1
|
Bao N, Zhang J, Li Z, Wei S, Zhang J, Greenwald SE, Onofrey JA, Lu Y, Xu L. CT-Less Whole-Body Bone Segmentation of PET Images Using a Multimodal Deep Learning Network. IEEE J Biomed Health Inform 2025; 29:1151-1164. [PMID: 40030243 DOI: 10.1109/jbhi.2024.3501386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2025]
Abstract
In bone cancer imaging, positron emission tomography (PET) is ideal for the diagnosis and staging of bone cancers due to its high sensitivity to malignant tumors. The diagnosis of bone cancer requires tumor analysis and localization, where accurate and automated wholebody bone segmentation (WBBS) is often needed. Current WBBS for PET imaging is based on paired Computed Tomography (CT) images. However, mismatches between CT and PET images often occur due to patient motion, which leads to erroneous bone segmentation and thus, to inaccurate tumor analysis. Furthermore, there are some instances where CT images are unavailable for WBBS. In this work, we propose a novel multimodal fusion network (MMF-Net) for WBBS of PET images, without the need for CT images. Specifically, the tracer activity ($\lambda$-MLAA), attenuation map ($\mu$-MLAA), and synthetic attenuation map ($\mu$-DL) images are introduced into the training data. We first design a multi-encoder structure employed to fully learn modalityspecific encoding representations of the three PET modality images through independent encoding branches. Then, we propose a multimodal fusion module in the decoder to further integrate the complementary information across the three modalities. Additionally, we introduce revised convolution units, SE (Squeeze-and-Excitation) Normalization and deep supervision to improve segmentation performance. Extensive comparisons and ablation experiments, using 130 whole-body PET image datasets, show promising results. We conclude that the proposed method can achieve WBBS with moderate to high accuracy using PET information only, which potentially can be used to overcome the current limitations of CT-based approaches, while minimizing exposure to ionizing radiation.
Collapse
|
2
|
Lu Y, Kang F, Zhang D, Li Y, Liu H, Sun C, Zeng H, Shi L, Zhao Y, Wang J. Deep learning-aided respiratory motion compensation in PET/CT: addressing motion induced resolution loss, attenuation correction artifacts and PET-CT misalignment. Eur J Nucl Med Mol Imaging 2024; 52:62-73. [PMID: 39136740 PMCID: PMC11599311 DOI: 10.1007/s00259-024-06872-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/01/2024] [Indexed: 11/27/2024]
Abstract
PURPOSE Respiratory motion (RM) significantly impacts image quality in thoracoabdominal PET/CT imaging. This study introduces a unified data-driven respiratory motion correction (uRMC) method, utilizing deep learning neural networks, to solve all the major issues caused by RM, i.e., PET resolution loss, attenuation correction artifacts, and PET-CT misalignment. METHODS In a retrospective study, 737 patients underwent [18F]FDG PET/CT scans using the uMI Panorama PET/CT scanner. Ninety-nine patients, who also had respiration monitoring device (VSM), formed the validation set. The remaining data of the 638 patients were used to train neural networks used in the uRMC. The uRMC primarily consists of three key components: (1) data-driven respiratory signal extraction, (2) attenuation map generation, and (3) PET-CT alignment. SUV metrics were calculated within 906 lesions for three approaches, i.e., data-driven uRMC (proposed), VSM-based uRMC, and OSEM without motion correction (NMC). RM magnitude of major organs were estimated. RESULTS uRMC enhanced diagnostic capabilities by revealing previously undetected lesions, sharpening lesion contours, increasing SUV values, and improving PET-CT alignment. Compared to NMC, uRMC showed increases of 10% and 17% in SUVmax and SUVmean across 906 lesions. Sub-group analysis showed significant SUV increases in small and medium-sized lesions with uRMC. Minor differences were found between VSM-based and data-driven uRMC methods, with the SUVmax was found statistically marginal significant or insignificant between the two methods. The study observed varied motion amplitudes in major organs, typically ranging from 10 to 20 mm. CONCLUSION A data-driven solution for respiratory motion in PET/CT has been developed, validated and evaluated. To the best of our knowledge, this is the first unified solution that compensates for the motion blur within PET, the attenuation mismatch artifacts caused by PET-CT misalignment, and the misalignment between PET and CT.
