1
|
Hirano H, Suzuki R, Omura M, Nagaoka R, Saito K, Hasegawa H. Investigation of Ultrasound Transmit-Receive Sequence That Enables Both High-Frame-Rate Vascular Wall Velocity Estimation and High-Contrast B-Mode Images. SENSORS (BASEL, SWITZERLAND) 2025; 25:2441. [PMID: 40285129 PMCID: PMC12031348 DOI: 10.3390/s25082441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025]
Abstract
In this study, we designed an ultrasound transmit-receive sequence to achieve high-frame-rate vascular wall velocity estimation and high-contrast B-mode imaging. The proposed sequence extends conventional dual-transmission schemes by incorporating a third transmission with 180° phase inversion, enabling harmonic imaging via the pulse inversion (PI) method. To mitigate the frame rate reduction caused by the additional transmission, the number of simultaneously transmitted focused beams was increased from two to four, resulting in a frame rate of 231 Hz. A two-dimensional phase-sensitive motion estimator was employed for motion estimation. In vitro experiments using a chicken thigh moving in two dimensions yielded RMSE values of 3% (vertical) and 16% (horizontal). In vivo experiments on a human carotid artery demonstrated that the PI method achieved a lumen-to-tissue contrast improvement of 0.96 dB and reduced artifacts. Velocity estimation of the posterior vascular wall showed generally robust performance. These findings suggest that the proposed method has strong potential to improve atherosclerosis diagnostics by combining artifact-suppressed imaging with accurate motion analysis.
Collapse
Affiliation(s)
- Hitoshi Hirano
- Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Rikuto Suzuki
- Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Masaaki Omura
- Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan; (M.O.)
| | - Ryo Nagaoka
- Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan; (M.O.)
| | - Kozue Saito
- Department of Neurology, Stroke Center, Nara Medical University, Nara 634-8522, Japan
| | - Hideyuki Hasegawa
- Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan; (M.O.)
| |
Collapse
|
2
|
Schoen S, Wang M, Dayavansha S, Naja K, Kumar V, Tadross R, Pope K, Ling L, Hunt D, Peters MK, Iafrate A, Mercaldo ND, Sandstrom K, Kim T, Washburn M, Pierce TT, Samir AE. Increased Mechanical Index Improves Shear Wave Elastography: Pilot Study of Signal Enhancement. ULTRASOUND IN MEDICINE & BIOLOGY 2025:S0301-5629(25)00071-7. [PMID: 40204561 DOI: 10.1016/j.ultrasmedbio.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/14/2025] [Accepted: 03/09/2025] [Indexed: 04/11/2025]
Abstract
OBJECTIVE Monitoring liver stiffness is essential for managing chronic liver disease, which poses a major public health challenge. Shear wave elastography (SWE), a non-invasive ultrasound-based technique, is commonly used to quantify liver stiffness. However, its performance can be compromised in individuals with higher body mass indices (BMIs) due to increased ultrasound absorption and distortion. Increasing the intensity of the ultrasound push beam could potentially improve signal quality, but regulatory limits currently restrict this due to safety concerns. This pilot study investigated the efficacy of increasing the push pulse mechanical index (MI) from a conventional value of 1.4 to 2.5 toward improving signal quality, and reducing measurement variability and failure rates. METHODS Healthy volunteers (N=22) stratified by BMI underwent SWE with conventional and increased MI push pulses. The resulting data were processed with conventional SWE algorithms, and the signal and measurement quality of the results were analyzed. RESULTS We found that the higher MI improved the signal-to-noise ratio by 4.6 dB (p<10-4, 95% confidence interval: 3.4-5.8 dB) and reduced the measurement's coefficient of variation by 13% (p<10-4, 95% confidence interval: 5.8%-20.3%), enhancing the success rate of SWE examinations, especially for subjects with a BMI over 30. Liver function tests before and after the SWE examinations showed no signs of bioeffects or harm based on serum biomarkers. CONCLUSION These results suggest that increasing the push pulse MI to 2.5 improves the diagnostic utility of SWE, particularly for individuals with a higher BMI, without introducing significant additional risk. This approach could further enhance SWE's vital role in the monitoring of chronic liver disease at a population scale.
Collapse
Affiliation(s)
- Scott Schoen
- Center for Ultrasound Research and Translation, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | | | | | - Kim Naja
- Center for Ultrasound Research and Translation, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Kathleen Pope
- Center for Ultrasound Research and Translation, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Lauren Ling
- Tufts University School of Medicine, Boston, MA, USA
| | - David Hunt
- Center for Ultrasound Research and Translation, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Mary K Peters
- Center for Ultrasound Research and Translation, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Ann Iafrate
- Center for Ultrasound Research and Translation, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Nathaniel D Mercaldo
- Harvard Medical School, Boston, MA, USA; Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | - Theodore T Pierce
- Center for Ultrasound Research and Translation, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Anthony E Samir
- Center for Ultrasound Research and Translation, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Urban M, Vasconcelos L, Brom K, Dave J, Kijanka P. Shear wave elastography primer for the abdominal radiologist. Abdom Radiol (NY) 2025:10.1007/s00261-025-04806-1. [PMID: 39883164 DOI: 10.1007/s00261-025-04806-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/31/2025]
Abstract
PURPOSE Shear wave elastography (SWE) provides a means for adding information about the mechanical properties of tissues to a diagnostic ultrasound examination. It is important to understand the physics and methods by which the measurements are made to aid interpretation of the results as they relate to disease processes. METHODS The components of how ultrasound is used to generate shear waves and make measurements of the induced motion are reviewed. The physics of shear wave propagation are briefly described for elastic and viscoelastic tissues. Additionally, shear wave propagation in homogeneous and inhomogeneous cases is addressed. RESULTS SWE technology has been implemented by many clinical vendors with different capabilities. Various quality metrics are used to define valid measurements based on aspects of the shear wave signals or wave velocity estimates. CONCLUSION There are many uses for SWE in abdominal imaging, but it is important to understand how the measurements are performed to gauge their utility for diagnosis of different conditions. Continued efforts to make the technology robust in complex clinical situations are ongoing, but many applications actively benefit from added information about tissue mechanical properties for a more holistic view of the patient for diagnosis or assessment of prognosis and treatment management.
Collapse
|
4
|
Ipek R, Holland J, Cramer M, Rider O. CMR to characterize myocardial structure and function in heart failure with preserved left ventricular ejection fraction. Eur Heart J Cardiovasc Imaging 2024; 25:1491-1504. [PMID: 39205602 PMCID: PMC11522877 DOI: 10.1093/ehjci/jeae224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Despite remarkable progress in therapeutic drugs, morbidity, and mortality for heart failure (HF) remains high in developed countries. HF with preserved ejection fraction (HFpEF) now accounts for around half of all HF cases. It is a heterogeneous disease, with multiple aetiologies, and as such poses a significant diagnostic challenge. Cardiac magnetic resonance (CMR) has become a valuable non-invasive modality to assess cardiac morphology and function, but beyond that, the multi-parametric nature of CMR allows novel approaches to characterize haemodynamics and with magnetic resonance spectroscopy (MRS), the study of metabolism. Furthermore, exercise CMR, when combined with lung water imaging provides an in-depth understanding of the underlying pathophysiological and mechanistic processes in HFpEF. Thus, CMR provides a comprehensive phenotyping tool for HFpEF, which points towards a targeted and personalized therapy with improved diagnostics and prevention.
Collapse
Affiliation(s)
- Rojda Ipek
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford Centre for Clinical Magnetic Resonance Research (OCMR), John Radcliffe Hospital, Level 0, University of Oxford, Oxford, OX3 9DU, UK
- Divison of Cardiology, Pulmonary Disease and Vascular Medicine, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jennifer Holland
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford Centre for Clinical Magnetic Resonance Research (OCMR), John Radcliffe Hospital, Level 0, University of Oxford, Oxford, OX3 9DU, UK
| | - Mareike Cramer
- Divison of Cardiology, Pulmonary Disease and Vascular Medicine, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Oliver Rider
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford Centre for Clinical Magnetic Resonance Research (OCMR), John Radcliffe Hospital, Level 0, University of Oxford, Oxford, OX3 9DU, UK
| |
Collapse
|
5
|
Wang X, Liu B, Wu C, Huang Z, Zhou Y, Wu X, Zheng Y. Shear wave trajectory detection in ultra-fast M-mode images for liver fibrosis assessment: A deep learning-based line detection approach. ULTRASONICS 2024; 142:107358. [PMID: 38901149 DOI: 10.1016/j.ultras.2024.107358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 04/30/2024] [Accepted: 05/27/2024] [Indexed: 06/22/2024]
Abstract
Stiffness measurement using shear wave propagation velocity has been the most common non-invasive method for liver fibrosis assessment. The velocity is captured through a trace recorded by transient ultrasonographic elastography, with the slope indicating the velocity of the wave. However, due to various factors such as noise and shear wave attenuation, detecting shear wave trajectory on wave propagation maps is a challenging task. In this work, we made the first attempt to use deep learning methods for shear wave trajectory detection on wave propagation maps. Specifically, we adopted five deep learning models in this task and evaluated them by using a well-acknowledged metric based on EA-Angular-Score (EAA) and task-specific metric based on Young s-Score (Ys) in the line-detection field. Furthermore, we proposed an end-to-end framework based on a Transformer and Hough transform, named Transformer-enhanced Hough Transform (TEHT). It took a wave propagation map as input image and directly output the slope of the shear wave trajectory. The framework extracts multi-scale local features from wave propagation maps, employs a deformable attention mechanism for feature fusion, identifies the target line using the Hough transform's voting mechanism, and calculates the contribution of each scale through channel attention. Wave propagation maps from 68 patients were utilized in this study, with manual annotation performed by a rater who was trained as a radiologist, serving as the reference value. The evaluation revealed that the SLNet model exhibited F-measure of EA and Ys values as 40.33 % and 40.72 %, respectively, while the TEHT model showed F-measure of EA and Ys values as 80.96 % and 98.00 %, respectively. TEHT yielded significantly better performance than other deep learning models. Moreover, TEHT demonstrated strong concordance with the gold standard, yielding R2 values of 0.967 and 0.968 for velocity and liver stiffness, respectively. The present study therefore suggests the application of the TEHT model for assessing liver fibrosis owing to its superiority among the five deep learning models.
Collapse
Affiliation(s)
- Xinyi Wang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| | - Bo Liu
- Department of Computing, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| | - Chonglin Wu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| | - Zihao Huang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| | - Yongjin Zhou
- School of Biomedical Engineering, University of Shenzhen, Shenzhen, China
| | - Xiaoming Wu
- Department of Computing, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| | - Yongping Zheng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region; Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region.
| |
Collapse
|
6
|
Arani A, Murphy MC, Bhopalwala H, Arunachalam SP, Rossman PJ, Trzasko JD, Glaser K, Sui Y, Gunderson T, Arruda-Olson AM, Manduca A, Kantarci K, Ehman RL, Araoz PA. Sex Differences in Aging-related Myocardial Stiffening Quantitatively Measured with MR Elastography. Radiol Cardiothorac Imaging 2024; 6:e230140. [PMID: 38780427 PMCID: PMC11211939 DOI: 10.1148/ryct.230140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 03/06/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024]
Abstract
Purpose To investigate the feasibility of using quantitative MR elastography (MRE) to characterize the influence of aging and sex on left ventricular (LV) shear stiffness. Materials and Methods In this prospective study, LV myocardial shear stiffness was measured in 109 healthy volunteers (age range: 18-84 years; mean age, 40 years ± 18 [SD]; 57 women, 52 men) enrolled between November 2018 and September 2019, using a 5-minute MRE acquisition added to a clinical MRI protocol. Linear regression models were used to estimate the association of cardiac MRI and MRE characteristics with age and sex; models were also fit to assess potential age-sex interaction. Results Myocardial shear stiffness significantly increased with age in female (age slope = 0.03 kPa/year ± 0.01, P = .009) but not male (age slope = 0.008 kPa/year ± 0.009, P = .38) volunteers. LV ejection fraction (LVEF) increased significantly with age in female volunteers (0.23% ± 0.08 per year, P = .005). LV end-systolic volume (LVESV) decreased with age in female volunteers (-0.20 mL/m2 ± 0.07, P = .003). MRI parameters, including T1, strain, and LV mass, did not demonstrate this interaction (P > .05). Myocardial shear stiffness was not significantly correlated with LVEF, LV stroke volume, body mass index, or any MRI strain metrics (P > .05) but showed significant correlations with LV end-diastolic volume/body surface area (BSA) (slope = -3 kPa/mL/m2 ± 1, P = .004, r2 = 0.08) and LVESV/BSA (-1.6 kPa/mL/m2 ± 0.5, P = .003, r2 = 0.08). Conclusion This study demonstrates that female, but not male, individuals experience disproportionate LV stiffening with natural aging, and these changes can be noninvasively measured with MRE. Keywords: Cardiac, Elastography, Biological Effects, Experimental Investigations, Sexual Dimorphisms, MR Elastography, Myocardial Shear Stiffness, Quantitative Stiffness Imaging, Aging Heart, Myocardial Biomechanics, Cardiac MRE Supplemental material is available for this article. Published under a CC BY 4.0 license.
