PMID: 32746118 DOI: 10.1109/tmi.2020.3003430] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Current decision-making for clinical intervention of abdominal aortic aneurysms (AAAs) is based on the maximum diameter of the aortic wall, but this does not provide patient-specific information on rupture risk. Ultrasound (US) imaging can assess both geometry and deformation of the aortic wall. However, low lateral contrast and resolution are currently limiting the precision of both geometry and local strain estimates. To tackle these drawbacks, a multiperspective scanning mode was developed on a dual transducer US system to perform strain imaging at high frame rates. Experimental imaging was performed on porcine aortas embedded in a phantom of the abdomen, pressurized in a mock circulation loop. US images were acquired with three acquisition schemes: Multiperspective ultrafast imaging, single perspective ultrafast imaging, and conventional line-by-line scanning. Image registration was performed by automatic detection of the transducer surfaces. Multiperspective images and axial displacements were compounded for improved segmentation and tracking of the aortic wall, respectively. Performance was compared in terms of image quality, motion tracking, and strain estimation. Multiperspective compound displacement estimation reduced the mean motion tracking error over one cardiac cycle by a factor 10 compared to conventional scanning. Resolution increased in radial and circumferential strain images, and circumferential signal-to-noise ratio (SNRe) increased by 10 dB. Radial SNRe is high in wall regions moving towards the transducer. In other regions, radial strain estimates remain cumbersome for the frequency used. In conclusion, multiperspective US imaging was demonstrated to improve motion tracking and circumferential strain estimation of porcine aortas in an experimental set-up.
Collapse
|
13
|
Hendriks GAGM, Hansen HHG, De Korte CL, Chen C. Optimization of transmission and reconstruction parameters in angular displacement compounding using plane wave ultrasound. Phys Med Biol 2020; 65:085007. [PMID: 32109889 DOI: 10.1088/1361-6560/ab7b2f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In ultrasound elastography, plane-wave acquisitions and angular displacement compounding (ADC) are often used and combined to allow high frame rates and to improve accuracy of lateral displacement estimates, respectively. This study investigates the performance of displacement and strain estimation for ADC as a function of; the main-to-grating-lobe-amplitude ratio which decreases as a function of steering angle; plane-wave acquisition and Delay-and-Sum (DaS)-related parameters; and grating-lobe filter cut-off frequency. Three experiments were conducted with a block phantom to test ADC performance for displacement fields of varying complexity: a lateral transducer shift, phantom rotation and phantom deformation. Experiments were repeated for four linear array transducers (pitch-to-lambda ratios between 0.6 and 1.4). Best ADC performance was found for steering angles that resulted in a theoretically derived main-to-grating-lobe-amplitude ratio of 1.7 dB for pure lateral translation and 6 dB for predominately lateral strain or rotation. Temporal filtering to reduce grating lobe signal or shifting of the receive aperture to receive angles below or above the optimal angle, as dictated by the main-to-grating-lobe-amplitude ratio, did not improve results. The accuracy of lateral displacement and strain estimates was improved by apodization in transmission and a dedicated F-number in DaS (0.75) allowing incidence angles within ± 33° in the active aperture. ADC with the optimized settings as found in this study improves the accuracy of displacements and strain estimates up to 80.7% compared to non-ADC. Compared to ADC settings described in current literature, our optimization improved the accuracy by 11.9% to 75.3% for lateral displacement and strain, and by 89.3% to 96.2% for rotation. The accuracy of ADC in rotation seemed to depend highly on plane-wave and DaS-related parameters which may explain the major improvement compared to settings in current literature. The overall improvement by optimized ADC was statistically significant compared to non-ADC (p = 0.003) and literature (p = 0.002).
Collapse
Affiliation(s)
- Gijs A G M Hendriks
- Medical UltraSound Imaging Center (MUSIC), Department of Radiology and Nuclear Medicine, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
14
|
Latha S, Samiappan D, Kumar R. Carotid artery ultrasound image analysis: A review of the literature. Proc Inst Mech Eng H 2020; 234:417-443. [PMID: 31960771 DOI: 10.1177/0954411919900720] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Stroke is one of the prominent causes of death in the recent days. The existence of susceptible plaque in the carotid artery can be used in ascertaining the possibilities of cardiovascular diseases and long-term disabilities. The imaging modality used for early screening of the disease is B-mode ultrasound image of the person in the artery area. The objective of this article is to give a widespread review of the imaging modes and methods used for studying the carotid artery for identifying stroke, atherosclerosis and related cardiovascular diseases. We encompass the review in methods used for artery wall tracking, intima-media, and lumen segmentation which will help in finding the extent of the disease. Due to the characteristics of the imaging modality used, the images have speckle noise which worsens the image quality. Adaptive homomorphic filtering with wavelet and contourlet transforms, Levy Shrink, gamma distribution were used for image denoising. Learning-based neural network approaches for denoising give better edge preservation. Domain knowledge-based segmentation approaches have proved to provide more accurate intima-media thickness measurements. There is a requirement of useful fully automatic segmentation approaches, 3D, 4D systems, and plaque motion analysis. Taking into consideration the image priors like geometry, imaging physics, intensity and temporal data, image analysis has to be performed. Encouragingly more research has focused on content-specific segmentation and classification techniques. With the evaluation of machine learning algorithms, classifying the image as with or without a fat deposit has gained better accuracy and sensitivity. Machine learning-based approaches like self-organizing map, k-nearest neighborhood and support vector machine achieve promising accuracy and sensitivity in classification. The literature reveals that there is more scope in identifying a patient-specific model in a fully automatic manner.
Collapse
Affiliation(s)
- S Latha
- Department of Electronics and Communication Engineering, SRM Institute of Science and Technology, Chennai, India
| | - Dhanalakshmi Samiappan
- Department of Electronics and Communication Engineering, SRM Institute of Science and Technology, Chennai, India
| | - R Kumar
- Department of Electronics and Communication Engineering, SRM Institute of Science and Technology, Chennai, India
| |
Collapse
|
15
|
Mukaddim RA, Meshram NH, Mitchell CC, Varghese T. Hierarchical Motion Estimation With Bayesian Regularization in Cardiac Elastography: Simulation and In Vivo Validation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:1708-1722. [PMID: 31329553 PMCID: PMC6855404 DOI: 10.1109/tuffc.2019.2928546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cardiac elastography (CE) is an ultrasound-based technique utilizing radio-frequency (RF) signals for assessing global and regional myocardial function. In this work, a complete strain estimation pipeline for incorporating a Bayesian regularization-based hierarchical block-matching algorithm, with Lagrangian motion description and myocardial polar strain estimation is presented. The proposed regularization approach is validated using finite-element analysis (FEA) simulations of a canine cardiac deformation model that is incorporated into an ultrasound simulation program. Interframe displacements are initially estimated using a hierarchical motion estimation framework. Incremental displacements are then accumulated under a Lagrangian description of cardiac motion from end-diastole (ED) to end-systole (ES). In-plane Lagrangian finite strain tensors are then derived from the accumulated displacements. Cartesian to cardiac coordinate transformation is utilized to calculate radial and longitudinal strains for ease of interpretation. Benefits of regularization are demonstrated by comparing the same hierarchical block-matching algorithm with and without regularization. Application of Bayesian regularization in the canine FEA model provided improved ES radial and longitudinal strain estimation with statistically significant ( ) error reduction of 48.88% and 50.16%, respectively. Bayesian regularization also improved the quality of temporal radial and longitudinal strain curves with error reductions of 78.38% and 86.67% ( ), respectively. Qualitative and quantitative improvements were also visualized for in vivo results on a healthy murine model after Bayesian regularization. Radial strain elastographic signal-to-noise ratio (SNRe) increased from 3.83 to 4.76 dB, while longitudinal strain SNRe increased from 2.29 to 4.58 dB with regularization.
Collapse
|
16
|
Shao D, Yuan Y, Xiang Y, Yu Z, Liu P, Liu DC. Artifacts detection-based adaptive filtering to noise reduction of strain imaging. ULTRASONICS 2019; 98:99-107. [PMID: 31238255 DOI: 10.1016/j.ultras.2019.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 04/03/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
Strain imaging in medical ultrasound is the imaging modality of elastic properties of biological tissue. In general, strain image will suffer from artifacts noise, which degrades lesion detectability and increases the likelihood of misdiagnosis. How to both suppress artifacts effectively and preserve the structure is vital for diagnosis and also for image post-processing. The bilateral filtering can reduce artifact noise and, at the same time, maintain the tissue structure. However, the balance between noise suppression and edge preservation often makes the threshold selection difficult. This paper is to solve the problem of difficult threshold selection in bilateral filtering. The probability distribution function of amplitude modulation noise in this paper is derived from the statistics of uncompressed speckle. The statistical model of artifact formation is useful for designing an adaptive fast bilateral filter for artifact reduction in ultrasound strain imaging. Both simulation and phantom testing show that the proposed method can improve the quality of ultrasonic strain imaging. Furthermore, the elastographic signal-to-noise ratio was increased by 129.91% and 52.36% for simulated and phantom strain images. The elastographic contrast-to-noise ratio was increased by 521.42% and 218.07% for simulated and phantom strain images, respectively. As indicated by the profiles, the proposed method produces a better result for the purpose of visualization.
