1
|
Tang Y, Sasaki SI, Hawley J, Peillon A, Sjöström A, Fuentes-Alburo A, Tranquart F. Diagnostic Test Accuracy of Contrast-Enhanced Ultrasound With Sonazoid for Assessment of Focal Liver Lesions: A Systematic Review and Meta-Analysis. JOURNAL OF CLINICAL ULTRASOUND : JCU 2025; 53:510-524. [PMID: 39441548 DOI: 10.1002/jcu.23879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
This meta-analysis examined the diagnostic accuracy of Sonazoid-enhanced ultrasonography (SZ-CEUS) in discriminating malignant from benign focal liver lesions (FLLs) and HCC from non-HCC FLLs. Finding relevant studies required a rigorous PubMed, EMBASE, and other database search. To distinguish malignant from benign FLLs, SZ-CEUS had a pooled sensitivity of 94% (95% CI: 0.91-0.95) and specificity of 84% (95%: 0.78-0.89). HCC distinction had 83% sensitivity and 96% specificity (95% CI: 0.80-0.85 and 0.95-0.97). SZ-CEUS accurately distinguishes malignant from benign FLLs and HCC from non-HCC lesions, especially smaller HCC lesions.
Collapse
Affiliation(s)
- Yongqing Tang
- GE Healthcare Ltd and its Afilliates, Shanghai, China
| | | | - Joshua Hawley
- GE Healthcare Ltd and its Afilliates, Chalfont St Giles, United Kingdom
| | | | | | | | | |
Collapse
|
2
|
Chi J, Chen JH, Wu B, Zhao J, Wang K, Yu X, Zhang W, Huang Y. A Dual-Branch Cross-Modality-Attention Network for Thyroid Nodule Diagnosis Based on Ultrasound Images and Contrast-Enhanced Ultrasound Videos. IEEE J Biomed Health Inform 2025; 29:1269-1282. [PMID: 39356606 DOI: 10.1109/jbhi.2024.3472609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Contrast-enhanced ultrasound (CEUS) has been extensively employed as an imaging modality in thyroid nodule diagnosis due to its capacity to visualise the distribution and circulation of micro-vessels in organs and lesions in a non-invasive manner. However, current CEUS-based thyroid nodule diagnosis methods suffered from: 1) the blurred spatial boundaries between nodules and other anatomies in CEUS videos, and 2) the insufficient representations of the local structural information of nodule tissues by the features extracted only from CEUS videos. In this paper, we propose a novel dual-branch network with a cross-modality-attention mechanism for thyroid nodule diagnosis by integrating the information from tow related modalities, i.e., CEUS videos and ultrasound image. The mechanism has two parts: US-attention-from-CEUS transformer (UAC-T) and CEUS-attention-from-US transformer (CAU-T). As such, this network imitates the manner of human radiologists by decomposing the diagnosis into two correlated tasks: 1) the spatio-temporal features extracted from CEUS are hierarchically embedded into the spatial features extracted from US with UAC-T for the nodule segmentation; 2) the US spatial features are used to guide the extraction of the CEUS spatio-temporal features with CAU-T for the nodule classification. The two tasks are intertwined in the dual-branch end-to-end network and optimized with the multi-task learning (MTL) strategy. The proposed method is evaluated on our collected thyroid US-CEUS dataset. Experimental results show that our method achieves the classification accuracy of 86.92%, specificity of 66.41%, and sensitivity of 97.01%, outperforming the state-of-the-art methods. As a general contribution in the field of multi-modality diagnosis of diseases, the proposed method has provided an effective way to combine static information with its related dynamic information, improving the quality of deep learning based diagnosis with an additional benefit of explainability.
Collapse
|
3
|
Chatzipanagiotou OP, Loukas C, Vailas M, Machairas N, Kykalos S, Charalampopoulos G, Filippiadis D, Felekouras E, Schizas D. Artificial intelligence in hepatocellular carcinoma diagnosis: a comprehensive review of current literature. J Gastroenterol Hepatol 2024; 39:1994-2005. [PMID: 38923550 DOI: 10.1111/jgh.16663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 04/26/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND AND AIM Hepatocellular carcinoma (HCC) diagnosis mainly relies on its pathognomonic radiological profile, obviating the need for biopsy. The project of incorporating artificial intelligence (AI) techniques in HCC aims to improve the performance of image recognition. Herein, we thoroughly analyze and evaluate proposed AI models in the field of HCC diagnosis. METHODS A comprehensive review of the literature was performed utilizing MEDLINE/PubMed and Web of Science databases with the end of search date being the 30th of September 2023. The MESH terms "Artificial Intelligence," "Liver Cancer," "Hepatocellular Carcinoma," "Machine Learning," and "Deep Learning" were searched in the title and/or abstract. All references of the obtained articles were also evaluated for any additional information. RESULTS Our search resulted in 183 studies meeting our inclusion criteria. Across all diagnostic modalities, reported area under the curve (AUC) of most developed models surpassed 0.900. A B-mode US and a contrast-enhanced US model achieved AUCs of 0.947 and 0.957, respectively. Regarding the more challenging task of HCC diagnosis, a 2021 deep learning model, trained with CT scans, classified hepatic malignant lesions with an AUC of 0.986. Finally, a MRI machine learning model developed in 2021 displayed an AUC of 0.975 when differentiating small HCCs from benign lesions, while another MRI-based model achieved HCC diagnosis with an AUC of 0.970. CONCLUSIONS AI tools may lead to significant improvement in diagnostic management of HCC. Many models fared better or comparable to experienced radiologists while proving capable of elevating radiologists' accuracy, demonstrating promising results for AI implementation in HCC-related diagnostic tasks.
Collapse
Affiliation(s)
- Odysseas P Chatzipanagiotou
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Constantinos Loukas
- Laboratory of Medical Physics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Michail Vailas
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Nikolaos Machairas
- Second Department of Propaedeutic Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Stylianos Kykalos
- Second Department of Propaedeutic Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Georgios Charalampopoulos
- Second Department of Radiology, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Dimitrios Filippiadis
- Second Department of Radiology, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Evangellos Felekouras
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Dimitrios Schizas
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| |
Collapse
|
4
|
Brooks JA, Kallenbach M, Radu IP, Berzigotti A, Dietrich CF, Kather JN, Luedde T, Seraphin TP. Artificial Intelligence for Contrast-Enhanced Ultrasound of the Liver: A Systematic Review. Digestion 2024:1-18. [PMID: 39312896 DOI: 10.1159/000541540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
INTRODUCTION The research field of artificial intelligence (AI) in medicine and especially in gastroenterology is rapidly progressing with the first AI tools entering routine clinical practice, for example, in colorectal cancer screening. Contrast-enhanced ultrasound (CEUS) is a highly reliable, low-risk, and low-cost diagnostic modality for the examination of the liver. However, doctors need many years of training and experience to master this technique and, despite all efforts to standardize CEUS, it is often believed to contain significant interrater variability. As has been shown for endoscopy, AI holds promise to support examiners at all training levels in their decision-making and efficiency. METHODS In this systematic review, we analyzed and compared original research studies applying AI methods to CEUS examinations of the liver published between January 2010 and February 2024. We performed a structured literature search on PubMed, Web of Science, and IEEE. Two independent reviewers screened the articles and subsequently extracted relevant methodological features, e.g., cohort size, validation process, machine learning algorithm used, and indicative performance measures from the included articles. RESULTS We included 41 studies with most applying AI methods for classification tasks related to focal liver lesions. These included distinguishing benign versus malignant or classifying the entity itself, while a few studies tried to classify tumor grading, microvascular invasion status, or response to transcatheter arterial chemoembolization directly from CEUS. Some articles tried to segment or detect focal liver lesions, while others aimed to predict survival and recurrence after ablation. The majority (25/41) of studies used hand-picked and/or annotated images as data input to their models. We observed mostly good to high reported model performances with accuracies ranging between 58.6% and 98.9%, while noticing a general lack of external validation. CONCLUSION Even though multiple proof-of-concept studies for the application of AI methods to CEUS examinations of the liver exist and report high performance, more prospective, externally validated, and multicenter research is needed to bring such algorithms from desk to bedside.
Collapse
Affiliation(s)
- James A Brooks
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich-Heine-University, Dusseldorf, Germany
| | - Michael Kallenbach
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich-Heine-University, Dusseldorf, Germany
| | - Iuliana-Pompilia Radu
- Department for Visceral Surgery and Medicine, Inselspital, University of Bern, Bern, Switzerland
| | - Annalisa Berzigotti
- Department for Visceral Surgery and Medicine, Inselspital, University of Bern, Bern, Switzerland
| | - Christoph F Dietrich
- Department Allgemeine Innere Medizin (DAIM), Kliniken Hirslanden Beau Site, Salem and Permanence, Bern, Switzerland
| | - Jakob N Kather
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich-Heine-University, Dusseldorf, Germany
| | - Tobias P Seraphin
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich-Heine-University, Dusseldorf, Germany
| |
Collapse
|
5
|
Wang L, Fatemi M, Alizad A. Artificial intelligence techniques in liver cancer. Front Oncol 2024; 14:1415859. [PMID: 39290245 PMCID: PMC11405163 DOI: 10.3389/fonc.2024.1415859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
Hepatocellular Carcinoma (HCC), the most common primary liver cancer, is a significant contributor to worldwide cancer-related deaths. Various medical imaging techniques, including computed tomography, magnetic resonance imaging, and ultrasound, play a crucial role in accurately evaluating HCC and formulating effective treatment plans. Artificial Intelligence (AI) technologies have demonstrated potential in supporting physicians by providing more accurate and consistent medical diagnoses. Recent advancements have led to the development of AI-based multi-modal prediction systems. These systems integrate medical imaging with other modalities, such as electronic health record reports and clinical parameters, to enhance the accuracy of predicting biological characteristics and prognosis, including those associated with HCC. These multi-modal prediction systems pave the way for predicting the response to transarterial chemoembolization and microvascular invasion treatments and can assist clinicians in identifying the optimal patients with HCC who could benefit from interventional therapy. This paper provides an overview of the latest AI-based medical imaging models developed for diagnosing and predicting HCC. It also explores the challenges and potential future directions related to the clinical application of AI techniques.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Engineering, School of Technology, Reykjavık University, Reykjavík, Iceland
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Mostafa Fatemi
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| |
Collapse
|
6
|
Wei Y, Yang M, Zhang M, Gao F, Zhang N, Hu F, Zhang X, Zhang S, Huang Z, Xu L, Zhang F, Liu M, Deng J, Cheng X, Xie T, Wang X, Liu N, Gong H, Zhu S, Song B, Liu M. Focal liver lesion diagnosis with deep learning and multistage CT imaging. Nat Commun 2024; 15:7040. [PMID: 39147767 PMCID: PMC11327344 DOI: 10.1038/s41467-024-51260-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 08/02/2024] [Indexed: 08/17/2024] Open
Abstract
Diagnosing liver lesions is crucial for treatment choices and patient outcomes. This study develops an automatic diagnosis system for liver lesions using multiphase enhanced computed tomography (CT). A total of 4039 patients from six data centers are enrolled to develop Liver Lesion Network (LiLNet). LiLNet identifies focal liver lesions, including hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC), metastatic tumors (MET), focal nodular hyperplasia (FNH), hemangioma (HEM), and cysts (CYST). Validated in four external centers and clinically verified in two hospitals, LiLNet achieves an accuracy (ACC) of 94.7% and an area under the curve (AUC) of 97.2% for benign and malignant tumors. For HCC, ICC, and MET, the ACC is 88.7% with an AUC of 95.6%. For FNH, HEM, and CYST, the ACC is 88.6% with an AUC of 95.9%. LiLNet can aid in clinical diagnosis, especially in regions with a shortage of radiologists.
Collapse
Affiliation(s)
- Yi Wei
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Meiyi Yang
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Meng Zhang
- Department of Radiology, Sanya People's Hospital, Sanya, Hainan, China
| | - Feifei Gao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ning Zhang
- Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Fubi Hu
- Department of Radiology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Xiao Zhang
- Department of Radiology, Leshan People's Hospital, Leshan, Sichuan, China
| | - Shasha Zhang
- Department of Radiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Zixing Huang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lifeng Xu
- Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, China
| | - Feng Zhang
- Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, China
| | - Minghui Liu
- Yangtze Delta Region Institute(Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
| | - Jiali Deng
- Yangtze Delta Region Institute(Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
| | - Xuan Cheng
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Tianshu Xie
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xiaomin Wang
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Nianbo Liu
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Haigang Gong
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Shaocheng Zhu
- Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, Henan, China.
