1
|
Szekely-Kohn AC, Castellani M, Espino DM, Baronti L, Ahmed Z, Manifold WGK, Douglas M. Machine learning for refining interpretation of magnetic resonance imaging scans in the management of multiple sclerosis: a narrative review. ROYAL SOCIETY OPEN SCIENCE 2025; 12:241052. [PMID: 39845718 PMCID: PMC11750376 DOI: 10.1098/rsos.241052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/23/2024] [Accepted: 11/17/2024] [Indexed: 01/24/2025]
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the brain and spinal cord with both inflammatory and neurodegenerative features. Although advances in imaging techniques, particularly magnetic resonance imaging (MRI), have improved the process of diagnosis, its cause is unknown, a cure remains elusive and the evidence base to guide treatment is lacking. Computational techniques like machine learning (ML) have started to be used to understand MS. Published MS MRI-based computational studies can be divided into five categories: automated diagnosis; differentiation between lesion types and/or MS stages; differential diagnosis; monitoring and predicting disease progression; and synthetic MRI dataset generation. Collectively, these approaches show promise in assisting with MS diagnosis, monitoring of disease activity and prediction of future progression, all potentially contributing to disease management. Analysis quality using ML is highly dependent on the dataset size and variability used for training. Wider public access would mean larger datasets for experimentation, resulting in higher-quality analysis, permitting for more conclusive research. This narrative review provides an outline of the fundamentals of MS pathology and pathogenesis, diagnostic techniques and data types in computational analysis, as well as collating literature pertaining to the application of computational techniques to MRI towards developing a better understanding of MS.
Collapse
Affiliation(s)
- Adam C. Szekely-Kohn
- School of Engineering, University of Birmingham, Edgbaston, BirminghamB15 2TT, UK
| | - Marco Castellani
- School of Engineering, University of Birmingham, Edgbaston, BirminghamB15 2TT, UK
| | - Daniel M. Espino
- School of Engineering, University of Birmingham, Edgbaston, BirminghamB15 2TT, UK
| | - Luca Baronti
- School of Computer Science, University of Birmingham, Edgbaston, BirminghamB15 2TT, UK
| | - Zubair Ahmed
- University Hospitals Birmingham NHS Foundation Trust, Edgbaston, BirminghamB15 2GW, UK
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, BirminghamB15 2TT, UK
| | | | - Michael Douglas
- University Hospitals Birmingham NHS Foundation Trust, Edgbaston, BirminghamB15 2GW, UK
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, BirminghamB15 2TT, UK
- Department of Neurology, Dudley Group NHS Foundation Trust, Russells Hall Hospital, BirminghamDY1 2HQ, UK
- School of Life and Health Sciences, Aston University, Birmingham, UK
| |
Collapse
|
2
|
Federau C, Hainc N, Edjlali M, Zhu G, Mastilovic M, Nierobisch N, Uhlemann JP, Paganucci S, Granziera C, Heinzlef O, Kipp LB, Wintermark M. Evaluation of the quality and the productivity of neuroradiological reading of multiple sclerosis follow-up MRI scans using an intelligent automation software. Neuroradiology 2024; 66:361-369. [PMID: 38265684 PMCID: PMC10859335 DOI: 10.1007/s00234-024-03293-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/10/2024] [Indexed: 01/25/2024]
Abstract
PURPOSE The assessment of multiple sclerosis (MS) lesions on follow-up magnetic resonance imaging (MRI) is tedious, time-consuming, and error-prone. Automation of low-level tasks could enhance the radiologist in this work. We evaluate the intelligent automation software Jazz in a blinded three centers study, for the assessment of new, slowly expanding, and contrast-enhancing MS lesions. METHODS In three separate centers, 117 MS follow-up MRIs were blindly analyzed on fluid attenuated inversion recovery (FLAIR), pre- and post-gadolinium T1-weighted images using Jazz by 2 neuroradiologists in each center. The reading time was recorded. The ground truth was defined in a second reading by side-by-side comparison of both reports from Jazz and the standard clinical report. The number of described new, slowly expanding, and contrast-enhancing lesions described with Jazz was compared to the lesions described in the standard clinical report. RESULTS A total of 96 new lesions from 41 patients and 162 slowly expanding lesions (SELs) from 61 patients were described in the ground truth reading. A significantly larger number of new lesions were described using Jazz compared to the standard clinical report (63 versus 24). No SELs were reported in the standard clinical report, while 95 SELs were reported on average using Jazz. A total of 4 new contrast-enhancing lesions were found in all reports. The reading with Jazz was very time efficient, taking on average 2min33s ± 1min0s per case. Overall inter-reader agreement for new lesions between the readers using Jazz was moderate for new lesions (Cohen kappa = 0.5) and slight for SELs (0.08). CONCLUSION The quality and the productivity of neuroradiological reading of MS follow-up MRI scans can be significantly improved using the dedicated software Jazz.
Collapse
Affiliation(s)
- Christian Federau
- AI Medical AG, Goldhaldenstr 22a, 8702, Zollikon, Switzerland.
- University of Zürich, Zürich, Switzerland.
| | - Nicolin Hainc
- University of Zürich, Zürich, Switzerland
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Myriam Edjlali
- Department of Radiology, APHP, Hôpitaux Raymond-Poincaré & Ambroise Paré, Paris, France
- Laboratoire d'imagerie Biomédicale Multimodale (BioMaps), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hopsitalier Frédéric Joliot, Orsay, France
| | | | - Milica Mastilovic
- Department of Radiology, APHP, Hôpitaux Raymond-Poincaré & Ambroise Paré, Paris, France
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Nathalie Nierobisch
- University of Zürich, Zürich, Switzerland
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Jan-Philipp Uhlemann
- University of Zürich, Zürich, Switzerland
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | | | | | - Olivier Heinzlef
- Department of Neurology, Poissy-Saint-Germain-en-Laye Hospital, Poissy, France
- CRC SEP IDF Ouest, Poissy-Garches, France
| | - Lucas B Kipp
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Max Wintermark
- Stanford University, Stanford, USA
- MD Anderson Cancer Center, Houston, USA
| |
Collapse
|
3
|
Spagnolo F, Depeursinge A, Schädelin S, Akbulut A, Müller H, Barakovic M, Melie-Garcia L, Bach Cuadra M, Granziera C. How far MS lesion detection and segmentation are integrated into the clinical workflow? A systematic review. Neuroimage Clin 2023; 39:103491. [PMID: 37659189 PMCID: PMC10480555 DOI: 10.1016/j.nicl.2023.103491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 09/04/2023]
Abstract
INTRODUCTION Over the past few years, the deep learning community has developed and validated a plethora of tools for lesion detection and segmentation in Multiple Sclerosis (MS). However, there is an important gap between validating models technically and clinically. To this end, a six-step framework necessary for the development, validation, and integration of quantitative tools in the clinic was recently proposed under the name of the Quantitative Neuroradiology Initiative (QNI). AIMS Investigate to what extent automatic tools in MS fulfill the QNI framework necessary to integrate automated detection and segmentation into the clinical neuroradiology workflow. METHODS Adopting the systematic Cochrane literature review methodology, we screened and summarised published scientific articles that perform automatic MS lesions detection and segmentation. We categorised the retrieved studies based on their degree of fulfillment of QNI's six-steps, which include a tool's technical assessment, clinical validation, and integration. RESULTS We found 156 studies; 146/156 (94%) fullfilled the first QNI step, 155/156 (99%) the second, 8/156 (5%) the third, 3/156 (2%) the fourth, 5/156 (3%) the fifth and only one the sixth. CONCLUSIONS To date, little has been done to evaluate the clinical performance and the integration in the clinical workflow of available methods for MS lesion detection/segmentation. In addition, the socio-economic effects and the impact on patients' management of such tools remain almost unexplored.
Collapse
Affiliation(s)
- Federico Spagnolo
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland; Department of Neurology, University Hospital Basel, Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland; MedGIFT, Institute of Informatics, School of Management, HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland, Sierre, Switzerland
| | - Adrien Depeursinge
- MedGIFT, Institute of Informatics, School of Management, HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland, Sierre, Switzerland; Nuclear Medicine and Molecular Imaging Department, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Sabine Schädelin
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland; Clinical Trial Unit, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Aysenur Akbulut
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland; Ankara University School of Medicine, Ankara, Turkey
| | - Henning Müller
- MedGIFT, Institute of Informatics, School of Management, HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland, Sierre, Switzerland; The Sense Research and Innovation Center, Lausanne and Sion, Switzerland
| | - Muhamed Barakovic
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland; Department of Neurology, University Hospital Basel, Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Lester Melie-Garcia
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland; Department of Neurology, University Hospital Basel, Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Meritxell Bach Cuadra
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland; Radiology Department, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland; Department of Neurology, University Hospital Basel, Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland.
| |
Collapse
|
4
|
Levine A, Davis P, Zhang B, Peters J, Filip-Dhima R, Warfield SK, Prohl A, Capal J, Krueger D, Bebin EM, Northrup H, Wu JY, Sahin M. Epilepsy Severity Is Associated With Head Circumference and Growth Rate in Infants With Tuberous Sclerosis Complex. Pediatr Neurol 2023; 144:26-32. [PMID: 37119787 PMCID: PMC10330061 DOI: 10.1016/j.pediatrneurol.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/05/2023] [Accepted: 03/23/2023] [Indexed: 05/01/2023]
Abstract
BACKGROUND Abnormal brain growth in tuberous sclerosis complex (TSC) reflects abnormalities in cellular proliferation and differentiation and results in epilepsy and other neurological manifestations. Head circumference (HC) as a proxy for brain volume may provide an easily tracked clinical measure of brain overgrowth and neurological disease burden. This study investigated the relationship between HC and epilepsy severity in infants with TSC. METHODS Prospective multicenter observational study of children from birth to three years with TSC. Epilepsy data were collected from clinical history, and HC was collected at study visits at age three, six, nine, 12, 18, 24, and 36 months. Epilepsy severity was classified as no epilepsy, low epilepsy severity (one seizure type and one or two antiepileptic drugs [AEDs]), moderate epilepsy severity (either two to three seizure types and one to two AEDs or one seizure type and more than three AEDs), or high epilepsy severity (two to three seizure types and more than three AEDs). RESULTS As a group, children with TSC had HCs approximately 1 S.D. above the mean World Health Organization (WHO) reference by age one year and demonstrated more rapid growth than the normal population reference. Males with epilepsy had larger HCs than those without. Compared with the WHO reference population, infants with TSC and no epilepsy or low or moderate epilepsy had an increased early HC growth rate, whereas those with severe epilepsy had an early larger HC but did not have a faster growth rate. CONCLUSIONS Infants and young children with TSC have larger HCs than typical growth norms and have differing rates of head growth depending on the severity of epilepsy.