Collapse
Affiliation(s)
- Arvin Arani
- From the Departments of Radiology (A.A., M.C.M., H.B., S.P.A.,
P.J.R., J.D.T., K.G., Y.S., A.M., K.K., R.L.E., P.A.A.), Quantitative Health
Science (T.G.), and Cardiology (A.M.A.O.), Mayo Clinic, 200 First St SW,
Rochester, MN 55905
| | - Matthew C. Murphy
- From the Departments of Radiology (A.A., M.C.M., H.B., S.P.A.,
P.J.R., J.D.T., K.G., Y.S., A.M., K.K., R.L.E., P.A.A.), Quantitative Health
Science (T.G.), and Cardiology (A.M.A.O.), Mayo Clinic, 200 First St SW,
Rochester, MN 55905
| | - Huzefa Bhopalwala
- From the Departments of Radiology (A.A., M.C.M., H.B., S.P.A.,
P.J.R., J.D.T., K.G., Y.S., A.M., K.K., R.L.E., P.A.A.), Quantitative Health
Science (T.G.), and Cardiology (A.M.A.O.), Mayo Clinic, 200 First St SW,
Rochester, MN 55905
| | - Shivaram P. Arunachalam
- From the Departments of Radiology (A.A., M.C.M., H.B., S.P.A.,
P.J.R., J.D.T., K.G., Y.S., A.M., K.K., R.L.E., P.A.A.), Quantitative Health
Science (T.G.), and Cardiology (A.M.A.O.), Mayo Clinic, 200 First St SW,
Rochester, MN 55905
| | - Phillip J. Rossman
- From the Departments of Radiology (A.A., M.C.M., H.B., S.P.A.,
P.J.R., J.D.T., K.G., Y.S., A.M., K.K., R.L.E., P.A.A.), Quantitative Health
Science (T.G.), and Cardiology (A.M.A.O.), Mayo Clinic, 200 First St SW,
Rochester, MN 55905
| | - Joshua D. Trzasko
- From the Departments of Radiology (A.A., M.C.M., H.B., S.P.A.,
P.J.R., J.D.T., K.G., Y.S., A.M., K.K., R.L.E., P.A.A.), Quantitative Health
Science (T.G.), and Cardiology (A.M.A.O.), Mayo Clinic, 200 First St SW,
Rochester, MN 55905
| | - Kevin Glaser
- From the Departments of Radiology (A.A., M.C.M., H.B., S.P.A.,
P.J.R., J.D.T., K.G., Y.S., A.M., K.K., R.L.E., P.A.A.), Quantitative Health
Science (T.G.), and Cardiology (A.M.A.O.), Mayo Clinic, 200 First St SW,
Rochester, MN 55905
| | - Yi Sui
- From the Departments of Radiology (A.A., M.C.M., H.B., S.P.A.,
P.J.R., J.D.T., K.G., Y.S., A.M., K.K., R.L.E., P.A.A.), Quantitative Health
Science (T.G.), and Cardiology (A.M.A.O.), Mayo Clinic, 200 First St SW,
Rochester, MN 55905
| | - Tina Gunderson
- From the Departments of Radiology (A.A., M.C.M., H.B., S.P.A.,
P.J.R., J.D.T., K.G., Y.S., A.M., K.K., R.L.E., P.A.A.), Quantitative Health
Science (T.G.), and Cardiology (A.M.A.O.), Mayo Clinic, 200 First St SW,
Rochester, MN 55905
| | - Adelaide M. Arruda-Olson
- From the Departments of Radiology (A.A., M.C.M., H.B., S.P.A.,
P.J.R., J.D.T., K.G., Y.S., A.M., K.K., R.L.E., P.A.A.), Quantitative Health
Science (T.G.), and Cardiology (A.M.A.O.), Mayo Clinic, 200 First St SW,
Rochester, MN 55905
| | - Armando Manduca
- From the Departments of Radiology (A.A., M.C.M., H.B., S.P.A.,
P.J.R., J.D.T., K.G., Y.S., A.M., K.K., R.L.E., P.A.A.), Quantitative Health
Science (T.G.), and Cardiology (A.M.A.O.), Mayo Clinic, 200 First St SW,
Rochester, MN 55905
| | - Kejal Kantarci
- From the Departments of Radiology (A.A., M.C.M., H.B., S.P.A.,
P.J.R., J.D.T., K.G., Y.S., A.M., K.K., R.L.E., P.A.A.), Quantitative Health
Science (T.G.), and Cardiology (A.M.A.O.), Mayo Clinic, 200 First St SW,
Rochester, MN 55905
| | - Richard L. Ehman
- From the Departments of Radiology (A.A., M.C.M., H.B., S.P.A.,
P.J.R., J.D.T., K.G., Y.S., A.M., K.K., R.L.E., P.A.A.), Quantitative Health
Science (T.G.), and Cardiology (A.M.A.O.), Mayo Clinic, 200 First St SW,
Rochester, MN 55905
| | - Philip A. Araoz
- From the Departments of Radiology (A.A., M.C.M., H.B., S.P.A.,
P.J.R., J.D.T., K.G., Y.S., A.M., K.K., R.L.E., P.A.A.), Quantitative Health
Science (T.G.), and Cardiology (A.M.A.O.), Mayo Clinic, 200 First St SW,
Rochester, MN 55905
| |
Collapse
|
7
|
Caenen A, Bézy S, Pernot M, Nightingale KR, Vos HJ, Voigt JU, Segers P, D'hooge J. Ultrasound Shear Wave Elastography in Cardiology. JACC Cardiovasc Imaging 2024; 17:314-329. [PMID: 38448131 DOI: 10.1016/j.jcmg.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 11/14/2023] [Accepted: 12/07/2023] [Indexed: 03/08/2024]
Abstract
The advent of high-frame rate imaging in ultrasound allowed the development of shear wave elastography as a noninvasive alternative for myocardial stiffness assessment. It measures mechanical waves propagating along the cardiac wall with speeds that are related to stiffness. The use of cardiac shear wave elastography in clinical studies is increasing, but a proper understanding of the different factors that affect wave propagation is required to correctly interpret results because of the heart's thin-walled geometry and intricate material properties. The aims of this review are to give an overview of the general concepts in cardiac shear wave elastography and to discuss in depth the effects of age, hemodynamic loading, cardiac morphology, fiber architecture, contractility, viscoelasticity, and system-dependent factors on the measurements, with a focus on clinical application. It also describes how these factors should be considered during acquisition, analysis, and reporting to ensure an accurate, robust, and reproducible measurement of the shear wave.
Collapse
Affiliation(s)
- Annette Caenen
- Institute for Biomedical Engineering and Technology, Ghent University, Ghent, Belgium; Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium; Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Stéphanie Bézy
- Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Mathieu Pernot
- Physics for Medicine, INSERM, CNRS, ESPCI, PSL University, Paris, France
| | | | - Hendrik J Vos
- Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Jens-Uwe Voigt
- Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium; Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium.
| | - Patrick Segers
- Institute for Biomedical Engineering and Technology, Ghent University, Ghent, Belgium
| | - Jan D'hooge
- Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Zhu J, Qiu L, Ta D, Hua X, Liu H, Zhang H, Li J, Wang Y, Xi Z, Zheng Y, Shan Y, Liu B, Huang W, Liu W, Hao S, Cui L, Cai J, Zhang W, Zhang C, Chen S, Wei A, Dong F. Chinese Ultrasound Doctors Association Guideline on Operational Standards for 2-D Shear Wave Elastography Examination of Musculoskeletal Tissues. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:175-183. [PMID: 37949764 DOI: 10.1016/j.ultrasmedbio.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/19/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023]
Abstract
The Ultrasound Physician Branch of the Chinese Medical Doctor Association sought to develop evidence-based recommendations on the operational standards for 2-D shear wave elastography examination of musculoskeletal tissues. A consensus panel of 22 Chinese musculoskeletal ultrasound experts reviewed current scientific evidence and proposed a set of 12 recommendations for 13 key issues, including instruments, operating methods, influencing factors and image interpretation. A final consensus was reached through discussion and voting. On the basis of research evidence and expert opinions, the strength of recommendation for each proposition was assessed using a visual analog scale, while further emphasizing the best available evidence during the question-and-answer session. These expert consensus guidelines encourage facilitation of the standardization of clinical practices for collecting and reporting shear wave elastography data.
Collapse
Affiliation(s)
- Jiaan Zhu
- Department of Ultrasound, Peking University People's Hospital, Beijing, China.
| | - Li Qiu
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu, China
| | - Dean Ta
- Center for Biomedical Engineering, Fudan University, Shanghai, China
| | - Xing Hua
- Department of Ultrasound, First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Hongmei Liu
- Department of Ultrasound, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Huabin Zhang
- Department of Ultrasound, Beijing Tsinghua Changgung Hospital Affiliated with Tsinghua University, Beijing, China
| | - Jia Li
- Department of Ultrasound, Southeast University Zhongda Hospital, Nanjing, China
| | - Yuexiang Wang
- Department of Ultrasound, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhanguo Xi
- Department of Functional Examination, Henan Provincial Orthopedic Hospital Zhengzhou Campus, Zhengzhou, China
| | - Yuanyi Zheng
- Department of Ultrasound, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yong Shan
- Department of Ultrasound, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bingyan Liu
- Department of Ultrasound, Hainan General Hospital, Haikou, China
| | - Weijun Huang
- Department of Interventional Ultrasound, First People's Hospital of Foshan, Foshan, China
| | - Weiyong Liu
- Department of Ultrasound, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shaoyun Hao
- Department of Ultrasound, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Ligang Cui
- Department of Ultrasound, Peking University Third Hospital, Beijing, China
| | - Jin Cai
- Department of Ultrasound, Zhejiang Chinese Medical University Affiliated Third Hospital, Hangzhou, China
| | - Wei Zhang
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chao Zhang
- Department of Medical Ultrasound, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Shuqiang Chen
- Department of Ultrasound, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - An Wei
- Department of Ultrasound, Hunan Provincial People's Hospital, Changsha, China
| | - Fajin Dong
- Department of Ultrasound, Shenzhen People's Hospital, Shenzhen, China
| |
Collapse
|
9
|
Moore C, McCrary AW, LeFevre M, Sturgeon GM, Barker PAC, von Ramm OT. Ultrasound Visualization and Recording of Transient Myocardial Vibrations. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1431-1440. [PMID: 36990961 DOI: 10.1016/j.ultrasmedbio.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/19/2023] [Accepted: 02/12/2023] [Indexed: 05/11/2023]
Abstract
OBJECTIVE A new visualization and recording method used to assess and quantitate autogenic high-velocity motions in myocardial walls to provide a new description of cardiac function is described. METHODS The regional motion display (RMD) is based on high-speed difference ultrasound B-mode images and spatiotemporal processing to record propagating events (PEs). Sixteen normal participants and one patient with cardiac amyloidosis were imaged at rates of 500-1000/s using the Duke Phased Array Scanner, T5. RMDs were generated using difference images and spatially integrating these to display velocity as function of time along a cardiac wall. RESULTS In normal participants, RMDs revealed four discrete PEs with average onset timing with respect to the QRS complex of -31.7, +46, +365 and +536 ms. The late diastolic PE propagated apex to base in all participants at an average velocity of 3.4 m/s by the RMD. The RMD of the amyloidosis patient revealed significant changes in the appearance of PEs compared with normal participants. The late diastolic PE propagated at 5.3 m/s from apex to base. All four PEs lagged the average timing of normal participants. CONCLUSION The RMD method reliably reveals PEs as discrete events and successfully allows reproducible measurement of PE timing and the velocity of at least one PE. The RMD method is applicable to live, clinical high-speed studies and may offer a new approach to characterization of cardiac function.
Collapse
Affiliation(s)
- Cooper Moore
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| | - Andrew W McCrary
- Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Melissa LeFevre
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Gregory M Sturgeon
- Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Piers A C Barker
- Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Olaf T von Ramm
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
10
|
Li GY, Jiang Y, Zheng Y, Xu W, Zhang Z, Cao Y. Arterial Stiffness Probed by Dynamic Ultrasound Elastography Characterizes Waveform of Blood Pressure. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:1510-1519. [PMID: 34995186 DOI: 10.1109/tmi.2022.3141613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The clinical and economic burdens of cardiovascular diseases pose a global challenge. Growing evidence suggests an early assessment of arterial stiffness can provide insights into the pathogenesis of cardiovascular diseases. However, it remains difficult to quantitatively characterize local arterial stiffness in vivo. Here we utilize guided axial waves continuously excited and detected by ultrasound to probe local blood pressures and mechanical properties of common carotid arteries simultaneously. In a pilot study of 17 healthy volunteers, we observe a ∼ 20 % variation in the group velocities of the guided axial waves (5.16 ± 0.55 m/s in systole and 4.31 ± 0.49 m/s in diastole) induced by the variation of the blood pressures. A linear relationship between the square of group velocity and blood pressure is revealed by the experiments and finite element analysis, which enables us to measure the waveform of the blood pressures by the group velocities. Furthermore, we propose a wavelet analysis-based method to extract the dispersion relations of the guided axial waves. We then determined the shear modulus by fitting the dispersion relations in diastole with the leaky Lamb wave model. The average shear modulus of all the volunteers is 166.3 ± 32.8 kPa. No gender differences are found. This study shows the group velocity and dispersion relation of the guided axial waves can be utilized to probe blood pressure and arterial stiffness locally in a noninvasive manner and thus promising for early diagnosis of cardiovascular diseases.
