1
|
Merino-Caviedes S, Martín-Fernández M, Pérez Rodríguez MT, Martín-Fernández MÁ, Filgueiras-Rama D, Simmross-Wattenberg F, Alberola-López C. Computing thickness of irregularly-shaped thin walls using a locally semi-implicit scheme with extrapolation to solve the Laplace equation: Application to the right ventricle. Comput Biol Med 2024; 169:107855. [PMID: 38113681 DOI: 10.1016/j.compbiomed.2023.107855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
Cardiac Magnetic Resonance (CMR) Imaging is currently considered the gold standard imaging modality in cardiology. However, it is accompanied by a tradeoff between spatial resolution and acquisition time. Providing accurate measures of thin walls relative to the image resolution may prove challenging. One such anatomical structure is the cardiac right ventricle. Methods for measuring thickness of wall-like anatomical structures often rely on the Laplace equation to provide point-to-point correspondences between both boundaries. This work presents limex, a novel method to solve the Laplace equation using ghost nodes and providing extrapolated values, which is tested on three different datasets: a mathematical phantom, a set of biventricular segmentations from CMR images of ten pigs and the database used at the RV Segmentation Challenge held at MICCAI'12. Thickness measurements using the proposed methodology are more accurate than state-of-the-art methods, especially with the coarsest image resolutions, yielding mean L1 norms of the error between 43.28% and 86.52% lower than the second-best methods on the different test datasets. It is also computationally affordable. Limex has outperformed other state-of-the-art methods in classifying RV myocardial segments by their thickness.
Collapse
Affiliation(s)
- Susana Merino-Caviedes
- Laboratorio de Procesado de Imagen, ETSI Telecomunicación, Universidad de Valladolid, Valladolid, Spain.
| | - Marcos Martín-Fernández
- Laboratorio de Procesado de Imagen, ETSI Telecomunicación, Universidad de Valladolid, Valladolid, Spain.
| | | | | | - David Filgueiras-Rama
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Novel Arrhythmogenic Mechanisms Program, Madrid, Spain.
| | | | - Carlos Alberola-López
- Laboratorio de Procesado de Imagen, ETSI Telecomunicación, Universidad de Valladolid, Valladolid, Spain.
| |
Collapse
|
2
|
Merino-Caviedes S, Gutierrez LK, Alfonso-Almazán JM, Sanz-Estébanez S, Cordero-Grande L, Quintanilla JG, Sánchez-González J, Marina-Breysse M, Galán-Arriola C, Enríquez-Vázquez D, Torres C, Pizarro G, Ibáñez B, Peinado R, Merino JL, Pérez-Villacastín J, Jalife J, López-Yunta M, Vázquez M, Aguado-Sierra J, González-Ferrer JJ, Pérez-Castellano N, Martín-Fernández M, Alberola-López C, Filgueiras-Rama D. Time-efficient three-dimensional transmural scar assessment provides relevant substrate characterization for ventricular tachycardia features and long-term recurrences in ischemic cardiomyopathy. Sci Rep 2021; 11:18722. [PMID: 34580343 PMCID: PMC8476552 DOI: 10.1038/s41598-021-97399-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/17/2021] [Indexed: 11/21/2022] Open
Abstract
Delayed gadolinium-enhanced cardiac magnetic resonance (LGE-CMR) imaging requires novel and time-efficient approaches to characterize the myocardial substrate associated with ventricular arrhythmia in patients with ischemic cardiomyopathy. Using a translational approach in pigs and patients with established myocardial infarction, we tested and validated a novel 3D methodology to assess ventricular scar using custom transmural criteria and a semiautomatic approach to obtain transmural scar maps in ventricular models reconstructed from both 3D-acquired and 3D-upsampled-2D-acquired LGE-CMR images. The results showed that 3D-upsampled models from 2D LGE-CMR images provided a time-efficient alternative to 3D-acquired sequences to assess the myocardial substrate associated with ischemic cardiomyopathy. Scar assessment from 2D-LGE-CMR sequences using 3D-upsampled models was superior to conventional 2D assessment to identify scar sizes associated with the cycle length of spontaneous ventricular tachycardia episodes and long-term ventricular tachycardia recurrences after catheter ablation. This novel methodology may represent an efficient approach in clinical practice after manual or automatic segmentation of myocardial borders in a small number of conventional 2D LGE-CMR slices and automatic scar detection.