Collapse
Affiliation(s)
- Alexis Levine
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts.
| | - Peter Davis
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Bo Zhang
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Jurriaan Peters
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts; Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Rajna Filip-Dhima
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Simon K Warfield
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anna Prohl
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jamie Capal
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Darcy Krueger
- Department of Neurology and Rehabilitation Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - E Martina Bebin
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Hope Northrup
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Joyce Y Wu
- Division of Pediatric Neurology, University of California at Los Angeles Mattel Children's Hospital, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Mustafa Sahin
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts; Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts.
| |
Collapse
|
5
|
Sadeghibakhi M, Pourreza H, Mahyar H. Multiple Sclerosis Lesions Segmentation Using Attention-Based CNNs in FLAIR Images. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2022; 10:1800411. [PMID: 35711337 PMCID: PMC9191687 DOI: 10.1109/jtehm.2022.3172025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/05/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022]
Abstract
Objective: Multiple Sclerosis (MS) is an autoimmune and demyelinating disease that leads to lesions in the central nervous system. This disease can be tracked and diagnosed using Magnetic Resonance Imaging (MRI). A multitude of multimodality automatic biomedical approaches are used to segment lesions that are not beneficial for patients in terms of cost, time, and usability. The authors of the present paper propose a method employing just one modality (FLAIR image) to segment MS lesions accurately. Methods: A patch-based Convolutional Neural Network (CNN) is designed, inspired by 3D-ResNet and spatial-channel attention module, to segment MS lesions. The proposed method consists of three stages: (1) the Contrast-Limited Adaptive Histogram Equalization (CLAHE) is applied to the original images and concatenated to the extracted edges to create 4D images; (2) the patches of size [Formula: see text] are randomly selected from the 4D images; and (3) the extracted patches are passed into an attention-based CNN which is used to segment the lesions. Finally, the proposed method was compared to previous studies of the same dataset. Results: The current study evaluates the model with a test set of ISIB challenge data. Experimental results illustrate that the proposed approach significantly surpasses existing methods of Dice similarity and Absolute Volume Difference while the proposed method uses just one modality (FLAIR) to segment the lesions. Conclusion: The authors have introduced an automated approach to segment the lesions, which is based on, at most, two modalities as an input. The proposed architecture comprises convolution, deconvolution, and an SCA-VoxRes module as an attention module. The results show, that the proposed method outperforms well compared to other methods.
Collapse
Affiliation(s)
- Mehdi Sadeghibakhi
- MV LaboratoryDepartment of Computer Engineering, Faculty of EngineeringFerdowsi University of MashhadMashhad9177948974Iran
| | - Hamidreza Pourreza
- MV LaboratoryDepartment of Computer Engineering, Faculty of EngineeringFerdowsi University of MashhadMashhad9177948974Iran
| | - Hamidreza Mahyar
- Faculty of Engineering, W Booth School of Engineering Practice and TechnologyMcMaster UniversityHamiltonONL8S 4L8Canada
| |
Collapse
|
6
|
Ma Y, Zhang C, Cabezas M, Song Y, Tang Z, Liu D, Cai W, Barnett M, Wang C. Multiple Sclerosis Lesion Analysis in Brain Magnetic Resonance Images: Techniques and Clinical Applications. IEEE J Biomed Health Inform 2022; 26:2680-2692. [PMID: 35171783 DOI: 10.1109/jbhi.2022.3151741] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and degenerative disease of the central nervous system, characterized by the appearance of focal lesions in the white and gray matter that topographically correlate with an individual patients neurological symptoms and signs. Magnetic resonance imaging (MRI) provides detailed in-vivo structural information, permitting the quantification and categorization of MS lesions that critically inform disease management. Traditionally, MS lesions have been manually annotated on 2D MRI slices, a process that is inefficient and prone to inter-/intra-observer errors. Recently, automated statistical imaging analysis techniques have been proposed to detect and segment MS lesions based on MRI voxel intensity. However, their effectiveness is limited by the heterogeneity of both MRI data acquisition techniques and the appearance of MS lesions. By learning complex lesion representations directly from images, deep learning techniques have achieved remarkable breakthroughs in the MS lesion segmentation task. Here, we provide a comprehensive review of state-of-the-art automatic statistical and deep-learning MS segmentation methods and discuss current and future clinical applications. Further, we review technical strategies, such as domain adaptation, to enhance MS lesion segmentation in real-world clinical settings.
Collapse
|
7
|
Kaur A, Kaur L, Singh A. GA-UNet: UNet-based framework for segmentation of 2D and 3D medical images applicable on heterogeneous datasets. Neural Comput Appl 2021. [DOI: 10.1007/s00521-021-06134-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Chen X, Pawlowski N, Glocker B, Konukoglu E. Normative ascent with local gaussians for unsupervised lesion detection. Med Image Anal 2021; 74:102208. [PMID: 34487984 DOI: 10.1016/j.media.2021.102208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 07/19/2021] [Accepted: 08/04/2021] [Indexed: 11/28/2022]
Abstract
Unsupervised abnormality detection is an appealing approach to identify patterns that are not present in training data without specific annotations for such patterns. In the medical imaging field, methods taking this approach have been proposed to detect lesions. The appeal of this approach stems from the fact that it does not require lesion-specific supervision and can potentially generalize to any sort of abnormal patterns. The principle is to train a generative model on images from healthy individuals to estimate the distribution of images of the normal anatomy, i.e., a normative distribution, and detect lesions as out-of-distribution regions. Restoration-based techniques that modify a given image by taking gradient ascent steps with respect to a posterior distribution composed of a normative distribution and a likelihood term recently yielded state-of-the-art results. However, these methods do not explicitly model ascent directions with respect to the normative distribution, i.e. normative ascent direction, which is essential for successful restoration. In this work, we introduce a novel approach for unsupervised lesion detection by modeling normative ascent directions. We present different modelling options based on the defined ascent directions with local Gaussians. We further extend the proposed method to efficiently utilize 3D information, which has not been explored in most existing works. We experimentally show that the proposed method provides higher accuracy in detection and produces more realistic restored images. The performance of the proposed method is evaluated against baselines on publicly available BRATS and ATLAS stroke lesion datasets; the detection accuracy of the proposed method surpasses the current state-of-the-art results.
Collapse
|
9
|
Chen Z, Wang X, Huang J, Lu J, Zheng J. Deep Attention and Graphical Neural Network for Multiple Sclerosis Lesion Segmentation from MR Imaging Sequences. IEEE J Biomed Health Inform 2021; 26:1196-1207. [PMID: 34469321 DOI: 10.1109/jbhi.2021.3109119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The segmentation of multiple sclerosis (MS) lesions from MR imaging sequences remains a challenging task, due to the characteristics of variant shapes, scattered distributions and unknown numbers of lesions. However, the current automated MS segmentation methods with deep learning models face the challenges of (1) capturing the multiple scattered lesions in multiple regions and (2) delineating the global contour of variant lesions. To address these challenges, in this paper, we propose a novel attention and graph-driven network (DAG-Net), which incorporates (1) the spatial correlations for embracing the lesions in distant regions and (2) the global context for better representing lesions of variant features in a unified architecture. Firstly, the novel local attention coherence mechanism is designed to construct dynamic and expansible graphs for the spatial correlations between pixels and their proximities. Secondly, the proposed spatial-channel attention module enhances features to optimize the global contour delineation, by aggregating relevant features. Moreover, with the dynamic graphs, the learning process of the DAG-Net is interpretable, which in turns support the reliability of segmentation results. Extensive experiments were conducted on a public ISBI2015 dataset and an in-house dataset in comparison to state-of-the-art methods, based on the geometrical and clinical metrics. The experimental results validate the effectiveness of the proposed DAG-Net on segmenting variant and scatted lesions in multiple regions.
Collapse
|
10
|
Koley S, Dutta PK, Aganj I. Radius-optimized efficient template matching for lesion detection from brain images. Sci Rep 2021; 11:11586. [PMID: 34078935 PMCID: PMC8172536 DOI: 10.1038/s41598-021-90147-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 05/07/2021] [Indexed: 11/09/2022] Open
Abstract
Computer-aided detection of brain lesions from volumetric magnetic resonance imaging (MRI) is in demand for fast and automatic diagnosis of neural diseases. The template-matching technique can provide satisfactory outcome for automatic localization of brain lesions; however, finding the optimal template size that maximizes similarity of the template and the lesion remains challenging. This increases the complexity of the algorithm and the requirement for computational resources, while processing large MRI volumes with three-dimensional (3D) templates. Hence, reducing the computational complexity of template matching is needed. In this paper, we first propose a mathematical framework for computing the normalized cross-correlation coefficient (NCCC) as the similarity measure between the MRI volume and approximated 3D Gaussian template with linear time complexity, [Formula: see text], as opposed to the conventional fast Fourier transform (FFT) based approach with the complexity [Formula: see text], where [Formula: see text] is the number of voxels in the image and [Formula: see text] is the number of tried template radii. We then propose a mathematical formulation to analytically estimate the optimal template radius for each voxel in the image and compute the NCCC with the location-dependent optimal radius, reducing the complexity to [Formula: see text]. We test our methods on one synthetic and two real multiple-sclerosis databases, and compare their performances in lesion detection with FFT and a state-of-the-art lesion prediction algorithm. We demonstrate through our experiments the efficiency of the proposed methods for brain lesion detection and their comparable performance with existing techniques.
Collapse
Affiliation(s)
- Subhranil Koley
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India.
| | - Pranab K Dutta
- Electrical Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| | - Iman Aganj
- Athinoula A. Martinos Center for Biomedical Imaging, Radiology Department, Massachusetts General Hospital, Harvard Medical School, 149 13th St., Suite 2301, Charlestown, MA, 02129, USA.,Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar St., Cambridge, MA, 02139, USA
| |
Collapse
|
11
|
Gryska E, Schneiderman J, Björkman-Burtscher I, Heckemann RA. Automatic brain lesion segmentation on standard magnetic resonance images: a scoping review. BMJ Open 2021; 11:e042660. [PMID: 33514580 PMCID: PMC7849889 DOI: 10.1136/bmjopen-2020-042660] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Medical image analysis practices face challenges that can potentially be addressed with algorithm-based segmentation tools. In this study, we map the field of automatic MR brain lesion segmentation to understand the clinical applicability of prevalent methods and study designs, as well as challenges and limitations in the field. DESIGN Scoping review. SETTING Three databases (PubMed, IEEE Xplore and Scopus) were searched with tailored queries. Studies were included based on predefined criteria. Emerging themes during consecutive title, abstract, methods and whole-text screening were identified. The full-text analysis focused on materials, preprocessing, performance evaluation and comparison. RESULTS Out of 2990 unique articles identified through the search, 441 articles met the eligibility criteria, with an estimated growth rate of 10% per year. We present a general overview and trends in the field with regard to publication sources, segmentation principles used and types of lesions. Algorithms are predominantly evaluated by measuring the agreement of segmentation results with a trusted reference. Few articles describe measures of clinical validity. CONCLUSIONS The observed reporting practices leave room for improvement with a view to studying replication, method comparison and clinical applicability. To promote this improvement, we propose a list of recommendations for future studies in the field.