Collapse
|
11
|
Caenen A, Pernot M, Nightingale KR, Voigt JU, Vos HJ, Segers P, D'hooge J. Assessing cardiac stiffness using ultrasound shear wave elastography. Phys Med Biol 2021; 67. [PMID: 34874312 DOI: 10.1088/1361-6560/ac404d] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/06/2021] [Indexed: 11/11/2022]
Abstract
Shear wave elastography offers a new dimension to echocardiography: it measures myocardial stiffness. Therefore, it could provide additional insights into the pathophysiology of cardiac diseases affecting myocardial stiffness and potentially improve diagnosis or guide patient treatment. The technique detects fast mechanical waves on the heart wall with high frame rate echography, and converts their propagation velocity into a stiffness value. A proper interpretation of shear wave data is required as the shear wave interacts with the intrinsic, yet dynamically changing geometrical and material characteristics of the heart under pressure. This dramatically alters the wave physics of the propagating wave, demanding adapted processing methods compared to other shear wave elastography applications as breast tumor and liver stiffness staging. Furthermore, several advanced analysis methods have been proposed to extract supplementary material features such as viscosity and anisotropy, potentially offering additional diagnostic value. This review explains the general mechanical concepts underlying cardiac shear wave elastography and provides an overview of the preclinical and clinical studies within the field. We also identify the mechanical and technical challenges ahead to make shear wave elastography a valuable tool for clinical practice.
Collapse
Affiliation(s)
- Annette Caenen
- Institute for Biomedical Engineering and Technology, Ghent University, Ghent, BELGIUM
| | - Mathieu Pernot
- INSERM U979 "Physics for medicine", ESPCI Paris, PSL Research University, CNRS UMR 7587, Institut Langevin, Paris, FRANCE
| | - Kathryn R Nightingale
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, UNITED STATES
| | - Jens-Uwe Voigt
- Department of Cardiovascular Sciences, KU Leuven, Leuven, BELGIUM
| | - Hendrik J Vos
- Department of Biomedical Engineering, Erasmus MC, Rotterdam, Zuid-Holland, NETHERLANDS
| | - Patrick Segers
- Institute of Biomedical Engineering and Technology, Universiteit Gent, Gent, BELGIUM
| | - Jan D'hooge
- Department of Cardiovascular Sciences, KU Leuven, Leuven, BELGIUM
| |
Collapse
|
12
|
Numerical wave speed sensitivity study for assessment of myocardial elasticity in a simplified linear elastic and isotropic left ventricle model. Med Eng Phys 2021; 98:20-27. [PMID: 34848034 DOI: 10.1016/j.medengphy.2021.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 11/24/2022]
Abstract
Since tissue elasticity can change with pathology, noninvasive assessment of elasticity has received increasing attention. Emerging methods for assessing cardiac elasticity utilize either an external source to induce propagating shear waves or intrinsic longitudinal waves created by natural cardiac events such as left ventricle stretching that occurs due to atrial kick during late diastole. However, the effect of morphological variations that occur in diseased hearts on this longitudinal stretch wave and the corresponding estimate of elasticity is not well understood and is an active area of research. This study investigated the sensitivity of longitudinal wave speed to material properties and chamber geometry parameters through numerical simulations using a finite element model of a bullet-shaped chamber with homogeneous isotropic linear elastic material properties. A longitudinal impulse displacement was applied to the base edge of the model to investigate wave propagation from this boundary. Parametric studies were performed for variables of interest related to geometry and material properties. The wave speeds estimated from simulation results were used to determine wave speed sensitivity to each variable. Wave speed was found to be a strong function of material elasticity and a weak function of chamber geometry and viscous damping. Simulated wave speed as a function of elasticity was in good agreement with wave speeds determined from an analytical expression for longitudinal wave speed in elastic thin plates. These promising preliminary results increase our understanding of how these parameters affect intrinsic longitudinal wave speed and warrant future studies addressing the impact of patient-specific model geometry, material anisotropy and hyperelasticity, and boundary conditions on wave speed.
Collapse
|
13
|
Wood BG, Kijanka P, Liu HC, Urban MW. Evaluation of Robustness of Local Phase Velocity Imaging in Homogenous Tissue-Mimicking Phantoms. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:3514-3528. [PMID: 34456084 PMCID: PMC8578323 DOI: 10.1016/j.ultrasmedbio.2021.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/21/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Shear wave elastography (SWE) is a method of evaluating mechanical properties of soft tissues. Most current implementations of SWE report the group velocity for shear wave velocity, which assumes an elastic, isotropic, homogenous and incompressible tissue. Local phase velocity imaging (LPVI) is a novel method of phase velocity reconstruction that allows for accurate evaluation of shear wave velocity at specified frequencies. This method's robustness was evaluated in 11 elastic and 8 viscoelastic phantoms using linear and curvilinear arrays. We acquired data with acoustic radiation force push beams with different focal depths and F-numbers and reconstructed phase velocity images over a wide range of frequencies. Regardless of phantom, push beam focal depth and reconstruction frequency, an F-number around 3.0 was found to produce the largest usable area in the phase velocity reconstructions. For elastic phantoms scanned with a linear array, the optimal focal depth, frequency range and maximum region of interest (ROI) were 20-30 mm, 100-400 Hz and 2.70 cm2, respectively. For viscoelastic phantoms scanned with a linear array, the optimal focal depth, frequency and maximum ROI were 20-30 mm, 100-300 Hz and 1.54 cm2, respectively. For the curvilinear array in the same phantoms, optimal focal depth, frequency range and maximum ROIs were 45-60 mm, 100-400 and 100-300 Hz and 1.54 cm2, respectively. In further work, LPVI reconstructions from inclusion phantoms will be evaluated to simulate non-homogeneous tissues. Additionally, LPVI will be evaluated in larger-volume phantoms to account for wave reflection from the containers when using the curvilinear array.
Collapse
Affiliation(s)
- Benjamin G Wood
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Piotr Kijanka
- Department of Robotics and Mechatronics, AGH University of Science and Technology, Krakow, Poland
| | - Hsiao-Chuan Liu
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew W Urban
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
14
|
Brickson LL, Hyun D, Jakovljevic M, Dahl JJ. Reverberation Noise Suppression in Ultrasound Channel Signals Using a 3D Fully Convolutional Neural Network. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:1184-1195. [PMID: 33400649 PMCID: PMC8500501 DOI: 10.1109/tmi.2021.3049307] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Diffuse reverberation is ultrasound image noise caused by multiple reflections of the transmitted pulse before returning to the transducer, which degrades image quality and impedes the estimation of displacement or flow in techniques such as elastography and Doppler imaging. Diffuse reverberation appears as spatially incoherent noise in the channel signals, where it also degrades the performance of adaptive beamforming methods, sound speed estimation, and methods that require measurements from channel signals. In this paper, we propose a custom 3D fully convolutional neural network (3DCNN) to reduce diffuse reverberation noise in the channel signals. The 3DCNN was trained with channel signals from simulations of random targets that include models of reverberation and thermal noise. It was then evaluated both on phantom and in-vivo experimental data. The 3DCNN showed improvements in image quality metrics such as generalized contrast to noise ratio (GCNR), lag one coherence (LOC) contrast-to-noise ratio (CNR) and contrast for anechoic regions in both phantom and in-vivo experiments. Visually, the contrast of anechoic regions was greatly improved. The CNR was improved in some cases, however the 3DCNN appears to strongly remove uncorrelated and low amplitude signal. In images of in-vivo carotid artery and thyroid, the 3DCNN was compared to short-lag spatial coherence (SLSC) imaging and spatial prediction filtering (FXPF) and demonstrated improved contrast, GCNR, and LOC, while FXPF only improved contrast and SLSC only improved CNR.
Collapse
|
15
|
Nitta N, Yamakawa M, Hachiya H, Shiina T. A review of physical and engineering factors potentially affecting shear wave elastography. J Med Ultrason (2001) 2021; 48:403-414. [PMID: 34453649 PMCID: PMC8578095 DOI: 10.1007/s10396-021-01127-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/15/2021] [Indexed: 01/01/2023]
Abstract
It has been recognized that tissue stiffness provides useful diagnostic information, as with palpation as a screening for diseases such as cancer. In recent years, shear wave elastography (SWE), a technique for evaluating and imaging tissue elasticity quantitatively and objectively in diagnostic imaging, has been put into practical use, and the amount of clinical knowledge about SWE has increased. In addition, some guidelines and review papers regarding technology and clinical applications have been published, and the status as a diagnostic technology is in the process of being established. However, there are still unclear points about the interpretation of shear wave speed (SWS) and converted elastic modulus in SWE. To clarify these, it is important to investigate the factors that affect the SWS and elastic modulus. Therefore, physical and engineering factors that potentially affect the SWS and elastic modulus are discussed in this review paper, based on the principles of SWE and a literature review. The physical factors include the propagation properties of shear waves, mechanical properties (viscoelasticity, nonlinearity, and anisotropy), and size and shape of target tissues. The engineering factors include the region of interest depth and signal processing. The aim of this review paper is not to provide an answer to the interpretation of SWS. It is to provide information for readers to formulate and verify the hypothesis for the interpretation. Therefore, methods to verify the hypothesis for the interpretation are also reviewed. Finally, studies on the safety of SWE are discussed.
Collapse
Affiliation(s)
- Naotaka Nitta
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, Ibaraki, 305-8564, Japan.
| | - Makoto Yamakawa
- Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Hiroyuki Hachiya
- School of Engineering, Tokyo Institute of Technology, Meguro, Tokyo, 152-8552, Japan
| | - Tsuyoshi Shiina
- Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| |
Collapse
|
16
|
Keijzer LBH, Caenen A, Voorneveld J, Strachinaru M, Bowen DJ, van de Wouw J, Sorop O, Merkus D, Duncker DJ, van der Steen AFW, de Jong N, Bosch JG, Vos HJ. A direct comparison of natural and acoustic-radiation-force-induced cardiac mechanical waves. Sci Rep 2020; 10:18431. [PMID: 33116234 PMCID: PMC7595170 DOI: 10.1038/s41598-020-75401-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/15/2020] [Indexed: 12/30/2022] Open
Abstract
Natural and active shear wave elastography (SWE) are potential ultrasound-based techniques to non-invasively assess myocardial stiffness, which could improve current diagnosis of heart failure. This study aims to bridge the knowledge gap between both techniques and discuss their respective impacts on cardiac stiffness evaluation. We recorded the mechanical waves occurring after aortic and mitral valve closure (AVC, MVC) and those induced by acoustic radiation force throughout the cardiac cycle in four pigs after sternotomy. Natural SWE showed a higher feasibility than active SWE, which is an advantage for clinical application. Median propagation speeds of 2.5-4.0 m/s and 1.6-4.0 m/s were obtained after AVC and MVC, whereas ARF-based median speeds of 0.9-1.2 m/s and 2.1-3.8 m/s were reported for diastole and systole, respectively. The different wave characteristics in both methods, such as the frequency content, complicate the direct comparison of waves. Nevertheless, a good match was found in propagation speeds between natural and active SWE at the moment of valve closure, and the natural waves showed higher propagation speeds than in diastole. Furthermore, the results demonstrated that the natural waves occur in between diastole and systole identified with active SWE, and thus represent a myocardial stiffness in between relaxation and contraction.
Collapse
Affiliation(s)
- Lana B H Keijzer
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands.
| | - Annette Caenen
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands.
- IBiTech-bioMMeda, Ghent University, Ghent, Belgium.