Collapse
Affiliation(s)
- Dangguo Shao
- Faculty of Information Engineering and Automation, KunMing University of Science and Technology, KunMing, China.
| | - Ye Yuan
- Faculty of Information Engineering and Automation, KunMing University of Science and Technology, KunMing, China
| | - Yan Xiang
- Faculty of Information Engineering and Automation, KunMing University of Science and Technology, KunMing, China.
| | - Zhengtao Yu
- Faculty of Information Engineering and Automation, KunMing University of Science and Technology, KunMing, China
| | - Paul Liu
- School of Computer Science, Sichuan University, Chengdu, China; Saset Healthcare Inc. Chengdu, China
| | - Dong C Liu
- School of Computer Science, Sichuan University, Chengdu, China; Saset Healthcare Inc. Chengdu, China
| |
Collapse
|
17
|
Wang Y, Li H, Guo Y, Lee WN. Bidirectional Ultrasound Elastographic Imaging Framework for Non-invasive Assessment of the Non-linear Behavior of a Physiologically Pressurized Artery. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:1184-1196. [PMID: 30876671 DOI: 10.1016/j.ultrasmedbio.2019.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 01/10/2019] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
Studies of non-destructive bidirectional ultrasound assessment of non-linear mechanical behavior of the artery are scarce in the literature. We hereby propose derivation of a strain-shear modulus relationship as a new graphical diagnostic index using an ultrasound elastographic imaging framework, which encompasses our in-house bidirectional vascular guided wave imaging (VGWI) and ultrasound strain imaging (USI). This framework is used to assess arterial non-linearity in two orthogonal (i.e., longitudinal and circumferential) directions in the absence of non-invasive pressure measurement. Bidirectional VGWI estimates longitudinal (μL) and transverse (μT) shear moduli, whereas USI estimates radial strain (ɛr). Vessel-mimicking phantoms (with and without longitudinal pre-stretch) and in vitro porcine aortas under static and/or dynamic physiologic intraluminal pressure loads were examined. ɛr was found to be a suitable alternative to intraluminal pressure for representation of cyclic loading on the artery wall. Results revealed that μT values of all samples examined increased non-linearly with εr magnitude and more drastically than μL, whereas μL values of only the pre-stretched phantoms and aortas increased with ɛr magnitude. As a new graphical representation of arterial non-linearity and function, strain-shear modulus loops derived by the proposed framework over two consecutive dynamic loading cycles differentiated sample pre-conditions and corroborated direction-dependent non-linear mechanical behaviors of the aorta with high estimation repeatability.
Collapse
Affiliation(s)
- Yahua Wang
- Department of Electrical and Electronic Engineering, University of Hong Kong, Hong Kong
| | - He Li
- Department of Electrical and Electronic Engineering, University of Hong Kong, Hong Kong
| | - Yuexin Guo
- Department of Electrical and Electronic Engineering, University of Hong Kong, Hong Kong
| | - Wei-Ning Lee
- Department of Electrical and Electronic Engineering, University of Hong Kong, Hong Kong; Medical Engineering Programme, University of Hong Kong, Hong Kong.
| |
Collapse
|
18
|
Liu Z, He Q, Luo J. Spatial Angular Compounding With Affine-Model-Based Optical Flow for Improvement of Motion Estimation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:701-716. [PMID: 30703018 DOI: 10.1109/tuffc.2019.2895374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tissue motion estimation is an essential step for ultrasound elastography. Our previous study has shown that the affine-model-based optical flow (OF) method outperforms the normalized cross-correlation-based block matching (BM) method in motion estimation. However, the quality of lateral estimation using OF is still low due to inherent limitation of ultrasound imaging. BM-based spatial angular compounding (SAC) has been developed to obtain better motion estimation. In this paper, OF-based SAC (OF-SAC) is proposed to further improve the performance of lateral (and axial) estimation, and it is compared with BM-based SAC (BM-SAC). Plane wave as well as focused wave is transmitted in both simulations and phantom experiments on a linear array. In order to compare the performance quantitatively, the root-mean-square error (RMSE) of axial/lateral displacement and strain, and signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of axial/lateral strain are used as the evaluation criteria in the simulations. In the phantom experiments, the SNR and CNR are used to assess the quality of axial/lateral strain. The results show that for both OF and BM, SAC improves the performance of motion estimation, regardless of using plane or focused wave transmission. More importantly, OF-SAC is shown to outperform BM-SAC with lower RMSE, higher SNR, and higher CNR. In addition, preliminary in vivo experiments on the carotid artery of a healthy human subject also prove the superiority of OF-SAC. These results suggest that OF-SAC is preferred for both axial and lateral motion estimation to BM-SAC.
Collapse
|
19
|
Liu Z, Bai Z, Huang C, Huang M, Huang L, Xu D, Zhang H, Yuan C, Luo J. Interoperator Reproducibility of Carotid Elastography for Identification of Vulnerable Atherosclerotic Plaques. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:505-516. [PMID: 30575532 DOI: 10.1109/tuffc.2018.2888479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ultrasound-based carotid elastography has been developed to evaluate the vulnerability of carotid atherosclerotic plaques. The aim of this study was to investigate the in vivo interoperator reproducibility of carotid elastography for the identification of vulnerable plaques, with high-resolution magnetic resonance imaging (MRI) as reference. Ultrasound radio-frequency data of 45 carotid arteries (including 53 plaques) from 32 volunteers were acquired separately by two experienced operators in the longitudinal view and then were used to estimate the interframe axial strain rate (ASR) with a two-step optical flow method. The maximum 99th percentile of absolute ASR of all plaques in a carotid artery was used as the elastographic index. MRI scanning was also performed on each volunteer to identify the vulnerable plaque. The results showed no systematic bias in the Bland-Altman plot and an intraclass correlation coefficient of 0.66 between the two operators. In addition, no statistical significance was found between the receiver operating characteristic (ROC) curves from the two operators ( ), and their areas under the ROC curves were 0.83 and 0.77, respectively. Using the mean measurements of the two operators as the classification criterion, a sensitivity of 71.4%, a specificity of 87.1%, and an accuracy of 82.2% were obtained with a cutoff value of 1.37 [Formula: see text]. This study validates the interoperator reproducibility of ultrasound-based carotid elastography for identifying vulnerable carotid plaques.
Collapse
|
20
|
Chen Y, Liu J, Grondin J, Konofagou EE, Luo J. Compressed sensing reconstruction of synthetic transmit aperture dataset for volumetric diverging wave imaging. Phys Med Biol 2019; 64:025013. [PMID: 30523875 DOI: 10.1088/1361-6560/aaf5f1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A high volume rate and high performance ultrasound imaging method based on a matrix array is proposed by using compressed sensing (CS) to reconstruct the complete dataset of synthetic transmit aperture (STA) from three-dimensional (3D) diverging wave transmissions (i.e. 3D CS-STA). Hereto, a series of apodized 3D diverging waves are transmitted from a fixed virtual source, with the ith row of a Hadamard matrix taken as the apodization coefficients in the ith transmit event. Then CS is used to reconstruct the complete dataset, based on the linear relationship between the backscattered echoes and the complete dataset of 3D STA. Finally, standard STA beamforming is applied on the reconstructed complete dataset to obtain the volumetric image. Four layouts of element numbering for apodizations and transmit numbers of 16, 32 and 64 are investigated through computer simulations and phantom experiments. Furthermore, the proposed 3D CS-STA setups are compared with 3D single-line-transmit (SLT) and 3D diverging wave compounding (DWC). The results show that, (i) 3D CS-STA has competitive lateral resolutions to 3D STA, and their contrast ratios (CRs) and contrast-to-noise ratios (CNRs) approach to those of 3D STA as the number of transmit events increases in noise-free condition. (ii) the tested 3D CS-STA setups show good robustness in complete dataset reconstruction in the presence of different levels of noise. (iii) 3D CS-STA outperforms 3D SLT and 3D DWC. More specifically, the 3D CS-STA setup with 64 transmit events and the Random layout achieves ~31% improvement in lateral resolution, ~14% improvement in ratio of the estimated-to-true cystic areas, a higher volume rate, and competitive CR/CNR when compared with 3D DWC. The results demonstrate that 3D CS-STA has great potential of providing high quality volumetric image with a higher volume rate.