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Department of Radiology, Sanya People's Hospital, Sanya, Hainan, China.
| | - Ming Liu
- Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, China.
- Yangtze Delta Region Institute(Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China.
| |
Collapse
|
7
|
Zhou H, Ding J, Zhou Y, Wang Y, Zhao L, Shih CC, Xu J, Wang J, Tong L, Chen Z, Lin Q, Jing X. Malignancy diagnosis of liver lesion in contrast enhanced ultrasound using an end-to-end method based on deep learning. BMC Med Imaging 2024; 24:68. [PMID: 38515044 PMCID: PMC10956289 DOI: 10.1186/s12880-024-01247-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 03/14/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Contrast-enhanced ultrasound (CEUS) is considered as an efficient tool for focal liver lesion characterization, given it allows real-time scanning and provides dynamic tissue perfusion information. An accurate diagnosis of liver lesions with CEUS requires a precise interpretation of CEUS images. However,it is a highly experience dependent task which requires amount of training and practice. To help improve the constrains, this study aims to develop an end-to-end method based on deep learning to make malignancy diagnosis of liver lesions using CEUS. METHODS A total of 420 focal liver lesions with 136 benign cases and 284 malignant cases were included. A deep learning model based on a two-dimensional convolution neural network, a long short-term memory (LSTM), and a linear classifier (with sigmoid) was developed to analyze the CEUS loops from different contrast imaging phases. For comparison, a 3D-CNN based method and a machine-learning (ML)-based time-intensity curve (TIC) method were also implemented for performance evaluation. RESULTS Results of the 4-fold validation demonstrate that the mean AUC is 0.91, 0.88, and 0.78 for the proposed method, the 3D-CNN based method, and the ML-based TIC method, respectively. CONCLUSIONS The proposed CNN-LSTM method is promising in making malignancy diagnosis of liver lesions in CEUS without any additional manual features selection.
Collapse
Affiliation(s)
- Hongyu Zhou
- The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin, 300170, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Jianmin Ding
- The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin, 300170, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Yan Zhou
- The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin, 300170, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Yandong Wang
- The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin, 300170, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Lei Zhao
- The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin, 300170, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | | | - Jingping Xu
- Philips Ultrasound R&D Research, Shanghai, China
| | - Jianan Wang
- Philips Ultrasound R&D Research, Shanghai, China
| | - Ling Tong
- Philips Ultrasound R&D Research, Shanghai, China
| | - Zhouye Chen
- Philips Ultrasound R&D Research, Shanghai, China
| | - Qizhong Lin
- Philips Ultrasound R&D Research, Shanghai, China
| | - Xiang Jing
- The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin, 300170, China.
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China.
- Artificial Cell Engineering Technology Research Center, Tianjin, China.
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China.
| |
Collapse
|
8
|
Yao J, Zhou W, Xu S, Jia X, Zhou J, Chen X, Zhan W. Machine Learning-Based Breast Tumor Ultrasound Radiomics for Pre-operative Prediction of Axillary Sentinel Lymph Node Metastasis Burden in Early-Stage Invasive Breast Cancer. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:229-236. [PMID: 37951821 DOI: 10.1016/j.ultrasmedbio.2023.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/18/2023] [Accepted: 10/08/2023] [Indexed: 11/14/2023]
Abstract
OBJECTIVE The aim of the work described here was to assess the application of ultrasound (US) radiomics with machine learning (ML) classifiers to the prediction of axillary sentinel lymph node metastasis (SLNM) burden in early-stage invasive breast cancer (IBC). METHODS In this study, 278 early-stage IBC patients with at least one SLNM (195 in the training set and 83 in the test set) were studied at our institution. Pathologic SLNM burden was used as the reference standard. The US radiomics features of breast tumors were extracted by using 3D-Slicer and PyRadiomics software. Four ML classifiers-linear discriminant analysis (LDA), support vector machine (SVM), random forest (RF) and decision tree (DT)-were used to construct radiomics models for the prediction of SLNM burden. The combined clinicopathologic-radiomics models were also assessed with respect to sensitivity, specificity, accuracy and areas under the curve (AUCs). RESULTS Among the US radiomics models, the SVM classifier achieved better predictive performance with an AUC of 0.920 compared with RF (AUC = 0.874), LDA (AUC = 0.835) and DT (AUC = 0.800) in the test set. The clinicopathologic model had low efficacy, with AUCs of 0.678 and 0.710 in the training and test sets, respectively. The combined clinicopathologic (C) factors and SVM classifier (C + SVM) model improved the predictive ability with an AUC of 0.934, sensitivity of 86.7%, specificity of 89.9% and accuracy of 91.0% in the test set. CONCLUSION ML-based US radiomics analysis, as a novel and promising predictive tool, is conducive to a precise clinical treatment strategy.
Collapse
Affiliation(s)
- Jiejie Yao
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Zhou
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shangyan Xu
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohong Jia
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianqiao Zhou
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaosong Chen
- Department of Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiwei Zhan
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
9
|
Urhuț MC, Săndulescu LD, Streba CT, Mămuleanu M, Ciocâlteu A, Cazacu SM, Dănoiu S. Diagnostic Performance of an Artificial Intelligence Model Based on Contrast-Enhanced Ultrasound in Patients with Liver Lesions: A Comparative Study with Clinicians. Diagnostics (Basel) 2023; 13:3387. [PMID: 37958282 PMCID: PMC10650544 DOI: 10.3390/diagnostics13213387] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Contrast-enhanced ultrasound (CEUS) is widely used in the characterization of liver tumors; however, the evaluation of perfusion patterns using CEUS has a subjective character. This study aims to evaluate the accuracy of an automated method based on CEUS for classifying liver lesions and to compare its performance with that of two experienced clinicians. The system used for automatic classification is based on artificial intelligence (AI) algorithms. For an interpretation close to the clinical setting, both clinicians knew which patients were at high risk for hepatocellular carcinoma (HCC), but only one was aware of all the clinical data. In total, 49 patients with 59 liver tumors were included. For the benign and malignant classification, the AI model outperformed both clinicians in terms of specificity (100% vs. 93.33%); still, the sensitivity was lower (74% vs. 93.18% vs. 90.91%). In the second stage of multiclass diagnosis, the automatic model achieved a diagnostic accuracy of 69.93% for HCC and 89.15% for liver metastases. Readers demonstrated greater diagnostic accuracy for HCC (83.05% and 79.66%) and liver metastases (94.92% and 96.61%) compared to the AI system; however, both were experienced sonographers. The AI model could potentially assist and guide less-experienced clinicians to discriminate malignant from benign liver tumors with high accuracy and specificity.
Collapse
Affiliation(s)
- Marinela-Cristiana Urhuț
- Department of Gastroenterology, Emergency County Hospital of Craiova, Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Larisa Daniela Săndulescu
- Department of Gastroenterology, Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (C.T.S.); (A.C.); (S.M.C.)
| | - Costin Teodor Streba
- Department of Gastroenterology, Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (C.T.S.); (A.C.); (S.M.C.)
- Department of Pulmonology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Oncometrics S.R.L., 200677 Craiova, Romania;
| | - Mădălin Mămuleanu
- Oncometrics S.R.L., 200677 Craiova, Romania;
- Department of Automatic Control and Electronics, University of Craiova, 200585 Craiova, Romania
| | - Adriana Ciocâlteu
- Department of Gastroenterology, Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (C.T.S.); (A.C.); (S.M.C.)
| | - Sergiu Marian Cazacu
- Department of Gastroenterology, Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (C.T.S.); (A.C.); (S.M.C.)
| | - Suzana Dănoiu
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| |
Collapse
|
10
|
Campello CA, Castanha EB, Vilardo M, Staziaki PV, Francisco MZ, Mohajer B, Watte G, Moraes FY, Hochhegger B, Altmayer S. Machine learning for malignant versus benign focal liver lesions on US and CEUS: a meta-analysis. Abdom Radiol (NY) 2023; 48:3114-3126. [PMID: 37365266 DOI: 10.1007/s00261-023-03984-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
OBJECTIVES To perform a meta-analysis of the diagnostic performance of learning (ML) algorithms (conventional and deep learning algorithms) for the classification of malignant versus benign focal liver lesions (FLLs) on US and CEUS. METHODS Available databases were searched for relevant published studies through September 2022. Studies met eligibility criteria if they evaluate the diagnostic performance of ML for the classification of malignant and benign focal liver lesions on US and CEUS. The pooled per-lesion sensitivities and specificities for each modality with 95% confidence intervals were calculated. RESULTS A total of 8 studies on US, 11 on CEUS, and 1 study evaluating both methods met the inclusion criteria with a total of 34,245 FLLs evaluated. The pooled sensitivity and specificity of ML for the malignancy classification of FLLs were 81.7% (95% CI, 77.2-85.4%) and 84.8% (95% CI, 76.0-90.8%) for US, compared to 87.1% (95% CI, 81.8-91.0%) and 87.0% (95% CI, 83.1-90.1%) for CEUS. In the subgroup analysis of studies that evaluated deep learning algorithms, the sensitivity and specificity of CEUS (n = 4) increased to 92.4% (95% CI, 88.5-95.0%) and 88.2% (95% CI, 81.1-92.9%). CONCLUSIONS The diagnostic performance of ML algorithms for the malignant classification of FLLs was high for both US and CEUS with overall similar sensitivity and specificity. The similar performance of US may be related to the higher prevalence of DL models in that group.
Collapse
Affiliation(s)
- Carlos Alberto Campello
- School of Medicine, Universidade Federal do Mato Grosso, 2367 Quarenta e Nove St, Cuiabá, Brazil
| | - Everton Bruno Castanha
- School of Medicine, Universidade Federal de Pelotas, 538 Prof. Dr. Araújo St. Pelotas, Pelotas, Brazil
| | - Marina Vilardo
- School of Medicine, Universidade Catolica de Brasilia, QS 07, Brasília, Brazil
| | - Pedro V Staziaki
- Department of Radiology, University of Vermont Medical Center, 111 Colchester Ave, Burlington, USA
| | - Martina Zaguini Francisco
- Department of Radiology, Universidade Federal de Ciencias da Saude de Porto Alegre, 245 Sarmento Leite St, Porto Alegre, Brazil
| | - Bahram Mohajer
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, USA
| | - Guilherme Watte
- Department of Radiology, Universidade Federal de Ciencias da Saude de Porto Alegre, 245 Sarmento Leite St, Porto Alegre, Brazil
| | - Fabio Ynoe Moraes
- Department of Oncology, Queen's University, 76 Stuart St, Kingston, Canada
| | - Bruno Hochhegger
- Department of Radiology, University of Florida, 1600 SW Archer Rd, Gainesville, USA
| | - Stephan Altmayer
- Department of Radiology, Stanford University, 300 Pasteur Drive, Suite H1330, Stanford, USA.
| |
Collapse
|
11
|
Gong X, Yuan S, Xiang Y, Fan L, Zhou H. Domain knowledge-guided adversarial adaptive fusion of hybrid breast ultrasound data. Comput Biol Med 2023; 164:107256. [PMID: 37473565 DOI: 10.1016/j.compbiomed.2023.107256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/20/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023]
Abstract
Contrast-enhanced ultrasound (CEUS), which provides more detailed microvascular information about the tumor, is always taken by radiologists in clinic diagnosis along with B-mode ultrasound (B-mode US). However, automatically analyzing breast CEUS is challenging due to the difference between the CEUS video and the natural video, e.g., sports or action videos, where the CEUS video has no positional displacements. Additionally, most existing methods rarely use the Time Intensity Curve (TIC) information of CEUS and non-imaging clinical (NIC) data. To address these issues, we propose a novel breast cancer diagnosis framework that learns the complementarity and correlation across hybrid modal data, including CEUS, B-mode US, and NIC data, by an adversarial adaptive fusion method. Furthermore, to fully exploit the CEUS information, the proposed method, inspired by the clinical processing of radiologists, first extracts the TIC parameters of CEUS. Then, we select a clip from CEUS using a frame screening strategy and finally get spatio-temporal features from these clips through a critical frame attention network. To our knowledge, this is the first AI system to use TIC parameters, NIC data, and ultrasound imaging in diagnoses. We have validated our method on a dataset collected from 554 patients. The experimental results demonstrate the excellent performance of the proposed method. The result shows that our method can achieve an accuracy of 87.73%, which is higher than that of uni-modal approaches by nearly 5%.