- Cardiovascular Imaging and Dynamics Lab, Catholic University of Leuven, Leuven, Belgium.
| | - Jason Voorneveld
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Daniel J Bowen
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - Jens van de Wouw
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - Oana Sorop
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - Daphne Merkus
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - Dirk J Duncker
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - Antonius F W van der Steen
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Nico de Jong
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Johan G Bosch
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - Hendrik J Vos
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
17
|
Strachinaru M, Bosch JG, Schinkel AFL, Michels M, Feyz L, de Jong N, Geleijnse ML, Vos HJ. Local myocardial stiffness variations identified by high frame rate shear wave echocardiography. Cardiovasc Ultrasound 2020; 18:40. [PMID: 32993683 PMCID: PMC7525991 DOI: 10.1186/s12947-020-00222-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/11/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Shear waves are generated by the closure of the heart valves. Significant differences in shear wave velocity have been found recently between normal myocardium and disease models of diffusely increased muscle stiffness. In this study we correlate in vivo myocardial shear wave imaging (SWI) with presence of scarred tissue, as model for local increase of stiffness. Stiffness variation is hypothesized to appear as velocity variation. METHODS Ten healthy volunteers (group 1), 10 hypertrophic cardiomyopathy (HCM) patients without any cardiac intervention (group 2), and 10 HCM patients with prior septal reduction therapy (group 3) underwent high frame rate tissue Doppler echocardiography. The SW in the interventricular septum after aortic valve closure was mapped along two M-mode lines, in the inner and outer layer. RESULTS We compared SWI to 3D echocardiography and strain imaging. In groups 1 and 2, no change in velocity was detected. In group 3, 8/10 patients showed a variation in SW velocity. All three patients having transmural scar showed a simultaneous velocity variation in both layers. Out of six patients with endocardial scar, five showed variations in the inner layer. CONCLUSION Local variations in stiffness, with myocardial remodeling post septal reduction therapy as model, can be detected by a local variation in the propagation velocity of naturally occurring shear waves.
Collapse
Affiliation(s)
- Mihai Strachinaru
- Erasmus MC Rotterdam, Cardiology, Postbus 2040, 3000, CA, Rotterdam, The Netherlands.
| | - Johan G Bosch
- Erasmus MC Rotterdam, Biomedical Engineering, Rotterdam, The Netherlands
| | - Arend F L Schinkel
- Erasmus MC Rotterdam, Cardiology, Postbus 2040, 3000, CA, Rotterdam, The Netherlands
| | - Michelle Michels
- Erasmus MC Rotterdam, Cardiology, Postbus 2040, 3000, CA, Rotterdam, The Netherlands
| | - Lida Feyz
- Erasmus MC Rotterdam, Cardiology, Postbus 2040, 3000, CA, Rotterdam, The Netherlands
| | - Nico de Jong
- Erasmus MC Rotterdam, Biomedical Engineering, Rotterdam, The Netherlands
| | - Marcel L Geleijnse
- Erasmus MC Rotterdam, Cardiology, Postbus 2040, 3000, CA, Rotterdam, The Netherlands
| | - Hendrik J Vos
- Erasmus MC Rotterdam, Biomedical Engineering, Rotterdam, The Netherlands
| |
Collapse
|
18
|
Keijzer LBH, Strachinaru M, Bowen DJ, Geleijnse ML, van der Steen AFW, Bosch JG, de Jong N, Vos HJ. Reproducibility of Natural Shear Wave Elastography Measurements. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:3172-3185. [PMID: 31564460 DOI: 10.1016/j.ultrasmedbio.2019.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
For the quantification of myocardial function, myocardial stiffness can potentially be measured non-invasively using shear wave elastography. Clinical diagnosis requires high precision. In 10 healthy volunteers, we studied the reproducibility of the measurement of propagation speeds of shear waves induced by aortic and mitral valve closure (AVC, MVC). Inter-scan was slightly higher but in similar ranges as intra-scan variability (AVC: 0.67 m/s (interquartile range [IQR]: 0.40-0.86 m/s) versus 0.38 m/s (IQR: 0.26-0.68 m/s), MVC: 0.61 m/s (IQR: 0.26-0.94 m/s) versus 0.26 m/s (IQR: 0.15-0.46 m/s)). For AVC, the propagation speeds obtained on different day were not statistically different (p = 0.13). We observed different propagation speeds between 2 systems (AVC: 3.23-4.25 m/s [Zonare ZS3] versus 1.82-4.76 m/s [Philips iE33]), p = 0.04). No statistical difference was observed between observers (AVC: p = 0.35). Our results suggest that measurement inaccuracies dominate the variabilities measured among healthy volunteers. Therefore, measurement precision can be improved by averaging over multiple heartbeats.
Collapse
Affiliation(s)
- Lana B H Keijzer
- Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, The Netherlands.
| | - Mihai Strachinaru
- Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, The Netherlands; Cardiology, Thorax Center, Erasmus MC, Rotterdam, The Netherlands
| | - Dan J Bowen
- Cardiology, Thorax Center, Erasmus MC, Rotterdam, The Netherlands
| | | | - Antonius F W van der Steen
- Cardiology, Thorax Center, Erasmus MC, Rotterdam, The Netherlands; Acoustical Wavefield Imaging, ImPhys, Delft University of Technology, The Netherlands
| | - Johan G Bosch
- Cardiology, Thorax Center, Erasmus MC, Rotterdam, The Netherlands
| | - Nico de Jong
- Cardiology, Thorax Center, Erasmus MC, Rotterdam, The Netherlands; Acoustical Wavefield Imaging, ImPhys, Delft University of Technology, The Netherlands
| | - Hendrik J Vos
- Cardiology, Thorax Center, Erasmus MC, Rotterdam, The Netherlands; Acoustical Wavefield Imaging, ImPhys, Delft University of Technology, The Netherlands
| |
Collapse
|
19
|
Sakalauskas A, Jurkonis R, Gelman S, Lukoševičius A, Kupčinskas L. Investigation of Radiofrequency Ultrasound-Based Fibrotic Tissue Strain Imaging Method Employing Endogenous Motion. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2019; 38:2315-2327. [PMID: 30609066 DOI: 10.1002/jum.14925] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 11/13/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
OBJECTIVES The paper presents the results of an initial clinical study, which were obtained using the strain elastography imaging method based on radio frequency ultrasound signal analysis. METHODS The technique employs endogenous motion of the liver induced by beating heart and vascular pulsatility as an excitation source of tissue microdisplacement. The potential for fibrotic tissue characterization was demonstrated using a clinical data set of radio frequency ultrasound signals (23 healthy controls, 21 subjects with hepatitis, and 16 subjects with liver cirrhosis). Parametric maps, which represent the tissue strain, were derived from the gradient of the integrated spectral coefficient parameter, and correlations with the stage of liver disease were evaluated. Average endogenous strain derived from the gradient of the integrated spectral coefficient parameter and variability (standard deviation) of the strain were evaluated in the rectangular regions of interest (sizes, 1 × 1 and 2 × 2 cm) defined by the observer. The assessment of strain was performed in different frequency subbands of endogenous motion (0-10 Hz and 10-20 Hz). RESULTS The best distinction between the groups was observed for the average strain derived from the gradient of the integrated spectral coefficient parameter: the controls, 13.30 ± 6.62; hepatitis, 7.12 ± 7.45; cirrhosis, 3.95 ± 2.44 μm/cm (region of interest, 1 × 1 cm; frequency subband 0-10 Hz), and 10.48 ± 6.02, 8.27 ± 5.41, 3.89 ± 2.07 μm/cm, respectively (2 × 2 cm, 0-10 Hz). CONCLUSION The investigated strain parameters showed statistically significant differences (P < .001) for the different stages of liver fibrosis in most of the cases and proved this method to be feasible.
Collapse
Affiliation(s)
- Andrius Sakalauskas
- Biomedical Engineering Institute, Kaunas University of Technology, Kaunas, Lithuania
| | - Rytis Jurkonis
- Biomedical Engineering Institute, Kaunas University of Technology, Kaunas, Lithuania
| | - Sigita Gelman
- Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Arūnas Lukoševičius
- Biomedical Engineering Institute, Kaunas University of Technology, Kaunas, Lithuania
| | - Limas Kupčinskas
- Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
20
|
Strachinaru M, Bosch JG, van Gils L, van Dalen BM, Schinkel AFL, van der Steen AFW, de Jong N, Michels M, Vos HJ, Geleijnse ML. Naturally Occurring Shear Waves in Healthy Volunteers and Hypertrophic Cardiomyopathy Patients. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:1977-1986. [PMID: 31079873 DOI: 10.1016/j.ultrasmedbio.2019.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 03/20/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
We apply a high frame rate (over 500 Hz) tissue Doppler method to measure the propagation velocity of naturally occurring shear waves (SW) generated by aortic and mitral valves closure. The aim of this work is to demonstrate clinical relevance. We included 45 healthy volunteers and 43 patients with hypertrophic cardiomyopathy (HCM). The mitral SW (4.68 ± 0.66 m/s) was consistently faster than the aortic (3.51 ± 0.38 m/s) in all volunteers (p < 0.0001). In HCM patients, SW velocity correlated with E/e' ratio (r = 0.346, p = 0.04 for aortic SW and r = 0.667, p = 0.04 for mitral SW). A subgroup of 20 volunteers were matched for age and gender to 20 HCM patients. In HCM, the mean velocity of 5.1 ± 0.7 m/s for the aortic SW (3.61 ± 0.46 m/s in matched volunteers, p < 0.0001) and 6.88 ± 1.12 m/s for the mitral SW(4.65 ± 0.77 m/s in matched volunteers, p < 0.0001). A threshold of 4 m/s for the aortic SW correctly classified pathologic myocardium with a sensitivity of 95% and specificity of 90%. Naturally occurring SW can be used to assess differences between normal and pathologic myocardium.
Collapse
Affiliation(s)
| | - Johan G Bosch
- Department of Biomedical Engineering, Erasmus MC, Rotterdam, The Netherlands
| | - Lennart van Gils
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - Bas M van Dalen
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | | | | | - Nico de Jong
- Department of Biomedical Engineering, Erasmus MC, Rotterdam, The Netherlands
| | - Michelle Michels
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - Hendrik J Vos
- Department of Biomedical Engineering, Erasmus MC, Rotterdam, The Netherlands
| | | |
Collapse
|
21
|
Ahmed R, Doyley MM. Distributing Synthetic Focusing Over Multiple Push-Detect Events Enhances Shear Wave Elasticity Imaging Performance. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:1170-1184. [PMID: 30990427 PMCID: PMC6701192 DOI: 10.1109/tuffc.2019.2911036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plane wave (PW) imaging is a commonly used method for tracking waves during shear wave elasticity imaging (SWEI), but its unfocused transmission beam reduces tracking accuracy and precision. Coherent compounding minimizes this problem, but SWEI's stringent frame rate requirement and the coarse pitch of most clinical transducers limit its effectiveness. Synthetic aperture imaging (SAI) is an alternate ultrasound imaging approach with a much tighter focus than PW imaging, but its lower transmission power has deterred researchers from using SAI in SWEI. Hadamard-encoded multielement SAI can overcome this limitation. However, only a limited number of subapertures (3-5) can be transmitted in a single push-detect event. We have developed methods to distribute more subapertures or more compounding angles over multiple push-detect events. In this paper, we report the results of experiments conducted on phantoms to assess SWEI's performance when using Hadamard-encoded distributed-multielement synthetic aperture (HDMSA) imaging or distributed plane wave compounding (DPWC) to track shear waves. Tracking shear waves with HDMSA improved the elastographic signal-to-noise ratio (SNRe) by 61.6%-89.5% depending on the phantom employed. Similarly, DPWC tracking improved SNRe by 56.2%-93.3% for the same group of phantoms. Compared to focused ultrasound tracking (at the focus), SNRe improved by 28.6% and 32.5% when tracking shear waves with HDMSA and DPWC, respectively. Long acquisitions could introduce decoding errors that decrease the performance when performing HDMSA tracking within the clinical setting. Nevertheless, the results of studies performed on the bicep muscle of three healthy volunteers demonstrate that for stationary organs, tracking shear waves with HDMSA yielded repeatable elastograms that offer better elastographic performance than those produced with current tracking methods.
Collapse
|
22
|
Andersen MV, Moore C, Søgaard P, Friedman D, Atwater BD, Arges K, LeFevre M, Struijk JJ, Kisslo J, Schmidt SE, von Ramm OT. Quantitative Parameters of High-Frame-Rate Strain in Patients with Echocardiographically Normal Function. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:1197-1207. [PMID: 30773380 DOI: 10.1016/j.ultrasmedbio.2018.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 10/30/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
Recently, we developed a high-frame-rate echocardiographic imaging system capable of acquiring images at rates up to 2500 per second. High imaging rates were used to quantify longitudinal strain parameters in patients with echocardiographically normal function. These data can serve as a baseline for comparing strain parameters in disease states. The derived timing data also reveal the propagation of mechanical events in the left ventricle throughout the cardiac cycle. High-frame-rate echocardiographic images were acquired from 17 patients in the apical four-chamber view using Duke University's phased array ultrasound system, T5. B-Mode images were acquired at 500-1000 images per second by employing 16:1 or 32:1 parallel processing in receive, a scan depth ≤14 cm and an 80° field of view with a 3.5-MegaHertZ (MHz), 96-element linear array. The images were analyzed using a speckle tracking algorithm tailored for high-frame-rate echocardiographic images developed at Aalborg and Duke University. Four specific mechanical events were defined using strain curves from six regions along the myocardial contour of the left ventricle. The strain curves measure the local deformation events of the myocardium and are independent of the overall cardiac motion. We observed statistically significant differences in the temporal sequence among different myocardial segments for the first mechanical event described, myocardial tissue shortening onset (p < 0.01). We found that the spatial origin of tissue shortening was located near the middle of the interventricular septum in patients with echocardiographically normal function. The quantitative parameters defined here, based on high-speed strain measurements in patients with echocardiographically normal function, can serve as a means of assessing degree of contractile abnormality in the myocardium and enable the identification of contraction propagation. The relative timing pattern among specific events with respect to the Q wave may become an important new metric in assessing cardiac function and may, in turn, improve diagnosis and prognosis.