Collapse
Affiliation(s)
- Yinran Chen
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | | | | | | | | |
Collapse
|
21
|
Li H, Porée J, Roy Cardinal MH, Cloutier G. Two-dimensional affine model-based estimators for principal strain vascular ultrasound elastography with compound plane wave and transverse oscillation beamforming. ULTRASONICS 2019; 91:77-91. [PMID: 30081331 DOI: 10.1016/j.ultras.2018.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/26/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
Polar strain (radial and circumferential) estimations can suffer from artifacts because the center of a nonsymmetrical carotid atherosclerotic artery, defining the coordinate system in cross-sectional view, can be misregistered. Principal strains are able to remove coordinate dependency to visualize vascular strain components (i.e., axial and lateral strains and shears). This paper presents two affine model-based estimators, the affine phase-based estimator (APBE) developed in the framework of transverse oscillation (TO) beamforming, and the Lagrangian speckle model estimator (LSME). These estimators solve simultaneously the translation (axial and lateral displacements) and deformation (axial and lateral strains and shears) components that were then used to compute principal strains. To improve performance, the implemented APBE was also tested by introducing a time-ensemble estimation approach. Both APBE and LSME were tested with and without the plane strain incompressibility assumption. These algorithms were evaluated on coherent plane wave compounded (CPWC) images considering TO. LSME without TO but implemented with the time-ensemble and incompressibility constraint (Porée et al., 2015) served as benchmark comparisons. The APBE provided better principal strain estimations with the time-ensemble and incompressibility constraint, for both simulations and in vitro experiments. With a few exceptions, TO did not improve principal strain estimates for the LSME. With simulations, the smallest errors compared with ground true measures were obtained with the LSME considering time-ensemble and the incompressibility constraint. This latter estimator also provided the highest elastogram signal-to-noise ratios (SNRs) for in vitro experiments on a homogeneous vascular phantom without any inclusion, for applied strains varying from 0.07% to 4.5%. It also allowed the highest contrast-to-noise ratios (CNRs) for a heterogeneous vascular phantom with a soft inclusion, at applied strains from 0.07% to 3.6%. In summary, the LSME outperformed the implemented APBE, and the incompressibility constraint improved performances of both estimators.
Collapse
Affiliation(s)
- Hongliang Li
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, QC, Canada; Institute of Biomedical Engineering, University of Montreal, Montréal, QC, Canada
| | - Jonathan Porée
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, QC, Canada; Institute of Biomedical Engineering, University of Montreal, Montréal, QC, Canada
| | - Marie-Hélène Roy Cardinal
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, QC, Canada
| | - Guy Cloutier
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, QC, Canada; Institute of Biomedical Engineering, University of Montreal, Montréal, QC, Canada; Department of Radiology, Radio-Oncology and Nuclear Medicine, University of Montreal, Montréal, QC, Canada.
| |
Collapse
|
22
|
Li H, Chayer B, Roy Cardinal MH, Muijsers J, van den Hoven M, Qin Z, Gesnik M, Soulez G, Lopata RGP, Cloutier G. Investigation of out-of-plane motion artifacts in 2D noninvasive vascular ultrasound elastography. Phys Med Biol 2018; 63:245003. [PMID: 30524065 DOI: 10.1088/1361-6560/aaf0d3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ultrasound noninvasive vascular elastography (NIVE) has shown its potential to measure strains of carotid arteries to predict plaque instability. When two-dimensional (2D) strain estimation is performed, either in longitudinal or cross-sectional view, only in-plane motions are considered. The motions in elevation direction (i.e. perpendicular to the imaging plane), can induce estimation artifacts affecting the accuracy of 2D NIVE. The influence of such out-of-plane motions on the performance of axial strain and axial shear strain estimations has been evaluated in this study. For this purpose, we designed a diseased carotid bifurcation phantom with a 70% stenosis and an in vitro experimental setup to simulate orthogonal out-of-plane motions of 1 mm, 2 mm and 3 mm. The Lagrangian speckle model estimator (LSME) was used to estimate axial strains and shears under pulsatile conditions. As anticipated, in vitro results showed more strain estimation artifacts with increasing magnitudes of motions in elevation. However, even with an out-of-plane motion of 2.0 mm, strain and shear estimations having inter-frame correlation coefficients higher than 0.85 were obtained. To verify findings of in vitro experiments, a clinical LSME dataset obtained from 18 participants with carotid artery stenosis was used. Deduced out-of-plane motions (ranging from 0.25 mm to 1.04 mm) of the clinical dataset were classified into three groups: small, moderate and large elevational motions. Clinical results showed that pulsatile time-varying strains and shears remained reproducible for all motion categories since inter-frame correlation coefficients were higher than 0.70, and normalized cross-correlations (NCC) between radiofrequency (RF) images were above 0.93. In summary, the performance of LSME axial strain and shear estimations appeared robust in the presence of out-of-plane motions (<2 mm) as encountered during clinical ultrasound imaging.
Collapse
Affiliation(s)
- Hongliang Li
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, QC, Canada. Institute of Biomedical Engineering, University of Montreal, Montréal, QC, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Fast Von Mises strain imaging on ultrasound carotid vessel wall by flow driven diffusion method. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2018; 41:669-686. [DOI: 10.1007/s13246-018-0662-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 06/24/2018] [Indexed: 11/28/2022]
|
24
|
Nayak R, Schifitto G, Doyley MM. Visualizing Angle-Independent Principal Strains in the Longitudinal View of the Carotid Artery: Phantom and In Vivo Evaluation. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:1379-1391. [PMID: 29685590 PMCID: PMC5960628 DOI: 10.1016/j.ultrasmedbio.2018.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 02/08/2018] [Accepted: 03/16/2018] [Indexed: 05/03/2023]
Abstract
Non-invasive vascular elastography can evaluate the stiffness of the carotid artery by visualizing the vascular strain distribution. Axial strain estimates of the longitudinal cross section of the carotid artery are sensitive to the angle between the artery and the transducer. Anatomical variations in branching and arching of the carotid artery can affect the assessment of arterial stiffness. In this study, we hypothesized that principal strain elastograms computed using compounded plane wave imaging can reliably visualize the strain distribution in the carotid artery, independent of the transducer angle. We corroborated this hypothesis by conducting phantom and in vivo studies using a commercial ultrasound scanner (Sonix RP, Ultrasonix Medical Corp., Richmond, BC, Canada). The phantom studies were conducted using a homogeneous cryogel vessel phantom. The goal of the phantom study was to assess the feasibility of visualizing the radial deformation in the longitudinal plane of the vessel phantom, independent of the transducer angle (±30°, ±20°, ±10° and 0°). The in vivo studies were conducted on 20 healthy human volunteers in the age group 50-60 y. All echo imaging was performed at a transmit frequency of 5 MHz and sampling frequency of 40 MHz. The elastograms obtained from the phantom study revealed that for straight vessels, which had their lumen parallel to the transducer, principal strains were similar to axial strains. At non-parallel configurations (angles ±30°, ±20° and ±10°), the magnitudes of the mean principal strains were within 2.5% of the parallel configuration (0° angle) estimates and, thus, were observed to be relatively unaffected by change in angle. However, in comparison, the magnitude of the axial strain decreased with increase in angle because of coordinate dependency. Further, the pilot in vivo study indicated that the principal and axial strain elastograms were similar for subjects with relatively straight arteries. However, for arteries with arched geometry, axial strains were significantly lower (p <0.01) than the corresponding principal vascular strains, which was consistent with the results obtained from the phantom study. In conclusion, the results of the phantom and in vivo studies revealed that principal strain elastograms computed using CPW imaging could reliably visualize angle-independent vascular strains in the longitudinal plane of the carotid artery.
Collapse
Affiliation(s)
- Rohit Nayak
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York, USA.
| | - Giovanni Schifitto
- Department of Neurology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, USA
| | - Marvin M Doyley
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York, USA; Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA
| |
Collapse
|
25
|
Poree J, Chayer B, Soulez G, Ohayon J, Cloutier G. Noninvasive Vascular Modulography Method for Imaging the Local Elasticity of Atherosclerotic Plaques: Simulation and In Vitro Vessel Phantom Study. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:1805-1817. [PMID: 28961110 DOI: 10.1109/tuffc.2017.2757763] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mechanical and morphological characterization of atherosclerotic lesions in carotid arteries remains an essential step for the evaluation of rupture prone plaques and the prevention of strokes. In this paper, we propose a noninvasive vascular imaging modulography (NIV-iMod) method, which is capable of reconstructing a heterogeneous Young's modulus distribution of a carotid plaque from the Von Mises strain elastogram. Elastograms were computed with noninvasive ultrasound images using the Lagrangian speckle model estimator and a dynamic segmentation-optimization procedure to highlight mechanical heterogeneities. This methodology, based on continuum mechanics, was validated in silico with finite-element model strain fields and ultrasound simulations, and in vitro with polyvinyl alcohol cryogel phantoms based on magnetic resonance imaging geometries of carotid plaques. In silico, our results show that the NiV-iMod method: 1) successfully detected and quantified necrotic core inclusions with high positive predictive value (PPV) and sensitivity value (SV) of 81±10% and 91±6%; 2) quantified Young's moduli of necrotic cores, fibrous tissues, and calcium inclusions with mean values of 32±23, 515±30, and 3160±218 kPa (ground true values are 10, 600, and 5000 kPa); and 3) overestimated the cap thickness by . In vitro, the PPV and SV for detecting soft inclusions were 60±21% and 88±9%, and Young's modulus mean values of mimicking lipid, fibrosis, and calcium were 34±19, 193±14, and 649±118 kPa (ground true values are 25±3, 182±21, and 757±87 kPa).