Collapse
Affiliation(s)
- Xun Gong
- School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China; Engineering Research Center of Sustainable Urban Intelligent Transportation, Ministry of Education, China; Manufacturing Industry Chains Collaboration and Information Support Technology Key Laboratory of Sichuan Province, Chengdu, 610031, Sichuan, China.
| | - Shuai Yuan
- Tangshan Research Institute, Southwest Jiaotong University, Tangshan, 063002, Hebei, China; Engineering Research Center of Sustainable Urban Intelligent Transportation, Ministry of Education, China; Manufacturing Industry Chains Collaboration and Information Support Technology Key Laboratory of Sichuan Province, Chengdu, 610031, Sichuan, China
| | - Yang Xiang
- Tangshan Research Institute, Southwest Jiaotong University, Tangshan, 063002, Hebei, China; Engineering Research Center of Sustainable Urban Intelligent Transportation, Ministry of Education, China; Manufacturing Industry Chains Collaboration and Information Support Technology Key Laboratory of Sichuan Province, Chengdu, 610031, Sichuan, China
| | - Lin Fan
- School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China; Engineering Research Center of Sustainable Urban Intelligent Transportation, Ministry of Education, China; Manufacturing Industry Chains Collaboration and Information Support Technology Key Laboratory of Sichuan Province, Chengdu, 610031, Sichuan, China
| | - Hong Zhou
- Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| |
Collapse
|
12
|
Vetter M, Waldner MJ, Zundler S, Klett D, Bocklitz T, Neurath MF, Adler W, Jesper D. Artificial intelligence for the classification of focal liver lesions in ultrasound - a systematic review. ULTRASCHALL IN DER MEDIZIN (STUTTGART, GERMANY : 1980) 2023; 44:395-407. [PMID: 37001563 DOI: 10.1055/a-2066-9372] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Focal liver lesions are detected in about 15% of abdominal ultrasound examinations. The diagnosis of frequent benign lesions can be determined reliably based on the characteristic B-mode appearance of cysts, hemangiomas, or typical focal fatty changes. In the case of focal liver lesions which remain unclear on B-mode ultrasound, contrast-enhanced ultrasound (CEUS) increases diagnostic accuracy for the distinction between benign and malignant liver lesions. Artificial intelligence describes applications that try to emulate human intelligence, at least in subfields such as the classification of images. Since ultrasound is considered to be a particularly examiner-dependent technique, the application of artificial intelligence could be an interesting approach for an objective and accurate diagnosis. In this systematic review we analyzed how artificial intelligence can be used to classify the benign or malignant nature and entity of focal liver lesions on the basis of B-mode or CEUS data. In a structured search on Scopus, Web of Science, PubMed, and IEEE, we found 52 studies that met the inclusion criteria. Studies showed good diagnostic performance for both the classification as benign or malignant and the differentiation of individual tumor entities. The results could be improved by inclusion of clinical parameters and were comparable to those of experienced investigators in terms of diagnostic accuracy. However, due to the limited spectrum of lesions included in the studies and a lack of independent validation cohorts, the transfer of the results into clinical practice is limited.
Collapse
Affiliation(s)
- Marcel Vetter
- Department of Internal Medicine 1, Erlangen University Hospital Department of Medicine 1 Gastroenterology Endocrinology and Pneumology, Erlangen, Germany
| | - Maximilian J Waldner
- Department of Internal Medicine 1, Erlangen University Hospital Department of Medicine 1 Gastroenterology Endocrinology and Pneumology, Erlangen, Germany
| | - Sebastian Zundler
- Department of Internal Medicine 1, Erlangen University Hospital Department of Medicine 1 Gastroenterology Endocrinology and Pneumology, Erlangen, Germany
| | - Daniel Klett
- Department of Internal Medicine 1, Erlangen University Hospital Department of Medicine 1 Gastroenterology Endocrinology and Pneumology, Erlangen, Germany
| | - Thomas Bocklitz
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-Universitat Jena, Jena, Germany
- Leibniz-Institute of Photonic Technology, Friedrich Schiller University Jena, Jena, Germany
| | - Markus F Neurath
- Department of Internal Medicine 1, Erlangen University Hospital Department of Medicine 1 Gastroenterology Endocrinology and Pneumology, Erlangen, Germany
| | - Werner Adler
- Department of Medical Informatics, Biometry and Epidemiology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Daniel Jesper
- Department of Internal Medicine 1, Erlangen University Hospital Department of Medicine 1 Gastroenterology Endocrinology and Pneumology, Erlangen, Germany
| |
Collapse
|
13
|
Khan RA, Fu M, Burbridge B, Luo Y, Wu FX. A multi-modal deep neural network for multi-class liver cancer diagnosis. Neural Netw 2023; 165:553-561. [PMID: 37354807 DOI: 10.1016/j.neunet.2023.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/21/2023] [Accepted: 06/07/2023] [Indexed: 06/26/2023]
Abstract
Liver disease is a potentially asymptomatic clinical entity that may progress to patient death. This study proposes a multi-modal deep neural network for multi-class malignant liver diagnosis. In parallel with the portal venous computed tomography (CT) scans, pathology data is utilized to prognosticate primary liver cancer variants and metastasis. The processed CT scans are fed to the deep dilated convolution neural network to explore salient features. The residual connections are further added to address vanishing gradient problems. Correspondingly, five pathological features are learned using a wide and deep network that gives a benefit of memorization with generalization. The down-scaled hierarchical features from CT scan and pathology data are concatenated to pass through fully connected layers for classification between liver cancer variants. In addition, the transfer learning of pre-trained deep dilated convolution layers assists in handling insufficient and imbalanced dataset issues. The fine-tuned network can predict three-class liver cancer variants with an average accuracy of 96.06% and an Area Under Curve (AUC) of 0.832. To the best of our knowledge, this is the first study to classify liver cancer variants by integrating pathology and image data, hence following the medical perspective of malignant liver diagnosis. The comparative analysis on the benchmark dataset shows that the proposed multi-modal neural network outperformed most of the liver diagnostic studies and is comparable to others.
Collapse
Affiliation(s)
- Rayyan Azam Khan
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Minghan Fu
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Brent Burbridge
- College of Medicine and Department of Medical Imaging, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Yigang Luo
- College of Medicine and Department of Surgery, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Fang-Xiang Wu
- Division of Biomedical Engineering, Department of Computer Science and Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada.
| |
Collapse
|
14
|
Hüseynova M, Bayramov N, Məmmədova M. РОЛЬ АЛГОРИТМОВ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА В ДИАГНОСТИКЕ. AZERBAIJAN MEDICAL JOURNAL 2023:164-171. [DOI: 10.34921/amj.2023.2.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Hepatosellülyar karsinoma (HSK) ən çox yayılan bədxassəli törəmələr arasında beşinci yeri tutur və dünyada xərçənglə əlaqəli ölümün üçüncü ən çox yayılmış səbəbidir. Süni intellekt (Sİ) sürətlə artan maraq sahəsidir. Müəlliflər HSK-ın diaqnostikasında və qiymətləndirilməsində Sİ-nin tətbiqi barədə məlumat verən məqalələri araşdırmışlar. Bu məqsədlə 27 məqalə təhlil edilmişdir. Təhlil edilmiş məqalələrdən KT görüntülərinin tədqiqinə dair 19 məqalədə (41,30%), USQ görüntülərinin öyrənilməsini əks etdirən 20 (43,47%) və MRT görüntülərindən bəhs edən 7 məqalədə (15,21%) müxtəlif Sİ alqoritmləri qəbul edilmişdir. Heç bir məqalədə PET və rentgen texnologiyasında süni intellektin istifadəsi müzakirə edilməyib. Sistematik yanaşma göstərmişdir ki, HSK-nin diaqnostikası və qiymətləndirilməsi üzrə əvvəlki işlərdə USQ, KT və MRT istifadə edilərək ənənəvi şərhin maşın öyrənməsi ilə müqayisəliliyi qiymətləndirilmişdir. Təhlillərimizdə görüntüləmə üsullarının istifadəsi HSK diaqnostikası üçün tibbi görüntüləmənin faydalılığını və təkamülünü əks etdirir. Bundan əlavə, nəticələrimiz lazımsız təkrarlanmanı və resursların israfını minimuma endirmək üçün birgə məlumat bazasında məlumat mübadiləsinə qaçılmaz ehtiyac olduğunu vurğulayır.
Гепатоцеллюлярная карцинома является пятым по распространенности злокачественным новообразованием и третьей по частоте причиной смерти от рака во всём мире. Искусственный интеллект — это быстрорастущая область интересов. Авторами были рассмотрены статьи, в которых сообщается о применении алгоритмов ИИ в диагностике и оценке ГЦК. Для этого проанализированы 27 статей. В проанализированных статьях в 19 статьях, посвящённых КТ-изображениям (41,30%), в 20 статьях, посвящённых изображениям УЗИ (43,47%), и в 7 статьях, посвящённым МРТ-изображениям (15,21%), использовали разные алгоритмы ИИ. Ни в одной статье не обсуждалось использование искусственного интеллекта в ПЭТ и рентгеновские технологии. Системный подход показал, что предыдущая работа по диагностике и оценке ГЦК оценивала сопоставимость традиционной интерпретации с машинным обучением с использованием УЗИ, КТ и МРТ. Использование методов визуализации в проведенном анализе отражает полезность и эволюцию медицинской визуализации для диагностики ГЦК. Кроме того, результаты поиска литературы подчёркивают острую необходимость совместного использования данных в совместных базах данных, чтобы свести к минимуму ненужное дублирование и растрату ресурсов.
Hepatocellular carcinoma (HCC) is the fifth most common malignancy and the third leading cause of cancer death worldwide. Artificial intelligence (AI) is a rapidly growing area of interest. We have reviewed articles reporting the application of AI algorithms in the diagnosis and evaluation of HCC. To do this, we analyzed 27 articles. In the analyzed articles, 19 articles on CT images (41.30%), 20 articles on ultrasound images (43.47%), and 7 articles on MRI images (15.21%) used different AI algorithms. None of the articles discussed the use of artificial intelligence in PET and X-ray technologies. Our systematic approach showed that previous work on the diagnosis and evaluation of HCC assessed the comparability of traditional interpretation with machine learning using ultrasound, CT, and MRI. The use of imaging modalities in our analysis reflects the usefulness and evolution of medical imaging for diagnosing HCC. In addition, our results highlight the critical need to share data across collaborative databases to minimize unnecessary duplication and waste of resources.
Collapse
|
15
|
Shen X, Wu J, Su J, Yao Z, Huang W, Zhang L, Jiang Y, Yu W, Li Z. Revisiting artificial intelligence diagnosis of hepatocellular carcinoma with DIKWH framework. Front Genet 2023; 14:1004481. [PMID: 37007970 PMCID: PMC10064216 DOI: 10.3389/fgene.2023.1004481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer with a high morbidity and fatality rate. Traditional diagnostic methods for HCC are primarily based on clinical presentation, imaging features, and histopathology. With the rapid development of artificial intelligence (AI), which is increasingly used in the diagnosis, treatment, and prognosis prediction of HCC, an automated approach to HCC status classification is promising. AI integrates labeled clinical data, trains on new data of the same type, and performs interpretation tasks. Several studies have shown that AI techniques can help clinicians and radiologists be more efficient and reduce the misdiagnosis rate. However, the coverage of AI technologies leads to difficulty in which the type of AI technology is preferred to choose for a given problem and situation. Solving this concern, it can significantly reduce the time required to determine the required healthcare approach and provide more precise and personalized solutions for different problems. In our review of research work, we summarize existing research works, compare and classify the main results of these according to the specified data, information, knowledge, wisdom (DIKW) framework.
Collapse
Affiliation(s)
- Xiaomin Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jinxin Wu
- School of Computer Science, The University of Sydney, Sydney, NSW, Australia
| | - Junwei Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Zhenyu Yao
- School of Computer Science, King’s College London, London, United Kingdom
| | - Wei Huang
- Department of Gastroenterology II, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Li Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yiheng Jiang
- Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Wei Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Zhao Li
- School of Computer Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Han X, Gong B, Guo L, Wang J, Ying S, Li S, Shi J. B-mode ultrasound based CAD for liver cancers via multi-view privileged information learning. Neural Netw 2023; 164:369-381. [PMID: 37167750 DOI: 10.1016/j.neunet.2023.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/21/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
B-mode ultrasound-based computer-aided diagnosis model can help sonologists improve the diagnostic performance for liver cancers, but it generally suffers from the bottleneck due to the limited structure and internal echogenicity information in B-mode ultrasound images. Contrast-enhanced ultrasound images provide additional diagnostic information on dynamic blood perfusion of liver lesions for B-mode ultrasound images with improved diagnostic accuracy. Since transfer learning has indicated its effectiveness in promoting the performance of target computer-aided diagnosis model by transferring knowledge from related imaging modalities, a multi-view privileged information learning framework is proposed to improve the diagnostic accuracy of the single-modal B-mode ultrasound-based diagnosis for liver cancers. This framework can make full use of the shared label information between the paired B-mode ultrasound images and contrast-enhanced ultrasound images to guide knowledge transfer It consists of a novel supervised dual-view deep Boltzmann machine and a new deep multi-view SVM algorithm. The former is developed to implement knowledge transfer from the multi-phase contrast-enhanced ultrasound images to the B-mode ultrasound-based diagnosis model via a feature-level learning using privileged information paradigm, which is totally different from the existing learning using privileged information paradigm that performs knowledge transfer in the classifier. The latter further fuses and enhances feature representation learned from three pre-trained supervised dual-view deep Boltzmann machine networks for the classification task. An experiment is conducted on a bimodal ultrasound liver cancer dataset. The experimental results show that the proposed framework outperforms all the compared algorithms with the best classification accuracy of 88.91 ± 1.52%, sensitivity of 88.31 ± 2.02%, and specificity of 89.50 ± 3.12%. It suggests the effectiveness of our proposed MPIL framework for the BUS-based CAD of liver cancers.