Collapse
Affiliation(s)
- Yihuan Lu
- United Imaging Healthcare, No. 2258 Chengbei Road, Shanghai, 201807, China.
| | - Fei Kang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, China
| | - Duo Zhang
- United Imaging Healthcare, No. 2258 Chengbei Road, Shanghai, 201807, China
| | - Yue Li
- United Imaging Healthcare, No. 2258 Chengbei Road, Shanghai, 201807, China
| | - Hao Liu
- United Imaging Healthcare, No. 2258 Chengbei Road, Shanghai, 201807, China
| | - Chen Sun
- United Imaging Healthcare, No. 2258 Chengbei Road, Shanghai, 201807, China
| | - Hao Zeng
- United Imaging Healthcare, No. 2258 Chengbei Road, Shanghai, 201807, China
| | - Lei Shi
- United Imaging Healthcare, No. 2258 Chengbei Road, Shanghai, 201807, China
| | - Yumo Zhao
- United Imaging Healthcare, No. 2258 Chengbei Road, Shanghai, 201807, China
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, China.
| |
Collapse
|
3
|
Wu Y, Wang Z, Chu Y, Peng R, Peng H, Yang H, Guo K, Zhang J. Current Research Status of Respiratory Motion for Thorax and Abdominal Treatment: A Systematic Review. Biomimetics (Basel) 2024; 9:170. [PMID: 38534855 DOI: 10.3390/biomimetics9030170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/29/2024] [Accepted: 03/09/2024] [Indexed: 03/28/2024] Open
Abstract
Malignant tumors have become one of the serious public health problems in human safety and health, among which the chest and abdomen diseases account for the largest proportion. Early diagnosis and treatment can effectively improve the survival rate of patients. However, respiratory motion in the chest and abdomen can lead to uncertainty in the shape, volume, and location of the tumor, making treatment of the chest and abdomen difficult. Therefore, compensation for respiratory motion is very important in clinical treatment. The purpose of this review was to discuss the research and development of respiratory movement monitoring and prediction in thoracic and abdominal surgery, as well as introduce the current research status. The integration of modern respiratory motion compensation technology with advanced sensor detection technology, medical-image-guided therapy, and artificial intelligence technology is discussed and analyzed. The future research direction of intraoperative thoracic and abdominal respiratory motion compensation should be non-invasive, non-contact, use a low dose, and involve intelligent development. The complexity of the surgical environment, the constraints on the accuracy of existing image guidance devices, and the latency of data transmission are all present technical challenges.
Collapse
Affiliation(s)
- Yuwen Wu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Zhisen Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Yuyi Chu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Renyuan Peng
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Haoran Peng
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Hongbo Yang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Kai Guo
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Juzhong Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
4
|
Tsai YJ, Liu C. Joint motion estimation and penalized image reconstruction algorithm with anatomical priors for gated TOF-PET/CT. Phys Med Biol 2023; 68. [PMID: 36549009 DOI: 10.1088/1361-6560/acae19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
The presence of respiratory motion not only degrades the reconstructed image but also limits the utilization of anatomical priors in emission tomography. In this study, we explore the potential application of a joint motion estimation and penalized image reconstruction algorithm using anatomical priors in gated time-of-flight positron emission tomography/computed tomography (PET/CT). The algorithm is able to warp both the activity image and the attenuation map to align them with the measured data with the facilitation of anatomical information contained in the attenuation map. Five patient datasets, three acquired in single-bed position and two acquired in whole-body continuous-bed-motion mode, are included. For each patient, the attenuation map is derived from a breath-hold CT. The Parallel Levels Sets (PLS) is chosen as a representative anatomical prior. In addition to demonstrating the reliability of the estimated motion and the benefits of incorporating anatomical prior, preliminary results also indicate that the algorithm shows the potential to reconstruct an activity image in the space corresponding to that of the attenuation map, which could be applied to address the potential misalignment issue in applications involving multiple PET acquisitions but a single CT.
Collapse
Affiliation(s)
- Yu-Jung Tsai
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06520, United States of America.,Canon Medical Research USA, Inc., Vernon Hills, IL 60061, United States of America
| | - Chi Liu
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06520, United States of America
| |
Collapse
|
5
|
Guo X, Zhou B, Pigg D, Spottiswoode B, Casey ME, Liu C, Dvornek NC. Unsupervised inter-frame motion correction for whole-body dynamic PET using convolutional long short-term memory in a convolutional neural network. Med Image Anal 2022; 80:102524. [PMID: 35797734 PMCID: PMC10923189 DOI: 10.1016/j.media.2022.102524] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 06/08/2022] [Accepted: 06/24/2022] [Indexed: 11/24/2022]
Abstract
Subject motion in whole-body dynamic PET introduces inter-frame mismatch and seriously impacts parametric imaging. Traditional non-rigid registration methods are generally computationally intense and time-consuming. Deep learning approaches are promising in achieving high accuracy with fast speed, but have yet been investigated with consideration for tracer distribution changes or in the whole-body scope. In this work, we developed an unsupervised automatic deep learning-based framework to correct inter-frame body motion. The motion estimation network is a convolutional neural network with a combined convolutional long short-term memory layer, fully utilizing dynamic temporal features and spatial information. Our dataset contains 27 subjects each under a 90-min FDG whole-body dynamic PET scan. Evaluating performance in motion simulation studies and a 9-fold cross-validation on the human subject dataset, compared with both traditional and deep learning baselines, we demonstrated that the proposed network achieved the lowest motion prediction error, obtained superior performance in enhanced qualitative and quantitative spatial alignment between parametric Ki and Vb images, and significantly reduced parametric fitting error. We also showed the potential of the proposed motion correction method for impacting downstream analysis of the estimated parametric images, improving the ability to distinguish malignant from benign hypermetabolic regions of interest. Once trained, the motion estimation inference time of our proposed network was around 460 times faster than the conventional registration baseline, showing its potential to be easily applied in clinical settings.