Collapse
Affiliation(s)
| | | | - Peter Søgaard
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | | | | | | | | | | | - Joseph Kisslo
- Duke University Hospital, Durham, North Carolina, USA
| | | | | |
Collapse
|
23
|
Santos P, Petrescu AM, Pedrosa JP, Orlowska M, Komini V, Voigt JU, D'hooge J. Natural Shear Wave Imaging in the Human Heart: Normal Values, Feasibility, and Reproducibility. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:442-452. [PMID: 30442606 DOI: 10.1109/tuffc.2018.2881493] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Left ventricular myocardial stiffness could offer superior quantification of cardiac systolic and diastolic function when compared to the current diagnostic tools. Shear wave elastography in combination with acoustic radiation force has been widely proposed to noninvasively assess tissue stiffness. Interestingly, shear waves can also result from intrinsic cardiac mechanical events (e.g., closure of valves) without the need for external excitation. However, it remains unknown whether these natural shear waves always occur, how reproducible they can be detected and what the normal range of shear wave propagation speed is. The present study, therefore, aimed at establishing the feasibility of detecting shear waves created after mitral valve closure (MVC) and aortic valve closure (AVC), the variability of the measurements, and at reporting the normal values of propagation velocity. Hereto, a group of 30 healthy volunteers was scanned with high-frame rate imaging (>1000 Hz) using an experimental ultrasound system transmitting a diverging wave sequence. Tissue Doppler velocity and acceleration were used to create septal color M-modes, on which the shear waves were tracked and their velocities measured. Overall, the methodology was capable of detecting the transient vibrations that spread throughout the intraventricular septum in response to the closure of the cardiac valves in 92% of the recordings. Reference velocities of 3.2±0.6 m/s at MVC and 3.5±0.6 m/s at AVC were obtained. Moreover, in order to show the diagnostic potential of this approach, two patients (one with cardiac amyloidosis and one undergoing a dobutamine stress echocardiography) were scanned with the same protocol and showed markedly higher propagation speeds: the former presented velocities of 6.6 and 5.6 m/s; the latter revealed normal propagation velocities at baseline, and largely increased during the dobutamine infusion (>15 m/s). Both cases showed values consistent with the expected changes in stiffness and cardiac loading conditions.
Collapse
|
24
|
Racedo J, Urban MW. Evaluation of Reconstruction Parameters for 2-D Comb-Push Ultrasound Shear Wave Elastography. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:254-263. [PMID: 30507530 PMCID: PMC6375804 DOI: 10.1109/tuffc.2018.2884348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Shear wave elastography (SWE) is a noninvasive ultrasound imaging modality used in the assessment of the mechanical properties of tissues such as the liver, kidney, skeletal muscle, thyroid, and the breast. Among the methods used to perform SWE is the comb-push ultrasound shear elastography method. This method uses multiple focused ultrasound beams to generate push beams with acoustic radiation force. Applying these push beams generates propagating shear waves. The propagation motion is measured with ultrafast ultrasound imaging. The shear wave motion data are directionally filtered, and a 2-D shear wave velocity (SWV) algorithm is applied to create group velocity maps. This algorithm uses a moving window and a specified patch for performing cross-correlations of time-domain signals. We performed a parametric study of how the choice of the patch and window size affected the reconstruction of the SWV in homogeneous and inclusion phantoms. We quantified the mean velocity and coefficient of variation in the homogeneous phantoms. We measured the contrast-to-noise ratio and bias in the inclusion phantoms. In each of these cases, we found that particular combinations of the patch and window provided optimal values of these evaluation metrics for the phantoms tested. This study provides a basis to construct algorithms to produce optimal SWV reconstructions for various clinical applications.
Collapse
Affiliation(s)
- Jorge Racedo
- Department of Biomedical Engineering and Department of Physics, Universidad de los Andes, Bogota D.C., 111711 Colombia ( )
| | - Matthew W. Urban
- Department of Radiology, Mayo Clinic, Rochester, MN 55905 USA and also with the Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905 USA
| |
Collapse
|
25
|
Nenadic IZ, Urban MW, Pislaru C, Escobar D, Vasconcelos L, Greenleaf JF. In Vivo Open- and Closed-chest Measurements of Left-Ventricular Myocardial Viscoelasticity using Lamb wave Dispersion Ultrasound Vibrometry (LDUV): A Feasibility Study. Biomed Phys Eng Express 2018; 4. [PMID: 30455983 DOI: 10.1088/2057-1976/aabe41] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Diastolic dysfunction causes close to half of congestive heart failures and is associated with increased stiffness in left-ventricular myocardium. A clinical tool capable of measuring viscoelasticity of the myocardium could be beneficial in clinical settings. We used Lamb wave Dispersion Ultrasound Vibrometry (LDUV) for assessing the feasibility of making in vivo non-invasive measurements of myocardial elasticity and viscosity in pigs. In vivo open-chest measurements of myocardial elasticity and viscosity obtained using a Fourier space based analysis of Lamb wave dispersion are reported. The approach was used to perform ECG-gated transthoracic in vivo measurements of group velocity, elasticity and viscosity throughout a single heart cycle. Group velocity, elasticity and viscosity in the frequency range 50-500 Hz increased from diastole to systole, consistent with contraction and relaxation of the myocardium. Systolic group velocity, elasticity and viscosity were 5.0 m/s, 19.1 kPa, 6.8 Pa·s, respectively. In diastole, the measured group velocity, elasticity and viscosity were 1.5 m/s, 5.1 kPa and 3.2 Pa·s, respectively.
Collapse
Affiliation(s)
- Ivan Z Nenadic
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 1 Street SW, Rochester, MN, 55905, USA
| | - Matthew W Urban
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 1 Street SW, Rochester, MN, 55905, USA.,Department of Radiology, Mayo Clinic, 200 1 Street SW, Rochester, MN, 55905, USA
| | - Cristina Pislaru
- Division of Cardiovascular Diseases, Mayo Clinic, 200 1 Street SW, Rochester, MN, 55905, USA
| | - Daniel Escobar
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 1 Street SW, Rochester, MN, 55905, USA
| | - Luiz Vasconcelos
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 1 Street SW, Rochester, MN, 55905, USA
| | - James F Greenleaf
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 1 Street SW, Rochester, MN, 55905, USA
| |
Collapse
|
26
|
Urban M. Current and Future Clinical Applications of Elasticity Imaging Techniques. ULTRASOUND ELASTOGRAPHY FOR BIOMEDICAL APPLICATIONS AND MEDICINE 2018:471-491. [DOI: 10.1002/9781119021520.ch30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
27
|
Urban MW. Production of acoustic radiation force using ultrasound: methods and applications. Expert Rev Med Devices 2018; 15:819-834. [PMID: 30350736 DOI: 10.1080/17434440.2018.1538782] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Acoustic radiation force (ARF) is used in many biomedical applications. The transfer of momentum in acoustic waves can be used in a multitude of ways to perturb tissue and manipulate cells. AREAS COVERED This review will briefly cover the acoustic theory related to ARF, particularly that related to application in tissues. The use of ARF in measurement of mechanical properties will be treated in detail with emphasis on the spatial and temporal modulation of the ARF. Additional topics covered will be the manipulation of particles with ARF, correction of phase aberration with ARF, modulation of cellular behavior with ARF, and bioeffects related to ARF use. EXPERT COMMENTARY The use of ARF can be tailored to specific applications for measurements of mechanical properties or correction of focusing for ultrasound beams. Additionally, noncontact manipulation of particles and cells with ARF enables a wide array of applications for tissue engineering and biosensing.
Collapse
Affiliation(s)
- Matthew W Urban
- a Department of Radiology , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
28
|
Zhao F, Luo J. Diverging wave compounding with spatio-temporal encoding using orthogonal Golay pairs for high frame rate imaging. ULTRASONICS 2018; 89:155-165. [PMID: 29807304 DOI: 10.1016/j.ultras.2018.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 04/06/2018] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
Golay coded excitation for diverging wave compounding (DWC) has been demonstrated to increase the signal-to-noise ratio (SNR) and contrast for high frame rate cardiac imaging. However, the complementary codes need to be transmitted in two consecutive firings for decoding, which reduces the frame rate by 2 folds. This paper proposes an orthogonal Golay pairs coded (OGPs-coded) DWC sequence to overcome this problem, which implements spatio-temporal encoding for DWC. Two diverging waves (DWs) at different steering angles coded by an orthogonal Golay pair are transmitted simultaneously, thus compensating the frame rate reduction caused by transmissions of complementary codes. The two DWs can be separated based on the orthogonality of Golay pairs. To test the feasibility of the proposed sequence, we performed simulations of point targets and tissue phantoms in both static and moving states. Compared with non-coded DWC at the same frame rate, OGPs-coded DWC obtains comparable resolution, SNR gains of 7.5-10 dB and contrast gains of 3-5 dB. The OGPs-coded DWC sequence was also tested experimentally on a tissue-mimicking phantom. Compared with non-coded DWC, OGPs-coded DWC achieves improvements in the SNR (3-6 dB) and contrast (1-2 dB). Preliminary in vivo results show brighter myocardium and larger penetration depth with the proposed method. The proposed OGPs-coded DWC sequence has potential for high frame rate and high quality cardiac imaging.
Collapse
Affiliation(s)
- Feifei Zhao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jianwen Luo
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
29
|
Kakkad V, LeFevre M, Choudhury KR, Kisslo J, Trahey GE. Effect of Transmit Beamforming on Clutter Levels in Transthoracic Echocardiography. ULTRASONIC IMAGING 2018; 40:215-231. [PMID: 29683052 PMCID: PMC6090539 DOI: 10.1177/0161734618770359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Transmit beamforming has a strong impact on several factors that govern image quality, field-of-view, and frame-rate in ultrasound imaging. For cardiac applications, the visualization of fine structures and the ability to track their motion is equally important. Consequently, beamforming choices for echocardiography aim to optimize these trade-offs. Acoustic clutter can dramatically impact image quality and degrade the diagnostic value of cardiac ultrasound imaging. Clutter levels, however, are closely tied to the choice of beamforming configuration. This study aims to quantify the impact of transmit beamforming on clutter levels under in vivo conditions. The performance of focused as well as plane wave transmit configurations in fundamental and harmonic modes is evaluated under matched conditions. Contrast between the cardiac chambers and the interventricular septum is used as a surrogate for the level of clutter in a given imaging scenario. Under in vivo conditions, contrast was found to improve incrementally across the four beamforming configurations in the following order: fundamental-plane, fundamental-focused, harmonic-plane, and harmonic-focused. Using the fundamental-focused configuration as a reference, the harmonic-plane and harmonic-focused cases showed improvements in median contrast of 2.97 dB and 6.1 dB, respectively, while the fundamental-plane case showed a contrast deterioration of 1.23 dB. Contrast was also found to vary systematically as a function of imaging depth. Median contrast for the right ventricle (shallow chamber) was measured to be 2.96 dB lower than that in the left ventricle (deep chamber).
Collapse
Affiliation(s)
- Vaibhav Kakkad
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Melissa LeFevre
- Department of Cardiology, Duke University Hospital, Durham, North Carolina, USA
| | | | - Joseph Kisslo
- Department of Cardiology, Duke University Hospital, Durham, North Carolina, USA
| | - Gregg E. Trahey
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
- Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
30
|
Caenen A, Pernot M, Peirlinck M, Mertens L, Swillens A, Segers P. An in silico framework to analyze the anisotropic shear wave mechanics in cardiac shear wave elastography. Phys Med Biol 2018; 63:075005. [PMID: 29451120 DOI: 10.1088/1361-6560/aaaffe] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Shear wave elastography (SWE) is a potential tool to non-invasively assess cardiac muscle stiffness. This study focused on the effect of the orthotropic material properties and mechanical loading on the performance of cardiac SWE, as it is known that these factors contribute to complex 3D anisotropic shear wave propagation. To investigate the specific impact of these complexities, we constructed a finite element model with an orthotropic material law subjected to different uniaxial stretches to simulate SWE in the stressed cardiac wall. Group and phase speed were analyzed in function of tissue thickness and virtual probe rotation angle. Tissue stretching increased the group and phase speed of the simulated shear wave, especially in the direction of the muscle fiber. As the model provided access to the true fiber orientation and material properties, we assessed the accuracy of two fiber orientation extraction methods based on SWE. We found a higher accuracy (but lower robustness) when extracting fiber orientations based on the location of maximal shear wave speed instead of the angle of the major axis of the ellipsoidal group speed surface. Both methods had a comparable performance for the center region of the cardiac wall, and performed less well towards the edges. Lastly, we also assessed the (theoretical) impact of pathology on shear wave physics and characterization in the model. It was found that SWE was able to detect changes in fiber orientation and material characteristics, potentially associated with cardiac pathologies such as myocardial fibrosis. Furthermore, the model showed clearly altered shear wave patterns for the fibrotic myocardium compared to the healthy myocardium, which forms an initial but promising outcome of this modeling study.