Collapse
|
17
|
Zhang H, Guo L, Wang J, Ying S, Shi J. Multi-View Feature Transformation Based SVM+ for Computer-Aided Diagnosis of Liver Cancers With Ultrasound Images. IEEE J Biomed Health Inform 2023; 27:1512-1523. [PMID: 37018255 DOI: 10.1109/jbhi.2022.3233717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
It is feasible to improve the performance of B-mode ultrasound (BUS) based computer-aided diagnosis (CAD) for liver cancers by transferring knowledge from contrast-enhanced ultrasound (CEUS) images. In this work, we propose a novel feature transformation based support vector machine plus (SVM+) algorithm for this transfer learning task by introducing feature transformation into the SVM+ framework (named FSVM+). Specifically, the transformation matrix in FSVM+ is learned to minimize the radius of the enclosing ball of all samples, while the SVM+ is used to maximize the margin between two classes. Moreover, to capture more transferable information from multiple CEUS phase images, a multi-view FSVM+ (MFSVM+) is further developed, which transfers knowledge from three CEUS images from three phases, i.e., arterial phase, portal venous phase, and delayed phase, to the BUS-based CAD model. MFSVM+ innovatively assigns appropriate weights for each CEUS image by calculating the maximum mean discrepancy between a pair of BUS and CEUS images, which can capture the relationship between source and target domains. The experimental results on a bi-modal ultrasound liver cancer dataset demonstrate that MFSVM+ achieves the best classification accuracy of 88.24±1.28%, sensitivity of 88.32±2.88%, specificity of 88.17±2.91%, suggesting its effectiveness in promoting the diagnostic accuracy of BUS-based CAD.
Collapse
|
18
|
Feng X, Cai W, Zheng R, Tang L, Zhou J, Wang H, Liao J, Luo B, Cheng W, Wei A, Zhao W, Jing X, Liang P, Yu J, Huang Q. Diagnosis of hepatocellular carcinoma using deep network with multi-view enhanced patterns mined in contrast-enhanced ultrasound data. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 2023; 118:105635. [DOI: 10.1016/j.engappai.2022.105635] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
19
|
Ensemble Learning of Multiple Models Using Deep Learning for Multiclass Classification of Ultrasound Images of Hepatic Masses. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010069. [PMID: 36671641 PMCID: PMC9854883 DOI: 10.3390/bioengineering10010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Ultrasound (US) is often used to diagnose liver masses. Ensemble learning has recently been commonly used for image classification, but its detailed methods are not fully optimized. The purpose of this study is to investigate the usefulness and comparison of some ensemble learning and ensemble pruning techniques using multiple convolutional neural network (CNN) trained models for image classification of liver masses in US images. Dataset of the US images were classified into four categories: benign liver tumor (BLT) 6320 images, liver cyst (LCY) 2320 images, metastatic liver cancer (MLC) 9720 images, primary liver cancer (PLC) 7840 images. In this study, 250 test images were randomly selected for each class, for a total of 1000 images, and the remaining images were used as the training. 16 different CNNs were used for training and testing ultrasound images. The ensemble learning used soft voting (SV), weighted average voting (WAV), weighted hard voting (WHV) and stacking (ST). All four types of ensemble learning (SV, ST, WAV, and WHV) showed higher values of accuracy than the single CNN. All four types also showed significantly higher deep learning (DL) performance than ResNeXt101 alone. For image classification of liver masses using US images, ensemble learning improved the performance of DL over a single CNN.
Collapse
|
20
|
Ma L, Wang R, He Q, Huang L, Wei X, Lu X, Du Y, Luo J, Liao H. Artificial intelligence-based ultrasound imaging technologies for hepatic diseases. ILIVER 2022; 1:252-264. [DOI: 10.1016/j.iliver.2022.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
21
|
Tiyarattanachai T, Turco S, Eisenbrey JR, Wessner CE, Medellin-Kowalewski A, Wilson S, Lyshchik A, Kamaya A, Kaffas AE. A Comprehensive Motion Compensation Method for In-Plane and Out-of-Plane Motion in Dynamic Contrast-Enhanced Ultrasound of Focal Liver Lesions. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:2217-2228. [PMID: 35970658 PMCID: PMC9529818 DOI: 10.1016/j.ultrasmedbio.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/23/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Contrast-enhanced ultrasound (CEUS) acquisitions of focal liver lesions are affected by motion, which has an impact on contrast signal quantification. We therefore developed and tested, in a large patient cohort, a motion compensation algorithm called the Iterative Local Search Algorithm (ILSA), which can correct for both periodic and non-periodic in-plane motion and can reject frames with out-of-plane motion. CEUS cines of 183 focal liver lesions in 155 patients from three hospitals were used to develop and test ILSA. Performance was evaluated through quantitative metrics, including the root mean square error and R2 in fitting time-intensity curves and standard deviation value of B-mode intensities, computed across cine frames), and qualitative evaluation, including B-mode mean intensity projection images and parametric perfusion imaging. The median root mean square error significantly decreased from 0.032 to 0.024 (p < 0.001). Median R2 significantly increased from 0.88 to 0.93 (p < 0.001). The median standard deviation value of B-mode intensities significantly decreased from 6.2 to 5.0 (p < 0.001). B-Mode mean intensity projection images revealed improved spatial resolution. Parametric perfusion imaging also exhibited improved spatial detail and better differentiation between lesion and background liver parenchyma. ILSA can compensate for all types of motion encountered during liver CEUS, potentially improving contrast signal quantification of focal liver lesions.
Collapse
Affiliation(s)
- Thodsawit Tiyarattanachai
- Department of Radiology, Stanford University School of Medicine, Stanford, California, USA; Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Simona Turco
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - John R Eisenbrey
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Corinne E Wessner
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Stephanie Wilson
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada; Division of Gastroenterology, Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andrej Lyshchik
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Aya Kamaya
- Department of Radiology, Stanford University School of Medicine, Stanford, California, USA
| | - Ahmed El Kaffas
- Department of Radiology, Stanford University School of Medicine, Stanford, California, USA.
| |
Collapse
|
22
|
Martinino A, Aloulou M, Chatterjee S, Scarano Pereira JP, Singhal S, Patel T, Kirchgesner TPE, Agnes S, Annunziata S, Treglia G, Giovinazzo F. Artificial Intelligence in the Diagnosis of Hepatocellular Carcinoma: A Systematic Review. J Clin Med 2022; 11:6368. [PMID: 36362596 PMCID: PMC9655417 DOI: 10.3390/jcm11216368] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 09/21/2023] Open
Abstract
Hepatocellular carcinoma ranks fifth amongst the most common malignancies and is the third most common cause of cancer-related death globally. Artificial Intelligence is a rapidly growing field of interest. Following the PRISMA reporting guidelines, we conducted a systematic review to retrieve articles reporting the application of AI in HCC detection and characterization. A total of 27 articles were included and analyzed with our composite score for the evaluation of the quality of the publications. The contingency table reported a statistically significant constant improvement over the years of the total quality score (p = 0.004). Different AI methods have been adopted in the included articles correlated with 19 articles studying CT (41.30%), 20 studying US (43.47%), and 7 studying MRI (15.21%). No article has discussed the use of artificial intelligence in PET and X-ray technology. Our systematic approach has shown that previous works in HCC detection and characterization have assessed the comparability of conventional interpretation with machine learning using US, CT, and MRI. The distribution of the imaging techniques in our analysis reflects the usefulness and evolution of medical imaging for the diagnosis of HCC. Moreover, our results highlight an imminent need for data sharing in collaborative data repositories to minimize unnecessary repetition and wastage of resources.
Collapse
Affiliation(s)
| | | | - Surobhi Chatterjee
- Department of Internal Medicine, King George’s Medical University, Lucknow 226003, Uttar Pradesh, India
| | | | - Saurabh Singhal
- Department of HPB Surgery and Liver Transplantation, BLK-MAX Superspeciality Hospital, New Delhi 110005, Delhi, India
| | - Tapan Patel
- Department of Surgery, Baroda Medical College and SSG Hospital, Vadodara 390001, Gujarat, India
| | - Thomas Paul-Emile Kirchgesner
- Département of Radiology and Medical Imaging, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1348 Brussels, Belgium
| | - Salvatore Agnes
- General Surgery and Liver Transplantation Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Salvatore Annunziata
- Unit of Nuclear Medicine, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Giorgio Treglia
- Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Francesco Giovinazzo
- General Surgery and Liver Transplantation Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
23
|
Liu JQ, Ren JY, Xu XL, Xiong LY, Peng YX, Pan XF, Dietrich CF, Cui XW. Ultrasound-based artificial intelligence in gastroenterology and hepatology. World J Gastroenterol 2022; 28:5530-5546. [PMID: 36304086 PMCID: PMC9594013 DOI: 10.3748/wjg.v28.i38.5530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/12/2022] [Accepted: 09/22/2022] [Indexed: 02/06/2023] Open
Abstract
Artificial intelligence (AI), especially deep learning, is gaining extensive attention for its excellent performance in medical image analysis. It can automatically make a quantitative assessment of complex medical images and help doctors to make more accurate diagnoses. In recent years, AI based on ultrasound has been shown to be very helpful in diffuse liver diseases and focal liver lesions, such as analyzing the severity of nonalcoholic fatty liver and the stage of liver fibrosis, identifying benign and malignant liver lesions, predicting the microvascular invasion of hepatocellular carcinoma, curative transarterial chemoembolization effect, and prognoses after thermal ablation. Moreover, AI based on endoscopic ultrasonography has been applied in some gastrointestinal diseases, such as distinguishing gastric mesenchymal tumors, detection of pancreatic cancer and intraductal papillary mucinous neoplasms, and predicting the preoperative tumor deposits in rectal cancer. This review focused on the basic technical knowledge about AI and the clinical application of AI in ultrasound of liver and gastroenterology diseases. Lastly, we discuss the challenges and future perspectives of AI.
Collapse
Affiliation(s)
- Ji-Qiao Liu
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Jia-Yu Ren
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Xiao-Lan Xu
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Li-Yan Xiong
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Yue-Xiang Peng
- Department of Ultrasound, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan 430030, Hubei Province, China
| | - Xiao-Fang Pan
- Health Medical Department, Dalian Municipal Central Hospital, Dalian 116000, Liaoning Province, China
| | - Christoph F Dietrich
- Department Allgemeine Innere Medizin, Kliniken Hirslanden Beau Site, Salem und Permanence, Bern 3003, Switzerland
| | - Xin-Wu Cui
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| |
Collapse
|
24
|
Cao LL, Peng M, Xie X, Chen GQ, Huang SY, Wang JY, Jiang F, Cui XW, Dietrich CF. Artificial intelligence in liver ultrasound. World J Gastroenterol 2022; 28:3398-3409. [PMID: 36158262 PMCID: PMC9346461 DOI: 10.3748/wjg.v28.i27.3398] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/18/2022] [Accepted: 06/19/2022] [Indexed: 02/06/2023] Open
Abstract
Artificial intelligence (AI) is playing an increasingly important role in medicine, especially in the field of medical imaging. It can be used to diagnose diseases and predict certain statuses and possible events that may happen. Recently, more and more studies have confirmed the value of AI based on ultrasound in the evaluation of diffuse liver diseases and focal liver lesions. It can assess the severity of liver fibrosis and nonalcoholic fatty liver, differentially diagnose benign and malignant liver lesions, distinguish primary from secondary liver cancers, predict the curative effect of liver cancer treatment and recurrence after treatment, and predict microvascular invasion in hepatocellular carcinoma. The findings from these studies have great clinical application potential in the near future. The purpose of this review is to comprehensively introduce the current status and future perspectives of AI in liver ultrasound.