Collapse
Affiliation(s)
- Xueqi Guo
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Bo Zhou
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - David Pigg
- Siemens Medical Solutions USA, Inc., Knoxville, TN, 37932, USA
| | | | - Michael E Casey
- Siemens Medical Solutions USA, Inc., Knoxville, TN, 37932, USA
| | - Chi Liu
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06511, USA.
| | - Nicha C Dvornek
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
6
|
Thomas MA, Meier JG, Mawlawi OR, Sun P, Pan T. Impact of acquisition time and misregistration with CT on data-driven gated PET. Phys Med Biol 2022; 67:10.1088/1361-6560/ac5f73. [PMID: 35313286 PMCID: PMC9128538 DOI: 10.1088/1361-6560/ac5f73] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/21/2022] [Indexed: 11/11/2022]
Abstract
Objective. Data-driven gating (DDG) can address patient motion issues and enhance PET quantification but suffers from increased image noise from utilization of <100% of PET data. Misregistration between DDG-PET and CT may also occur, altering the potential benefits of gating. Here, the effects of PET acquisition time and CT misregistration were assessed with a combined DDG-PET/DDG-CT technique.Approach. In the primary PET bed with lesions of interest and likely respiratory motion effects, PET acquisition time was extended to 12 min and a low-dose cine CT was acquired to enable DDG-CT. Retrospective reconstructions were created for both non-gated (NG) and DDG-PET using 30 s to 12 min of PET data. Both the standard helical CT and DDG-CT were used for attenuation correction of DDG-PET data. SUVmax, SUVpeak, and CNR were compared for 45 lesions in the liver and lung from 27 cases.Main results. For both NG-PET (p= 0.0041) and DDG-PET (p= 0.0028), only the 30 s acquisition time showed clear SUVmaxbias relative to the 3 min clinical standard. SUVpeakshowed no bias at any change in acquisition time. DDG-PET alone increased SUVmaxby 15 ± 20% (p< 0.0001), then was increased further by an additional 15 ± 29% (p= 0.0007) with DDG-PET/CT. Both 3 min and 6 min DDG-PET had lesion CNR statistically equivalent to 3 min NG-PET, but then increased at 12 min by 28 ± 48% (p= 0.0022). DDG-PET/CT at 6 min had comparable counts to 3 min NG-PET, but significantly increased CNR by 39 ± 46% (p< 0.0001).Significance. 50% counts DDG-PET did not lead to inaccurate or biased SUV-increased SUV resulted from gating. Improved registration from DDG-CT was equally as important as motion correction with DDG-PET for increasing SUV in DDG-PET/CT. Lesion detectability could be significantly improved when DDG-PET used equivalent counts to NG-PET, but only when combined with DDG-CT in DDG-PET/CT.
Collapse
Affiliation(s)
- M. Allan Thomas
- Department of Imaging Physics, UT MD Anderson Cancer Center, Houston, TX 77030
| | - Joseph G. Meier
- Department of Medical Physics, University of Wisconsin, Madison, WI 53726
| | - Osama R. Mawlawi
- Department of Imaging Physics, UT MD Anderson Cancer Center, Houston, TX 77030
| | - Peng Sun
- Department of Imaging Physics, UT MD Anderson Cancer Center, Houston, TX 77030
| | - Tinsu Pan
- Department of Imaging Physics, UT MD Anderson Cancer Center, Houston, TX 77030
| |
Collapse
|
7
|
Tsai YJ, Lu Y, Wu J, Liu H, Schleyer P, Casey M, Liu C. Performance Evaluation of Amplitude and Phase Respiratory Gating Methods on Continuous-Bed-Motion Whole-Body PET Studies. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2022. [DOI: 10.1109/trpms.2021.3075383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
8
|
Lamare F, Bousse A, Thielemans K, Liu C, Merlin T, Fayad H, Visvikis D. PET respiratory motion correction: quo vadis? Phys Med Biol 2021; 67. [PMID: 34915465 DOI: 10.1088/1361-6560/ac43fc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 12/16/2021] [Indexed: 11/12/2022]
Abstract
Positron emission tomography (PET) respiratory motion correction has been a subject of great interest for the last twenty years, prompted mainly by the development of multimodality imaging devices such as PET/computed tomography (CT) and PET/magnetic resonance imaging (MRI). PET respiratory motion correction involves a number of steps including acquisition synchronization, motion estimation and finally motion correction. The synchronization steps include the use of different external device systems or data driven approaches which have been gaining ground over the last few years. Patient specific or generic motion models using the respiratory synchronized datasets can be subsequently derived and used for correction either in the image space or within the image reconstruction process. Similar overall approaches can be considered and have been proposed for both PET/CT and PET/MRI devices. Certain variations in the case of PET/MRI include the use of MRI specific sequences for the registration of respiratory motion information. The proposed review includes a comprehensive coverage of all these areas of development in field of PET respiratory motion for different multimodality imaging devices and approaches in terms of synchronization, estimation and subsequent motion correction. Finally, a section on perspectives including the potential clinical usage of these approaches is included.