Collapse
Affiliation(s)
- Annette Caenen
- IBiTech-bioMMeda, Ghent University, Ghent, Belgium. Author to whom any correspondence should be addressed
| | | | | | | | | | | |
Collapse
|
31
|
Deng Y, Palmeri ML, Rouze NC, Haystead CM, Nightingale KR. Evaluating the Benefit of Elevated Acoustic Output in Harmonic Motion Estimation in Ultrasonic Shear Wave Elasticity Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:303-310. [PMID: 29169880 PMCID: PMC5743577 DOI: 10.1016/j.ultrasmedbio.2017.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 05/03/2023]
Abstract
Harmonic imaging techniques have been applied in ultrasonic elasticity imaging to obtain higher-quality tissue motion tracking data. However, harmonic tracking can be signal-to-noise ratio and penetration depth limited during clinical imaging, resulting in decreased yield of successful shear wave speed measurements. A logical approach is to increase the source pressure, but the in situ pressures used in diagnostic ultrasound have been subject to a de facto upper limit based on the Food and Drug Administration guideline for the mechanical index (MI <1.9). A recent American Institute of Ultrasound in Medicine report concluded that an in situ MI up to 4.0 could be warranted without concern for increased risk of cavitation in non-fetal tissues without gas bodies if there were a concurrent clinical benefit. This work evaluates the impact of using an elevated MI in harmonic motion tracking for hepatic shear wave elasticity imaging. The studies indicate that high-MI harmonic tracking increased shear wave speed estimation yield by 27% at a focal depth of 5 cm, with larger yield increase in more difficult-to-image patients. High-MI tracking improved harmonic tracking data quality by increasing the signal-to-noise ratio and decreasing jitter in the tissue motion data. We conclude that there is clinical benefit to use of elevated acoustic output in shear wave tracking, particularly in difficult-to-image patients.
Collapse
Affiliation(s)
- Yufeng Deng
- Department of Biomedical Engineering, Duke University, Durham, North Carolina.
| | - Mark L Palmeri
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Ned C Rouze
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Clare M Haystead
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | | |
Collapse
|
32
|
Pislaru C, Alashry MM, Thaden JJ, Pellikka PA, Enriquez-Sarano M, Pislaru SV. Intrinsic Wave Propagation of Myocardial Stretch, A New Tool to Evaluate Myocardial Stiffness: A Pilot Study in Patients with Aortic Stenosis and Mitral Regurgitation. J Am Soc Echocardiogr 2017; 30:1070-1080. [DOI: 10.1016/j.echo.2017.06.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Indexed: 12/13/2022]
|
33
|
Strachinaru M, Bosch JG, van Dalen BM, van Gils L, van der Steen AFW, de Jong N, Geleijnse ML, Vos HJ. Cardiac Shear Wave Elastography Using a Clinical Ultrasound System. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:1596-1606. [PMID: 28545859 DOI: 10.1016/j.ultrasmedbio.2017.04.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 03/08/2017] [Accepted: 04/14/2017] [Indexed: 06/07/2023]
Abstract
The propagation velocity of shear waves relates to tissue stiffness. We prove that a regular clinical cardiac ultrasound system can determine shear wave velocity with a conventional unmodified tissue Doppler imaging (TDI) application. The investigation was performed on five tissue phantoms with different stiffness using a research platform capable of inducing and tracking shear waves and a clinical cardiac system (Philips iE33, achieving frame rates of 400-700 Hz in TDI by tuning the normal system settings). We also tested the technique in vivo on a normal individual and on typical pathologies modifying the consistency of the left ventricular wall. The research platform scanner was used as reference. Shear wave velocities measured with TDI on the clinical cardiac system were very close to those measured by the research platform scanner. The mean difference between the clinical and research systems was 0.18 ± 0.22 m/s, and the limits of agreement, from -0.27 to +0.63 m/s. In vivo, the velocity of the wave induced by aortic valve closure in the interventricular septum increased in patients with expected increased wall stiffness.
Collapse
Affiliation(s)
- Mihai Strachinaru
- Department of Cardiology, Erasmus MC Rotterdam, Rotterdam, The Netherlands.
| | - Johan G Bosch
- Department of Biomedical Engineering, Erasmus MC Rotterdam, Rotterdam, The Netherlands
| | - Bas M van Dalen
- Department of Cardiology, Erasmus MC Rotterdam, Rotterdam, The Netherlands
| | - Lennart van Gils
- Department of Cardiology, Erasmus MC Rotterdam, Rotterdam, The Netherlands
| | - Antonius F W van der Steen
- Department of Biomedical Engineering, Erasmus MC Rotterdam, Rotterdam, The Netherlands; Department of Acoustical Wavefield Imaging, Delft University of Technology, Delft, The Netherlands
| | - Nico de Jong
- Department of Biomedical Engineering, Erasmus MC Rotterdam, Rotterdam, The Netherlands; Department of Acoustical Wavefield Imaging, Delft University of Technology, Delft, The Netherlands
| | - Marcel L Geleijnse
- Department of Cardiology, Erasmus MC Rotterdam, Rotterdam, The Netherlands
| | - Hendrik J Vos
- Department of Biomedical Engineering, Erasmus MC Rotterdam, Rotterdam, The Netherlands; Department of Acoustical Wavefield Imaging, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
34
|
Gong P, Song P, Chen S. Delay-Encoded Harmonic Imaging (DE-HI) in Multiplane-Wave Compounding. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:952-959. [PMID: 27992329 DOI: 10.1109/tmi.2016.2638639] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The development of ultrafast ultrasound imaging brings great opportunities to improve imaging technologies such as shear wave elastography and ultrafast Doppler imaging. In ultrafast imaging, several tilted plane or diverging wave images are coherently combined to form a compounded image, leading to trade-offs among image signal-to-noise ratio (SNR), resolution, and post-compounded frame rate. Multiplane wave (MW) imaging is proposed to solve this trade-off by encoding multiple plane waves with Hadamard matrix during one transmission event (i.e. pulse-echo event), to improve image SNR without sacrificing the resolution or frame rate. However, it suffers from stronger reverberation artifacts in B-mode images compared to standard plane wave compounding due to longer transmitted pulses. If harmonic imaging can be combined with MW imaging, the reverberation artifacts and other clutter noises such as sidelobes and multipath scattering clutters should be suppressed. The challenge, however, is that the Hadamard codes used in MW imaging cannot encode the 2nd harmonic component by inversing the pulse polarity. In this paper, we propose a delay-encoded harmonic imaging (DE-HI) technique to encode the 2nd harmonic with a one quarter period delay calculated at the transmit center frequency, rather than reversing the pulse polarity during multiplane wave emissions. Received DE-HI signals can then be decoded in the frequency domain to recover the signals as in single plane wave emissions, but mainly with improved SNR at the 2nd harmonic component instead of the fundamental component. DE-HI was tested experimentally with a point target, a B-mode imaging phantom, and in-vivo human liver imaging. Improvements in image contrast-to-noise ratio (CNR), spatial resolution, and lesion-signal-to-noise ratio ( l SNR) have been achieved compared to standard plane wave compounding, MW imaging, and standard harmonic imaging (maximal improvement of 116% on CNR and 115% on l SNR as compared to standard HI around 55 mm depth in the B-mode imaging phantom study). The potential high frame rate and the stability of encoding and decoding processes of DE-HI were also demonstrated, which made DE-HI promising for a wide spectrum of imaging applications.
Collapse
|
35
|
Vos HJ, van Dalen BM, Heinonen I, Bosch JG, Sorop O, Duncker DJ, van der Steen AFW, de Jong N. Cardiac Shear Wave Velocity Detection in the Porcine Heart. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:753-764. [PMID: 28065540 DOI: 10.1016/j.ultrasmedbio.2016.11.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 11/08/2016] [Accepted: 11/19/2016] [Indexed: 06/06/2023]
Abstract
Cardiac muscle stiffness can potentially be estimated non-invasively with shear wave elastography. Shear waves are present on the septal wall after mitral and aortic valve closure, thus providing an opportunity to assess stiffness in early systole and early diastole. We report on the shear wave recordings of 22 minipigs with high-frame-rate echocardiography. The waves were captured with 4000 frames/s using a programmable commercial ultrasound machine. The wave pattern was extracted from the data through a local tissue velocity estimator based on one-lag autocorrelation. The wave propagation velocity was determined with a normalized Radon transform, resulting in median wave propagation velocities of 2.2 m/s after mitral valve closure and 4.2 m/s after aortic valve closure. Overall the velocities ranged between 0.8 and 6.3 m/s in a 95% confidence interval. By dispersion analysis we found that the propagation velocity only mildly increased with shear wave frequency.
Collapse
Affiliation(s)
- Hendrik J Vos
- Biomedical Engineering, Erasmus MC, Rotterdam, The Netherlands; Acoustical Wavefield Imaging, Delft University of Technology, Delft, The Netherlands.
| | | | - Ilkka Heinonen
- Experimental Cardiology, Erasmus MC, Rotterdam, The Netherlands; University of Turku and Turku University Hospital, Turku, Finland; Department of Clinical Physiology and Nuclear Medicine, University of Turku and Turku University Hospital, Turku, Finland
| | - Johan G Bosch
- Biomedical Engineering, Erasmus MC, Rotterdam, The Netherlands
| | - Oana Sorop
- Experimental Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - Dirk J Duncker
- Experimental Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - Antonius F W van der Steen
- Biomedical Engineering, Erasmus MC, Rotterdam, The Netherlands; Acoustical Wavefield Imaging, Delft University of Technology, Delft, The Netherlands; Netherlands Heart Institute, Utrecht, The Netherlands; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Nico de Jong
- Biomedical Engineering, Erasmus MC, Rotterdam, The Netherlands; Acoustical Wavefield Imaging, Delft University of Technology, Delft, The Netherlands; Department of Clinical Physiology and Nuclear Medicine, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
36
|
He XN, Diao XF, Lin HM, Zhang XY, Shen YY, Chen SP, Qin ZD, Chen X. Improved shear wave motion detection using coded excitation for transient elastography. Sci Rep 2017; 7:44483. [PMID: 28295027 PMCID: PMC5353590 DOI: 10.1038/srep44483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 02/09/2017] [Indexed: 12/24/2022] Open
Abstract
Transient elastography (TE) is well adapted for use in studying liver elasticity. However, because the shear wave motion signal is extracted from the ultrasound signal, the weak ultrasound signal can significantly deteriorate the shear wave motion tracking process and make it challenging to detect the shear wave motion in a severe noise environment, such as within deep tissues and within obese patients. This paper, therefore, investigated the feasibility of implementing coded excitation in TE for shear wave detection, with the hypothesis that coded ultrasound signals can provide robustness to weak ultrasound signals compared with traditional short pulse. The Barker 7, Barker 13, and short pulse were used for detecting the shear wave in the TE application. Two phantom experiments and one in vitro liver experiment were done to explore the performances of the coded excitation in TE measurement. The results show that both coded pulses outperform the short pulse by providing superior shear wave signal-to-noise ratios (SNR), robust shear wave speed measurement, and higher penetration intensity. In conclusion, this study proved the feasibility of applying coded excitation in shear wave detection for TE application. The proposed method has the potential to facilitate robust shear elasticity measurements of tissue.