Collapse
Affiliation(s)
- Emilia Gryska
- Medical Radiation Sciences, Goteborgs universitet Institutionen for kliniska vetenskaper, Goteborg, Sweden
| | - Justin Schneiderman
- Sektionen för klinisk neurovetenskap, Goteborgs Universitet Institutionen for Neurovetenskap och fysiologi, Goteborg, Sweden
| | | | - Rolf A Heckemann
- Medical Radiation Sciences, Goteborgs universitet Institutionen for kliniska vetenskaper, Goteborg, Sweden
| |
Collapse
|
12
|
Essa E, Aldesouky D, Hussein SE, Rashad MZ. Neuro-fuzzy patch-wise R-CNN for multiple sclerosis segmentation. Med Biol Eng Comput 2020; 58:2161-2175. [PMID: 32681214 DOI: 10.1007/s11517-020-02225-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 06/29/2020] [Indexed: 12/21/2022]
Abstract
The segmentation of the lesion plays a core role in diagnosis and monitoring of multiple sclerosis (MS). Magnetic resonance imaging (MRI) is the most frequent image modality used to evaluate such lesions. Because of the massive amount of data, manual segmentation cannot be achieved within a sensible time that restricts the usage of accurate quantitative measurement in clinical practice. Therefore, the need for effective automated segmentation techniques is critical. However, a large spatial variability between the structure of brain lesions makes it more challenging. Recently, convolutional neural network (CNN), in particular, the region-based CNN (R-CNN), have attained tremendous progress within the field of object recognition because of its ability to learn and represent features. CNN has proven a last-breaking performance in various fields, such as object recognition, and has also gained more attention in brain imaging, especially in tissue and brain segmentation. In this paper, an automated technique for MS lesion segmentation is proposed, which is built on a 3D patch-wise R-CNN. The proposed system includes two stages: first, segmenting MS lesions in T2-w and FLAIR sequences using R-CNN, then an adaptive neuro-fuzzy inference system (ANFIS) is applied to fuse the results of the two modalities. To evaluate the performance of the proposed method, the public MICCAI2008 MS challenge dataset is employed to segment MS lesions. The experimental results show competitive results of the proposed method compared with the state-of-the-art MS lesion segmentation methods with an average total score of 83.25 and an average sensitivity of 61.8% on the MICCAI2008 testing set. Graphical Abstract The proposed system overview. First, the input of two modalities FLAIR and T2 are pre-processed to remove the skull and correct the bias field. Then 3D patches for lesion and non-lesion tissues are extracted and fed to R-CNN. Each R-CNN produces a probability map of the segmentation result that provides to ANFIS to fuse the results and obtain the final MS lesion segmentation. The MS lesions are shown on a pre-processed FLAIR image.
Collapse
Affiliation(s)
- Ehab Essa
- Computer Science Department, Faculty of Computers and Information, Mansoura University, Mansoura, Dakahlia Governorate, Egypt.
| | - Doaa Aldesouky
- Computer Science Department, Faculty of Computers and Information, Mansoura University, Mansoura, Dakahlia Governorate, Egypt
| | - Sherif E Hussein
- Computer Engineering and Systems Department, Faculty of Engineering, Mansoura University, Mansoura, Dakahlia Governorate, Egypt
| | - M Z Rashad
- Computer Science Department, Faculty of Computers and Information, Mansoura University, Mansoura, Dakahlia Governorate, Egypt
| |
Collapse
|
13
|
González-Villà S, Oliver A, Huo Y, Lladó X, Landman BA. A fully automated pipeline for brain structure segmentation in multiple sclerosis. NEUROIMAGE-CLINICAL 2020; 27:102306. [PMID: 32585568 PMCID: PMC7322098 DOI: 10.1016/j.nicl.2020.102306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 10/25/2022]
Abstract
Accurate volume measurements of the brain structures are important for treatment evaluation and disease follow-up in multiple sclerosis (MS) patients. With the aim of obtaining reproducible measurements and avoiding the intra-/inter-rater variability that manual delineations introduce, several automated brain structure segmentation strategies have been proposed in recent years. However, most of these strategies tend to be affected by the abnormal MS lesion intensities, which corrupt the structure segmentation result. To address this problem, we recently reformulated two label fusion strategies of the state of the art, improving their segmentation performance on the lesion areas. Here, we integrate these reformulated strategies in a completely automated pipeline that includes pre-processing (inhomogeneity correction and intensity normalization), atlas selection, masked registration and label fusion, and combine them with an automated lesion segmentation method of the state of the art. We study the effect of automating the lesion mask acquisition on the structure segmentation result, analyzing the output of the proposed pipeline when used in combination with manually and automatically segmented lesion masks. We further analyze the effect of those masks on the segmentation result of the original label fusion strategies when combined with the well-established pre-processing step of lesion filling. The experiments performed show that, when the original methods are used to segment the lesion-filled images, significant structure volume differences are observed in a comparison between manually and automatically segmented lesion masks. The results indicate a mean volume decrease of 1.13%±1.93 in the cerebrospinal fluid, and a mean volume increase of 0.13%±0.14 and 0.05%±0.08 in the cerebral white matter and cerebellar gray matter, respectively. On the other hand, no significant volume differences were found when the proposed automated pipeline was used for segmentation, which demonstrates its robustness against variations in the lesion mask used.
Collapse
Affiliation(s)
- Sandra González-Villà
- Institute of Computer Vision and Robotics, University of Girona, Ed. P-IV, Campus Montilivi, University of Girona, 17003 Girona, Spain; Electrical Engineering, Vanderbilt University, Nashville, TN 37235, USA.
| | - Arnau Oliver
- Institute of Computer Vision and Robotics, University of Girona, Ed. P-IV, Campus Montilivi, University of Girona, 17003 Girona, Spain
| | - Yuankai Huo
- Electrical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Xavier Lladó
- Institute of Computer Vision and Robotics, University of Girona, Ed. P-IV, Campus Montilivi, University of Girona, 17003 Girona, Spain
| | - Bennett A Landman
- Electrical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
14
|
Carass A, Roy S, Gherman A, Reinhold JC, Jesson A, Arbel T, Maier O, Handels H, Ghafoorian M, Platel B, Birenbaum A, Greenspan H, Pham DL, Crainiceanu CM, Calabresi PA, Prince JL, Roncal WRG, Shinohara RT, Oguz I. Evaluating White Matter Lesion Segmentations with Refined Sørensen-Dice Analysis. Sci Rep 2020; 10:8242. [PMID: 32427874 PMCID: PMC7237671 DOI: 10.1038/s41598-020-64803-w] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 04/20/2020] [Indexed: 11/09/2022] Open
Abstract
The Sørensen-Dice index (SDI) is a widely used measure for evaluating medical image segmentation algorithms. It offers a standardized measure of segmentation accuracy which has proven useful. However, it offers diminishing insight when the number of objects is unknown, such as in white matter lesion segmentation of multiple sclerosis (MS) patients. We present a refinement for finer grained parsing of SDI results in situations where the number of objects is unknown. We explore these ideas with two case studies showing what can be learned from our two presented studies. Our first study explores an inter-rater comparison, showing that smaller lesions cannot be reliably identified. In our second case study, we demonstrate fusing multiple MS lesion segmentation algorithms based on the insights into the algorithms provided by our analysis to generate a segmentation that exhibits improved performance. This work demonstrates the wealth of information that can be learned from refined analysis of medical image segmentations.
Collapse
Affiliation(s)
- Aaron Carass
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA.
- Department of Computer Science, The Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Snehashis Roy
- CNRM, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Adrian Gherman
- Department of Biostatistics, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Jacob C Reinhold
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Andrew Jesson
- Centre For Intelligent Machines, McGill University, Montréal, QC, H3A 0E9, Canada
| | - Tal Arbel
- Centre For Intelligent Machines, McGill University, Montréal, QC, H3A 0E9, Canada
| | - Oskar Maier
- Institute of Medical Informatics, University of Lübeck, 23538, Lübeck, Germany
| | - Heinz Handels
- Institute of Medical Informatics, University of Lübeck, 23538, Lübeck, Germany
| | - Mohsen Ghafoorian
- Institute for Computing and Information Sciences, Radboud University, 6525, HP, Nijmegen, Netherlands
| | - Bram Platel
- Diagnostic Image Analysis Group, Radboud University Medical Center, 6525, GA, Nijmegen, Netherlands
| | - Ariel Birenbaum
- Department of Electrical Engineering, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Hayit Greenspan
- Department of Biomedical Engineering, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Dzung L Pham
- CNRM, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Ciprian M Crainiceanu
- Department of Biostatistics, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Peter A Calabresi
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jerry L Prince
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Computer Science, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - William R Gray Roncal
- Department of Computer Science, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics & Epidemiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ipek Oguz
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, 37203, USA
| |
Collapse
|
15
|
Automated Detection and Segmentation of Multiple Sclerosis Lesions Using Ultra-High-Field MP2RAGE. Invest Radiol 2020; 54:356-364. [PMID: 30829941 DOI: 10.1097/rli.0000000000000551] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVES The aim of this study was to develop a new automated segmentation method of white matter (WM) and cortical multiple sclerosis (MS) lesions visible on magnetization-prepared 2 inversion-contrast rapid gradient echo (MP2RAGE) images acquired at 7 T MRI. MATERIALS AND METHODS The proposed prototype (MSLAST [Multiple Sclerosis Lesion Analysis at Seven Tesla]) takes as input a single image contrast derived from the 7T MP2RAGE prototype sequence and is based on partial volume estimation and topological constraints. First, MSLAST performs a skull-strip of MP2RAGE images and computes tissue concentration maps for WM, gray matter (GM), and cerebrospinal fluid (CSF) using a partial volume model of tissues within each voxel. Second, MSLAST performs (1) connected-component analysis to GM and CSF concentration maps to classify small isolated components as MS lesions; (2) hole-filling in the WM concentration map to classify areas with low WM concentration surrounded by WM (ie, MS lesions); and (3) outlier rejection to the WM mask to improve the classification of small WM lesions. Third, MSLAST unifies the 3 maps obtained from 1, 2, and 3 processing steps to generate a global lesion mask. RESULTS Quantitative and qualitative assessments were performed using MSLAST in 25 MS patients from 2 research centers. Overall, MSLAST detected a median of 71% of MS lesions, specifically 74% of WM and 58% of cortical lesions, when a minimum lesion size of 6 μL was considered. The median false-positive rate was 40%. When a 15 μL minimal lesions size was applied, which is the approximation of the minimal size recommended for 1.5/3 T images, the median detection rate was 80% for WM and 63% for cortical lesions, respectively, and the median false-positive rate was 33%. We observed high correlation between MSLAST and manual segmentations (Spearman rank correlation coefficient, ρ = 0.91), although MSLAST underestimated the total lesion volume (average difference of 1.1 mL), especially in patients with high lesion loads. MSLAST also showed good scan-rescan repeatability within the same session with an average absolute volume difference and F1 score of 0.38 ± 0.32 mL and 84%, respectively. CONCLUSIONS We propose a new methodology to facilitate the segmentation of WM and cortical MS lesions at 7 T MRI, our approach uses a single MP2RAGE scan and may be of special interest to clinicians and researchers.