Collapse
Affiliation(s)
- Frederic Lamare
- Nuclear Medicine Department, University Hospital Centre Bordeaux Hospital Group South, ., Bordeaux, Nouvelle-Aquitaine, 33604, FRANCE
| | - Alexandre Bousse
- LaTIM, INSERM UMR1101, Université de Bretagne Occidentale, ., Brest, Bretagne, 29285, FRANCE
| | - Kris Thielemans
- University College London Institute of Nuclear Medicine, UCL Hospital, Tower 5, 235 Euston Road, London, NW1 2BU, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Chi Liu
- Department of Diagnostic Radiology, Yale University School of Medicine Department of Radiology and Biomedical Imaging, PO Box 208048, 801 Howard Avenue, New Haven, Connecticut, 06520-8042, UNITED STATES
| | - Thibaut Merlin
- LaTIM, INSERM UMR1101, Universite de Bretagne Occidentale, ., Brest, Bretagne, 29285, FRANCE
| | - Hadi Fayad
- Weill Cornell Medicine - Qatar, ., Doha, ., QATAR
| | - Dimitris Visvikis
- LaTIM, UMR1101, Universite de Bretagne Occidentale, INSERM, Brest, Bretagne, 29285, FRANCE
| |
Collapse
|
9
|
Mohammadi I, Castro IF, Rahmim A, Veloso JFCA. Motion in nuclear cardiology imaging: types, artifacts, detection and correction techniques. Phys Med Biol 2021; 67. [PMID: 34826826 DOI: 10.1088/1361-6560/ac3dc7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 11/26/2021] [Indexed: 11/12/2022]
Abstract
In this paper, the authors review the field of motion detection and correction in nuclear cardiology with single photon emission computed tomography (SPECT) and positron emission tomography (PET) imaging systems. We start with a brief overview of nuclear cardiology applications and description of SPECT and PET imaging systems, then explaining the different types of motion and their related artefacts. Moreover, we classify and describe various techniques for motion detection and correction, discussing their potential advantages including reference to metrics and tasks, particularly towards improvements in image quality and diagnostic performance. In addition, we emphasize limitations encountered in different motion detection and correction methods that may challenge routine clinical applications and diagnostic performance.
Collapse
Affiliation(s)
- Iraj Mohammadi
- Department of Physics, University of Aveiro, Aveiro, PORTUGAL
| | - I Filipe Castro
- i3n Physics Department, Universidade de Aveiro, Aveiro, PORTUGAL
| | - Arman Rahmim
- Radiology and Physics, The University of British Columbia, Vancouver, British Columbia, CANADA
| | | |
Collapse
|
10
|
Zhou B, Tsai YJ, Chen X, Duncan JS, Liu C. MDPET: A Unified Motion Correction and Denoising Adversarial Network for Low-Dose Gated PET. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:3154-3164. [PMID: 33909561 PMCID: PMC8588635 DOI: 10.1109/tmi.2021.3076191] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In positron emission tomography (PET), gating is commonly utilized to reduce respiratory motion blurring and to facilitate motion correction methods. In application where low-dose gated PET is useful, reducing injection dose causes increased noise levels in gated images that could corrupt motion estimation and subsequent corrections, leading to inferior image quality. To address these issues, we propose MDPET, a unified motion correction and denoising adversarial network for generating motion-compensated low-noise images from low-dose gated PET data. Specifically, we proposed a Temporal Siamese Pyramid Network (TSP-Net) with basic units made up of 1.) Siamese Pyramid Network (SP-Net), and 2.) a recurrent layer for motion estimation among the gates. The denoising network is unified with our motion estimation network to simultaneously correct the motion and predict a motion-compensated denoised PET reconstruction. The experimental results on human data demonstrated that our MDPET can generate accurate motion estimation directly from low-dose gated images and produce high-quality motion-compensated low-noise reconstructions. Comparative studies with previous methods also show that our MDPET is able to generate superior motion estimation and denoising performance. Our code is available at https://github.com/bbbbbbzhou/MDPET.