Collapse
|
26
|
Nayak R, Schifitto G, Doyley MM. Noninvasive carotid artery elastography using multielement synthetic aperture imaging: Phantom and in vivo evaluation. Med Phys 2017; 44:4068-4082. [PMID: 28494102 DOI: 10.1002/mp.12329] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 04/10/2016] [Accepted: 04/11/2017] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Vascular elastography can visualize the strain distribution in the carotid artery, which could be useful in assessing the propensity of advanced plaques to rupture. In our previous studies, we demonstrated that sparse synthetic aperture (SA) imaging can produce high quality vascular strain elastograms. However, the low output power of SA imaging may hamper its clinical utility. In this study, we hypothesize that multi-element defocused emissions can overcome this limitation and improve the quality of the vascular strain elastograms. METHODS To assess the impact of attenuation on the elastographic performance of SA and (multi-element synthetic aperture) MSA imaging, we conducted experiments using heterogeneous vessel phantoms with ideal (0.1 dB cm-1 MHz-1 ) and realistic (0.75 dB cm-1 MHz-1 ) attenuation. Further, we validated the results of the phantom study in vivo, on a healthy male volunteer. All echo imaging was performed at a transmit frequency of 5 MHz, using a commercially available ultrasound scanner (Sonix RP, Ultrasonix Medical Corp., Richmond, BC, Canada). RESULTS The results from the phantom results demonstrated that plaques were visible in all strain elastograms, but those produced using MSA imaging had less artifacts. MSA imaging improved the elastographic contrast to noise ratio (CNRe) of the vascular elastograms by 14.58 dB relative to SA imaging, and 9.1 dB relative to compounded plane wave (CPW) imaging. Further, the results demonstrated that the elastographic performance of MSA imaging improved with increase in (a) the number of transmit-receive events and (b) the size of the transmit sub-aperture, up to 13 elements. Using larger sub-apertures degraded the elastographic performance. The results from the in vivo study were in good agreement with the phantom results. Specifically, using a defocused multi-element transmit sub-aperture for SA imaging improved the performance of vascular elastography. CONCLUSIONS The results suggested that MSA imaging can produce reliable vascular stain elastograms. Future studies will involve using coded excitations to improve the CNRe and frame-rate of the proposed technique for vascular elastography.
Collapse
Affiliation(s)
- Rohit Nayak
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Giovanni Schifitto
- Department of Neurology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY, 14622, USA
| | - Marvin M Doyley
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, 14627, USA.,Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| |
Collapse
|
27
|
Huang C, He Q, Huang M, Huang L, Zhao X, Yuan C, Luo J. Non-Invasive Identification of Vulnerable Atherosclerotic Plaques Using Texture Analysis in Ultrasound Carotid Elastography: An In Vivo Feasibility Study Validated by Magnetic Resonance Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:817-830. [PMID: 28153351 DOI: 10.1016/j.ultrasmedbio.2016.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/04/2016] [Accepted: 12/08/2016] [Indexed: 06/06/2023]
Abstract
The aims of this study were to quantify the textural information of strain rate images in ultrasound carotid elastography and evaluate the feasibility of using the textural features in discriminating stable and vulnerable plaques with magnetic resonance imaging as an in vivo reference. Ultrasound radiofrequency data were acquired in 80 carotid plaques from 52 patients, mainly in the longitudinal imaging view, and axial strain rate images were estimated with an ultrasound carotid elastography technique based on an optical flow algorithm. Four textural features of strain rate images-contrast, homogeneity, correlation and angular second moment-were derived based on the gray-level co-occurrence matrix in plaque regions to quantify the deformation distribution pattern. Conventional elastographic indices based on the magnitude of the absolute strain rate, such as the maximum, mean, median, standard deviation and 99th percentile of the axial strain rate, were also obtained for comparison. Composition measurement with magnetic resonance imaging identified 30 plaques as vulnerable and the other 50 as stable. The four textural features, as well as the magnitude of strain rate images, significantly differed between the two groups of plaques. The best performing features for plaque classification were found to be the contrast and 99th percentile of the absolute strain rate, with a comparative area under the receiver operating characteristic curve of 0.81; a slightly higher maximum accuracy of plaque classification can be achieved by the textural feature of contrast (83.8% vs. 81.3%). The results indicate that the use of texture analysis in plaque classification is feasible and that larger local deformations and higher level of complexity in deformation patterns (associated with the elastic or stiffness heterogeneity of plaque tissues) are more likely to occur in vulnerable plaques.
Collapse
Affiliation(s)
- Chengwu Huang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; Center for Biomedical Imaging Research, Tsinghua University, Beijing, China
| | - Qiong He
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; Center for Biomedical Imaging Research, Tsinghua University, Beijing, China
| | - Manwei Huang
- Department of Sonography, China Meitan General Hospital, Beijing, China
| | - Lingyun Huang
- Clinical Sites Research Program, Philips Research China, Shanghai, China
| | - Xihai Zhao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; Center for Biomedical Imaging Research, Tsinghua University, Beijing, China
| | - Chun Yuan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; Center for Biomedical Imaging Research, Tsinghua University, Beijing, China; Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Jianwen Luo
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; Center for Biomedical Imaging Research, Tsinghua University, Beijing, China.
| |
Collapse
|
28
|
Nayak R, Huntzicker S, Ohayon J, Carson N, Dogra V, Schifitto G, Doyley MM. Principal Strain Vascular Elastography: Simulation and Preliminary Clinical Evaluation. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:682-699. [PMID: 28057387 PMCID: PMC5309152 DOI: 10.1016/j.ultrasmedbio.2016.11.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/28/2016] [Accepted: 11/14/2016] [Indexed: 05/03/2023]
Abstract
It is difficult to produce reliable polar strain elastograms (radial and circumferential) because the center of the carotid artery is typically unknown. Principal strain imaging can overcome this limitation, but suboptimal lateral displacement estimates make this an impractical approach for visualizing mechanical properties within the carotid artery. We hypothesized that compounded plane wave imaging can minimize this problem. To test this hypothesis, we performed (i) simulations with vessels of varying morphology and mechanical behavior (i.e., isotropic and transversely isotropic), and (ii) a pilot study with 10 healthy volunteers. The accuracy of principal and polar strain (computed using knowledge of the precise vessel center) elastograms varied between 7% and 17%. In both types of elastograms, strain concentrated at the junction between the fibrous cap and the vessel wall, and the strain magnitude decreased with increasing fibrous cap thickness. Elastograms of healthy volunteers were consistent with those of transversely isotropic homogeneous vessels; they were spatially asymmetric, a trend that was common to both principal and polar strains. No significant differences were observed in the mean strain recovered from principal and polar strains (p > 0.05). This investigation indicates that principal strain elastograms measured with compounding plane wave imaging overcome the problems incurred when polar strain elastograms are computed with imprecise estimates of the vessel center.
Collapse
Affiliation(s)
- Rohit Nayak
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York, USA
| | - Steven Huntzicker
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York, USA
| | - Jacques Ohayon
- Laboratory TIMC-IMAG/DyCTiM, University Joseph-Fourier, CNRS UMR 5525, Grenoble, France
| | - Nancy Carson
- Department of Imaging Sciences, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, USA
| | - Vikram Dogra
- Department of Imaging Sciences, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, USA
| | - Giovanni Schifitto
- Department of Neurology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, USA
| | - Marvin M Doyley
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York, USA; Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA.
| |
Collapse
|
29
|
Caenen A, Pernot M, Shcherbakova DA, Mertens L, Kersemans M, Segers P, Swillens A. Investigating Shear Wave Physics in a Generic Pediatric Left Ventricular Model via In Vitro Experiments and Finite Element Simulations. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:349-361. [PMID: 27845660 DOI: 10.1109/tuffc.2016.2627142] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Shear wave elastography (SWE) is a potentially valuable tool to noninvasively assess ventricular function in children with cardiac disorders, which could help in the early detection of abnormalities in muscle characteristics. Initial experiments demonstrated the potential of this technique in measuring ventricular stiffness; however, its performance remains to be validated as complicated shear wave (SW) propagation characteristics are expected to arise due to the complex non-homogenous structure of the myocardium. In this work, we investigated the (i) accuracy of different shear modulus estimation techniques (time-of-flight (TOF) method and phase velocity analysis) across myocardial thickness and (ii) effect of the ventricular geometry, surroundings, acoustic loading, and material viscoelasticity on SW physics. A generic pediatric (10-15-year old) left ventricular model was studied numerically and experimentally. For the SWE experiments, a polyvinylalcohol replicate of the cardiac geometry was fabricated and SW acquisitions were performed on different ventricular areas using varying probe orientations. Additionally, the phantom's stiffness was obtained via mechanical tests. The results of the SWE experiments revealed the following trends for stiffness estimation across the phantom's thickness: a slight stiffness overestimation for phase speed analysis and a clear stiffness underestimation for the TOF method for all acquisitions. The computational model provided valuable 3-D insights in the physical factors influencing SW patterns, especially the surroundings (water), interface force, and viscoelasticity. In conclusion, this paper presents a validation study of two commonly used shear modulus estimators for different ventricular locations and the essential role of SW modeling in understanding SW physics in the pediatric myocardium.