Collapse
Affiliation(s)
- Xiao-Nian He
- School of Biomedical Engineering, Shenzhen University, Shenzhen, China.,National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen, China
| | - Xian-Fen Diao
- School of Biomedical Engineering, Shenzhen University, Shenzhen, China.,National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen, China
| | - Hao-Ming Lin
- School of Biomedical Engineering, Shenzhen University, Shenzhen, China.,National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen, China
| | - Xin-Yu Zhang
- School of Biomedical Engineering, Shenzhen University, Shenzhen, China.,National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen, China
| | - Yuan-Yuan Shen
- School of Biomedical Engineering, Shenzhen University, Shenzhen, China.,National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen, China
| | - Si-Ping Chen
- School of Biomedical Engineering, Shenzhen University, Shenzhen, China.,National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen, China
| | - Zheng-Di Qin
- School of Biomedical Engineering, Shenzhen University, Shenzhen, China.,National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen, China
| | - Xin Chen
- School of Biomedical Engineering, Shenzhen University, Shenzhen, China.,National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen, China
| |
Collapse
|
37
|
Arani A, Arunachalam SP, Chang ICY, Baffour F, Rossman PJ, Glaser KJ, Trzasko JD, McGee KP, Manduca A, Grogan M, Dispenzieri A, Ehman RL, Araoz PA. Cardiac MR elastography for quantitative assessment of elevated myocardial stiffness in cardiac amyloidosis. J Magn Reson Imaging 2017; 46:1361-1367. [PMID: 28236336 PMCID: PMC5572539 DOI: 10.1002/jmri.25678] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/06/2017] [Indexed: 12/13/2022] Open
Abstract
Purpose To evaluate if cardiac magnetic resonance elastography (MRE) can measure increased stiffness in patients with cardiac amyloidosis. Myocardial tissue stiffness plays an important role in cardiac function. A noninvasive quantitative imaging technique capable of measuring myocardial stiffness could aid in disease diagnosis, therapy monitoring, and disease prognostic strategies. We recently developed a high‐frequency cardiac MRE technique capable of making noninvasive stiffness measurements. Materials and Methods In all, 16 volunteers and 22 patients with cardiac amyloidosis were enrolled in this study after Institutional Review Board approval and obtaining formal written consent. All subjects were imaged head‐first in the supine position in a 1.5T closed‐bore MR imager. 3D MRE was performed using 5 mm isotropic resolution oblique short‐axis slices and a vibration frequency of 140 Hz to obtain global quantitative in vivo left ventricular stiffness measurements. The median stiffness was compared between the two cohorts. An octahedral shear strain signal‐to‐noise ratio (OSS‐SNR) threshold of 1.17 was used to exclude exams with insufficient motion amplitude. Results Five volunteers and six patients had to be excluded from the study because they fell below the 1.17 OSS‐SNR threshold. The myocardial stiffness of cardiac amyloid patients (median: 11.4 kPa, min: 9.2, max: 15.7) was significantly higher (P = 0.0008) than normal controls (median: 8.2 kPa, min: 7.2, max: 11.8). Conclusion This study demonstrates the feasibility of 3D high‐frequency cardiac MRE as a contrast‐agent‐free diagnostic imaging technique for cardiac amyloidosis. Level of Evidence: 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2017;46:1361–1367.
Collapse
Affiliation(s)
- Arvin Arani
- Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Ian C Y Chang
- Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | | | | | | - Martha Grogan
- Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Angela Dispenzieri
- Medicine: Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA.,Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | |
Collapse
|
38
|
Caenen A, Pernot M, Shcherbakova DA, Mertens L, Kersemans M, Segers P, Swillens A. Investigating Shear Wave Physics in a Generic Pediatric Left Ventricular Model via In Vitro Experiments and Finite Element Simulations. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:349-361. [PMID: 27845660 DOI: 10.1109/tuffc.2016.2627142] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Shear wave elastography (SWE) is a potentially valuable tool to noninvasively assess ventricular function in children with cardiac disorders, which could help in the early detection of abnormalities in muscle characteristics. Initial experiments demonstrated the potential of this technique in measuring ventricular stiffness; however, its performance remains to be validated as complicated shear wave (SW) propagation characteristics are expected to arise due to the complex non-homogenous structure of the myocardium. In this work, we investigated the (i) accuracy of different shear modulus estimation techniques (time-of-flight (TOF) method and phase velocity analysis) across myocardial thickness and (ii) effect of the ventricular geometry, surroundings, acoustic loading, and material viscoelasticity on SW physics. A generic pediatric (10-15-year old) left ventricular model was studied numerically and experimentally. For the SWE experiments, a polyvinylalcohol replicate of the cardiac geometry was fabricated and SW acquisitions were performed on different ventricular areas using varying probe orientations. Additionally, the phantom's stiffness was obtained via mechanical tests. The results of the SWE experiments revealed the following trends for stiffness estimation across the phantom's thickness: a slight stiffness overestimation for phase speed analysis and a clear stiffness underestimation for the TOF method for all acquisitions. The computational model provided valuable 3-D insights in the physical factors influencing SW patterns, especially the surroundings (water), interface force, and viscoelasticity. In conclusion, this paper presents a validation study of two commonly used shear modulus estimators for different ventricular locations and the essential role of SW modeling in understanding SW physics in the pediatric myocardium.
Collapse
|
39
|
Deng Y, Rouze NC, Palmeri ML, Nightingale KR. Ultrasonic Shear Wave Elasticity Imaging Sequencing and Data Processing Using a Verasonics Research Scanner. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:164-176. [PMID: 28092508 PMCID: PMC5266610 DOI: 10.1109/tuffc.2016.2614944] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Ultrasound elasticity imaging has been developed over the last decade to estimate tissue stiffness. Shear wave elasticity imaging (SWEI) quantifies tissue stiffness by measuring the speed of propagating shear waves following acoustic radiation force excitation. This paper presents the sequencing and data processing protocols of SWEI using a Verasonics system. The selection of the sequence parameters in a Verasonics programming script is discussed in detail. The data processing pipeline to calculate group shear wave speed (SWS), including tissue motion estimation, data filtering, and SWS estimation, is demonstrated. In addition, the procedures for calibration of beam position, scanner timing, and transducer face heating are provided to avoid SWS measurement bias and transducer damage.
Collapse
|
40
|
Palmeri ML, Qiang B, Chen S, Urban MW. Guidelines for Finite-Element Modeling of Acoustic Radiation Force-Induced Shear Wave Propagation in Tissue-Mimicking Media. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:78-92. [PMID: 28026760 PMCID: PMC5310216 DOI: 10.1109/tuffc.2016.2641299] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Ultrasound shear wave elastography is emerging as an important imaging modality for evaluating tissue material properties. In its practice, some systematic biases have been associated with ultrasound frequencies, focal depths and configuration, and transducer types (linear versus curvilinear), along with displacement estimation and shear wave speed estimation algorithms. Added to that, soft tissues are not purely elastic, so shear waves will travel at different speeds depending on their spectral content, which can be modulated by the acoustic radiation force (ARF) excitation focusing, duration, and the frequency-dependent stiffness of the tissue. To understand how these different acquisition and material property parameters may affect the measurements of shear wave velocity, the simulations of the propagation of shear waves generated by ARF excitations in viscoelastic media are a very important tool. This paper serves to provide an in-depth description of how these simulations are performed. The general scheme is broken into three components: 1) simulation of the 3-D ARF push beam; 2) applying that force distribution to a finite-element model; and 3) extraction of the motion data for post-processing. All three components will be described in detail and combined to create a simulation platform that is powerful for developing and testing algorithms for academic and industrial researchers involved in making quantitative shear-wave-based measurements of tissue material properties.
Collapse
|
41
|
Widman E, Maksuti E, Amador C, Urban MW, Caidahl K, Larsson M. Shear Wave Elastography Quantifies Stiffness in Ex Vivo Porcine Artery with Stiffened Arterial Region. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:2423-2435. [PMID: 27425151 DOI: 10.1016/j.ultrasmedbio.2016.05.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/17/2016] [Accepted: 05/31/2016] [Indexed: 06/06/2023]
Abstract
Five small porcine aortas were used as a human carotid artery model, and their stiffness was estimated using shear wave elastography (SWE) in the arterial wall and a stiffened artery region mimicking a stiff plaque. To optimize the SWE settings, shear wave bandwidth was measured with respect to acoustic radiation force push length and number of compounded angles used for motion detection with plane wave imaging. The mean arterial wall and simulated plaque shear moduli varied from 41 ± 5 to 97 ± 10 kPa and from 86 ± 13 to 174 ± 35 kPa, respectively, over the pressure range 20-120 mmHg. The results revealed that a minimum bandwidth of approximately 1500 Hz is necessary for consistent shear modulus estimates, and a high pulse repetition frequency using no image compounding is more important than a lower pulse repetition frequency with better image quality when estimating arterial wall and plaque stiffness using SWE.
Collapse
Affiliation(s)
- Erik Widman
- Department of Medical Engineering, School of Technology and Health, KTH Royal Institute of Technology, Stockholm, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Sweden.
| | - Elira Maksuti
- Department of Medical Engineering, School of Technology and Health, KTH Royal Institute of Technology, Stockholm, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Sweden
| | - Carolina Amador
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Matthew W Urban
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA; Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Kenneth Caidahl
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Sweden
| | - Matilda Larsson
- Department of Medical Engineering, School of Technology and Health, KTH Royal Institute of Technology, Stockholm, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
42
|
Vejdani-Jahromi M, Nagle M, Jiang Y, Trahey GE, Wolf PD. A Comparison of Acoustic Radiation Force-Derived Indices of Cardiac Function in the Langendorff Perfused Rabbit Heart. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2016; 63:1288-95. [PMID: 27008665 PMCID: PMC5068575 DOI: 10.1109/tuffc.2016.2543026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In the past decade, there has been an increased interest in characterizing cardiac tissue mechanics utilizing newly developed ultrasound-based elastography techniques. These methods excite the tissue mechanically and track the response. Two frequently used methods, acoustic radiation force impulse (ARFI) and shear-wave elasticity imaging (SWEI), have been considered qualitative and quantitative techniques providing relative and absolute measures of tissue stiffness, respectively. Depending on imaging conditions, it is desirable to identify indices of cardiac function that could be measured by ARFI and SWEI and to characterize the relationship between the measures. In this study, we have compared two indices (i.e., relaxation time constant used for diastolic dysfunction assessment and systolic/diastolic stiffness ratio) measured nearly simultaneously by M-mode ARFI and SWEI techniques. We additionally correlated ARFI-measured inverse displacements with SWEI-measured values of the shear modulus of stiffness. For the eight animals studied, the average relaxation time constant ( τ) measured by ARFI and SWEI were ([Formula: see text]) and ([Formula: see text]), respectively ([Formula: see text]). Average systolic/diastolic stiffness ratios for ARFI and SWEI measurements were 6.01±1.37 and 7.12±3.24, respectively ([Formula: see text]). Shear modulus of stiffness (SWEI) was linearly related to inverse displacement values (ARFI) with a 95% CI for the slope of 0.010-0.011 [Formula: see text] ( R(2)=0.73). In conclusion, the relaxation time constant and the systolic/diastolic stiffness ratio were calculated with good agreement between the ARFI- and SWEI-derived measurements. ARFI relative and SWEI absolute stiffness measurements were linearly related with varying slopes based on imaging conditions and subject tissue properties.
Collapse
|
43
|
Song P, Bi X, Mellema DC, Manduca A, Urban MW, Pellikka PA, Chen S, Greenleaf JF. Pediatric Cardiac Shear Wave Elastography for Quantitative Assessment of Myocardial Stiffness: A Pilot Study in Healthy Controls. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:1719-1729. [PMID: 27140522 DOI: 10.1016/j.ultrasmedbio.2016.03.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/06/2016] [Accepted: 03/14/2016] [Indexed: 06/05/2023]
Abstract
The long-term goal of this study is to assess chemotherapy-induced cardiotoxicity for pediatric cancer patients using cardiac ultrasound shear wave (SW) elastography. This pilot study aimed to systematically investigate the feasibility of using cardiac SW elastography in children and provide myocardial stiffness control data for cancer patients. Twenty healthy volunteers (ages 5-18) were recruited. A novel cardiac SW elastography sequence with pulse-inversion harmonic imaging and time-aligned sequential tracking was developed for this study. Cardiac SW elastography produces and detects transient SWs propagating in the myocardium in late-diastole, which can be used to quantify myocardial stiffness. The parasternal long-axis (L-A) and short-axis (S-A) views of the interventricular septum (IVS) were feasible for pediatric cardiac SW elastography. The L-A and S-A views of the basal and mid IVS provided better success rates than those of the apical IVS. Success rates decreased with increased body mass index (BMI), but did not differ with age or gender. Two-dimensional SW speed measurements were 1.26, 1.22, 1.71 and 1.67 m/s for L-A base, L-A mid, S-A base and S-A mid IVS, respectively. All S-A SW speed values were significantly higher (p < 0.01) than L-A values due to myocardial anisotropy. No SW speed difference was observed for different ages and genders. This pilot study demonstrated, for the first time, the feasibility of using cardiac SW elastography to measure quantitative myocardial stiffness in children, and established control SW speed values for using SW elastography to assess chemo-induced cardiotoxicity for pediatric cancer patients. The results showed that the myocardial anisotropy needs to be accounted for when comparing SW speed from different imaging axes.