Collapse
Affiliation(s)
- Liu-Liu Cao
- Department of Medical Ultrasound, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| | - Mei Peng
- Department of Medical Ultrasound, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| | - Xiang Xie
- Department of Medical Ultrasound, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| | - Gong-Quan Chen
- Department of Medical Ultrasound, Minda Hospital of Hubei Minzu University, Enshi 445000, Hubei Province, China
| | - Shu-Yan Huang
- Department of Medical Ultrasound, The First People's Hospital of Huaihua, Huaihua 418000, Hunan Province, China
| | - Jia-Yu Wang
- Department of Medical Ultrasound, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Fan Jiang
- Department of Medical Ultrasound, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| | - Xin-Wu Cui
- Department of Medical Ultrasound, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Christoph F Dietrich
- Department Allgemeine Innere Medizin, Kliniken Hirslanden Beau Site, Salem und Permanence, Bern 3626, Switzerland
| |
Collapse
|
25
|
Liu L, Tang C, Li L, Chen P, Tan Y, Hu X, Chen K, Shang Y, Liu D, Liu H, Liu H, Nie F, Tian J, Zhao M, He W, Guo Y. Deep learning radiomics for focal liver lesions diagnosis on long-range contrast-enhanced ultrasound and clinical factors. Quant Imaging Med Surg 2022; 12:3213-3226. [PMID: 35655832 PMCID: PMC9131334 DOI: 10.21037/qims-21-1004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/18/2022] [Indexed: 11/15/2023]
Abstract
BACKGROUND Routine clinical factors play an important role in the clinical diagnosis of focal liver lesions (FLLs); however, they are rarely used in computer-assisted diagnosis. Therefore, we developed a deep learning (DL) radiomics model, and investigated its effectiveness in diagnosing FLLs using long-range contrast-enhanced ultrasound (CEUS) cines and clinical factors. METHODS Herein, 303 patients with pathologically confirmed FLLs after surgery at three hospitals were retrospectively enrolled and divided into a training cohort (n=203), internal validation (IV) cohort (n=50) from one hospital with the ratio of 4:1, and external validation (EV) cohort (n=50) from the other two hospitals. Four DL radiomics models, namely Four Stream 3D convolutional neural network (FS3DU) (trained with CEUS cines only), FS3DU+A (trained with CEUS cines and alpha fetoprotein), FS3DU+H (trained with CEUS cines and hepatitis), and FS3DU+A+H (trained with CEUS cines, alpha fetoprotein, and hepatitis), were formed based on 3D convolutional neural networks (CNNs). They used approximately 20-s preoperative CEUS cines and/or clinical factors to extract spatiotemporal features for the classification of FLLs and the location of the region of interest. The area under curve of the receiver operating characteristic and diagnosis speed were calculated to evaluate the models in the IV and EV cohorts, and they were compared with those of two radiologists. Two-sided Delong tests were used to calculate the statistical differences between the models and radiologists. RESULTS FS3DU+A+H, which incorporated CEUS cines, hepatitis, and alpha fetoprotein, achieved the highest area under curve of 0.969 (95% CI: 0.901-1.000) and 0.957 (95% CI: 0.894-1.000) among radiologists and other models in IV and EV cohorts, respectively. A significant difference was observed when comparing FS3DU and radiologist 2 (all P<0.05). The diagnosis speed of all the models was the same (10.76 s per patient), and it was two times faster than those of the radiologists (radiologist 1: 23.74 and 27.75 s; radiologist 2: 25.95 and 29.50 s in IV and EV cohorts, respectively). CONCLUSIONS The proposed DL radiomics demonstrated excellent performance on the benign and malignant diagnosis of FLLs by combining CEUS cines and clinical factors. It could help the individualized characterization of FLLs, and enhance the accuracy of diagnosis in the future.
Collapse
Affiliation(s)
- Li Liu
- Department of Ultrasound, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Digital Medicine, School of Biomedical Engineering and Medical Imaging, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chunlin Tang
- Department of Ultrasound, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lu Li
- CHISON Medical Technologies Co., LTD, Wuxi, China
| | - Ping Chen
- Department of Ultrasound, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ying Tan
- Department of Ultrasound, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaofei Hu
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Kaixuan Chen
- Department of Ultrasound, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yongning Shang
- Department of Ultrasound, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Deng Liu
- Department of Ultrasound, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - He Liu
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hongjun Liu
- Department of Digital Medicine, School of Biomedical Engineering and Medical Imaging, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fang Nie
- Department of Ultrasound, Lanzhou University Second Hospital, Lanzhou, China
| | - Jiawei Tian
- Department of Ultrasound, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | - Wen He
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yanli Guo
- Department of Ultrasound, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
26
|
Turco S, Tiyarattanachai T, Ebrahimkheil K, Eisenbrey J, Kamaya A, Mischi M, Lyshchik A, Kaffas AE. Interpretable Machine Learning for Characterization of Focal Liver Lesions by Contrast-Enhanced Ultrasound. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1670-1681. [PMID: 35320099 PMCID: PMC9188683 DOI: 10.1109/tuffc.2022.3161719] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
This work proposes an interpretable radiomics approach to differentiate between malignant and benign focal liver lesions (FLLs) on contrast-enhanced ultrasound (CEUS). Although CEUS has shown promise for differential FLLs diagnosis, current clinical assessment is performed only by qualitative analysis of the contrast enhancement patterns. Quantitative analysis is often hampered by the unavoidable presence of motion artifacts and by the complex, spatiotemporal nature of liver contrast enhancement, consisting of multiple, overlapping vascular phases. To fully exploit the wealth of information in CEUS, while coping with these challenges, here we propose combining features extracted by the temporal and spatiotemporal analysis in the arterial phase enhancement with spatial features extracted by texture analysis at different time points. Using the extracted features as input, several machine learning classifiers are optimized to achieve semiautomatic FLLs characterization, for which there is no need for motion compensation and the only manual input required is the location of a suspicious lesion. Clinical validation on 87 FLLs from 72 patients at risk for hepatocellular carcinoma (HCC) showed promising performance, achieving a balanced accuracy of 0.84 in the distinction between benign and malignant lesions. Analysis of feature relevance demonstrates that a combination of spatiotemporal and texture features is needed to achieve the best performance. Interpretation of the most relevant features suggests that aspects related to microvascular perfusion and the microvascular architecture, together with the spatial enhancement characteristics at wash-in and peak enhancement, are important to aid the accurate characterization of FLLs.
Collapse
|
27
|
|
28
|
Artificial intelligence (AI) models for the ultrasonographic diagnosis of liver tumors and comparison of diagnostic accuracies between AI and human experts. J Gastroenterol 2022; 57:309-321. [PMID: 35220490 PMCID: PMC8938378 DOI: 10.1007/s00535-022-01849-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/07/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Ultrasonography (US) is widely used for the diagnosis of liver tumors. However, the accuracy of the diagnosis largely depends on the visual perception of humans. Hence, we aimed to construct artificial intelligence (AI) models for the diagnosis of liver tumors in US. METHODS We constructed three AI models based on still B-mode images: model-1 using 24,675 images, model-2 using 57,145 images, and model-3 using 70,950 images. A convolutional neural network was used to train the US images. The four-class liver tumor discrimination by AI, namely, cysts, hemangiomas, hepatocellular carcinoma, and metastatic tumors, was examined. The accuracy of the AI diagnosis was evaluated using tenfold cross-validation. The diagnostic performances of the AI models and human experts were also compared using an independent test cohort of video images. RESULTS The diagnostic accuracies of model-1, model-2, and model-3 in the four tumor types are 86.8%, 91.0%, and 91.1%, whereas those for malignant tumor are 91.3%, 94.3%, and 94.3%, respectively. In the independent comparison of the AIs and physicians, the percentages of correct diagnoses (accuracies) by the AIs are 80.0%, 81.8%, and 89.1% in model-1, model-2, and model-3, respectively. Meanwhile, the median percentages of correct diagnoses are 67.3% (range 63.6%-69.1%) and 47.3% (45.5%-47.3%) by human experts and non-experts, respectively. CONCLUSION The performance of the AI models surpassed that of human experts in the four-class discrimination and benign and malignant discrimination of liver tumors. Thus, the AI models can help prevent human errors in US diagnosis.
Collapse
|
29
|
Yuan G, Dong Y, Zhou X. Image classification of vaginal microecology detection based on gabor texture and LSTM model. Technol Health Care 2021; 30:919-936. [PMID: 34957969 DOI: 10.3233/thc-213509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Gynecological diseases threaten women's health, and vaginal microecological testing is a common method for detecting gynecological diseases. Efficient and accurate microecological testing methods have always been the goal pursued by gynecologists. OBJECTIVE In order to automatically identify different types of microbial images in vaginal micromorphology detection, this paper proposes a vaginal microecological image recognition method based on Gabor texture analysis combined with long and short-term memory network (LSTM) model. METHOD Firstly, we denoise the microecological morphological im-ages, which selects the area of interest and sets the label of the microorganism according to the doctors label. Secondly, texture analysis is carried out for the region of interest, which uses Gabor filters with 8 directions and 5 scales to filter the region of interest to extract the texture features on the image. Comparing the differences between different microbial image features, and screening suitable features to reduce the number of features. Then, we design an LSTM model to analyze the relationship of image features in different categories of microorganisms. Finally, we use the full connection layer and Softmax function to realize the automatic recognition of different microbial images. RESULTS The experimental results show that the image classification accuracy of 8 common microorganisms is 81.26%. CONCLUSION Texture analysis combined with LSTM network strategy can identify different kinds of vaginal micro ecological images. Gabor-LSTM model has better classification effect on imbalanced data sets.
Collapse
Affiliation(s)
- Gaoteng Yuan
- College of Computer and Information, Hohai University, Nanjing, Jiangsu, China
| | - Yinping Dong
- Department of Gastroenterology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy at Tianjin, Tianjins Clinical Research Center for Cancer, Tianjin, China
| | - Xiaofeng Zhou
- College of Computer and Information, Hohai University, Nanjing, Jiangsu, China
| |
Collapse
|
30
|
Wang W, Wu SS, Zhang JC, Xian MF, Huang H, Li W, Zhou ZM, Zhang CQ, Wu TF, Li X, Xu M, Xie XY, Kuang M, Lu MD, Hu HT. Preoperative Pathological Grading of Hepatocellular Carcinoma Using Ultrasomics of Contrast-Enhanced Ultrasound. Acad Radiol 2021; 28:1094-1101. [PMID: 32622746 DOI: 10.1016/j.acra.2020.05.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
Abstract
RATIONALE AND OBJECTIVES To develop an ultrasomics model for preoperative pathological grading of hepatocellular carcinoma (HCC) using contrast-enhanced ultrasound (CEUS). MATERIAL AND METHODS A total of 235 HCCs were retrospectively enrolled, including 65 high-grade and 170 low-grade HCCs. Representative images of four-phase CEUS were selected from the baseline sonography, arterial, portal venous, and delayed phase images. Tumor ultrasomics features were automatically extracted using Ultrasomics-Platform software. Models were built via the classifier support vector machine, including an ultrasomics model using the ultrasomics features, a clinical model using the clinical factors, and a combined model using them both. Model performances were tested in the independent validation cohort considering efficiency and clinical usefulness. RESULTS A total of 1502 features were extracted from each image. After the reproducibility test and dimensionality reduction, 25 ultrasomics features and 3 clinical factors were selected to build the models. In the validation cohort, the combined model showed the best predictive power, with an area under the curve value of 0.785 (95% confidence interval [CI] 0.662-0.909), compared to the ultrasomics model of 0.720 (95% CI 0.576-0.864) and the clinical model of 0.665 (95% CI 0.537-0.793). Decision curve analysis suggested that the combined model was clinically useful, with a corresponding net benefit of 0.760 compared to the other two models. CONCLUSION We presented an ultrasomics-clinical model based on multiphase CEUS imaging and clinical factors, which showed potential value for the preoperative discrimination of HCC pathological grades.