Collapse
|
30
|
He Q, Tong L, Huang L, Liu J, Chen Y, Luo J. Performance optimization of lateral displacement estimation with spatial angular compounding. ULTRASONICS 2017; 73:9-21. [PMID: 27592204 DOI: 10.1016/j.ultras.2016.08.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 08/17/2016] [Accepted: 08/17/2016] [Indexed: 06/06/2023]
Abstract
Elastography provides tissue mechanical information to differentiate normal and disease states. Nowadays, axial displacement and strain are usually estimated in clinical practice whereas lateral estimation is rarely used given that its accuracy is typically one order of magnitude worse than that of axial estimation. To improve the performance of lateral estimation, spatial angular compounding of multiple axial displacements along ultrasound beams transmitting in different steering angles was previously proposed. However, few studies have been conducted to evaluate the influence of key factors such as grating lobe noise (GLN), the number of steering angles (NSA) and maximum steering angle (MSA) in terms of performance optimization. The aim of this study was thus to investigate the effects of these factors through both computer simulations and phantom experiments. Only lateral rigid motion was considered in this study to separate its effects from those of axial and lateral strains on lateral displacement estimation. The performance as indicated by the root mean square error (RMSE) and standard deviation (SD) of the estimated lateral displacements validates the capability of spatial angular compounding in improving the performance of lateral estimation. It is necessary to filter the GLN for better estimation, and better performance is associated with a larger NSA and bigger MSA in both simulations and experiments, which is in agreement with the theoretical analysis. As indicated by the RMSE and SD, two steering angles with a larger steering angle are recommended. These results could provide insights into the performance optimization of lateral displacement estimation with spatial angular compounding.
Collapse
Affiliation(s)
- Qiong He
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; Center for Biomedical Imaging Research, Tsinghua University, Beijing 100084, China
| | - Ling Tong
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; Center for Biomedical Imaging Research, Tsinghua University, Beijing 100084, China
| | - Lingyun Huang
- Clinical Sites Research Program, Philips Research China, Shanghai 200233, China
| | - Jing Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; Center for Biomedical Imaging Research, Tsinghua University, Beijing 100084, China
| | - Yinran Chen
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; Center for Biomedical Imaging Research, Tsinghua University, Beijing 100084, China
| | - Jianwen Luo
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; Center for Biomedical Imaging Research, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
31
|
Apostolakis IZ, McGarry MDJ, Bunting EA, Konofagou EE. Pulse wave imaging using coherent compounding in a phantom and in vivo. Phys Med Biol 2016; 62:1700-1730. [PMID: 28002039 DOI: 10.1088/1361-6560/aa553a] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Pulse wave velocity (PWV) is a surrogate marker of arterial stiffness linked to cardiovascular morbidity. Pulse wave imaging (PWI) is a technique developed by our group for imaging the pulse wave propagation in vivo. PWI requires high temporal and spatial resolution, which conventional ultrasonic imaging is unable to simultaneously provide. Coherent compounding is known to address this tradeoff and provides full aperture images at high frame rates. This study aims to implement PWI using coherent compounding within a GPU-accelerated framework. The results of the implemented method were validated using a silicone phantom against static mechanical testing. Reproducibility of the measured PWVs was assessed in the right common carotid of six healthy subjects (n = 6) approximately 10-15 mm before the bifurcation during two cardiac cycles over the course of 1-3 d. Good agreement of the measured PWVs (3.97 ± 1.21 m s-1, 4.08 ± 1.15 m s-1, p = 0.74) was obtained. The effects of frame rate, transmission angle and number of compounded plane waves on PWI performance were investigated in the six healthy volunteers. Performance metrics such as the reproducibility of the PWVs, the coefficient of determination (r 2), the SNR of the PWI axial wall velocities ([Formula: see text]) and the percentage of lateral positions where the pulse wave appears to arrive at the same time-point, indicating inadequacy of the temporal resolution (i.e. temporal resolution misses) were used to evaluate the effect of each parameter. Compounding plane waves transmitted at 1° increments with a linear array yielded optimal performance, generating significantly higher r 2 and [Formula: see text] values (p ⩽ 0.05). Higher frame rates (⩾1667 Hz) produced improvements with significant gains in the r 2 coefficient (p ⩽ 0.05) and significant increase in both r 2 and [Formula: see text] from single plane wave imaging to 3-plane wave compounding (p ⩽ 0.05). Optimal performance was established at 2778 Hz with 3 plane waves and at 1667 Hz with 5 plane waves.
Collapse
|
32
|
Li H, Guo Y, Lee WN. Systematic Performance Evaluation of a Cross-Correlation-Based Ultrasound Strain Imaging Method. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:2436-2456. [PMID: 27423386 DOI: 10.1016/j.ultrasmedbio.2016.06.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 06/03/2016] [Accepted: 06/06/2016] [Indexed: 06/06/2023]
Abstract
Estimation of tissue motion in the lateral direction remains a major challenge in 2-D ultrasound strain imaging (USI). Although various methodologies have been proposed to improve the accuracy of estimation of in-plane displacements and strains, the fundamental limitations of 2-D USI and how to choose optimal algorithmic parameters in various tissue deformation paradigms to retrieve the full strain tensor of acceptable accuracy are scattered throughout the literature. Thus, this study attempts to provide a systematic investigation of a 2-D cross-correlation-based USI method in a theoretical framework. Our previously developed cross-correlation-based USI method was revisited, and additional estimation strategies were incorporated to improve in-plane displacement and strain estimation. The performance of the presented method using different matching kernel sizes (axial: from 1λ to 14λ, where λ = wavelength; lateral: from 1 to 13 pitches) and two data formats (radiofrequency and envelope) in various kinematic scenarios (normal, shear or hybrid deformation) was investigated using Field II simulations, in which coherent plane wave compounding with 64 steered angles was realized. For radiofrequency-based USI, smaller axial and larger lateral kernel sizes were preferred in scenarios with normal strains, whereas larger kernel sizes along the shearing direction and smaller ones orthogonal to the shearing direction were more suitable in scenarios with shear strains. For envelope-based USI, in contrast, the kernel size requirement was relatively relaxed. A compromise between optimal kernel sizes and estimation accuracy of various strain components was required in complex kinematic scenarios. These practical strategies for accurate motion estimation using 2-D cross-correlation-based USI were further tested in a tissue-mimicking phantom under quasi-static compression and in a preliminary in vivo examination of a normal human median nerve at the wrist during active finger motion.
Collapse
Affiliation(s)
- He Li
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong
| | - Yuexin Guo
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong
| | - Wei-Ning Lee
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong; Medical Engineering Programme, The University of Hong Kong, Hong Kong.
| |
Collapse
|
33
|
Fekkes S, Swillens AES, Hansen HHG, Saris AECM, Nillesen MM, Iannaccone F, Segers P, de Korte CL. 2-D Versus 3-D Cross-Correlation-Based Radial and Circumferential Strain Estimation Using Multiplane 2-D Ultrafast Ultrasound in a 3-D Atherosclerotic Carotid Artery Model. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2016; 63:1543-1553. [PMID: 27576246 DOI: 10.1109/tuffc.2016.2603189] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Three-dimensional (3-D) strain estimation might improve the detection and localization of high strain regions in the carotid artery (CA) for identification of vulnerable plaques. This paper compares 2-D versus 3-D displacement estimation in terms of radial and circumferential strain using simulated ultrasound (US) images of a patient-specific 3-D atherosclerotic CA model at the bifurcation embedded in surrounding tissue generated with ABAQUS software. Global longitudinal motion was superimposed to the model based on the literature data. A Philips L11-3 linear array transducer was simulated, which transmitted plane waves at three alternating angles at a pulse repetition rate of 10 kHz. Interframe (IF) radio-frequency US data were simulated in Field II for 191 equally spaced longitudinal positions of the internal CA. Accumulated radial and circumferential displacements were estimated using tracking of the IF displacements estimated by a two-step normalized cross-correlation method and displacement compounding. Least-squares strain estimation was performed to determine accumulated radial and circumferential strain. The performance of the 2-D and 3-D methods was compared by calculating the root-mean-squared error of the estimated strains with respect to the reference strains obtained from the model. More accurate strain images were obtained using the 3-D displacement estimation for the entire cardiac cycle. The 3-D technique clearly outperformed the 2-D technique in phases with high IF longitudinal motion. In fact, the large IF longitudinal motion rendered it impossible to accurately track the tissue and cumulate strains over the entire cardiac cycle with the 2-D technique.