Collapse
|
11
|
Miranda A, Bertoglio D, Stroobants S, Staelens S, Verhaeghe J. Translation of Preclinical PET Imaging Findings: Challenges and Motion Correction to Overcome the Confounding Effect of Anesthetics. Front Med (Lausanne) 2021; 8:753977. [PMID: 34746189 PMCID: PMC8569248 DOI: 10.3389/fmed.2021.753977] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Preclinical brain positron emission tomography (PET) in animals is performed using anesthesia to avoid movement during the PET scan. In contrast, brain PET scans in humans are typically performed in the awake subject. Anesthesia is therefore one of the principal limitations in the translation of preclinical brain PET to the clinic. This review summarizes the available literature supporting the confounding effect of anesthesia on several PET tracers for neuroscience in preclinical small animal scans. In a second part, we present the state-of-the-art methodologies to circumvent this limitation to increase the translational significance of preclinical research, with an emphasis on motion correction methods. Several motion tracking systems compatible with preclinical scanners have been developed, each one with its advantages and limitations. These systems and the novel experimental setups they can bring to preclinical brain PET research are reviewed here. While technical advances have been made in this field, and practical implementations have been demonstrated, the technique should become more readily available to research centers to allow for a wider adoption of the motion correction technique for brain research.
Collapse
Affiliation(s)
- Alan Miranda
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| | - Daniele Bertoglio
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| | - Sigrid Stroobants
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
- University Hospital Antwerp, Antwerp, Belgium
| | - Steven Staelens
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| | - Jeroen Verhaeghe
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
12
|
Li T, Zhang M, Qi W, Asma E, Qi J. Motion correction of respiratory-gated PET images using deep learning based image registration framework. Phys Med Biol 2020; 65:155003. [PMID: 32244230 PMCID: PMC7446936 DOI: 10.1088/1361-6560/ab8688] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Artifacts caused by patient breathing and movement during PET data acquisition affect image quality. Respiratory gating is commonly used to gate the list-mode PET data into multiple bins over a respiratory cycle. Non-rigid registration of respiratory-gated PET images can reduce motion artifacts and preserve count statistics, but it is time consuming. In this work, we propose an unsupervised non-rigid image registration framework using deep learning for motion correction. Our network uses a differentiable spatial transformer layer to warp the moving image to the fixed image and uses a stacked structure for deformation field refinement. Estimated deformation fields were incorporated into an iterative image reconstruction algorithm to perform motion compensated PET image reconstruction. We validated the proposed method using simulation and clinical data and implemented an iterative image registration approach for comparison. Motion compensated reconstructions were compared with ungated images. Our simulation study showed that the motion compensated methods can generate images with sharp boundaries and reveal more details in the heart region compared with the ungated image. The resulting normalized root mean square error (NRMS) was 24.3 ± 1.7% for the deep learning based motion correction, 31.1 ± 1.4% for the iterative registration based motion correction, and 41.9 ± 2.0% for ungated reconstruction. The proposed deep learning based motion correction reduced the bias compared with the ungated image without increasing the noise level and outperformed the iterative registration based method. In the real data study, both motion compensated images provided higher lesion contrast and sharper liver boundaries than the ungated image and had lower noise than the reference gate image. The contrast of the proposed method based on the deep neural network was higher than the ungated image and iterative registration method at any matched noise level.
Collapse
Affiliation(s)
- Tiantian Li
- Department of Biomedical Engineering, University of California, Davis, CA 95616, United States of America
| | | | | | | | | |
Collapse
|
13
|
Miranda A, Staelens S, Stroobants S, Verhaeghe J. Motion Dependent and Spatially Variant Resolution Modeling for PET Rigid Motion Correction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:2518-2530. [PMID: 32070945 DOI: 10.1109/tmi.2019.2962237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recent advances in positron emission tomography (PET) have allowed to perform brain scans of freely moving animals by using rigid motion correction. One of the current challenges in these scans is that, due to the PET scanner spatially variant point spread function (SVPSF), motion corrected images have a motion dependent blurring since animals can move throughout the entire field of view (FOV). We developed a method to calculate the image-based resolution kernels of the motion dependent and spatially variant PSF (MD-SVPSF) to correct the loss of spatial resolution in motion corrected reconstructions. The resolution kernels are calculated for each voxel by sampling and averaging the SVPSF at all positions in the scanner FOV where the moving object was measured. In resolution phantom scans, the use of the MD-SVPSF resolution model improved the spatial resolution in motion corrected reconstructions and corrected the image deformation caused by the parallax effect consistently for all motion patterns, outperforming the use of a motion independent SVPSF or Gaussian kernels. Compared to motion correction in which the SVPSF is applied independently for every pose, our method performed similarly, but with more than two orders of magnitude faster computation time. Importantly, in scans of freely moving mice, brain regional quantification in motion-free and motion corrected images was better correlated when using the MD-SVPSF in comparison with motion independent SVPSF and a Gaussian kernel. The method developed here allows to obtain consistent spatial resolution and quantification in motion corrected images, independently of the motion pattern of the subject.