Collapse
|
31
|
Mao B, Ma J, Duan S, Xia Y, Tao Y, Zhang L. Preoperative classification of primary and metastatic liver cancer via machine learning-based ultrasound radiomics. Eur Radiol 2021; 31:4576-4586. [PMID: 33447862 DOI: 10.1007/s00330-020-07562-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 11/18/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To investigate the application of machine learning-based ultrasound radiomics in preoperative classification of primary and metastatic liver cancer. METHODS Data of 114 consecutive histopathologically confirmed patients with liver cancer from January 2018 to November 2019 were retrospectively analyzed. All patients underwent liver ultrasonography within 1 week before hepatectomy or fine-needle biopsy. The liver lesions were manually segmented by two experts using ITK-SNAP software. Seven categories of radiomics features, including first-order, two-dimensional shape, gray-level co-occurrence matrices, gray-level run-length matrix, gray-level size-zone matrix, neighboring gray tone difference matrix, and gray-level dependence matrix, were extracted on the Pyradiomics platform. Fourteen filters were applied to the original images, and derived images were obtained. Then, the dimensions of radiomics features were reduced by least absolute shrinkage and selection operator (Lasso) method. Finally, k-nearest neighbor (KNN), logistic regression (LR), multilayer perceptron (MLP), random forest (RF), and support vector machine (SVM) were employed to distinguish primary liver cancer from metastatic liver cancer by a fivefold cross-validation strategy. The performance of the established model was mainly evaluated by the area under the receiver operating characteristic (ROC) curve (AUC) and accuracy. RESULTS One thousand four hundred nine radiomics features were extracted from the original images and/or derived images for each patient. The mentioned five machine learning classifiers were able to differentiate primary liver cancer from metastatic liver cancer. LR outperformed other classifiers, with the accuracy of 0.843 ± 0.078 (AUC, 0.816 ± 0.088; sensitivity, 0.768 ± 0.232; specificity, 0.880 ± 0.117). CONCLUSIONS Machine learning-based ultrasound radiomics features are able to non-invasively distinguish primary liver tumors from metastatic liver tumors. KEY POINTS • Ultrasound-based radiomics was initially used for preoperative classification of primary versus metastatic liver cancer. • Multiple machine learning-based algorithms with cross-validation strategy were applied to extract machine learning-based ultrasound radiomics features. • Distinction between primary and metastatic tumors was obtained with a sensitivity of 0.768 and a specificity of 0.880.
Collapse
Affiliation(s)
- Bing Mao
- Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Zhengzhou University People's Hospital, Zhengzhou, Henan, China
- Henan University People's Hospital, 7 Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan, China
- School of Medicine and Health Management, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jingdong Ma
- School of Medicine and Health Management, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shaobo Duan
- Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Zhengzhou University People's Hospital, Zhengzhou, Henan, China
- Henan University People's Hospital, 7 Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan, China
| | - Yuwei Xia
- Huiying Medical Technology (Beijing) Co., Ltd, Beijing, China
| | - Yaru Tao
- Zhengzhou University, Zhengzhou, Henan, China
| | - Lianzhong Zhang
- Henan Provincial People's Hospital, Zhengzhou, Henan, China.
- Zhengzhou University People's Hospital, Zhengzhou, Henan, China.
- Henan University People's Hospital, 7 Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
32
|
Akbar A, Pillalamarri N, Jonnakuti S, Ullah M. Artificial intelligence and guidance of medicine in the bubble. Cell Biosci 2021; 11:108. [PMID: 34108005 PMCID: PMC8191053 DOI: 10.1186/s13578-021-00623-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Microbubbles are nanosized gas-filled bubbles. They are used in clinical diagnostics, in medical imaging, as contrast agents in ultrasound imaging, and as transporters for targeted drug delivery. They can also be used to treat thrombosis, neoplastic diseases, open arteries and vascular plaques and for localized transport of chemotherapies in cancer patients. Microbubbles can be filled with any type of therapeutics, cure agents, growth factors, extracellular vesicles, exosomes, miRNAs, and drugs. Microbubbles protect their cargo from immune attack because of their specialized encapsulated shell composed of lipid and protein. Filled with curative medicine, they could effectively circulate through the whole body safely and efficiently to reach the target area. The advanced bubble-based drug-delivery system, integrated with artificial intelligence for guidance, holds great promise for the targeted delivery of drugs and medicines.
Collapse
Affiliation(s)
- Asma Akbar
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA, 94304, USA
- Molecular Medicine, Department of Biomedical Innovation and Bioengineering, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Nagavalli Pillalamarri
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA, 94304, USA
| | - Sriya Jonnakuti
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA, 94304, USA
| | - Mujib Ullah
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA, 94304, USA.
- Molecular Medicine, Department of Biomedical Innovation and Bioengineering, School of Medicine, Stanford University, Palo Alto, CA, USA.
| |
Collapse
|
33
|
Wan P, Chen F, Liu C, Kong W, Zhang D. Hierarchical Temporal Attention Network for Thyroid Nodule Recognition Using Dynamic CEUS Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:1646-1660. [PMID: 33651687 DOI: 10.1109/tmi.2021.3063421] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Contrast-enhanced ultrasound (CEUS) has emerged as a popular imaging modality in thyroid nodule diagnosis due to its ability to visualize vascular distribution in real time. Recently, a number of learning-based methods are dedicated to mine pathological-related enhancement dynamics and make prediction at one step, ignoring a native diagnostic dependency. In clinics, the differentiation of benign or malignant nodules always precedes the recognition of pathological types. In this paper, we propose a novel hierarchical temporal attention network (HiTAN) for thyroid nodule diagnosis using dynamic CEUS imaging, which unifies dynamic enhancement feature learning and hierarchical nodules classification into a deep framework. Specifically, this method decomposes the diagnosis of nodules into an ordered two-stage classification task, where diagnostic dependency is modeled by Gated Recurrent Units (GRUs). Besides, we design a local-to-global temporal aggregation (LGTA) operator to perform a comprehensive temporal fusion along the hierarchical prediction path. Particularly, local temporal information is defined as typical enhancement patterns identified with the guidance of perfusion representation learned from the differentiation level. Then, we leverage an attention mechanism to embed global enhancement dynamics into each identified salient pattern. In this study, we evaluate the proposed HiTAN method on the collected CEUS dataset of thyroid nodules. Extensive experimental results validate the efficacy of dynamic patterns learning, fusion and hierarchical diagnosis mechanism.
Collapse
|
34
|
Wu H, Tong L, Wang Y, Yan H, Sun Z. Bibliometric Analysis of Global Research Trends on Ultrasound Microbubble: A Quickly Developing Field. Front Pharmacol 2021; 12:646626. [PMID: 33967783 PMCID: PMC8101552 DOI: 10.3389/fphar.2021.646626] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Microbubbles are widely used as highly effective contrast agents to improve the diagnostic capability of ultrasound imaging. Mounting evidence suggests that ultrasound coupled with microbubbles has promising therapeutic applications in cancer, cardiovascular, and neurological disorders by acting as gene or drug carriers. The aim of this study was to identify the scientific output and activity related to ultrasound microbubble through bibliometric approaches. Methods: The literature related to ultrasound microbubble published between 1998 and 2019 was identified and selected from the Science Citation Index Expanded of Web of Science Core Collection on February 21, 2021. The Scopus database was also searched to validate the results and provided as supplementary material. Quantitative variables including number of publications and citations, H-index, and journal citation reports were analyzed by using Microsoft Excel 2019 and GraphPad Prism 8.0 software. VOS viewer and CiteSpace V were used to perform coauthorship, citation, co-citation, and co-occurrence analysis for countries/regions, institutions, authors, and keywords. Results: A total of 6088 publications from the WoSCC were included. The United States has made the largest contribution in this field, with the majority of publications (2090, 34.3%), citations (90,741, 46.6%), the highest H-index (138), and close collaborations with China and Canada. The most contributive institution was the University of Toronto. Professors De Jong N and Dayton P A have made great achievements in this field. However, the research cooperation between institutions and authors was relatively weak. All the studies could be divided into four clusters: "ultrasound diagnosis study," "microbubbles' characteristics study," "gene therapy study," and "drug delivery study." The average appearing years (AAY) of keywords in the cluster "drug delivery study" was more recent than other clusters. For promising hot spots, "doxorubicin" showed a relatively latest AAY of 2015.49, followed by "nanoparticles" and "breast cancer." Conclusion: There has been an increasing amount of scientific output on ultrasound microbubble according to the global trends, and the United States is staying ahead in this field. Collaboration between research teams still needs to be strengthened. The focus gradually shifts from "ultrasound diagnosis study" to "drug delivery study." It is recommended to pay attention to the latest hot spots, such as "doxorubicin," "nanoparticles," and "breast cancer."
Collapse
Affiliation(s)
- Haiyang Wu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Linjian Tong
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Yulin Wang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Hua Yan
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Zhiming Sun
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China.,Department of Orthopaedic Surgery, Tianjin Huanhu Hospital, Tianjin, China
| |
Collapse
|
35
|
Bourbakis N, Tsakalakis M. A 3-D Ultrasound Wearable Array Prognosis System With Advanced Imaging Capabilities. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:1062-1072. [PMID: 33079649 DOI: 10.1109/tuffc.2020.3032392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the last few decades, the medical and healthcare scientific communities have focused their attention on the use or development of real-time monitoring devices and remote control systems. New generations of wearable, portable, and implantable devices offer better and more accurate measurements/prognosis for those that suffer from diseases and/or disabilities. Thus, there are still challenging issues of current ultrasound imaging (USI) systems, such as low-quality ultrasound images, slow time response to emergencies, and location-based operation. Thus, in response to these challenges, we present a new low-cost, portable/wearable 3-D array ultrasound prognosis system with advanced imaging capabilities that offer high-resolution (HR) accurate results in a near real-time response. The USI unique features are based on 2-D array transducers with 3-D overlapping capabilities and a new image enhancement methodology compatible with the system's structural characteristics to compensate for any loss of image quality. This system will offer an alternative way of ultrasound examination, independent of the radiologist's skills, that is, a system to be capable of automatic scanning of the volume of interest (VOI) without the guidance of the radiologist.
Collapse
|
36
|
Mitrea D, Badea R, Mitrea P, Brad S, Nedevschi S. Hepatocellular Carcinoma Automatic Diagnosis within CEUS and B-Mode Ultrasound Images Using Advanced Machine Learning Methods. SENSORS (BASEL, SWITZERLAND) 2021; 21:2202. [PMID: 33801125 PMCID: PMC8004125 DOI: 10.3390/s21062202] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023]
Abstract
Hepatocellular Carcinoma (HCC) is the most common malignant liver tumor, being present in 70% of liver cancer cases. It usually evolves on the top of the cirrhotic parenchyma. The most reliable method for HCC diagnosis is the needle biopsy, which is an invasive, dangerous method. In our research, specific techniques for non-invasive, computerized HCC diagnosis are developed, by exploiting the information from ultrasound images. In this work, the possibility of performing the automatic diagnosis of HCC within B-mode ultrasound and Contrast-Enhanced Ultrasound (CEUS) images, using advanced machine learning methods based on Convolutional Neural Networks (CNN), was assessed. The recognition performance was evaluated separately on B-mode ultrasound images and on CEUS images, respectively, as well as on combined B-mode ultrasound and CEUS images. For this purpose, we considered the possibility of combining the input images directly, performing feature level fusion, then providing the resulted data at the entrances of representative CNN classifiers. In addition, several multimodal combined classifiers were experimented, resulted by the fusion, at classifier, respectively, at the decision levels of two different branches based on the same CNN architecture, as well as on different CNN architectures. Various combination methods, and also the dimensionality reduction method of Kernel Principal Component Analysis (KPCA), were involved in this process. These results were compared with those obtained on the same dataset, when employing advanced texture analysis techniques in conjunction with conventional classification methods and also with equivalent state-of-the-art approaches. An accuracy above 97% was achieved when our new methodology was applied.