Collapse
|
16
|
SegAE: Unsupervised white matter lesion segmentation from brain MRIs using a CNN autoencoder. NEUROIMAGE-CLINICAL 2019; 24:102085. [PMID: 31835288 PMCID: PMC6861597 DOI: 10.1016/j.nicl.2019.102085] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/30/2019] [Accepted: 11/07/2019] [Indexed: 11/22/2022]
Abstract
White matter hyperintensities (WMHs) of presumed vascular origin are frequently observed in magnetic resonance images (MRIs) of the elderly. Detection and quantification of WMHs is important to help doctors make diagnoses and evaluate prognosis of their elderly patients, and once quantified, these can act as biomarkers in clinical research studies. Manual delineation of WMHs can be both time-consuming and inconsistent, hence, automatic segmentation methods are often preferred. However, fully automatic methods can be challenging to construct due to the variability in lesion load, placement of lesions, and voxel intensities. Several state-of-the-art lesion segmentation methods based on supervised Convolutional Neural Networks (CNNs) have been proposed. These approaches require manually delineated lesions for training the parameters of the network. Here we present a novel approach for WMH segmentation using a CNN trained in an unsupervised manner, by reconstructing multiple MRI sequences as weighted sums of segmentations of WMHs and tissues present in the images. After training, our method can be used to segment new images that are not part of the training set to provide fast and robust segmentation of WMHs in a matter of seconds per subject. Comparisons with state-of-the-art WMH segmentation methods evaluated on ground truth manual labels from two distinct data sets and six different scanners indicate that the proposed method works well at generating accurate WMH segmentations without the need for manual delineations.
Collapse
|
17
|
Aslani S, Dayan M, Storelli L, Filippi M, Murino V, Rocca MA, Sona D. Multi-branch convolutional neural network for multiple sclerosis lesion segmentation. Neuroimage 2019; 196:1-15. [DOI: 10.1016/j.neuroimage.2019.03.068] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/23/2019] [Accepted: 03/28/2019] [Indexed: 11/26/2022] Open
|
18
|
Multiple sclerosis lesion enhancement and white matter region estimation using hyperintensities in FLAIR images. Biomed Signal Process Control 2019. [DOI: 10.1016/j.bspc.2018.12.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
19
|
González-Villà S, Oliver A, Huo Y, Lladó X, Landman BA. Brain structure segmentation in the presence of multiple sclerosis lesions. NEUROIMAGE-CLINICAL 2019; 22:101709. [PMID: 30822719 PMCID: PMC6396016 DOI: 10.1016/j.nicl.2019.101709] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 02/03/2019] [Indexed: 01/27/2023]
Abstract
Intensity-based multi-atlas segmentation strategies have shown to be particularly successful in segmenting brain images of healthy subjects. However, in the same way as most of the methods in the state of the art, their performance tends to be affected by the presence of MRI visible lesions, such as those found in multiple sclerosis (MS) patients. Here, we present an approach to minimize the effect of the abnormal lesion intensities on multi-atlas segmentation. We propose a new voxel/patch correspondence model for intensity-based multi-atlas label fusion strategies that leads to more accurate similarity measures, having a key role in the final brain segmentation. We present the theory of this model and integrate it into two well-known fusion strategies: Non-local Spatial STAPLE (NLSS) and Joint Label Fusion (JLF). The experiments performed show that our proposal improves the segmentation performance of the lesion areas. The results indicate a mean Dice Similarity Coefficient (DSC) improvement of 1.96% for NLSS (3.29% inside and 0.79% around the lesion masks) and, an improvement of 2.06% for JLF (2.31% inside and 1.42% around lesions). Furthermore, we show that, with the proposed strategy, the well-established preprocessing step of lesion filling can be disregarded, obtaining similar or even more accurate segmentation results. We present an approach to improve multi-atlas brain parcellation of MS patients. We integrate our model into 2 well-known segmentation strategies. Our model improves the segmentation on the lesion areas. The improvement on the lesion areas is also reflected in the global performance. With our model, lesion filling can be omitted, obtaining at least similar results.
Collapse
Affiliation(s)
- Sandra González-Villà
- Institute of Computer Vision and Robotics, University of Girona, Ed. P-IV, Campus Montilivi, 17003 Girona, Spain; Electrical Engineering, Vanderbilt University, Nashville, TN 37235, USA.
| | - Arnau Oliver
- Institute of Computer Vision and Robotics, University of Girona, Ed. P-IV, Campus Montilivi, 17003 Girona, Spain
| | - Yuankai Huo
- Electrical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Xavier Lladó
- Institute of Computer Vision and Robotics, University of Girona, Ed. P-IV, Campus Montilivi, 17003 Girona, Spain
| | - Bennett A Landman
- Electrical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
20
|
Hashemi SR, Salehi SSM, Erdogmus D, Prabhu SP, Warfield SK, Gholipour A. Asymmetric Loss Functions and Deep Densely Connected Networks for Highly Imbalanced Medical Image Segmentation: Application to Multiple Sclerosis Lesion Detection. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2018; 7:721-1735. [PMID: 31528523 PMCID: PMC6746414 DOI: 10.1109/access.2018.2886371] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Fully convolutional deep neural networks have been asserted to be fast and precise frameworks with great potential in image segmentation. One of the major challenges in training such networks raises when data is unbalanced, which is common in many medical imaging applications such as lesion segmentation where lesion class voxels are often much lower in numbers than non-lesion voxels. A trained network with unbalanced data may make predictions with high precision and low recall, being severely biased towards the non-lesion class which is particularly undesired in most medical applications where false negatives are actually more important than false positives. Various methods have been proposed to address this problem including two step training, sample re-weighting, balanced sampling, and more recently similarity loss functions, and focal loss. In this work we trained fully convolutional deep neural networks using an asymmetric similarity loss function to mitigate the issue of data imbalance and achieve much better trade-off between precision and recall. To this end, we developed a 3D fully convolutional densely connected network (FC-DenseNet) with large overlapping image patches as input and an asymmetric similarity loss layer based on Tversky index (using F β scores). We used large overlapping image patches as inputs for intrinsic and extrinsic data augmentation, a patch selection algorithm, and a patch prediction fusion strategy using B-spline weighted soft voting to account for the uncertainty of prediction in patch borders. We applied this method to multiple sclerosis (MS) lesion segmentation based on two different datasets of MSSEG 2016 and ISBI longitudinal MS lesion segmentation challenge, where we achieved average Dice similarity coefficients of 69.9% and 65.74%, respectively, achieving top performance in both challenges. We compared the performance of our network trained with F β loss, focal loss, and generalized Dice loss (GDL) functions. Through September 2018 our network trained with focal loss ranked first according to the ISBI challenge overall score and resulted in the lowest reported lesion false positive rate among all submitted methods. Our network trained with the asymmetric similarity loss led to the lowest surface distance and the best lesion true positive rate that is arguably the most important performance metric in a clinical decision support system for lesion detection. The asymmetric similarity loss function based on F β scores allows training networks that make a better balance between precision and recall in highly unbalanced image segmentation. We achieved superior performance in MS lesion segmentation using a patchwise 3D FC-DenseNet with a patch prediction fusion strategy, trained with asymmetric similarity loss functions.
Collapse
Affiliation(s)
- Seyed Raein Hashemi
- Computational Radiology Laboratory, Boston Children's Hospital, and Harvard Medical School, Boston MA 02115
- Computer and Information Science Department, Northeastern University, Boston, MA, 02115
| | - Seyed Sadegh Mohseni Salehi
- Computational Radiology Laboratory, Boston Children's Hospital, and Harvard Medical School, Boston MA 02115
- Electrical and Computer Engineering Department, Northeastern University, Boston, MA, 02115
| | - Deniz Erdogmus
- Electrical and Computer Engineering Department, Northeastern University, Boston, MA, 02115
| | - Sanjay P Prabhu
- Computational Radiology Laboratory, Boston Children's Hospital, and Harvard Medical School, Boston MA 02115
| | - Simon K Warfield
- Computational Radiology Laboratory, Boston Children's Hospital, and Harvard Medical School, Boston MA 02115
| | - Ali Gholipour
- Computational Radiology Laboratory, Boston Children's Hospital, and Harvard Medical School, Boston MA 02115
| |
Collapse
|
21
|
Carass A, Cuzzocreo JL, Han S, Hernandez-Castillo CR, Rasser PE, Ganz M, Beliveau V, Dolz J, Ben Ayed I, Desrosiers C, Thyreau B, Romero JE, Coupé P, Manjón JV, Fonov VS, Collins DL, Ying SH, Onyike CU, Crocetti D, Landman BA, Mostofsky SH, Thompson PM, Prince JL. Comparing fully automated state-of-the-art cerebellum parcellation from magnetic resonance images. Neuroimage 2018; 183:150-172. [PMID: 30099076 PMCID: PMC6271471 DOI: 10.1016/j.neuroimage.2018.08.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 01/26/2023] Open
Abstract
The human cerebellum plays an essential role in motor control, is involved in cognitive function (i.e., attention, working memory, and language), and helps to regulate emotional responses. Quantitative in-vivo assessment of the cerebellum is important in the study of several neurological diseases including cerebellar ataxia, autism, and schizophrenia. Different structural subdivisions of the cerebellum have been shown to correlate with differing pathologies. To further understand these pathologies, it is helpful to automatically parcellate the cerebellum at the highest fidelity possible. In this paper, we coordinated with colleagues around the world to evaluate automated cerebellum parcellation algorithms on two clinical cohorts showing that the cerebellum can be parcellated to a high accuracy by newer methods. We characterize these various methods at four hierarchical levels: coarse (i.e., whole cerebellum and gross structures), lobe, subdivisions of the vermis, and the lobules. Due to the number of labels, the hierarchy of labels, the number of algorithms, and the two cohorts, we have restricted our analyses to the Dice measure of overlap. Under these conditions, machine learning based methods provide a collection of strategies that are efficient and deliver parcellations of a high standard across both cohorts, surpassing previous work in the area. In conjunction with the rank-sum computation, we identified an overall winning method.