Collapse
|
34
|
de Korte CL, Fekkes S, Nederveen AJ, Manniesing R, Hansen HRHG. Review: Mechanical Characterization of Carotid Arteries and Atherosclerotic Plaques. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2016; 63:1613-1623. [PMID: 27249826 DOI: 10.1109/tuffc.2016.2572260] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cardiovascular disease (CVD) is a leading cause of death and is in the majority of cases due to the formation of atherosclerotic plaques in arteries. Initially, thickening of the inner layer of the arterial wall occurs. Continuation of this process leads to plaque formation. The risk of a plaque to rupture and thus to induce an ischemic event is directly related to its composition. Consequently, characterization of the plaque composition and its proneness to rupture are of crucial importance for risk assessment and treatment strategies. The carotid is an excellent artery to be imaged with ultrasound because of its superficial position. In this review, ultrasound-based methods for characterizing the mechanical properties of the carotid wall and atherosclerotic plaque are discussed. Using conventional echography, the intima media thickness (IMT) can be quantified. There is a wealth of studies describing the relation between IMT and the risk for myocardial infarction and stroke. Also the carotid distensibility can be quantified with ultrasound, providing a surrogate marker for the cross-sectional mechanical properties. Although all these parameters are associated with CVD, they do not easily translate to individual patient risk. Another technique is pulse wave velocity (PWV) assessment, which measures the propagation of the pressure pulse over the arterial bed. PWV has proven to be a marker for global arterial stiffness. Recently, an ultrasound-based method to estimate the local PWV has been introduced, but the clinical effectiveness still needs to be established. Other techniques focus on characterization of plaques. With ultrasound elastography, the strain in the plaque due to the pulsatile pressure can be quantified. This technique was initially developed using intravascular catheters to image coronaries, but recently noninvasive methods were successfully developed. A high correlation between the measured strain and the risk for rupture was established. Acoustic radiation force impulse (ARFI) imaging also provides characterization of local plaque components based on mechanical properties. However, both elastography and ARFI provide an indirect measure of the elastic modulus of tissue. With shear wave imaging, the elastic modulus can be quantified, although the carotid artery is one of the most challenging tissues for this technique due to its size and geometry. Prospective studies still have to establish the predictive value of these techniques for the individual patient. Validation of ultrasound-based mechanical characterization of arteries and plaques remains challenging. Magnetic resonance imaging is often used as the "gold" standard for plaque characterization, but its limited resolution renders only global characterization of the plaque. CT provides information on the vascular tree, the degree of stenosis, and the presence of calcified plaque, while soft plaque characterization remains limited. Histology still is the gold standard, but is available only if tissue is excised. In conclusion, elastographic ultrasound techniques are well suited to characterize the different stages of vascular disease.
Collapse
|
35
|
Kang HJ, Bell MAL, Guo X, Boctor EM. Spatial Angular Compounding of Photoacoustic Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2016; 35:1845-55. [PMID: 26890642 PMCID: PMC5661032 DOI: 10.1109/tmi.2016.2531109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Photoacoustic (PA) images utilize pulsed lasers and ultrasound transducers to visualize targets with higher optical absorption than the surrounding medium. However, they are susceptible to acoustic clutter and background noise artifacts that obfuscate biomedical structures of interest. We investigated three spatial-angular compounding methods to improve PA image quality for biomedical applications, implemented by combining multiple images acquired as an ultrasound probe was rotated about the elevational axis with the laser beam and target fixed. Compounding with conventional averaging was based on the pose information of each PA image, while compounding with weighted and selective averaging utilized both the pose and image content information. Weighted-average compounding enhanced PA images with the least distortion of signal size, particularly when there were large (i.e., 2.5 mm and 7 (°)) perturbations from the initial probe position. Selective-average compounding offered the best improvement in image quality with up 181, 1665, and 1568 times higher contrast, CNR, and SNR, respectively, compared to the mean values of individual PA images. The three presented spatial compounding methods have promising potential to enhance image quality in multiple photoacoustic applications.
Collapse
|
36
|
Huang C, Pan X, He Q, Huang M, Huang L, Zhao X, Yuan C, Bai J, Luo J. Ultrasound-Based Carotid Elastography for Detection of Vulnerable Atherosclerotic Plaques Validated by Magnetic Resonance Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:365-377. [PMID: 26553205 DOI: 10.1016/j.ultrasmedbio.2015.09.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 08/27/2015] [Accepted: 09/23/2015] [Indexed: 06/05/2023]
Abstract
Ultrasound-based carotid elastography has been developed to estimate the mechanical properties of atherosclerotic plaques. The objective of this study was to evaluate the in vivo capability of carotid elastography in vulnerable plaque detection using high-resolution magnetic resonance imaging as reference. Ultrasound radiofrequency data of 46 carotid plaques from 29 patients (74 ± 5 y old) were acquired and inter-frame axial strain was estimated with an optical flow method. The maximum value of absolute strain rate for each plaque was derived as an indicator for plaque classification. Magnetic resonance imaging of carotid arteries was performed on the same patients to classify the plaques into stable and vulnerable groups for carotid elastography validation. The maximum value of absolute strain rate was found to be significantly higher in vulnerable plaques (2.15 ± 0.79 s(-1), n = 27) than in stable plaques (1.21 ± 0.37 s(-1), n = 19) (p < 0.0001). Receiver operating characteristic curve analysis was performed, and the area under the curve was 0.848. Therefore, the in vivo capability of carotid elastography to detect vulnerable plaques, validated by magnetic resonance imaging, was proven, revealing the potential of carotid elastography as an important tool in atherosclerosis assessment and stroke prevention.
Collapse
Affiliation(s)
- Chengwu Huang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; Center for Biomedical Imaging Research, Tsinghua University, Beijing, China
| | - Xiaochang Pan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; Center for Biomedical Imaging Research, Tsinghua University, Beijing, China
| | - Qiong He
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; Center for Biomedical Imaging Research, Tsinghua University, Beijing, China
| | - Manwei Huang
- Department of Sonography, China Meitan General Hospital, Beijing, China
| | - Lingyun Huang
- Clinical Sites Research Program, Philips Research China, Shanghai, China
| | - Xihai Zhao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; Center for Biomedical Imaging Research, Tsinghua University, Beijing, China.
| | - Chun Yuan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; Center for Biomedical Imaging Research, Tsinghua University, Beijing, China; Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Jing Bai
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Jianwen Luo
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; Center for Biomedical Imaging Research, Tsinghua University, Beijing, China.
| |
Collapse
|
37
|
Porée J, Garcia D, Chayer B, Ohayon J, Cloutier G. Noninvasive Vascular Elastography With Plane Strain Incompressibility Assumption Using Ultrafast Coherent Compound Plane Wave Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2015; 34:2618-2631. [PMID: 26625341 DOI: 10.1109/tmi.2015.2450992] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Plane strain tensor estimation using non-invasive vascular ultrasound elastography (NIVE) can be difficult to achieve using conventional focus beamforming due to limited lateral resolution and frame rate. Recent developments in compound plane wave (CPW) imaging have led to high speed and high resolution imaging. In this study, we present the performance of NIVE using coherent CPW. We show the impact of CPW beamforming on strain estimates compared to conventional focus sequences. To overcome the inherent variability of lateral strains, associated with the low lateral resolution of linear array transducers, we use the plane strain incompressibility to constrain the estimator. Taking advantage of the approximate tenfold increase in frame rate of CPW compared with conventional focus imaging, we introduce a time-ensemble estimation approach to further improve the elastogram quality. By combining CPW imaging with the constrained Lagrangian speckle model estimator, we observe an increase in elastography quality (∼ 10 dB both in signal-to-noise and contrast-to-noise ratios) over a wide range of applied strains (0.02 to 3.2%).
Collapse
|
38
|
Teixeira R, Vieira MJ, Gonçalves A, Cardim N, Gonçalves L. Ultrasonographic vascular mechanics to assess arterial stiffness: a review. Eur Heart J Cardiovasc Imaging 2015; 17:233-46. [DOI: 10.1093/ehjci/jev287] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/04/2015] [Indexed: 12/21/2022] Open
|
39
|
Akyildiz AC, Hansen HHG, Nieuwstadt HA, Speelman L, De Korte CL, van der Steen AFW, Gijsen FJH. A Framework for Local Mechanical Characterization of Atherosclerotic Plaques: Combination of Ultrasound Displacement Imaging and Inverse Finite Element Analysis. Ann Biomed Eng 2015; 44:968-79. [PMID: 26399991 PMCID: PMC4826666 DOI: 10.1007/s10439-015-1410-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 07/24/2015] [Indexed: 02/07/2023]
Abstract
Biomechanical models have the potential to predict plaque rupture. For reliable models, correct material properties of plaque components are a prerequisite. This study presents a new technique, where high resolution ultrasound displacement imaging and inverse finite element (FE) modeling is combined, to estimate material properties of plaque components. Iliac arteries with plaques were excised from 6 atherosclerotic pigs and subjected to an inflation test with pressures ranging from 10 to 120 mmHg. The arteries were imaged with high frequency 40 MHz ultrasound. Deformation maps of the plaques were reconstructed by cross correlation of the ultrasound radiofrequency data. Subsequently, the arteries were perfusion fixed for histology and structural components were identified. The histological data were registered to the ultrasound data to construct FE model of the plaques. Material properties of the arterial wall and the intima of the atherosclerotic plaques were estimated using a grid search method. The computed displacement fields showed good agreement with the measured displacement fields, implying that the FE models were able to capture local inhomogeneities within the plaque. On average, nonlinear stiffening of both the wall and the intima was observed, and the wall of the atheroslcerotic porcine iliac arteries was markedly stiffer than the intima (877 ± 459 vs. 100 ± 68 kPa at 100 mmHg). The large spread in the data further illustrates the wide variation of the material properties. We demonstrated the feasibility of a mixed experimental–numerical framework to determine the material properties of arterial wall and intima of atherosclerotic plaques from intact arteries, and concluded that, due to the observed variation, plaque specific properties are required for accurate stress simulations.