Collapse
Affiliation(s)
- Delia Mitrea
- Department of Computer Science, Faculty of Automation and Computer Science, Technical University of Cluj-Napoca, Baritiu Street, No. 26-28, 400027 Cluj-Napoca, Romania; (D.M.); (P.M.); (S.N.)
| | - Radu Badea
- Medical Imaging Department, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Babes Street, No. 8, 400012 Cluj-Napoca, Romania;
- Regional Institute of Gastroenterology and Hepatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, 19-21 Croitorilor Street, 400162 Cluj-Napoca, Romania
| | - Paulina Mitrea
- Department of Computer Science, Faculty of Automation and Computer Science, Technical University of Cluj-Napoca, Baritiu Street, No. 26-28, 400027 Cluj-Napoca, Romania; (D.M.); (P.M.); (S.N.)
| | - Stelian Brad
- Department of Design Engineering and Robotics, Faculty of Machine Building, Technical University of Cluj-Napoca, Muncii Boulevard, No. 103-105, 400641 Cluj-Napoca, Romania
| | - Sergiu Nedevschi
- Department of Computer Science, Faculty of Automation and Computer Science, Technical University of Cluj-Napoca, Baritiu Street, No. 26-28, 400027 Cluj-Napoca, Romania; (D.M.); (P.M.); (S.N.)
| |
Collapse
|
37
|
Nishida N, Kudo M. Artificial Intelligence in Medical Imaging and Its Application in Sonography for the Management of Liver Tumor. Front Oncol 2020; 10:594580. [PMID: 33409151 PMCID: PMC7779763 DOI: 10.3389/fonc.2020.594580] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022] Open
Abstract
Recent advancement in artificial intelligence (AI) facilitate the development of AI-powered medical imaging including ultrasonography (US). However, overlooking or misdiagnosis of malignant lesions may result in serious consequences; the introduction of AI to the imaging modalities may be an ideal solution to prevent human error. For the development of AI for medical imaging, it is necessary to understand the characteristics of modalities on the context of task setting, required data sets, suitable AI algorism, and expected performance with clinical impact. Regarding the AI-aided US diagnosis, several attempts have been made to construct an image database and develop an AI-aided diagnosis system in the field of oncology. Regarding the diagnosis of liver tumors using US images, 4- or 5-class classifications, including the discrimination of hepatocellular carcinoma (HCC), metastatic tumors, hemangiomas, liver cysts, and focal nodular hyperplasia, have been reported using AI. Combination of radiomic approach with AI is also becoming a powerful tool for predicting the outcome in patients with HCC after treatment, indicating the potential of AI for applying personalized medical care. However, US images show high heterogeneity because of differences in conditions during the examination, and a variety of imaging parameters may affect the quality of images; such conditions may hamper the development of US-based AI. In this review, we summarized the development of AI in medical images with challenges to task setting, data curation, and focus on the application of AI for the managements of liver tumor, especially for US diagnosis.
Collapse
Affiliation(s)
- Naoshi Nishida
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| |
Collapse
|
38
|
Bam R, Daryaei I, Abou-Elkacem L, Vilches-Moure JG, Meuillet EJ, Lutz A, Marinelli ER, Unger EC, Gambhir SS, Paulmurugan R. Toward the Clinical Development and Validation of a Thy1-Targeted Ultrasound Contrast Agent for the Early Detection of Pancreatic Ductal Adenocarcinoma. Invest Radiol 2020; 55:711-721. [PMID: 32569010 PMCID: PMC7541735 DOI: 10.1097/rli.0000000000000697] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Early detection of pancreatic ductal adenocarcinoma (PDAC) represents the most significant step toward the treatment of this aggressive lethal disease. Previously, we engineered a preclinical Thy1-targeted microbubble (MBThy1) contrast agent that specifically recognizes Thy1 antigen overexpressed in the vasculature of murine PDAC tissues by ultrasound (US) imaging. In this study, we adopted a single-chain variable fragment (scFv) site-specific bioconjugation approach to construct clinically translatable MBThy1-scFv and test for its efficacy in vivo in murine PDAC imaging, and functionally evaluated the binding specificity of scFv ligand to human Thy1 in patient PDAC tissues ex vivo. MATERIALS AND METHODS We recombinantly expressed the Thy1-scFv with a carboxy-terminus cysteine residue to facilitate its thioether conjugation to the PEGylated MBs presenting with maleimide functional groups. After the scFv-MB conjugations, we tested binding activity of the MBThy1-scFv to MS1 cells overexpressing human Thy1 (MS1Thy1) under liquid shear stress conditions in vitro using a flow chamber setup at 0.6 mL/min flow rate, corresponding to a wall shear stress rate of 100 seconds, similar to that in tumor capillaries. For in vivo Thy1 US molecular imaging, MBThy1-scFv was tested in the transgenic mouse model (C57BL/6J - Pdx1-Cre; KRas; Ink4a/Arf) of PDAC and in control mice (C57BL/6J) with L-arginine-induced pancreatitis or normal pancreas. To facilitate its clinical feasibility, we further produced Thy1-scFv without the bacterial fusion tags and confirmed its recognition of human Thy1 in cell lines by flow cytometry and in patient PDAC frozen tissue sections of different clinical grades by immunofluorescence staining. RESULTS Under shear stress flow conditions in vitro, MBThy1-scFv bound to MS1Thy1 cells at significantly higher numbers (3.0 ± 0.8 MB/cell; P < 0.01) compared with MBNontargeted (0.5 ± 0.5 MB/cell). In vivo, MBThy1-scFv (5.3 ± 1.9 arbitrary units [a.u.]) but not the MBNontargeted (1.2 ± 1.0 a.u.) produced high US molecular imaging signal (4.4-fold vs MBNontargeted; n = 8; P < 0.01) in the transgenic mice with spontaneous PDAC tumors (2-6 mm). Imaging signal from mice with L-arginine-induced pancreatitis (n = 8) or normal pancreas (n = 3) were not significantly different between the two MB constructs and were significantly lower than PDAC Thy1 molecular signal. Clinical-grade scFv conjugated to Alexa Fluor 647 dye recognized MS1Thy1 cells but not the parental wild-type cells as evaluated by flow cytometry. More importantly, scFv showed highly specific binding to VEGFR2-positive vasculature and fibroblast-like stromal components surrounding the ducts of human PDAC tissues as evaluated by confocal microscopy. CONCLUSIONS Our findings summarize the development and validation of a clinically relevant Thy1-targeted US contrast agent for the early detection of human PDAC by US molecular imaging.
Collapse
Affiliation(s)
- Rakesh Bam
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Palo Alto, CA
| | | | - Lotfi Abou-Elkacem
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Palo Alto, CA
| | | | | | - Amelie Lutz
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Palo Alto, CA
| | | | | | - Sanjiv S. Gambhir
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Palo Alto, CA
| | - Ramasamy Paulmurugan
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Palo Alto, CA
| |
Collapse
|
39
|
Machine-Learning Based Hybrid-Feature Analysis for Liver Cancer Classification Using Fused (MR and CT) Images. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10093134] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The purpose of this research is to demonstrate the ability of machine-learning (ML) methods for liver cancer classification using a fused dataset of two-dimensional (2D) computed tomography (CT) scans and magnetic resonance imaging (MRI). Datasets of benign (hepatocellular adenoma, hemangioma, cyst) and malignant (hepatocellular carcinoma, hepatoblastoma, metastasis) liver cancer were acquired at Bahawal Victoria Hospital (BVH), Bahawalpur, Pakistan. The final dataset was generated by fusion of 1200 (100 × 6 × 2) MR and CT-scan images, 200 (100 MRI and 100 CT-scan) images size 512 × 512 for each class of cancer. The acquired dataset was preprocessed by employing the Gabor filters to reduce the noise and taking an automated region of interest (ROIs) using an Otsu thresholding-based segmentation approach. The preprocessed dataset was used to acquire 254 hybrid-feature data for each ROI, which is the combination of the histogram, wavelet, co-occurrence, and run-length features, while 10 optimized hybrid features were selected by employing (probability of error plus average correlation) feature selection technique. For classification, we deployed this optimized hybrid-feature dataset to four ML classifiers: multilayer perceptron (MLP), support vector machine (SVM), random forest (RF), and J48, using a ten fold cross-validation method. MLP showed an overall accuracy of (95.78% on MRI and 97.44% on CT). Unfortunately, the obtained results were not promising, and there were some limitations due to the different modalities of the dataset. Thereafter, a fusion of MRI and CT-scan datasets generated the fused optimized hybrid-feature dataset. The MLP has shown a promising accuracy of 99% among all the deployed classifiers.
Collapse
|
40
|
Correas JM, Halpern EJ, Barr RG, Ghai S, Walz J, Bodard S, Dariane C, de la Rosette J. Advanced ultrasound in the diagnosis of prostate cancer. World J Urol 2020; 39:661-676. [PMID: 32306060 DOI: 10.1007/s00345-020-03193-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 03/30/2020] [Indexed: 12/17/2022] Open
Abstract
The diagnosis of prostate cancer (PCa) can be challenging due to the limited performance of current diagnostic tests, including PSA, digital rectal examination and transrectal conventional US. Multiparametric MRI has improved PCa diagnosis and is recommended prior to biopsy; however, mp-MRI does miss a substantial number of PCa. Advanced US modalities include transrectal prostate elastography and contrast-enhanced US, as well as improved B-mode, micro-US and micro-Doppler techniques. These techniques can be combined to define a novel US approach, multiparametric US (mp-US). Mp-US improves PCa diagnosis but is not sufficiently accurate to obviate the utility of mp-MRI. Mp-US using advanced techniques and mp-MRI provide complementary information which will become even more important in the era of focal therapy, where precise identification of PCa location is needed.
Collapse
Affiliation(s)
- Jean-Michel Correas
- Department of Adult Radiology, Paris University and Necker University Hospital, 149 rue de Sèvres, 75015, Paris Cedex 15, France.
| | - Ethan J Halpern
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Richard G Barr
- Department of Radiology, Northeastern Ohio Medical University, Rootstown, OH, USA
| | - Sangeet Ghai
- Department of Medical Imaging, Princess Margaret Cancer Centre and University of Toronto, Toronto, ON, Canada
| | - Jochen Walz
- Department of Urology, Institut Paoli-Calmettes Cancer Centre, Marseille, France
| | - Sylvain Bodard
- Department of Adult Radiology, Paris University and Necker University Hospital, 149 rue de Sèvres, 75015, Paris Cedex 15, France
| | - Charles Dariane
- Department of Urology, Paris University and European Hospital Georges Pompidou, Paris, France
| | | |
Collapse
|
41
|
Tanaka H. Current role of ultrasound in the diagnosis of hepatocellular carcinoma. J Med Ultrason (2001) 2020; 47:239-255. [PMID: 32170489 PMCID: PMC7181430 DOI: 10.1007/s10396-020-01012-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/29/2020] [Indexed: 02/06/2023]
Abstract
Ultrasonography (US) is a major, sustainable hepatocellular carcinoma (HCC) surveillance method as it provides inexpensive, real-time, and noninvasive detection. Since US findings are based on pathological features, knowledge of pathological features is essential for delivering a correct US diagnosis. Recent advances in US equipment have made it possible to provide more information, such as malignancy potential and accurate localization diagnosis of HCC. Evaluation of malignancy potential is important to determine the treatment strategy, especially for small HCC. Diagnosis of blood flow dynamics using color Doppler and contrast-enhanced US is one of the most definitive approaches for evaluating HCC malignancy potential. Recently, a new Doppler microvascular imaging technique, superb microvascular imaging, which can detect Doppler signals generated by low-velocity blood flow, was developed. A fusion imaging system, another innovative US technology, has already become an indispensable technology over the last few years not only for US-guided radiofrequency ablation but also for the detection of small, invisible HCC. This article reviews the evidence on the use of ultrasound and contrast-enhanced ultrasound with Sonazoid for the practical management of HCC.
Collapse
Affiliation(s)
- Hironori Tanaka
- Department of Gastroenterology and Hepatology, Takarazuka Municipal Hospital, 4-5-1 Kohama, Takarazuka, Hyogo, Japan.
| |
Collapse
|
42
|
Huang Q, Pan F, Li W, Yuan F, Hu H, Huang J, Yu J, Wang W. Differential Diagnosis of Atypical Hepatocellular Carcinoma in Contrast-Enhanced Ultrasound Using Spatio-Temporal Diagnostic Semantics. IEEE J Biomed Health Inform 2020; 24:2860-2869. [PMID: 32149699 DOI: 10.1109/jbhi.2020.2977937] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Atypical Hepatocellular Carcinoma (HCC) is very hard to distinguish from Focal Nodular Hyperplasia (FNH) in routine imaging. However little attention was paid to this problem. This paper proposes a novel liver tumor Computer-Aided Diagnostic (CAD) approach extracting spatio-temporal semantics for atypical HCC. With respect to useful diagnostic semantics, our model automatically calculates three types of semantic feature with equally down-sampled frames based on Contrast-Enhanced Ultrasound (CEUS). Thereafter, a Support Vector Machine (SVM) classifier is trained to make the final diagnosis. Compared with traditional methods for diagnosing HCC, the proposed model has the advantage of less computational complexity and being able to handle the atypical HCC cases. The experimental results show that our method obtained a pretty considerable performance and outperformed two traditional methods. According to the results, the average accuracy reaches 94.40%, recall rate 94.76%, F1-score value 94.62%, specificity 93.62% and sensitivity 94.76%, indicating good merit for automatically diagnosing atypical HCC cases.