Collapse
|
14
|
Pösse S, Büther F, Mannweiler D, Hong I, Jones J, Schäfers M, Schäfers KP. Comparison of two elastic motion correction approaches for whole-body PET/CT: motion deblurring vs gate-to-gate motion correction. EJNMMI Phys 2020; 7:19. [PMID: 32232687 PMCID: PMC7105551 DOI: 10.1186/s40658-020-0285-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/03/2020] [Indexed: 12/27/2022] Open
Abstract
Background Respiratory motion in PET/CT leads to well-known image degrading effects commonly compensated using elastic motion correction approaches. Gate-to-gate motion correction techniques are promising tools for improving clinical PET data but suffer from relatively long reconstruction times. In this study, the performance of a fast elastic motion compensation approach based on motion deblurring (DEB-MC) was evaluated on patient and phantom data and compared to an EM-based fully 3D gate-to-gate motion correction method (G2G-MC) which was considered the gold standard. Methods Twenty-eight patients were included in this study with suspected or confirmed malignancies in the thorax or abdomen. All patients underwent whole-body [18F]FDG PET/CT examinations applying hardware-based respiratory gating. In addition, a dynamic anthropomorphic thorax phantom was studied with PET/CT simulating tumour motion under controlled but realistic conditions. PET signal recovery values were calculated from phantom scans by comparing lesion activities after motion correction to static ground truth data. Differences in standardized uptake values (SUV) and metabolic volume (MV) between both reconstruction methods as well as between motion-corrected (MC) and non motion-corrected (NOMC) results were statistically analyzed using a Wilcoxon signed-rank test. Results Phantom data analysis showed high lesion recovery values of 91% (2 cm motion) and 98% (1 cm) for G2G-MC and 83% (2 cm) and 90% (1 cm) for DEB-MC. The statistical analysis of patient data found significant differences between NOMC and MC reconstructions for SUV max, SUV mean, MV, and contrast-to-noise ratio (CNR) for both reconstruction algorithms. Furthermore, both methods showed similar increases of 11–12% in SUV max and SUV mean after MC. The statistical analysis of the MC/NOMC ratio found no significant differences between the methods. Conclusion Both motion correction techniques deliver comparable improvements of SUV max, SUV mean, and CNR after MC on clinical and phantom data. The fast elastic motion compensation technique DEB-MC may thereby be a valuable alternative to state-of-the art motion correction techniques.
Collapse
Affiliation(s)
- Stefanie Pösse
- European Institute for Molecular Imaging, University of Münster, Waldeyerstr. 15, Münster, 48149, Germany.
| | - Florian Büther
- European Institute for Molecular Imaging, University of Münster, Waldeyerstr. 15, Münster, 48149, Germany.,Department of Nuclear Medicine, University Hospital of Münster, Albert-Schweitzer-Campus 1, Münster, 48149, Germany
| | - Dirk Mannweiler
- European Institute for Molecular Imaging, University of Münster, Waldeyerstr. 15, Münster, 48149, Germany
| | - Inki Hong
- Molecular Imaging, Siemens Medical Solutions Inc., Knoxville, Knoxville, USA
| | - Judson Jones
- Molecular Imaging, Siemens Medical Solutions Inc., Knoxville, Knoxville, USA
| | - Michael Schäfers
- European Institute for Molecular Imaging, University of Münster, Waldeyerstr. 15, Münster, 48149, Germany.,Department of Nuclear Medicine, University Hospital of Münster, Albert-Schweitzer-Campus 1, Münster, 48149, Germany
| | - Klaus Peter Schäfers
- European Institute for Molecular Imaging, University of Münster, Waldeyerstr. 15, Münster, 48149, Germany
| |
Collapse
|
15
|
Gallezot JD, Lu Y, Naganawa M, Carson RE. Parametric Imaging With PET and SPECT. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2020. [DOI: 10.1109/trpms.2019.2908633] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Shi L, Lu Y, Wu J, Gallezot JD, Boutagy N, Thorn S, Sinusas AJ, Carson RE, Liu C. Direct List Mode Parametric Reconstruction for Dynamic Cardiac SPECT. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:119-128. [PMID: 31180845 PMCID: PMC7030971 DOI: 10.1109/tmi.2019.2921969] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Recently introduced stationary dedicated cardiac SPECT scanners provide new opportunities to quantify myocardial blood flow (MBF) using dynamic SPECT. However, comparing to PET, the low sensitivity of SPECT scanners affects MBF quantification due to the high noise level, especially for 201 Thallium (201Tl) due to its typically low injected dose. The conventional indirect method for generating parametric images typically starts by reconstructing a time series of frame images followed by fitting the time-activity curve (TAC) for each voxel or segment with an appropriate kinetic model. The indirect method is simple and easy to implement; however, it usually suffers from substantial image noise that could also lead to bias. In this paper, we developed a list mode direct parametric image reconstruction algorithm to substantially reduce noise in MBF quantification using dynamic SPECT and allow for patient radiation dose reduction. GPU-based parallel computing was used to achieve more than 2000-fold acceleration. The proposed method was evaluated in both simulation and in vivo canine studies. Compared with the indirect method, the proposed direct method achieved substantially lower image noise and variability, particularly at large number of iterations and at low-count levels.