Collapse
Affiliation(s)
- Ali C. Akyildiz
- />Biomechanics Lab, Department of Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
- />Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, USA
| | - Hendrik H. G. Hansen
- />Medical UltraSound Imaging Center (MUSIC), Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Harm A. Nieuwstadt
- />Biomechanics Lab, Department of Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Lambert Speelman
- />Biomechanics Lab, Department of Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Chris L. De Korte
- />Medical UltraSound Imaging Center (MUSIC), Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Antonius F. W. van der Steen
- />Biomechanics Lab, Department of Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
- />Department of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Frank J. H. Gijsen
- />Biomechanics Lab, Department of Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
40
|
Caenen A, Shcherbakova D, Verhegghe B, Papadacci C, Pernot M, Segers P, Swillens A. A versatile and experimentally validated finite element model to assess the accuracy of shear wave elastography in a bounded viscoelastic medium. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2015; 62:439-450. [PMID: 25768813 DOI: 10.1109/tuffc.2014.006682] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The feasibility of shear wave elastography (SWE) in arteries for cardiovascular risk assessment remains to be investigated as the artery's thin wall and intricate material properties induce complex shear wave (SW) propagation phenomena. To better understand the SW physics in bounded media, we proposed an in vitro validated finite element model capable of simulating SW propagation, with full flexibility at the level of the tissue's geometry, material properties, and acoustic radiation force. This computer model was presented in a relatively basic set-up, a homogeneous slab of gelatin-agar material (4.35 mm thick), allowing validation of the numerical settings according to actual SWE measurements. The resulting tissue velocity waveforms and SW propagation speed matched well with the measurement: 4.46 m/s (simulation) versus 4.63 ± 0.07 m/s (experiment). Further, we identified the impact of geometrical and material parameters on the SW propagation characteristics. As expected, phantom thickness was a determining factor of dispersion. Adding viscoelasticity to the model augmented the estimated wave speed to 4.58 m/s, an even better match with the experimental determined value. This study demonstrated that finite element modeling can be a powerful tool to gain insight into SWE mechanics and will in future work be advanced to more clinically relevant settings.
Collapse
|
41
|
Larsson M, Heyde B, Kremer F, Brodin LÅ, D'hooge J. Ultrasound speckle tracking for radial, longitudinal and circumferential strain estimation of the carotid artery--an in vitro validation via sonomicrometry using clinical and high-frequency ultrasound. ULTRASONICS 2015; 56:399-408. [PMID: 25262347 DOI: 10.1016/j.ultras.2014.09.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 08/14/2014] [Accepted: 09/09/2014] [Indexed: 06/03/2023]
Abstract
Ultrasound speckle tracking for carotid strain assessment has in the past decade gained interest in studies of arterial stiffness and cardiovascular diseases. The aim of this study was to validate and directly contrast carotid strain assessment by speckle tracking applied on clinical and high-frequency ultrasound images in vitro. Four polyvinyl alcohol phantoms mimicking the carotid artery were constructed with different mechanical properties and connected to a pump generating carotid flow profiles. Gray-scale ultrasound long- and short-axis images of the phantoms were obtained using a standard clinical ultrasound system, Vivid 7 (GE Healthcare, Horten, Norway) and a high-frequency ultrasound system, Vevo 2100 (FUJIFILM, VisualSonics, Toronto, Canada) with linear-array transducers (12L/MS250). Radial, longitudinal and circumferential strains were estimated using an in-house speckle tracking algorithm and compared with reference strain acquired by sonomicrometry. Overall, the estimated strain corresponded well with the reference strain. The correlation between estimated peak strain in clinical ultrasound images and reference strain was 0.91 (p<0.001) for radial strain, 0.73 (p<0.001) for longitudinal strain and 0.90 (p<0.001) for circumferential strain and for high-frequency ultrasound images 0.95 (p<0.001) for radial strain, 0.93 (p<0.001) for longitudinal strain and 0.90 (p<0.001) for circumferential strain. A significant larger bias and root mean square error was found for circumferential strain estimation on clinical ultrasound images compared to high frequency ultrasound images, but no significant difference in bias and root mean square error was found for radial and longitudinal strain when comparing estimation on clinical and high-frequency ultrasound images. The agreement between sonomicrometry and speckle tracking demonstrates that carotid strain assessment by ultrasound speckle tracking is feasible.
Collapse
Affiliation(s)
- Matilda Larsson
- Department of Medical Engineering, School of Technology and Health, KTH Royal Institute of Technology, Stockholm, Alfred Nobels Allé 10, 141 52 Huddinge, Sweden; Lab on Cardiovascular Imaging & Dynamics, KU Leuven, Campus Gasthuisberg O&N1, Herestraat 49 box 911, 3000 Leuven, Belgium.
| | - Brecht Heyde
- Lab on Cardiovascular Imaging & Dynamics, KU Leuven, Campus Gasthuisberg O&N1, Herestraat 49 box 911, 3000 Leuven, Belgium
| | - Florence Kremer
- Lab on Cardiovascular Imaging & Dynamics, KU Leuven, Campus Gasthuisberg O&N1, Herestraat 49 box 911, 3000 Leuven, Belgium
| | - Lars-Åke Brodin
- Department of Medical Engineering, School of Technology and Health, KTH Royal Institute of Technology, Stockholm, Alfred Nobels Allé 10, 141 52 Huddinge, Sweden
| | - Jan D'hooge
- Lab on Cardiovascular Imaging & Dynamics, KU Leuven, Campus Gasthuisberg O&N1, Herestraat 49 box 911, 3000 Leuven, Belgium
| |
Collapse
|
42
|
Larsson M, Verbrugghe P, Smoljkić M, Verhoeven J, Heyde B, Famaey N, Herijgers P, D’hooge J. Strain assessment in the carotid artery wall using ultrasound speckle tracking: validation in a sheep model. Phys Med Biol 2015; 60:1107-23. [DOI: 10.1088/0031-9155/60/3/1107] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
43
|
Albinsson J, Brorsson S, Ahlgren AR, Cinthio M. Improved tracking performance of Lagrangian block-matching methodologies using block expansion in the time domain: in silico, phantom and in vivo evaluations. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:2508-2520. [PMID: 25130445 DOI: 10.1016/j.ultrasmedbio.2014.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 05/06/2014] [Accepted: 05/14/2014] [Indexed: 06/03/2023]
Abstract
The aim of this study was to evaluate tracking performance when an extra reference block is added to a basic block-matching method, where the two reference blocks originate from two consecutive ultrasound frames. The use of an extra reference block was evaluated for two putative benefits: (i) an increase in tracking performance while maintaining the size of the reference blocks, evaluated using in silico and phantom cine loops; (ii) a reduction in the size of the reference blocks while maintaining the tracking performance, evaluated using in vivo cine loops of the common carotid artery where the longitudinal movement of the wall was estimated. The results indicated that tracking accuracy improved (mean = 48%, p < 0.005 [in silico]; mean = 43%, p < 0.01 [phantom]), and there was a reduction in size of the reference blocks while maintaining tracking performance (mean = 19%, p < 0.01 [in vivo]). This novel method will facilitate further exploration of the longitudinal movement of the arterial wall.
Collapse
Affiliation(s)
- John Albinsson
- Department of Biomedical Engineering, Lund University, Lund, Sweden.
| | - Sofia Brorsson
- School of Business and Engineering, PRODEA Research Group, Halmstad University, Halmstad, Sweden; Health and Welfare, Dala Sports Academy, Dalarna University, Falun, Sweden
| | - Asa Rydén Ahlgren
- Clinical Physiology and Nuclear Medicine Unit, Department of Clinical Sciences, Lund University, Malmo, Sweden
| | - Magnus Cinthio
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| |
Collapse
|
44
|
Lopata RGP, Peters MFJ, Nijs J, Oomens CWJ, Rutten MCM, van de Vosse FN. Vascular elastography: a validation study. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:1882-1895. [PMID: 24798385 DOI: 10.1016/j.ultrasmedbio.2014.02.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/13/2014] [Accepted: 02/23/2014] [Indexed: 06/03/2023]
Abstract
Vascular elastography techniques are promising tools for mechanical characterization of diseased arteries. These techniques are usually validated with simulations or phantoms or by comparing results with histology or other imaging modalities. In the study described here, vascular elastography was applied to porcine aortas in vitro during inflation testing (n = 10) and results were compared with those of standard bi-axial tensile testing, a technique that directly measures the force applied to the tissue. A neo-Hookean model was fit to the stress-strain data, valid for large deformations. Results indicated good correspondence between the two techniques, with GUS = 110 ± 11 kPa and GTT = 108 ± 10 kPa for ultrasound and tensile testing, respectively. Bland-Altman analysis revealed little bias (GUS-GTT = 2 ± 20 kPa). The next step will be the application of a non-linear material model that is also adaptable for in vivo measurements.