Collapse
Affiliation(s)
| | - Lilian K Gutierrez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Myocardial Pathophysiology Area, Madrid, Spain
| | | | | | - Lucilio Cordero-Grande
- Universidad Politécnica de Madrid, Biomedical Image Technologies, ETSI Telecomunicación, Madrid, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Jorge G Quintanilla
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Myocardial Pathophysiology Area, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Cardiovascular Institute, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | | | - Manuel Marina-Breysse
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Myocardial Pathophysiology Area, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Carlos Galán-Arriola
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Myocardial Pathophysiology Area, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Daniel Enríquez-Vázquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Myocardial Pathophysiology Area, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Cardiovascular Institute, Madrid, Spain
| | - Carlos Torres
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Cardiovascular Institute, Madrid, Spain
| | - Gonzalo Pizarro
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Myocardial Pathophysiology Area, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Hospital Ruber Juan Bravo Quironsalud UEM, Cardiology Department, Madrid, Spain
| | - Borja Ibáñez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Myocardial Pathophysiology Area, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,IIS-University Hospital Fundación Jiménez Díaz, Cardiology Department, Madrid, Spain
| | - Rafael Peinado
- Hospital Universitario La Paz, Cardiology Department, Madrid, Spain
| | - Jose Luis Merino
- Hospital Universitario La Paz, Cardiology Department, Madrid, Spain
| | - Julián Pérez-Villacastín
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Cardiovascular Institute, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Fundación Interhospitalaria para la Investigación Cardiovascular (FIC), Madrid, Spain
| | - José Jalife
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Myocardial Pathophysiology Area, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | | | - Mariano Vázquez
- Barcelona Supercomputing Center (BSC), Barcelona, Spain.,ELEM Biotech SL., Barcelona, Spain
| | | | - Juan José González-Ferrer
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Cardiovascular Institute, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Nicasio Pérez-Castellano
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Cardiovascular Institute, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Fundación Interhospitalaria para la Investigación Cardiovascular (FIC), Madrid, Spain
| | | | | | - David Filgueiras-Rama
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Myocardial Pathophysiology Area, Madrid, Spain. .,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Cardiovascular Institute, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| |
Collapse
|
3
|
Chadwick EA, Suzuki T, George MG, Romero DA, Amon C, Waddell TK, Karoubi G, Bazylak A. Vessel network extraction and analysis of mouse pulmonary vasculature via X-ray micro-computed tomographic imaging. PLoS Comput Biol 2021; 17:e1008930. [PMID: 33878108 PMCID: PMC8594947 DOI: 10.1371/journal.pcbi.1008930] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 11/16/2021] [Accepted: 03/31/2021] [Indexed: 01/02/2023] Open
Abstract
In this work, non-invasive high-spatial resolution three-dimensional (3D) X-ray micro-computed tomography (μCT) of healthy mouse lung vasculature is performed. Methodologies are presented for filtering, segmenting, and skeletonizing the collected 3D images. Novel methods for the removal of spurious branch artefacts from the skeletonized 3D image are introduced, and these novel methods involve a combination of distance transform gradients, diameter-length ratios, and the fast marching method (FMM). These new techniques of spurious branch removal result in the consistent removal of spurious branches without compromising the connectivity of the pulmonary circuit. Analysis of the filtered, skeletonized, and segmented 3D images is performed using a newly developed Vessel Network Extraction algorithm to fully characterize the morphology of the mouse pulmonary circuit. The removal of spurious branches from the skeletonized image results in an accurate representation of the pulmonary circuit with significantly less variability in vessel diameter and vessel length in each generation. The branching morphology of a full pulmonary circuit is characterized by the mean diameter per generation and number of vessels per generation. The methods presented in this paper lead to a significant improvement in the characterization of 3D vasculature imaging, allow for automatic separation of arteries and veins, and for the characterization of generations containing capillaries and intrapulmonary arteriovenous anastomoses (IPAVA).
Collapse
Affiliation(s)
- Eric A. Chadwick
- Thermofluids for Energy and Advanced Material Laboratory, Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Takaya Suzuki
- Latner Thoracic Surgery Research Laboratories, University Health Network, Princess Margaret Cancer Research Tower, Toronto, Ontario, Canada
| | - Michael G. George
- Thermofluids for Energy and Advanced Material Laboratory, Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, Toronto, Ontario, Canada
| | - David A. Romero
- Advanced Thermal/Fluid Optimization, Modelling, and Simulation (ATOMS) Laboratory, Department of Mechanical and Industrial Engineering, Institute of Biomedical Engineering, Faculty of Applied Science and Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Cristina Amon
- Advanced Thermal/Fluid Optimization, Modelling, and Simulation (ATOMS) Laboratory, Department of Mechanical and Industrial Engineering, Institute of Biomedical Engineering, Faculty of Applied Science and Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Thomas K. Waddell
- Latner Thoracic Surgery Research Laboratories, University Health Network, Princess Margaret Cancer Research Tower, Toronto, Ontario, Canada
| | - Golnaz Karoubi
- Latner Thoracic Surgery Research Laboratories, University Health Network, Princess Margaret Cancer Research Tower, Toronto, Ontario, Canada
| | - Aimy Bazylak
- Thermofluids for Energy and Advanced Material Laboratory, Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|