Collapse
Affiliation(s)
- Pengfei Song
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Xiaojun Bi
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA; Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Daniel C Mellema
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Armando Manduca
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Matthew W Urban
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Patricia A Pellikka
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Shigao Chen
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - James F Greenleaf
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.
| |
Collapse
|
44
|
Song P, Bi X, Mellema DC, Manduca A, Urban MW, Greenleaf JF, Chen S. Quantitative Assessment of Left Ventricular Diastolic Stiffness Using Cardiac Shear Wave Elastography: A Pilot Study. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2016; 35:1419-1427. [PMID: 27208201 DOI: 10.7863/ultra.15.08053] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/07/2015] [Indexed: 06/05/2023]
Abstract
OBJECTIVES The purpose of this study was to systematically investigate the feasible echocardiographic views for human transthoracic cardiac shear wave elastography (SWE) and the impact of myocardial anisotropy on myocardial stiffness measurements. METHODS A novel cardiac SWE technique using pulse inversion harmonic imaging and time-aligned sequential tracking was developed for this study. The technique can measure the quantitative local myocardial stiffness noninvasively. Ten healthy volunteers were recruited and scanned by the proposed technique 3 times on 3 different days. RESULTS Seven combinations of echocardiographic views and left ventricular (LV) segments were found to be feasible for LV diastolic stiffness measurements: basal interventricular septum under parasternal short- and long-axis views; mid interventricular septum under parasternal short- and long-axis views; anterior LV free wall under parasternal short- and long-axis views; and posterior LV free wall under a parasternal short-axis view. Statistical analyses showed good repeatability of LV diastolic stiffness measurements among 3 different days from 70% of the participants for the basal interventricular septum and posterior LV free wall short-axis views. On the same LV segment, the mean diastolic shear wave speed measurements from the short-axis view were statistically different from the long-axis measurements: 1.82 versus 1.29 m/s for the basal interventricular septum; 1.81 versus 1.45 m/s for mid interventricular septum; and 1.96 versus 1.77 m/s for the anterior LV free wall, indicating that myocardial anisotropy plays a substantial role in LV diastolic stiffness measurements. CONCLUSIONS These results establish the preliminary normal range of LV diastolic stiffness under different scan views and provide important guidance for future clinical studies using cardiac SWE.
Collapse
Affiliation(s)
- Pengfei Song
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota USA
| | - Xiaojun Bi
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota USA
| | - Daniel C Mellema
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota USA
| | - Armando Manduca
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota USA
| | - Matthew W Urban
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota USA
| | - James F Greenleaf
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota USA
| | - Shigao Chen
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota USA
| |
Collapse
|
45
|
Chatelin S, Charpentier I, Corbin N, Meylheuc L, Vappou J. An automatic differentiation-based gradient method for inversion of the shear wave equation in magnetic resonance elastography: specific application in fibrous soft tissues. Phys Med Biol 2016; 61:5000-19. [PMID: 27300107 DOI: 10.1088/0031-9155/61/13/5000] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Quantitative and accurate measurement of in vivo mechanical properties using dynamic elastography has been the scope of many research efforts over the past two decades. Most of the shear-wave-based inverse approaches for magnetic resonance elastography (MRE) make the assumption of isotropic viscoelasticity. In this paper, we propose a quantitative gradient method for inversion of the shear wave equation in anisotropic media derived from a full waveform description using analytical viscoelastic Green formalism and automatic differentiation. The abilities and performances of the proposed identification method are first evaluated on numerical phantoms calculated in a transversely isotropic medium, and subsequently on experimental MRE data measured on an isotropic hydrogel phantom, on an anisotropic cryogel phantom and on an ex vivo fibrous muscle. The experiments are carried out by coupling circular shear wave profiles generated by acoustic radiation force and MRE acquisition of the wave front. Shear modulus values obtained by our MRE method are compared to those obtained by rheometry in the isotropic hydrogel phantom, and are found to be in good agreement despite non-overlapping frequency ranges. Both the cryogel and the ex vivo muscle are found to be anisotropic. Stiffness values in the longitudinal direction are found to be 1.8 times and 1.9 times higher than those in the transverse direction for the cryogel and the muscle, respectively. The proposed method shows great perspectives and substantial benefits for the in vivo quantitative investigation of complex mechanical properties in fibrous soft tissues.
Collapse
Affiliation(s)
- Simon Chatelin
- ICube, University of Strasbourg, CNRS, IHU Strasbourg, France
| | | | | | | | | |
Collapse
|
46
|
Ding X, Nguyen MM, James IB, Marra KG, Rubin JP, Leers SA, Kim K. Improved Estimation of Ultrasound Thermal Strain Using Pulse Inversion Harmonic Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:1182-1192. [PMID: 26948260 PMCID: PMC4811719 DOI: 10.1016/j.ultrasmedbio.2016.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/01/2016] [Accepted: 01/13/2016] [Indexed: 06/05/2023]
Abstract
Thermal (temporal) strain imaging (TSI) is being developed to detect the lipid-rich core of atherosclerotic plaques and presence of fatty liver disease. However, the effects of ultrasonic clutter on TSI have not been considered. In this study, we evaluated whether pulse inversion harmonic imaging (PIHI) could be used to improve estimates of thermal (temporal) strain. Using mixed castor oil-gelatin phantoms of different concentrations and artificially introduced clutter, we found that PIHI improved the signal-to-noise ratio of TSI by an average of 213% or 52.1% relative to 3.3- and 6.6-MHz imaging, respectively. In a phantom constructed using human liposuction fat in the presence of clutter, the contrast-to-noise ratio was degraded by 35.1% for PIHI compared with 62.4% and 43.7% for 3.3- and 6.6-MHz imaging, respectively. These findings were further validated using an ex vivo carotid endarterectomy sample. PIHI can be used to improve estimates of thermal (temporal) strain in the presence of clutter.
Collapse
Affiliation(s)
- Xuan Ding
- Department of Bioengineering, University of Pittsburgh School of Engineering, Pittsburgh, Pennsylvania, USA; Medical Scientist Training Program, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, Pennsylvania, USA; Department of Medicine and Heart and Vascular Institute, Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Man M Nguyen
- Department of Medicine and Heart and Vascular Institute, Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Isaac B James
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kacey G Marra
- Department of Bioengineering, University of Pittsburgh School of Engineering, Pittsburgh, Pennsylvania, USA; Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - J Peter Rubin
- Department of Bioengineering, University of Pittsburgh School of Engineering, Pittsburgh, Pennsylvania, USA; Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Steven A Leers
- Department of Vascular Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Kang Kim
- Department of Bioengineering, University of Pittsburgh School of Engineering, Pittsburgh, Pennsylvania, USA; Department of Medicine and Heart and Vascular Institute, Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
47
|
Amador C, Song P, Meixner DD, Chen S, Urban MW. Improvement of Shear Wave Motion Detection Using Harmonic Imaging in Healthy Human Liver. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:1031-41. [PMID: 26803391 PMCID: PMC4811740 DOI: 10.1016/j.ultrasmedbio.2015.12.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/10/2015] [Accepted: 12/14/2015] [Indexed: 05/12/2023]
Abstract
Quantification of liver elasticity is a major application of shear wave elasticity imaging (SWEI) to non-invasive assessment of liver fibrosis stages. SWEI measurements can be highly affected by ultrasound image quality. Ultrasound harmonic imaging has exhibited a significant improvement in ultrasound image quality as well as for SWEI measurements. This was previously illustrated in cardiac SWEI. The purpose of this study was to evaluate liver shear wave particle displacement detection and shear wave velocity (SWV) measurements with fundamental and filter-based harmonic ultrasound imaging. In a cohort of 17 patients with no history of liver disease, a 2.9-fold increase in maximum shear wave displacement, a 0.11 m/s decrease in the overall interquartile range and median SWV and a 17.6% increase in the success rate of SWV measurements were obtained when filter-based harmonic imaging was used instead of fundamental imaging.
Collapse
Affiliation(s)
- Carolina Amador
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, USA.
| | - Pengfei Song
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Duane D Meixner
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Shigao Chen
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Matthew W Urban
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
48
|
Correia M, Provost J, Chatelin S, Villemain O, Tanter M, Pernot M. Ultrafast Harmonic Coherent Compound (UHCC) Imaging for High Frame Rate Echocardiography and Shear-Wave Elastography. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2016; 63:420-31. [PMID: 26890730 PMCID: PMC4878711 DOI: 10.1109/tuffc.2016.2530408] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Transthoracic shear-wave elastography (SWE) of the myocardium remains very challenging due to the poor quality of transthoracic ultrafast imaging and the presence of clutter noise, jitter, phase aberration, and ultrasound reverberation. Several approaches, such as diverging-wave coherent compounding or focused harmonic imaging, have been proposed to improve the imaging quality. In this study, we introduce ultrafast harmonic coherent compounding (UHCC), in which pulse-inverted diverging waves are emitted and coherently compounded, and show that such an approach can be used to enhance both SWE and high frame rate (FR) B-mode Imaging. UHCC SWE was first tested in phantoms containing an aberrating layer and was compared against pulse-inversion harmonic imaging and against ultrafast coherent compounding (UCC) imaging at the fundamental frequency. In vivo feasibility of the technique was then evaluated in six healthy volunteers by measuring myocardial stiffness during diastole in transthoracic imaging. We also demonstrated that improvements in imaging quality could be achieved using UHCC B-mode imaging in healthy volunteers. The quality of transthoracic images of the heart was found to be improved with the number of pulse-inverted diverging waves with a reduction of the imaging mean clutter level up to 13.8 dB when compared against UCC at the fundamental frequency. These results demonstrated that UHCC B-mode imaging is promising for imaging deep tissues exposed to aberration sources with a high FR.
Collapse
|
49
|
Amador C, Aristizabal S, Greenleaf JF, Urban MW. Phase Aberration and Attenuation Effects on Acoustic Radiation Force-Based Shear Wave Generation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2016; 63:222-32. [PMID: 26742131 PMCID: PMC4900905 DOI: 10.1109/tuffc.2016.2515366] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Elasticity is measured by shear wave elasticity imaging (SWEI) methods using acoustic radiation force to create the shear waves. Phase aberration and tissue attenuation can hamper the generation of shear waves for in vivo applications. In this study, the effects of phase aberration and attenuation in ultrasound focusing for creating shear waves were explored. This includes the effects of phase shifts and amplitude attenuation on shear wave characteristics such as shear wave amplitude, shear wave speed, shear wave center frequency, and bandwidth. Two samples of swine belly tissue were used to create phase aberration and attenuation experimentally. To explore the phase aberration and attenuation effects individually, tissue experiments were complemented with ultrasound beam simulations using fast object-oriented C++ ultrasound simulator (FOCUS) and shear wave simulations using finite-element-model (FEM) analysis. The ultrasound frequency used to generate shear waves was varied from 3.0 to 4.5 MHz. Results: The measured acoustic pressure and resulting shear wave amplitude decreased approximately 40%-90% with the introduction of the tissue samples. Acoustic intensity and shear wave displacement were correlated for both tissue samples, and the resulting Pearson's correlation coefficients were 0.99 and 0.97. Analysis of shear wave generation with tissue samples (phase aberration and attenuation case), measured phase screen, (only phase aberration case), and FOCUS/FEM model (only attenuation case) showed that tissue attenuation affected the shear wave generation more than tissue aberration. Decreasing the ultrasound frequency helped maintain a focused beam for creation of shear waves in the presence of both phase aberration and attenuation.
Collapse
Affiliation(s)
- Carolina Amador
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, 55902
| | - Sara Aristizabal
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, 55902
| | - James F. Greenleaf
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, 55902
| | - Matthew W. Urban
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, 55902
| |
Collapse
|
50
|
Arani A, Glaser KL, Arunachalam SP, Rossman PJ, Lake DS, Trzasko JD, Manduca A, McGee KP, Ehman RL, Araoz PA. In vivo, high-frequency three-dimensional cardiac MR elastography: Feasibility in normal volunteers. Magn Reson Med 2016; 77:351-360. [PMID: 26778442 DOI: 10.1002/mrm.26101] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 11/24/2015] [Accepted: 12/01/2015] [Indexed: 01/08/2023]
Abstract
PURPOSE Noninvasive stiffness imaging techniques (elastography) can image myocardial tissue biomechanics in vivo. For cardiac MR elastography (MRE) techniques, the optimal vibration frequency for in vivo experiments is unknown. Furthermore, the accuracy of cardiac MRE has never been evaluated in a geometrically accurate phantom. Therefore, the purpose of this study was to determine the necessary driving frequency to obtain accurate three-dimensional (3D) cardiac MRE stiffness estimates in a geometrically accurate diastolic cardiac phantom and to determine the optimal vibration frequency that can be introduced in healthy volunteers. METHODS The 3D cardiac MRE was performed on eight healthy volunteers using 80 Hz, 100 Hz, 140 Hz, 180 Hz, and 220 Hz vibration frequencies. These frequencies were tested in a geometrically accurate diastolic heart phantom and compared with dynamic mechanical analysis (DMA). RESULTS The 3D Cardiac MRE was shown to be feasible in volunteers at frequencies as high as 180 Hz. MRE and DMA agreed within 5% at frequencies greater than 180 Hz in the cardiac phantom. However, octahedral shear strain signal to noise ratios and myocardial coverage was shown to be highest at a frequency of 140 Hz across all subjects. CONCLUSION This study motivates future evaluation of high-frequency 3D MRE in patient populations. Magn Reson Med 77:351-360, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Arvin Arani
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Kevin L Glaser
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - David S Lake
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Armando Manduca
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Kiaran P McGee
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Richard L Ehman
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Philip A Araoz
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|