Collapse
Affiliation(s)
- Aaron Carass
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA; Department of Computer Science, The Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Jennifer L Cuzzocreo
- Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Shuo Han
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA; Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, 20892, USA
| | - Carlos R Hernandez-Castillo
- Consejo Nacional de Ciencia y Tecnología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico
| | - Paul E Rasser
- Priority Research Centre for Brain & Mental Health and Stroke & Brain Injury, University of Newcastle, Callaghan, NSW, Australia
| | - Melanie Ganz
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark; Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Vincent Beliveau
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jose Dolz
- Laboratory for Imagery, Vision, and Artificial Intelligence, École de Technologie Supérieure, Montreal, QC, Canada
| | - Ismail Ben Ayed
- Laboratory for Imagery, Vision, and Artificial Intelligence, École de Technologie Supérieure, Montreal, QC, Canada
| | - Christian Desrosiers
- Laboratory for Imagery, Vision, and Artificial Intelligence, École de Technologie Supérieure, Montreal, QC, Canada
| | - Benjamin Thyreau
- Institute of Development, Aging and Cancer, Tohoku University, Japan
| | - José E Romero
- Instituto Universitario de Tecnologías de la Información y Comunicaciones (ITACA), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Pierrick Coupé
- University of Bordeaux, LaBRI, UMR 5800, PICTURA, Talence, F-33400, France; CNRS, LaBRI, UMR 5800, PICTURA, Talence, F-33400, France
| | - José V Manjón
- Instituto Universitario de Tecnologías de la Información y Comunicaciones (ITACA), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Vladimir S Fonov
- Image Processing Laboratory, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - D Louis Collins
- Image Processing Laboratory, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Sarah H Ying
- Department of Neurology, The Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Chiadi U Onyike
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Deana Crocetti
- Center for Neurodevelopmental Medicine and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, 21205, USA
| | - Bennett A Landman
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, 37235, USA
| | - Stewart H Mostofsky
- Center for Neurodevelopmental Medicine and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, 21205, USA; Department of Neurology, The Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA; Department of Psychiatry and Behavioral Sciences, The Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA, 90292, USA; Departments of Neurology, Pediatrics, Psychiatry, Radiology, Engineering, and Ophthalmology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jerry L Prince
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA; Department of Computer Science, The Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
22
|
Danelakis A, Theoharis T, Verganelakis DA. Survey of automated multiple sclerosis lesion segmentation techniques on magnetic resonance imaging. Comput Med Imaging Graph 2018; 70:83-100. [DOI: 10.1016/j.compmedimag.2018.10.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/05/2018] [Accepted: 10/02/2018] [Indexed: 01/18/2023]
|
23
|
Konukoglu E, Glocker B. Reconstructing subject-specific effect maps. Neuroimage 2018; 181:521-538. [DOI: 10.1016/j.neuroimage.2018.07.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 06/07/2018] [Accepted: 07/12/2018] [Indexed: 12/24/2022] Open
|
24
|
Commowick O, Istace A, Kain M, Laurent B, Leray F, Simon M, Pop SC, Girard P, Améli R, Ferré JC, Kerbrat A, Tourdias T, Cervenansky F, Glatard T, Beaumont J, Doyle S, Forbes F, Knight J, Khademi A, Mahbod A, Wang C, McKinley R, Wagner F, Muschelli J, Sweeney E, Roura E, Lladó X, Santos MM, Santos WP, Silva-Filho AG, Tomas-Fernandez X, Urien H, Bloch I, Valverde S, Cabezas M, Vera-Olmos FJ, Malpica N, Guttmann C, Vukusic S, Edan G, Dojat M, Styner M, Warfield SK, Cotton F, Barillot C. Objective Evaluation of Multiple Sclerosis Lesion Segmentation using a Data Management and Processing Infrastructure. Sci Rep 2018; 8:13650. [PMID: 30209345 PMCID: PMC6135867 DOI: 10.1038/s41598-018-31911-7] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/06/2018] [Indexed: 11/09/2022] Open
Abstract
We present a study of multiple sclerosis segmentation algorithms conducted at the international MICCAI 2016 challenge. This challenge was operated using a new open-science computing infrastructure. This allowed for the automatic and independent evaluation of a large range of algorithms in a fair and completely automatic manner. This computing infrastructure was used to evaluate thirteen methods of MS lesions segmentation, exploring a broad range of state-of-theart algorithms, against a high-quality database of 53 MS cases coming from four centers following a common definition of the acquisition protocol. Each case was annotated manually by an unprecedented number of seven different experts. Results of the challenge highlighted that automatic algorithms, including the recent machine learning methods (random forests, deep learning, …), are still trailing human expertise on both detection and delineation criteria. In addition, we demonstrate that computing a statistically robust consensus of the algorithms performs closer to human expertise on one score (segmentation) although still trailing on detection scores.
Collapse
Affiliation(s)
- Olivier Commowick
- VISAGES: INSERM U1228 - CNRS UMR6074 - Inria, University of Rennes I, Rennes, France.
| | - Audrey Istace
- Department of Radiology, Lyon Sud Hospital, Hospices Civils de Lyon, Lyon, France
| | - Michaël Kain
- VISAGES: INSERM U1228 - CNRS UMR6074 - Inria, University of Rennes I, Rennes, France
| | - Baptiste Laurent
- LaTIM, INSERM, UMR 1101, University of Brest, IBSAM, Brest, France
| | - Florent Leray
- VISAGES: INSERM U1228 - CNRS UMR6074 - Inria, University of Rennes I, Rennes, France
| | - Mathieu Simon
- VISAGES: INSERM U1228 - CNRS UMR6074 - Inria, University of Rennes I, Rennes, France
| | - Sorina Camarasu Pop
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, F-69621, Lyon, France
| | - Pascal Girard
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, F-69621, Lyon, France
| | - Roxana Améli
- Department of Radiology, Lyon Sud Hospital, Hospices Civils de Lyon, Lyon, France
| | - Jean-Christophe Ferré
- VISAGES: INSERM U1228 - CNRS UMR6074 - Inria, University of Rennes I, Rennes, France.,CHU Rennes, Department of Neuroradiology, F-35033, Rennes, France
| | - Anne Kerbrat
- VISAGES: INSERM U1228 - CNRS UMR6074 - Inria, University of Rennes I, Rennes, France.,CHU Rennes, Department of Neurology, F-35033, Rennes, France
| | - Thomas Tourdias
- CHU de Bordeaux, Service de Neuro-Imagerie, Bordeaux, France
| | - Frédéric Cervenansky
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, F-69621, Lyon, France
| | - Tristan Glatard
- Department of Computer Science and Software Engineering, Concordia University, Montreal, Canada
| | - Jérémy Beaumont
- VISAGES: INSERM U1228 - CNRS UMR6074 - Inria, University of Rennes I, Rennes, France
| | | | - Florence Forbes
- Pixyl Medical, Grenoble, France.,Inria Grenoble Rhône-Alpes, Grenoble, France
| | - Jesse Knight
- Image Analysis in Medicine Lab, School of Engineering, University of Guelph, Guelph, Canada
| | - April Khademi
- Image Analysis in Medicine Lab (IAMLAB), Ryerson University, Toronto, Canada
| | - Amirreza Mahbod
- School of Technology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Chunliang Wang
- School of Technology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Richard McKinley
- Department of Diagnostic and Interventional Neuroradiology, Inselspital, University of Bern, Bern, Switzerland
| | - Franca Wagner
- Department of Diagnostic and Interventional Neuroradiology, Inselspital, University of Bern, Bern, Switzerland
| | - John Muschelli
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Eloy Roura
- Research institute of Computer Vision and Robotics (VICOROB), University of Girona, Girona, Spain
| | - Xavier Lladó
- Research institute of Computer Vision and Robotics (VICOROB), University of Girona, Girona, Spain
| | - Michel M Santos
- Centro de Informática, Universidade Federal de Pernambuco, Pernambuco, Brazil
| | - Wellington P Santos
- Depto. de Eng. Biomédica, Universidade Federal de Pernambuco, Pernambuco, Brazil
| | - Abel G Silva-Filho
- Centro de Informática, Universidade Federal de Pernambuco, Pernambuco, Brazil
| | - Xavier Tomas-Fernandez
- Computational Radiology Laboratory, Department of Radiology, Children's Hospital, 300 Longwood Avenue, Boston, MA, USA
| | - Hélène Urien
- LTCI, Télécom ParisTech, Université Paris-Saclay, Paris, France
| | - Isabelle Bloch
- LTCI, Télécom ParisTech, Université Paris-Saclay, Paris, France
| | - Sergi Valverde
- Research institute of Computer Vision and Robotics (VICOROB), University of Girona, Girona, Spain
| | - Mariano Cabezas
- Research institute of Computer Vision and Robotics (VICOROB), University of Girona, Girona, Spain
| | | | - Norberto Malpica
- Medical Image Analysis Lab, Universidad Rey Juan Carlos, Madrid, Spain
| | - Charles Guttmann
- Center for Neurological Imaging, Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Sandra Vukusic
- Department of Radiology, Lyon Sud Hospital, Hospices Civils de Lyon, Lyon, France
| | - Gilles Edan
- VISAGES: INSERM U1228 - CNRS UMR6074 - Inria, University of Rennes I, Rennes, France.,CHU Rennes, Department of Neurology, F-35033, Rennes, France
| | - Michel Dojat
- Inserm U1216, University Grenoble Alpes, CHU Grenoble, GIN, Grenoble, France
| | - Martin Styner
- Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA
| | - Simon K Warfield
- Computational Radiology Laboratory, Department of Radiology, Children's Hospital, 300 Longwood Avenue, Boston, MA, USA
| | - François Cotton
- Department of Radiology, Lyon Sud Hospital, Hospices Civils de Lyon, Lyon, France
| | - Christian Barillot
- VISAGES: INSERM U1228 - CNRS UMR6074 - Inria, University of Rennes I, Rennes, France
| |
Collapse
|
25
|
Knight J, Taylor GW, Khademi A. Voxel-Wise Logistic Regression and Leave-One-Source-Out Cross Validation for white matter hyperintensity segmentation. Magn Reson Imaging 2018; 54:119-136. [PMID: 29932970 DOI: 10.1016/j.mri.2018.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 12/21/2022]
Abstract
Many algorithms have been proposed for automated segmentation of white matter hyperintensities (WMH) in brain MRI. Yet, broad uptake of any particular algorithm has not been observed. In this work, we argue that this may be due to variable and suboptimal validation data and frameworks, precluding direct comparison of methods on heterogeneous data. As a solution, we present Leave-One-Source-Out Cross Validation (LOSO-CV), which leverages all available data for performance estimation, and show that this gives more realistic (lower) estimates of segmentation algorithm performance on data from different scanners. We also develop a FLAIR-only WMH segmentation algorithm: Voxel-Wise Logistic Regression (VLR), inspired by the open-source Lesion Prediction Algorithm (LPA). Our variant facilitates more accurate parameter estimation, and permits intuitive interpretation of model parameters. We illustrate the performance of the VLR algorithm using the LOSO-CV framework with a dataset comprising freely available data from several recent competitions (96 images from 7 scanners). The performance of the VLR algorithm (median Similarity Index of 0.69) is compared to its LPA predecessor (0.58), and the results of the VLR algorithm in the 2017 WMH Segmentation Competition are also presented.