Collapse
Affiliation(s)
- Luyao Shi
- Department of Biomedical Engineering, Yale University, New Haven, CT 06512, USA
| | - Yihuan Lu
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06512, USA
| | - Jing Wu
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06512, USA
| | | | - Nabil Boutagy
- Department of Internal Medicine (Cardiology), Yale University, New Haven, CT 06512, USA
| | - Stephanie Thorn
- Department of Internal Medicine (Cardiology), Yale University, New Haven, CT 06512, USA
| | - Albert J. Sinusas
- Department of Internal Medicine (Cardiology), Yale University, New Haven, CT 06512, USA
| | - Richard E. Carson
- Department of Biomedical Engineering and also with the Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06512, USA
| | - Chi Liu
- Department of Biomedical Engineering and also with the Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06512, USA
| |
Collapse
|
17
|
Ren S, Lu Y, Bertolli O, Thielemans K, Carson RE. Event-by-event non-rigid data-driven PET respiratory motion correction methods: comparison of principal component analysis and centroid of distribution. ACTA ACUST UNITED AC 2019; 64:165014. [DOI: 10.1088/1361-6560/ab0bc9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
18
|
Lu Y, Gallezot JD, Naganawa M, Ren S, Fontaine K, Wu J, Onofrey JA, Toyonaga T, Boutagy N, Mulnix T, Panin VY, Casey ME, Carson RE, Liu C. Data-driven voluntary body motion detection and non-rigid event-by-event correction for static and dynamic PET. Phys Med Biol 2019; 64:065002. [PMID: 30695768 DOI: 10.1088/1361-6560/ab02c2] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PET has the potential to perform absolute in vivo radiotracer quantitation. This potential can be compromised by voluntary body motion (BM), which degrades image resolution, alters apparent tracer uptakes, introduces CT-based attenuation correction mismatch artifacts and causes inaccurate parameter estimates in dynamic studies. Existing body motion correction (BMC) methods include frame-based image-registration (FIR) approaches and real-time motion tracking using external measurement devices. FIR does not correct for motion occurring within a pre-defined frame and the device-based method is generally not practical in routine clinical use, since it requires attaching a tracking device to the patient and additional device set up time. In this paper, we proposed a data-driven algorithm, centroid of distribution (COD), to detect BM. In this algorithm, the central coordinate of the time-of-flight (TOF) bin, which can be used as a reasonable surrogate for the annihilation point, is calculated for every event, and averaged over a certain time interval to generate a COD trace. We hypothesized that abrupt changes on the COD trace in lateral direction represent BMs. After detection, BM is estimated using non-rigid image registrations and corrected through list-mode reconstruction. The COD-based BMC approach was validated using a monkey study and was evaluated against FIR using four human and one dog studies with multiple tracers. The proposed approach successfully detected BMs and yielded superior correction results over conventional FIR approaches.
Collapse
Affiliation(s)
- Yihuan Lu
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States of America. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Cline GW, McCarthy TJ, Carson RE, Calle RA. Clinical and scientific value in the pursuit of quantification of beta cells in the pancreas by PET imaging. Diabetologia 2018; 61:2671-2673. [PMID: 30136144 PMCID: PMC6219921 DOI: 10.1007/s00125-018-4718-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Gary W Cline
- Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520, USA.
| | | | - Richard E Carson
- Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520, USA
| | | |
Collapse
|
20
|
Wang J, Dong Y, Li H, Feng T. An image reconstruction method with a locally adaptive gating scheme for PET data. Phys Med Biol 2018; 63:165010. [PMID: 29787380 DOI: 10.1088/1361-6560/aac71b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In conventional gating approaches for positron emission tomography (PET), a single number of gates is predetermined for the whole field of view (FOV) regardless of spatially variant motion blurring effects, which compromises image quality by under-gating regions of large motion and over-gating static regions. To achieve the best resolution-noise trade-off for the whole FOV, we proposed a new approach that incorporates a spatially variant number of gates into gated image reconstruction. The first step was to estimate the motion amplitude of each spatial location. A preliminary set of gated image reconstructions was generated from the PET data. The spatially variant motion amplitudes were approximated based on the registration of 2D maximum intensity projections of the gated reconstructions as well as prior knowledge. Second, the spatially varying motion amplitudes were used to determine the optimal number of gates for each region. Finally, the adaptive gating image reconstruction algorithm that incorporates a gating transform function to model the spatially variant number of gates was applied to generate adaptively gated 4D images. Scans from large FOV systems were simulated using actual multi-bed patient data from a clinical scanner for evaluation purposes. Images reconstructed with the conventional gating scheme as well as static reconstruction were obtained for comparison with the results obtained using our new method. In areas with lower estimated motion amplitudes (such as the spine), the reconstructed images using the new approach showed reduced noise compared to images with conventional gated reconstructions and comparable quality with non-gated images. In areas with large estimated motion amplitudes, such as in the lung and liver, contrast and resolution of images using the new method and conventional gated-reconstructions were comparable, and both were higher than those of non-gated images. The results indicate that using a locally adaptive number of gates based on respiratory motion amplitude instead of a fixed number of gates can improve the statistics of gated PET images by optimizing the local noise-resolution trade-off.