Collapse
|
43
|
Turco S, Frinking P, Wildeboer R, Arditi M, Wijkstra H, Lindner JR, Mischi M. Contrast-Enhanced Ultrasound Quantification: From Kinetic Modeling to Machine Learning. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:518-543. [PMID: 31924424 DOI: 10.1016/j.ultrasmedbio.2019.11.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 05/14/2023]
Abstract
Ultrasound contrast agents (UCAs) have opened up immense diagnostic possibilities by combined use of indicator dilution principles and dynamic contrast-enhanced ultrasound (DCE-US) imaging. UCAs are microbubbles encapsulated in a biocompatible shell. With a rheology comparable to that of red blood cells, UCAs provide an intravascular indicator for functional imaging of the (micro)vasculature by quantitative DCE-US. Several models of the UCA intravascular kinetics have been proposed to provide functional quantitative maps, aiding diagnosis of different pathological conditions. This article is a comprehensive review of the available methods for quantitative DCE-US imaging based on temporal, spatial and spatiotemporal analysis of the UCA kinetics. The recent introduction of novel UCAs that are targeted to specific vascular receptors has advanced DCE-US to a molecular imaging modality. In parallel, new kinetic models of increased complexity have been developed. The extraction of multiple quantitative maps, reflecting complementary variables of the underlying physiological processes, requires an integrative approach to their interpretation. A probabilistic framework based on emerging machine-learning methods represents nowadays the ultimate approach, improving the diagnostic accuracy of DCE-US imaging by optimal combination of the extracted complementary information. The current value and future perspective of all these advances are critically discussed.
Collapse
Affiliation(s)
- Simona Turco
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | | | - Rogier Wildeboer
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Marcel Arditi
- École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Hessel Wijkstra
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Jonathan R Lindner
- Knight Cardiovascular Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Massimo Mischi
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
44
|
Schaible J, Stroszczynski C, Beyer L, Jung E. Quantitative perfusion analysis of hepatocellular carcinoma using dynamic contrast enhanced ultrasound (CEUS) to determine tumor microvascularization. Clin Hemorheol Microcirc 2019; 73:95-104. [DOI: 10.3233/ch-199221] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- J. Schaible
- Department of Radiology, University Medical Center Regensburg, Germany
| | - C. Stroszczynski
- Department of Radiology, University Medical Center Regensburg, Germany
| | - L.P. Beyer
- Department of Radiology, University Medical Center Regensburg, Germany
| | - E.M. Jung
- Department of Radiology, University Medical Center Regensburg, Germany
| |
Collapse
|
45
|
Xu J, Jing M, Wang S, Yang C, Chen X. A review of medical image detection for cancers in digestive system based on artificial intelligence. Expert Rev Med Devices 2019; 16:877-889. [PMID: 31530047 DOI: 10.1080/17434440.2019.1669447] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: At present, cancer imaging examination relies mainly on manual reading of doctors, which requests a high standard of doctors' professional skills, clinical experience, and concentration. However, the increasing amount of medical imaging data has brought more and more challenges to radiologists. The detection of digestive system cancer (DSC) based on artificial intelligence (AI) can provide a solution for automatic analysis of medical images and assist doctors to achieve high-precision intelligent diagnosis of cancers. Areas covered: The main goal of this paper is to introduce the main research methods of the AI based detection of DSC, and provide relevant reference for researchers. Meantime, it summarizes the main problems existing in these methods, and provides better guidance for future research. Expert commentary: The automatic classification, recognition, and segmentation of DSC can be better realized through the methods of machine learning and deep learning, which minimize the internal information of images that are difficult for humans to discover. In the diagnosis of DSC, the use of AI to assist imaging surgeons can achieve cancer detection rapidly and effectively and save doctors' diagnosis time. These can lay the foundation for better clinical diagnosis, treatment planning and accurate quantitative evaluation of DSC.
Collapse
Affiliation(s)
- Jiangchang Xu
- Institute of Biomedical Manufacturing and Life Quality Engineering, State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University , Shanghai , China
| | - Mengjie Jing
- Institute of Biomedical Manufacturing and Life Quality Engineering, State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University , Shanghai , China
| | - Shiming Wang
- Institute of Biomedical Manufacturing and Life Quality Engineering, State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University , Shanghai , China
| | - Cuiping Yang
- Department of Gastroenterology, Ruijin North Hospital of Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Xiaojun Chen
- Institute of Biomedical Manufacturing and Life Quality Engineering, State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University , Shanghai , China
| |
Collapse
|
46
|
Langenbach MC, Vogl TJ, von den Driesch I, Kaltenbach B, Scholtz JE, Hammerstingl RM, Gruber-Rouh T. Analysis of Lipiodol uptake in angiography and computed tomography for the diagnosis of malignant versus benign hepatocellular nodules in cirrhotic liver. Eur Radiol 2019; 29:6539-6549. [DOI: 10.1007/s00330-019-06297-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/15/2019] [Accepted: 05/29/2019] [Indexed: 02/08/2023]
|
47
|
Nishida N, Yamakawa M, Shiina T, Kudo M. Current status and perspectives for computer-aided ultrasonic diagnosis of liver lesions using deep learning technology. Hepatol Int 2019; 13:416-421. [PMID: 30790230 DOI: 10.1007/s12072-019-09937-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/02/2019] [Indexed: 12/13/2022]
Abstract
An ultrasound (US) examination is a common noninvasive technique widely applied for diagnosis of a variety of diseases. Based on the rapid development of US equipment, many US images have been accumulated and are now available and ready for the preparation of a database for the development of computer-aided US diagnosis with deep learning technology. On the contrary, because of the unique characteristics of the US image, there could be some issues that need to be resolved for the establishment of computer-aided diagnosis (CAD) system in this field. For example, compared to the other modalities, the quality of a US image is, currently, highly operator dependent; the conditions of examination should also directly affect the quality of US images. So far, these factors have hampered the application of deep learning-based technology in the field of US diagnosis. However, the development of CAD and US technologies will contribute to an increase in diagnostic quality, facilitate the development of remote medicine, and reduce the costs in the national health care through the early diagnosis of diseases. From this point of view, it may have a large enough potential to induce a paradigm shift in the field of US imaging and diagnosis of liver diseases.
Collapse
Affiliation(s)
- Naoshi Nishida
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, 337-2 Ohno-higashi, Osaka-sayama, Osaka, 589-8511, Japan.
| | - Makoto Yamakawa
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tsuyoshi Shiina
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, 337-2 Ohno-higashi, Osaka-sayama, Osaka, 589-8511, Japan
| |
Collapse
|
48
|
Bertelsen C, King KG, Swanson M, Duddalwar V, Pepper J. Contrast‐Enhanced Ultrasound With Perflubutane for Sentinel Lymph Node Mapping in Cutaneous Melanoma: A Pilot Study. Laryngoscope 2018; 129:1117-1122. [DOI: 10.1002/lary.27397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 05/09/2018] [Accepted: 05/29/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Caitlin Bertelsen
- USC Caruso Department of Otolaryngology–Head and Neck Surgery Los Angeles
| | - Kevin G. King
- Department of RadiologyKeck School of Medicine of the University of Southern California Los Angeles
| | - Mark Swanson
- USC Caruso Department of Otolaryngology–Head and Neck Surgery Los Angeles
| | - Vinay Duddalwar
- Department of RadiologyKeck School of Medicine of the University of Southern California Los Angeles
| | - Jon‐Paul Pepper
- Department of Otolaryngology–Head and Neck SurgeryStanford University School of Medicine Palo Alto California U.S.A
| |
Collapse
|
49
|
Guo LH, Wang D, Qian YY, Zheng X, Zhao CK, Li XL, Bo XW, Yue WW, Zhang Q, Shi J, Xu HX. A two-stage multi-view learning framework based computer-aided diagnosis of liver tumors with contrast enhanced ultrasound images. Clin Hemorheol Microcirc 2018; 69:343-354. [PMID: 29630528 DOI: 10.3233/ch-170275] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE With the fast development of artificial intelligence techniques, we proposed a novel two-stage multi-view learning framework for the contrast-enhanced ultrasound (CEUS) based computer-aided diagnosis for liver tumors, which adopted only three typical CEUS images selected from the arterial phase, portal venous phase and late phase. MATERIALS AND METHODS In the first stage, the deep canonical correlation analysis (DCCA) was performed on three image pairs between the arterial and portal venous phases, arterial and delayed phases, and portal venous and delayed phases respectively, which then generated total six-view features. While in the second stage, these multi-view features were then fed to a multiple kernel learning (MKL) based classifier to further promote the diagnosis result. Two MKL classification algorithms were evaluated in this MKL-based classification framework. We evaluated proposed DCCA-MKL framework on 93 lesions (47 malignant cancers vs. 46 benign tumors). RESULTS The proposed DCCA-MKL framework achieved the mean classification accuracy, sensitivity, specificity, Youden index, false positive rate, and false negative rate of 90.41 ± 5.80%, 93.56 ± 5.90%, 86.89 ± 9.38%, 79.44 ± 11.83%, 13.11 ± 9.38% and 6.44 ± 5.90%, respectively, by soft margin MKL classifier. CONCLUSION The experimental results indicate that the proposed DCCA-MKL framework achieves best performance for discriminating benign liver tumors from malignant liver cancers. Moreover, it is also proved that the three-phase CEUS image based CAD is feasible for liver tumors with the proposed DCCA-MKL framework.
Collapse
Affiliation(s)
- Le-Hang Guo
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University School of Medicine, Shanghai, China
| | - Dan Wang
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University School of Medicine, Shanghai, China
| | - Yi-Yi Qian
- Shanghai Institute for Advanced Communication and Data Science, School of Communication and Information Engineering, Shanghai University, Shanghai, China
| | - Xiao Zheng
- Shanghai Institute for Advanced Communication and Data Science, School of Communication and Information Engineering, Shanghai University, Shanghai, China
| | - Chong-Ke Zhao
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University School of Medicine, Shanghai, China
| | - Xiao-Long Li
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University School of Medicine, Shanghai, China
| | - Xiao-Wan Bo
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University School of Medicine, Shanghai, China
| | - Wen-Wen Yue
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University School of Medicine, Shanghai, China
| | - Qi Zhang
- Shanghai Institute for Advanced Communication and Data Science, School of Communication and Information Engineering, Shanghai University, Shanghai, China
| | - Jun Shi
- Shanghai Institute for Advanced Communication and Data Science, School of Communication and Information Engineering, Shanghai University, Shanghai, China
| | - Hui-Xiong Xu
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
50
|
Zhou B, Xiong Z, Wang P, Peng C, Shen M, Shi X. Acetylated Polyethylenimine-Entrapped Gold Nanoparticles Enable Negative Computed Tomography Imaging of Orthotopic Hepatic Carcinoma. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8701-8707. [PMID: 29958496 DOI: 10.1021/acs.langmuir.8b01669] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Developing an effective computed tomography (CT) contrast agent is still a challenging task for precise diagnosis of hepatic carcinoma (HCC). Here, we present the use of acetylated polyethylenimine (PEI)-entrapped gold nanoparticles (Ac-PE-AuNPs) without antifouling modification for negative CT imaging of HCC. PEI was first linked to fluorescein isothiocyanate (FI) and then utilized as a vehicle for the entrapment of AuNPs. The particles were then acetylated to reduce its positive surface potential. The designed Ac-PE-AuNPs were characterized by various techniques. We find that the Ac-PE-AuNPs with a uniform size distribution (mean diameter = 2.3 nm) are colloidally stable and possess low toxicity in the studied range of concentration. Owing to the fact that the particles without additional antifouling modification were mainly gathered in liver, the Ac-PE-AuNPs could greatly improve the CT contrast enhancement of normal liver, whereas poor CT contrast enhancement appeared in liver necrosis region caused by HCC. As a result, HCC could be easily and precisely diagnosed. The designed Ac-PE-AuNPs were demonstrated to have biocompatibility through in vivo biodistribution and histological studies, hence holding an enormous potential to be adopted as an effective negative CT contrast agent for diagnosis of hepatoma carcinoma.
Collapse
Affiliation(s)
- Benqing Zhou
- Department of Radiology, Shanghai Tenth People's Hospital , Tongji University School of Medicine , Shanghai 200072 , P. R. China
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Zhijuan Xiong
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Peng Wang
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Chen Peng
- Department of Radiology, Shanghai Tenth People's Hospital , Tongji University School of Medicine , Shanghai 200072 , P. R. China
| | - Mingwu Shen
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Xiangyang Shi
- Department of Radiology, Shanghai Tenth People's Hospital , Tongji University School of Medicine , Shanghai 200072 , P. R. China
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
- CQM-Centro de Química da Madeira , Universidade da Madeira , Campus da Penteada , 9020-105 Funchal , Portugal
| |
Collapse
|