Collapse
Affiliation(s)
- Jesse Knight
- University of Guelph, 50 Stone Rd E, Guelph, Canada.
| | - Graham W Taylor
- University of Guelph, 50 Stone Rd E, Guelph, Canada; Vector Institute, 101 College Street, Toronto, Suite HL30B, Canada
| | - April Khademi
- Ryerson University, 350 Victoria St, Toronto, Canada
| |
Collapse
|
26
|
Fartaria MJ, Todea A, Kober T, O'brien K, Krueger G, Meuli R, Granziera C, Roche A, Bach Cuadra M. Partial volume-aware assessment of multiple sclerosis lesions. NEUROIMAGE-CLINICAL 2018; 18:245-253. [PMID: 29868448 PMCID: PMC5984601 DOI: 10.1016/j.nicl.2018.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 12/13/2022]
Abstract
White-matter lesion count and volume estimation are key to the diagnosis and monitoring of multiple sclerosis (MS). Automated MS lesion segmentation methods that have been proposed in the past 20 years reach their limits when applied to patients in early disease stages characterized by low lesion load and small lesions. We propose an algorithm to automatically assess MS lesion load (number and volume) while taking into account the mixing of healthy and lesional tissue in the image voxels due to partial volume effects. The proposed method works on 3D MPRAGE and 3D FLAIR images as obtained from current routine MS clinical protocols. The method was evaluated and compared with manual segmentation on a cohort of 39 early-stage MS patients with low disability, and showed higher Dice similarity coefficients (median DSC = 0.55) and higher detection rate (median DR = 61%) than two widely used methods (median DSC = 0.50, median DR < 45%) for automated MS lesion segmentation. We argue that this is due to the higher performance in segmentation of small lesions, which are inherently prone to partial volume effects. Modeling the partial volume improves lesion volumetric measurements. Higher detection of small lesions inherently prone to partial volume effects. Partial volume effects should be taken into account in early stages of MS.
Collapse
Affiliation(s)
- Mário João Fartaria
- Advanced Clinical Imaging Technology (HC CMEA SUI DI PI), Siemens Healthcare AG, Lausanne, Switzerland; Department of Radiology, Lausanne University Hospital (CHUV), and University of Lausanne (UNIL), Lausanne, Switzerland; Signal Processing Laboratory (LTS 5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Alexandra Todea
- Department of Radiology, Pourtalès Hospital, Neuchâtel, Switzerland
| | - Tobias Kober
- Advanced Clinical Imaging Technology (HC CMEA SUI DI PI), Siemens Healthcare AG, Lausanne, Switzerland; Department of Radiology, Lausanne University Hospital (CHUV), and University of Lausanne (UNIL), Lausanne, Switzerland; Signal Processing Laboratory (LTS 5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Kieran O'brien
- Centre for Advanced Imaging, University of Queensland, Queensland, Australia; Siemens Healthcare Pty. Ltd., Brisbane, Queensland, Australia
| | | | - Reto Meuli
- Department of Radiology, Lausanne University Hospital (CHUV), and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Cristina Granziera
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland; Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Alexis Roche
- Department of Radiology, Lausanne University Hospital (CHUV), and University of Lausanne (UNIL), Lausanne, Switzerland; Advanced Clinical Imaging Technology (HC CMEA SUI DI PI), Siemens Healthcare AG, Lausanne, Switzerland; Signal Processing Laboratory (LTS 5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Meritxell Bach Cuadra
- Department of Radiology, Lausanne University Hospital (CHUV), and University of Lausanne (UNIL), Lausanne, Switzerland; Medical Image Analysis Laboratory (MIAL), Centre d'Imagerie BioMédicale (CIBM), Lausanne, Switzerland; Signal Processing Laboratory (LTS 5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
27
|
Oguz I, Carass A, Pham DL, Roy S, Subbana N, Calabresi PA, Yushkevich PA, Shinohara RT, Prince JL. Dice Overlap Measures for Objects of Unknown Number: Application to Lesion Segmentation. BRAINLESION : GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES. BRAINLES (WORKSHOP) 2018; 10670:3-14. [PMID: 29714358 DOI: 10.1007/978-3-319-75238-9_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Dice overlap ratio is commonly used to evaluate the performance of image segmentation algorithms. While Dice overlap is very useful as a standardized quantitative measure of segmentation accuracy in many applications, it offers a very limited picture of segmentation quality in complex segmentation tasks where the number of target objects is not known a priori, such as the segmentation of white matter lesions or lung nodules. While Dice overlap can still be used in these applications, segmentation algorithms may perform quite differently in ways not reflected by differences in their Dice score. Here we propose a new set of evaluation techniques that offer new insights into the behavior of segmentation algorithms. We illustrate these techniques with a case study comparing two popular multiple sclerosis (MS) lesion segmentation algorithms: OASIS and LesionTOADS.
Collapse
Affiliation(s)
- Ipek Oguz
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aaron Carass
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.,Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Dzung L Pham
- CNRM, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Snehashis Roy
- CNRM, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Nagesh Subbana
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter A Calabresi
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Paul A Yushkevich
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Russell T Shinohara
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jerry L Prince
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.,Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
28
|
Akkus Z, Galimzianova A, Hoogi A, Rubin DL, Erickson BJ. Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions. J Digit Imaging 2017; 30:449-459. [PMID: 28577131 PMCID: PMC5537095 DOI: 10.1007/s10278-017-9983-4] [Citation(s) in RCA: 472] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Quantitative analysis of brain MRI is routine for many neurological diseases and conditions and relies on accurate segmentation of structures of interest. Deep learning-based segmentation approaches for brain MRI are gaining interest due to their self-learning and generalization ability over large amounts of data. As the deep learning architectures are becoming more mature, they gradually outperform previous state-of-the-art classical machine learning algorithms. This review aims to provide an overview of current deep learning-based segmentation approaches for quantitative brain MRI. First we review the current deep learning architectures used for segmentation of anatomical brain structures and brain lesions. Next, the performance, speed, and properties of deep learning approaches are summarized and discussed. Finally, we provide a critical assessment of the current state and identify likely future developments and trends.
Collapse
Affiliation(s)
- Zeynettin Akkus
- Radiology Informatics Lab, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Alfiia Galimzianova
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Assaf Hoogi
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel L Rubin
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Bradley J Erickson
- Radiology Informatics Lab, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
29
|
Carass A, Roy S, Jog A, Cuzzocreo JL, Magrath E, Gherman A, Button J, Nguyen J, Prados F, Sudre CH, Jorge Cardoso M, Cawley N, Ciccarelli O, Wheeler-Kingshott CAM, Ourselin S, Catanese L, Deshpande H, Maurel P, Commowick O, Barillot C, Tomas-Fernandez X, Warfield SK, Vaidya S, Chunduru A, Muthuganapathy R, Krishnamurthi G, Jesson A, Arbel T, Maier O, Handels H, Iheme LO, Unay D, Jain S, Sima DM, Smeets D, Ghafoorian M, Platel B, Birenbaum A, Greenspan H, Bazin PL, Calabresi PA, Crainiceanu CM, Ellingsen LM, Reich DS, Prince JL, Pham DL. Longitudinal multiple sclerosis lesion segmentation: Resource and challenge. Neuroimage 2017; 148:77-102. [PMID: 28087490 PMCID: PMC5344762 DOI: 10.1016/j.neuroimage.2016.12.064] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/15/2016] [Accepted: 12/19/2016] [Indexed: 01/12/2023] Open
Abstract
In conjunction with the ISBI 2015 conference, we organized a longitudinal lesion segmentation challenge providing training and test data to registered participants. The training data consisted of five subjects with a mean of 4.4 time-points, and test data of fourteen subjects with a mean of 4.4 time-points. All 82 data sets had the white matter lesions associated with multiple sclerosis delineated by two human expert raters. Eleven teams submitted results using state-of-the-art lesion segmentation algorithms to the challenge, with ten teams presenting their results at the conference. We present a quantitative evaluation comparing the consistency of the two raters as well as exploring the performance of the eleven submitted results in addition to three other lesion segmentation algorithms. The challenge presented three unique opportunities: (1) the sharing of a rich data set; (2) collaboration and comparison of the various avenues of research being pursued in the community; and (3) a review and refinement of the evaluation metrics currently in use. We report on the performance of the challenge participants, as well as the construction and evaluation of a consensus delineation. The image data and manual delineations will continue to be available for download, through an evaluation website2 as a resource for future researchers in the area. This data resource provides a platform to compare existing methods in a fair and consistent manner to each other and multiple manual raters.