Collapse
Affiliation(s)
- Jizhe Wang
- UIH America Inc., Houston TX, 77479, United States of America
| | | | | | | |
Collapse
|
21
|
Kolbitsch C, Neji R, Fenchel M, Mallia A, Marsden P, Schaeffter T. Respiratory-resolved MR-based attenuation correction for motion-compensated cardiac PET-MR. ACTA ACUST UNITED AC 2018; 63:135008. [DOI: 10.1088/1361-6560/aaca15] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Lu Y, Fontaine K, Mulnix T, Onofrey JA, Ren S, Panin V, Jones J, Casey ME, Barnett R, Kench P, Fulton R, Carson RE, Liu C. Respiratory Motion Compensation for PET/CT with Motion Information Derived from Matched Attenuation-Corrected Gated PET Data. J Nucl Med 2018; 59:1480-1486. [PMID: 29439015 DOI: 10.2967/jnumed.117.203000] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/25/2018] [Indexed: 11/16/2022] Open
Abstract
Respiratory motion degrades the detection and quantification capabilities of PET/CT imaging. Moreover, mismatch between a fast helical CT image and a time-averaged PET image due to respiratory motion results in additional attenuation correction artifacts and inaccurate localization. Current motion compensation approaches typically have 3 limitations: the mismatch among respiration-gated PET images and the CT attenuation correction (CTAC) map can introduce artifacts in the gated PET reconstructions that can subsequently affect the accuracy of the motion estimation; sinogram-based correction approaches do not correct for intragate motion due to intracycle and intercycle breathing variations; and the mismatch between the PET motion compensation reference gate and the CT image can cause an additional CT-mismatch artifact. In this study, we established a motion correction framework to address these limitations. Methods: In the proposed framework, the combined emission-transmission reconstruction algorithm was used for phase-matched gated PET reconstructions to facilitate the motion model building. An event-by-event nonrigid respiratory motion compensation method with correlations between internal organ motion and external respiratory signals was used to correct both intracycle and intercycle breathing variations. The PET reference gate was automatically determined by a newly proposed CT-matching algorithm. We applied the new framework to 13 human datasets with 3 different radiotracers and 323 lesions and compared its performance with CTAC and non-attenuation correction (NAC) approaches. Validation using 4-dimensional CT was performed for one lung cancer dataset. Results: For the 10 18F-FDG studies, the proposed method outperformed (P < 0.006) both the CTAC and the NAC methods in terms of region-of-interest-based SUVmean, SUVmax, and SUV ratio improvements over no motion correction (SUVmean: 19.9% vs. 14.0% vs. 13.2%; SUVmax: 15.5% vs. 10.8% vs. 10.6%; SUV ratio: 24.1% vs. 17.6% vs. 16.2%, for the proposed, CTAC, and NAC methods, respectively). The proposed method increased SUV ratios over no motion correction for 94.4% of lesions, compared with 84.8% and 86.4% using the CTAC and NAC methods, respectively. For the 2 18F-fluoropropyl-(+)-dihydrotetrabenazine studies, the proposed method reduced the CT-mismatch artifacts in the lower lung where the CTAC approach failed and maintained the quantification accuracy of bone marrow where the NAC approach failed. For the 18F-FMISO study, the proposed method outperformed both the CTAC and the NAC methods in terms of motion estimation accuracy at 2 lung lesion locations. Conclusion: The proposed PET/CT respiratory event-by-event motion-correction framework with motion information derived from matched attenuation-corrected PET data provides image quality superior to that of the CTAC and NAC methods for multiple tracers.
Collapse
Affiliation(s)
- Yihuan Lu
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut
| | - Kathryn Fontaine
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut
| | - Tim Mulnix
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut
| | - John A Onofrey
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut
| | - Silin Ren
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | | | - Judson Jones
- Siemens Medical Solutions, Knoxville, Tennessee; and
| | | | - Robert Barnett
- Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, Sydney, Australia
| | - Peter Kench
- Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, Sydney, Australia
| | - Roger Fulton
- Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, Sydney, Australia
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut.,Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Chi Liu
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut.,Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| |
Collapse
|
23
|
Lu Y, Fontaine K, Germino M, Mulnix T, Casey ME, Carson RE, Liu C. Investigation of Sub-Centimeter Lung Nodule Quantification for Low-Dose PET. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2018. [DOI: 10.1109/trpms.2017.2778008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|