Collapse
Affiliation(s)
- Richard G P Lopata
- Cardiovascular Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Mathijs F J Peters
- Cardiovascular Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jan Nijs
- Department of Cardiac Surgery, University Hospital Brussels, Brussels, Belgium
| | - Cees W J Oomens
- Soft Tissue Biomechanics & Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Marcel C M Rutten
- Cardiovascular Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Frans N van de Vosse
- Cardiovascular Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
45
|
Huntzicker S, Nayak R, Doyley MM. Quantitative sparse array vascular elastography: the impact of tissue attenuation and modulus contrast on performance. J Med Imaging (Bellingham) 2014; 1:027001. [PMID: 26158040 PMCID: PMC4478787 DOI: 10.1117/1.jmi.1.2.027001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/29/2014] [Accepted: 05/30/2014] [Indexed: 11/14/2022] Open
Abstract
Quantitative sparse array vascular elastography visualizes the shear modulus distribution within vascular tissues, information that clinicans could use to reduce the number of strokes each year. However, the low transmit power sparse array (SA) imaging could hamper the clinical usefulness of the resulting elastograms. In this study, we evaluated the performance of modulus elastograms recovered from simulated and physical vessel phantoms with varying attenuation coefficients (0.6, 1.5, and [Formula: see text]) and modulus contrasts ([Formula: see text], [Formula: see text], and [Formula: see text]) using SA imaging relative to those obtained with conventional linear array (CLA) and plane-wave (PW) imaging techniques. Plaques were visible in all modulus elastograms, but those produced using SA and PW contained less artifacts. The modulus contrast-to-noise ratio decreased rapidly with increasing modulus contrast and attenuation coefficient, but more quickly when SA imaging was performed than for CLA or PW. The errors incurred varied from 10.9% to 24% (CLA), 1.8% to 12% (SA), and [Formula: see text] (PW). Modulus elastograms produced with SA and PW imagings were not significantly different ([Formula: see text]). Despite the low transmit power, SA imaging can produce useful modulus elastograms in superficial organs, such as the carotid artery.
Collapse
Affiliation(s)
- Steven Huntzicker
- University of Rochester, Hajim School of Engineering and Applied Sciences, Department of Electrical and Computer Engineering, Rochester, New York 14627
| | - Rohit Nayak
- University of Rochester, Hajim School of Engineering and Applied Sciences, Department of Electrical and Computer Engineering, Rochester, New York 14627
| | - Marvin M. Doyley
- University of Rochester, Hajim School of Engineering and Applied Sciences, Department of Electrical and Computer Engineering, Rochester, New York 14627
- University of Rochester, Hajim School of Engineering and Applied Sciences, Department of Biomedical Engineering, Rochester, New York 14627
| |
Collapse
|
46
|
Wilbers J, Kappelle AC, Kessels RP, Steens SC, Meijer FJ, Kaanders JH, Haast RA, Versteeg LE, Tuladhar AM, de Korte CL, Hansen HH, Hoebers FJ, Boogerd W, van Werkhoven ED, Nowee ME, Hart G, Bartelink H, Dorresteijn LD, van Dijk EJ. Long term cerebral and vascular complications after irradiation of the neck in head and neck cancer patients: a prospective cohort study: study rationale and protocol. BMC Neurol 2014; 14:132. [PMID: 24942263 PMCID: PMC4077148 DOI: 10.1186/1471-2377-14-132] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 05/28/2014] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Successful treatment options for cancer result in more young long-term survivors prone for long-term complications. Carotid artery vasculopathy is a potential long-term complication after radiotherapy of the neck, resulting in cerebrovascular events and probably deficits in cognitive and motor functioning. Better insight into the underlying pathofysiology of radiotherapy induced carotid artery vasculopathy is needed for prognostic purposes and to develop preventive strategies. METHODS/DESIGN The current study is a prospective cohort study on the long-term cerebral and vascular complications after radiotherapy of the neck, in 103 patients treated for head and neck cancer, included in our study database between 2002 and 2008. Baseline protocol (before radiotherapy) included screening for cerebrovascular risk factors and intima media thickness measurement of carotid arteries by ultrasonography. Follow-up assessment more than 5 years after radiotherapy included screening of cerebrovascular risk factors, cerebrovascular events, neurological examination with gait and balance tests, extensive neuropsychological examination, self-report questionnaires, ultrasonography of the carotid arteries with measurement of intima media thickness and elastography, magnetic resonance imaging of the brain and magnetic resonance angiography of the carotid arteries. DISCUSSION The current study adds to the understanding of the causes and consequences of long-term cerebral and vascular changes after radiotherapy of the neck. These data will be helpful to develop a protocol for diagnostic and preventive strategies for long-term neurological complications in future head and neck cancer patients with anticipated radiotherapy treatment.
Collapse
Affiliation(s)
- Joyce Wilbers
- Department of Neurology, Radboud University Nijmegen Medical Center, Donders Institute for Brain, Cognition and Behaviour Centre for Neuroscience, PO box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Boekhoven RW, Rutten MCM, van Sambeek MR, van de Vosse FN, Lopata RGP. Echo-computed tomography strain imaging of healthy and diseased carotid specimens. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:1329-1342. [PMID: 24613555 DOI: 10.1016/j.ultrasmedbio.2013.11.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 11/14/2013] [Accepted: 11/18/2013] [Indexed: 06/03/2023]
Abstract
To improve our understanding of the mechanical behavior of human atherosclerotic plaque tissue, fully 3-D geometrical, morphological and dynamical information is essential. For this purpose, four-dimensional (3-D+t) strain imaging using an ultrasound tomography approach (echo-computed tomography) was performed in carotid arteries in vitro. The method was applied to a carotid phantom (CPh), a porcine carotid artery (PC) and human carotid atherosclerotic plaque samples (HC, n = 5). Each sample was subjected to an intraluminal pressure, after which 2-D longitudinal ultrasound images were obtained for 36 angles along the circumferential direction. Local deformations were estimated using a 2-D strain algorithm, and 3-D radial strain data were reconstructed. At systole, median luminal strains of 15% (CPh) and 18% (PC) were found, which is in agreement with the stiffness of the material and applied pressure pulse. The elastographic signal-to-noise ratio was consistent in all directions and ranged from 16 to 36 dB. Furthermore, realistic but more complex strain patterns were found for the HC, with 99th percentile systolic strain values ranging from 0.1% to 18%.
Collapse
Affiliation(s)
- Renate W Boekhoven
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Marcel C M Rutten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Marc R van Sambeek
- Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Frans N van de Vosse
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Richard G P Lopata
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
48
|
Mercure E, Destrempes F, Roy Cardinal MH, Porée J, Soulez G, Ohayon J, Cloutier G. A local angle compensation method based on kinematics constraints for non-invasive vascular axial strain computations on human carotid arteries. Comput Med Imaging Graph 2014; 38:123-36. [DOI: 10.1016/j.compmedimag.2013.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 06/28/2013] [Accepted: 08/07/2013] [Indexed: 11/16/2022]
|
49
|
Wan J, He F, Zhao Y, Zhang H, Zhou X, Wan M. Non-invasive vascular radial/circumferential strain imaging and wall shear rate estimation using video images of diagnostic ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:622-636. [PMID: 24361217 DOI: 10.1016/j.ultrasmedbio.2013.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 09/28/2013] [Accepted: 10/13/2013] [Indexed: 06/03/2023]
Abstract
The aim of this work was to develop a convenient method for radial/circumferential strain imaging and shear rate estimation that could be used as a supplement to the current routine screening for carotid atherosclerosis using video images of diagnostic ultrasound. A reflection model-based correction for gray-scale non-uniform distribution was applied to B-mode video images before strain estimation to improve the accuracy of radial/circumferential strain imaging when applied to vessel transverse cross sections. The incremental and cumulative radial/circumferential strain images can then be calculated based on the displacement field between consecutive B-mode images. Finally, the transverse Doppler spectra acquired at different depths along the vessel diameter were used to construct the spatially matched instantaneous wall shear values in a cardiac cycle. Vessel phantom simulation results revealed that the signal-to-noise ratio and contrast-to-noise ratio of the radial and circumferential strain images were increased by 2.8 and 5.9 dB and by 2.3 and 4.4 dB, respectively, after non-uniform correction. Preliminary results for 17 patients indicated that the accuracy of radial/circumferential strain images was improved in the lateral direction after non-uniform correction. The peak-to-peak value of incremental strain and the maximum cumulative strain for calcified plaques are evidently lower than those for other plaque types, and the echolucent plaques had higher values, on average, than the mixed plaques. Moreover, low oscillating wall shear rate values, found near the plaque and stenosis regions, are closely related to plaque formation. In conclusion, the method described can provide additional valuable results as a supplement to the current routine ultrasound examination for carotid atherosclerosis and, therefore, has significant potential as a feasible screening method for atherosclerosis diagnosis in the future.
Collapse
Affiliation(s)
- Jinjin Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Fangli He
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yongfeng Zhao
- Department of Ultrasound, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hongmei Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xiaodong Zhou
- Department of Ultrasound, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
50
|
Hansen H, Saris A, Vaka N, Nillesen M, de Korte C. Ultrafast vascular strain compounding using plane wave transmission. J Biomech 2014; 47:815-23. [PMID: 24484646 DOI: 10.1016/j.jbiomech.2014.01.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2014] [Indexed: 01/08/2023]
|