Collapse
Affiliation(s)
- Aaron Carass
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Snehashis Roy
- CNRM, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20892, USA
| | - Amod Jog
- Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jennifer L Cuzzocreo
- Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Elizabeth Magrath
- CNRM, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20892, USA
| | - Adrian Gherman
- Department of Biostatistics, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Julia Button
- Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - James Nguyen
- Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Ferran Prados
- Translational Imaging Group, CMIC, UCL, NW1 2HE London, UK; NMR Research Unit, UCL Institute of Neurology, WC1N 3BG London, UK
| | - Carole H Sudre
- Translational Imaging Group, CMIC, UCL, NW1 2HE London, UK
| | - Manuel Jorge Cardoso
- Translational Imaging Group, CMIC, UCL, NW1 2HE London, UK; Dementia Research Centre, UCL Institute of Neurology, WC1N 3BG London, UK
| | - Niamh Cawley
- NMR Research Unit, UCL Institute of Neurology, WC1N 3BG London, UK
| | - Olga Ciccarelli
- NMR Research Unit, UCL Institute of Neurology, WC1N 3BG London, UK
| | | | - Sébastien Ourselin
- Translational Imaging Group, CMIC, UCL, NW1 2HE London, UK; Dementia Research Centre, UCL Institute of Neurology, WC1N 3BG London, UK
| | - Laurence Catanese
- VisAGeS: INSERM U746, CNRS UMR6074, INRIA, University of Rennes I, France
| | | | - Pierre Maurel
- VisAGeS: INSERM U746, CNRS UMR6074, INRIA, University of Rennes I, France
| | - Olivier Commowick
- VisAGeS: INSERM U746, CNRS UMR6074, INRIA, University of Rennes I, France
| | - Christian Barillot
- VisAGeS: INSERM U746, CNRS UMR6074, INRIA, University of Rennes I, France
| | - Xavier Tomas-Fernandez
- Computational Radiology Laboratory, Boston Childrens Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Simon K Warfield
- Computational Radiology Laboratory, Boston Childrens Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Suthirth Vaidya
- Biomedical Imaging Lab, Department of Engineering Design, Indian Institute of Technology, Chennai 600036, India
| | - Abhijith Chunduru
- Biomedical Imaging Lab, Department of Engineering Design, Indian Institute of Technology, Chennai 600036, India
| | - Ramanathan Muthuganapathy
- Biomedical Imaging Lab, Department of Engineering Design, Indian Institute of Technology, Chennai 600036, India
| | - Ganapathy Krishnamurthi
- Biomedical Imaging Lab, Department of Engineering Design, Indian Institute of Technology, Chennai 600036, India
| | - Andrew Jesson
- Centre For Intelligent Machines, McGill University, Montréal, QC H3A 0E9, Canada
| | - Tal Arbel
- Centre For Intelligent Machines, McGill University, Montréal, QC H3A 0E9, Canada
| | - Oskar Maier
- Institute of Medical Informatics, University of Lübeck, 23538 Lübeck, Germany
| | - Heinz Handels
- Institute of Medical Informatics, University of Lübeck, 23538 Lübeck, Germany
| | - Leonardo O Iheme
- Bahçeşehir University, Faculty of Engineering and Natural Sciences, 34349 Beşiktaş, Turkey
| | - Devrim Unay
- Bahçeşehir University, Faculty of Engineering and Natural Sciences, 34349 Beşiktaş, Turkey
| | | | | | | | - Mohsen Ghafoorian
- Institute for Computing and Information Sciences, Radboud University, 6525 HP Nijmegen, Netherlands
| | - Bram Platel
- Diagnostic Image Analysis Group, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Ariel Birenbaum
- Department of Electrical Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Hayit Greenspan
- Department of Biomedical Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Pierre-Louis Bazin
- Department of Neurophysics, Max Planck Institute, 04103 Leipzig, Germany
| | - Peter A Calabresi
- Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | | | - Lotta M Ellingsen
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Electrical and Computer Engineering, University of Iceland, 107 Reykjavík, Iceland
| | - Daniel S Reich
- Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; Translational Neuroradiology Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Jerry L Prince
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Dzung L Pham
- CNRM, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20892, USA
| |
Collapse
|
30
|
Strumia M, Schmidt FR, Anastasopoulos C, Granziera C, Krueger G, Brox T. White Matter MS-Lesion Segmentation Using a Geometric Brain Model. IEEE TRANSACTIONS ON MEDICAL IMAGING 2016; 35:1636-1646. [PMID: 26829786 DOI: 10.1109/tmi.2016.2522178] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Brain magnetic resonance imaging (MRI) in patients with Multiple Sclerosis (MS) shows regions of signal abnormalities, named plaques or lesions. The spatial lesion distribution plays a major role for MS diagnosis. In this paper we present a 3D MS-lesion segmentation method based on an adaptive geometric brain model. We model the topological properties of the lesions and brain tissues in order to constrain the lesion segmentation to the white matter. As a result, the method is independent of an MRI atlas. We tested our method on the MICCAI MS grand challenge proposed in 2008 and achieved competitive results. In addition, we used an in-house dataset of 15 MS patients, for which we achieved best results in most distances in comparison to atlas based methods. Besides classical segmentation distances, we motivate and formulate a new distance to evaluate the quality of the lesion segmentation, while being robust with respect to minor inconsistencies at the boundary level of the ground truth annotation.
Collapse
|
31
|
Brosch T, Tang LYW, Li DKB, Traboulsee A, Tam R. Deep 3D Convolutional Encoder Networks With Shortcuts for Multiscale Feature Integration Applied to Multiple Sclerosis Lesion Segmentation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2016; 35:1229-1239. [PMID: 26886978 DOI: 10.1109/tmi.2016.2528821] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We propose a novel segmentation approach based on deep 3D convolutional encoder networks with shortcut connections and apply it to the segmentation of multiple sclerosis (MS) lesions in magnetic resonance images. Our model is a neural network that consists of two interconnected pathways, a convolutional pathway, which learns increasingly more abstract and higher-level image features, and a deconvolutional pathway, which predicts the final segmentation at the voxel level. The joint training of the feature extraction and prediction pathways allows for the automatic learning of features at different scales that are optimized for accuracy for any given combination of image types and segmentation task. In addition, shortcut connections between the two pathways allow high- and low-level features to be integrated, which enables the segmentation of lesions across a wide range of sizes. We have evaluated our method on two publicly available data sets (MICCAI 2008 and ISBI 2015 challenges) with the results showing that our method performs comparably to the top-ranked state-of-the-art methods, even when only relatively small data sets are available for training. In addition, we have compared our method with five freely available and widely used MS lesion segmentation methods (EMS, LST-LPA, LST-LGA, Lesion-TOADS, and SLS) on a large data set from an MS clinical trial. The results show that our method consistently outperforms these other methods across a wide range of lesion sizes.
Collapse
|
32
|
Peters JM, Prohl AK, Tomas-Fernandez XK, Taquet M, Scherrer B, Prabhu SP, Lidov HG, Singh JM, Jansen FE, Braun KPJ, Sahin M, Warfield SK, Stamm A. Tubers are neither static nor discrete: Evidence from serial diffusion tensor imaging. Neurology 2015; 85:1536-45. [PMID: 26432846 DOI: 10.1212/wnl.0000000000002055] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/18/2015] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To assess the extent and evolution of tissue abnormality of tubers, perituber tissue, and normal-appearing white matter (NAWM) in patients with tuberous sclerosis complex using serial diffusion tensor imaging. METHODS We applied automatic segmentation based on a combined global-local intensity mixture model of 3T structural and 35 direction diffusion tensor MRIs (diffusion tensor imaging) to define 3 regions: tuber tissue, an equal volume perituber rim, and the remaining NAWM. For each patient, scan, lobe, and tissue type, we analyzed the averages of mean diffusivity (MD) and fractional anisotropy (FA) in a generalized additive mixed model. RESULTS Twenty-five patients (mean age 5.9 years; range 0.5-24.5 years) underwent 2 to 6 scans each, totaling 70 scans. Average time between scans was 1.2 years (range 0.4-2.9). Patient scans were compared with those of 73 healthy controls. FA values were lowest, and MD values were highest in tubers, next in perituber tissue, then in NAWM. Longitudinal analysis showed a positive (FA) and negative (MD) correlation with age in tubers, perituber tissue, and NAWM. All 3 tissue types followed a biexponential developmental trajectory, similar to the white matter of controls. An additional qualitative analysis showed a gradual transition of diffusion values across the tissue type boundaries. CONCLUSIONS Similar to NAWM, tuber and perituber tissues in tuberous sclerosis complex undergo microstructural evolution with age. The extent of diffusion abnormality decreases with distance to the tuber, in line with known extension of histologic, immunohistochemical, and molecular abnormalities beyond tuber pathology.
Collapse
Affiliation(s)
- Jurriaan M Peters
- From the Division of Epilepsy and Clinical Neurophysiology, Department of Neurology (J.M.P., M.S.), Computational Radiology Laboratory, Department of Radiology (J.M.P., A.K.P., X.K.T.-F., M.T., B.S., S.P.P., J.M.S., S.K.W., A.S.), and Department of Pathology (H.G.L.), Boston Children's Hospital and Harvard Medical School, MA; ICTEAM Institute (M.T.), Université catholique de Louvain, Louvain-la-Neuve, Belgium; and Brain Center Rudolf Magnus (F.E.J., K.P.J.B.), Department of Pediatric Neurology, University Medical Center Utrecht, the Netherlands
| | - Anna K Prohl
- From the Division of Epilepsy and Clinical Neurophysiology, Department of Neurology (J.M.P., M.S.), Computational Radiology Laboratory, Department of Radiology (J.M.P., A.K.P., X.K.T.-F., M.T., B.S., S.P.P., J.M.S., S.K.W., A.S.), and Department of Pathology (H.G.L.), Boston Children's Hospital and Harvard Medical School, MA; ICTEAM Institute (M.T.), Université catholique de Louvain, Louvain-la-Neuve, Belgium; and Brain Center Rudolf Magnus (F.E.J., K.P.J.B.), Department of Pediatric Neurology, University Medical Center Utrecht, the Netherlands
| | - Xavier K Tomas-Fernandez
- From the Division of Epilepsy and Clinical Neurophysiology, Department of Neurology (J.M.P., M.S.), Computational Radiology Laboratory, Department of Radiology (J.M.P., A.K.P., X.K.T.-F., M.T., B.S., S.P.P., J.M.S., S.K.W., A.S.), and Department of Pathology (H.G.L.), Boston Children's Hospital and Harvard Medical School, MA; ICTEAM Institute (M.T.), Université catholique de Louvain, Louvain-la-Neuve, Belgium; and Brain Center Rudolf Magnus (F.E.J., K.P.J.B.), Department of Pediatric Neurology, University Medical Center Utrecht, the Netherlands
| | - Maxime Taquet
- From the Division of Epilepsy and Clinical Neurophysiology, Department of Neurology (J.M.P., M.S.), Computational Radiology Laboratory, Department of Radiology (J.M.P., A.K.P., X.K.T.-F., M.T., B.S., S.P.P., J.M.S., S.K.W., A.S.), and Department of Pathology (H.G.L.), Boston Children's Hospital and Harvard Medical School, MA; ICTEAM Institute (M.T.), Université catholique de Louvain, Louvain-la-Neuve, Belgium; and Brain Center Rudolf Magnus (F.E.J., K.P.J.B.), Department of Pediatric Neurology, University Medical Center Utrecht, the Netherlands
| | - Benoit Scherrer
- From the Division of Epilepsy and Clinical Neurophysiology, Department of Neurology (J.M.P., M.S.), Computational Radiology Laboratory, Department of Radiology (J.M.P., A.K.P., X.K.T.-F., M.T., B.S., S.P.P., J.M.S., S.K.W., A.S.), and Department of Pathology (H.G.L.), Boston Children's Hospital and Harvard Medical School, MA; ICTEAM Institute (M.T.), Université catholique de Louvain, Louvain-la-Neuve, Belgium; and Brain Center Rudolf Magnus (F.E.J., K.P.J.B.), Department of Pediatric Neurology, University Medical Center Utrecht, the Netherlands
| | - Sanjay P Prabhu
- From the Division of Epilepsy and Clinical Neurophysiology, Department of Neurology (J.M.P., M.S.), Computational Radiology Laboratory, Department of Radiology (J.M.P., A.K.P., X.K.T.-F., M.T., B.S., S.P.P., J.M.S., S.K.W., A.S.), and Department of Pathology (H.G.L.), Boston Children's Hospital and Harvard Medical School, MA; ICTEAM Institute (M.T.), Université catholique de Louvain, Louvain-la-Neuve, Belgium; and Brain Center Rudolf Magnus (F.E.J., K.P.J.B.), Department of Pediatric Neurology, University Medical Center Utrecht, the Netherlands
| | - Hart G Lidov
- From the Division of Epilepsy and Clinical Neurophysiology, Department of Neurology (J.M.P., M.S.), Computational Radiology Laboratory, Department of Radiology (J.M.P., A.K.P., X.K.T.-F., M.T., B.S., S.P.P., J.M.S., S.K.W., A.S.), and Department of Pathology (H.G.L.), Boston Children's Hospital and Harvard Medical School, MA; ICTEAM Institute (M.T.), Université catholique de Louvain, Louvain-la-Neuve, Belgium; and Brain Center Rudolf Magnus (F.E.J., K.P.J.B.), Department of Pediatric Neurology, University Medical Center Utrecht, the Netherlands
| | - Jolene M Singh
- From the Division of Epilepsy and Clinical Neurophysiology, Department of Neurology (J.M.P., M.S.), Computational Radiology Laboratory, Department of Radiology (J.M.P., A.K.P., X.K.T.-F., M.T., B.S., S.P.P., J.M.S., S.K.W., A.S.), and Department of Pathology (H.G.L.), Boston Children's Hospital and Harvard Medical School, MA; ICTEAM Institute (M.T.), Université catholique de Louvain, Louvain-la-Neuve, Belgium; and Brain Center Rudolf Magnus (F.E.J., K.P.J.B.), Department of Pediatric Neurology, University Medical Center Utrecht, the Netherlands
| | - Floor E Jansen
- From the Division of Epilepsy and Clinical Neurophysiology, Department of Neurology (J.M.P., M.S.), Computational Radiology Laboratory, Department of Radiology (J.M.P., A.K.P., X.K.T.-F., M.T., B.S., S.P.P., J.M.S., S.K.W., A.S.), and Department of Pathology (H.G.L.), Boston Children's Hospital and Harvard Medical School, MA; ICTEAM Institute (M.T.), Université catholique de Louvain, Louvain-la-Neuve, Belgium; and Brain Center Rudolf Magnus (F.E.J., K.P.J.B.), Department of Pediatric Neurology, University Medical Center Utrecht, the Netherlands
| | - Kees P J Braun
- From the Division of Epilepsy and Clinical Neurophysiology, Department of Neurology (J.M.P., M.S.), Computational Radiology Laboratory, Department of Radiology (J.M.P., A.K.P., X.K.T.-F., M.T., B.S., S.P.P., J.M.S., S.K.W., A.S.), and Department of Pathology (H.G.L.), Boston Children's Hospital and Harvard Medical School, MA; ICTEAM Institute (M.T.), Université catholique de Louvain, Louvain-la-Neuve, Belgium; and Brain Center Rudolf Magnus (F.E.J., K.P.J.B.), Department of Pediatric Neurology, University Medical Center Utrecht, the Netherlands
| | - Mustafa Sahin
- From the Division of Epilepsy and Clinical Neurophysiology, Department of Neurology (J.M.P., M.S.), Computational Radiology Laboratory, Department of Radiology (J.M.P., A.K.P., X.K.T.-F., M.T., B.S., S.P.P., J.M.S., S.K.W., A.S.), and Department of Pathology (H.G.L.), Boston Children's Hospital and Harvard Medical School, MA; ICTEAM Institute (M.T.), Université catholique de Louvain, Louvain-la-Neuve, Belgium; and Brain Center Rudolf Magnus (F.E.J., K.P.J.B.), Department of Pediatric Neurology, University Medical Center Utrecht, the Netherlands
| | - Simon K Warfield
- From the Division of Epilepsy and Clinical Neurophysiology, Department of Neurology (J.M.P., M.S.), Computational Radiology Laboratory, Department of Radiology (J.M.P., A.K.P., X.K.T.-F., M.T., B.S., S.P.P., J.M.S., S.K.W., A.S.), and Department of Pathology (H.G.L.), Boston Children's Hospital and Harvard Medical School, MA; ICTEAM Institute (M.T.), Université catholique de Louvain, Louvain-la-Neuve, Belgium; and Brain Center Rudolf Magnus (F.E.J., K.P.J.B.), Department of Pediatric Neurology, University Medical Center Utrecht, the Netherlands.
| | - Aymeric Stamm
- From the Division of Epilepsy and Clinical Neurophysiology, Department of Neurology (J.M.P., M.S.), Computational Radiology Laboratory, Department of Radiology (J.M.P., A.K.P., X.K.T.-F., M.T., B.S., S.P.P., J.M.S., S.K.W., A.S.), and Department of Pathology (H.G.L.), Boston Children's Hospital and Harvard Medical School, MA; ICTEAM Institute (M.T.), Université catholique de Louvain, Louvain-la-Neuve, Belgium; and Brain Center Rudolf Magnus (F.E.J., K.P.J.B.), Department of Pediatric Neurology, University Medical Center Utrecht, the Netherlands
| |
Collapse
|
33
|
Stratified mixture modeling for segmentation of white-matter lesions in brain MR images. Neuroimage 2015; 124:1031-1043. [PMID: 26427644 DOI: 10.1016/j.neuroimage.2015.09.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 09/07/2015] [Accepted: 09/20/2015] [Indexed: 11/21/2022] Open
Abstract
Accurate characterization of white-matter lesions from magnetic resonance (MR) images has increasing importance for diagnosis and management of treatment of certain neurological diseases, and can be performed in an objective and effective way by automated lesion segmentation. This usually involves modeling the whole-brain MR intensity distribution, however, capturing various sources of MR intensity variability and lesion heterogeneity results in highly complex whole-brain MR intensity models, thus their robust estimation on a large set of MR images presents a huge challenge. We propose a novel approach employing stratified mixture modeling, where the main premise is that the otherwise complex whole-brain model can be reduced to a tractable parametric form in small brain subregions. We show on MR images of multiple sclerosis (MS) patients with different lesion loads that robust estimators enable accurate mixture modeling of MR intensity in small brain subregions even in the presence of lesions. Recombination of the mixture models across strata provided an accurate whole-brain MR intensity model. Increasing the number of subregions and, thereby, the model complexity, consistently improved the accuracy of whole-brain MR intensity modeling and segmentation of normal structures. The proposed approach was incorporated into three unsupervised lesion segmentation methods and, compared to original and three other state-of-the-art methods, the proposed modeling approach significantly improved lesion segmentation according to increased Dice similarity indices and lower number of false positives on real MR images of 30 patients with MS.
Collapse
|
34
|
Guizard N, Coupé P, Fonov VS, Manjón JV, Arnold DL, Collins DL. Rotation-invariant multi-contrast non-local means for MS lesion segmentation. NEUROIMAGE-CLINICAL 2015; 8:376-89. [PMID: 26106563 PMCID: PMC4474283 DOI: 10.1016/j.nicl.2015.05.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 05/02/2015] [Accepted: 05/03/2015] [Indexed: 01/18/2023]
Abstract
Multiple sclerosis (MS) lesion segmentation is crucial for evaluating disease burden, determining disease progression and measuring the impact of new clinical treatments. MS lesions can vary in size, location and intensity, making automatic segmentation challenging. In this paper, we propose a new supervised method to segment MS lesions from 3D magnetic resonance (MR) images using non-local means (NLM). The method uses a multi-channel and rotation-invariant distance measure to account for the diversity of MS lesions. The proposed segmentation method, rotation-invariant multi-contrast non-local means segmentation (RMNMS), captures the MS lesion spatial distribution and can accurately and robustly identify lesions regardless of their orientation, shape or size. An internal validation on a large clinical magnetic resonance imaging (MRI) dataset of MS patients demonstrated a good similarity measure result (Dice similarity = 60.1% and sensitivity = 75.4%), a strong correlation between expert and automatic lesion load volumes (R2 = 0.91), and a strong ability to detect lesions of different sizes and in varying spatial locations (lesion detection rate = 79.8%). On the independent MS Grand Challenge (MSGC) dataset validation, our method provided competitive results with state-of-the-art supervised and unsupervised methods. Qualitative visual and quantitative voxel- and lesion-wise evaluations demonstrated the accuracy of RMNMS method. We propose a new multi-channel MS lesion segmentation technique. We adapt for lesion segmentation the non-local means operator to account for multi-contrast and rotation-invariant distance. The proposed method presents highly competitive results compared to state-of-the-art methods. The proposed method provides segmentation quality near inter-rater variability for MS lesion segmentation. Our non-local approach is able to detect structures that vary in size, shape and location such as MS lesions.
Collapse
Affiliation(s)
| | - Pierrick Coupé
- Laboratoire Bordelais de Recherche en Informatique, Unité Mixte de Recherche CNRS (UMR 5800), PICTURA Research Group, 351, Talence, France
| | | | - Jose V Manjón
- IBIME Research Group, ITACA Institute, Universidad Politécnica de Valencia, Medical Imaging Area, Valencia, Spain
| | | | | |
Collapse
|