1
|
Liu R, Wen S, Xing Y. An integrated approach for advanced vehicle classification. PLoS One 2025; 20:e0318530. [PMID: 39965022 PMCID: PMC11835343 DOI: 10.1371/journal.pone.0318530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 01/16/2025] [Indexed: 02/20/2025] Open
Abstract
This study is dedicated to addressing the trade-off between receptive field size and computational efficiency in low-level vision. Conventional neural networks (CNNs) usually expand the receptive field by adding layers or inflation filtering, which often leads to high computational costs. Although expansion filtering was introduced to reduce the computational burden, the resulting receptive field is only a sparse sampling of the tessellated pattern in the input image due to the grid effect. To better trade-off between the size of the receptive field and the computational efficiency, a new multilevel discrete wavelet CNN model (DWAN) is proposed in this paper. The DWAN introduces a four-level discrete wavelet transform in the convolutional neural network architecture and combines it with Convolutional Block Attention Module (CBAM) to efficiently capture multiscale feature information. By reducing the size of the feature maps in the shrinkage subnetwork, DWAN achieves a wider sensory field coverage while maintaining a smaller computational cost, thus improving the performance and efficiency of visual tasks. In addition, this paper validates the DWAN model in an image classification task targeting fine categories of automobiles. Significant performance gains are observed by training and testing the DWAN architecture that includes CBAM. The DWAN model can identify and accurately classify subtle features and differences in automotive images, resulting in better classification results for the automotive fine-grained category. This validation result further demonstrates the effectiveness and robustness of the DWAN model in vision tasks and lays a solid foundation for its generalization to practical applications.
Collapse
Affiliation(s)
- Rui Liu
- College of Computer Science and Cyber Security, Chengdu University of Technology, Chengdu, Sichuan, China
| | - Shiyuan Wen
- College of Computer Science and Cyber Security, Chengdu University of Technology, Chengdu, Sichuan, China
| | - Yufei Xing
- College of Computer Science and Cyber Security, Chengdu University of Technology, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Didonna A, Ramos Lopez D, Iaselli G, Amoroso N, Ferrara N, Pugliese GMI. Deep Convolutional Framelets for Dose Reconstruction in Boron Neutron Capture Therapy with Compton Camera Detector. Cancers (Basel) 2025; 17:130. [PMID: 39796757 PMCID: PMC11719915 DOI: 10.3390/cancers17010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/28/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Boron neutron capture therapy (BNCT) is an innovative binary form of radiation therapy with high selectivity towards cancer tissue based on the neutron capture reaction 10B(n,α)7Li, consisting in the exposition of patients to neutron beams after administration of a boron compound with preferential accumulation in cancer cells. The high linear energy transfer products of the ensuing reaction deposit their energy at the cell level, sparing normal tissue. Although progress in accelerator-based BNCT has led to renewed interest in this cancer treatment modality, in vivo dose monitoring during treatment still remains not feasible and several approaches are under investigation. While Compton imaging presents various advantages over other imaging methods, it typically requires long reconstruction times, comparable with BNCT treatment duration. METHODS This study aims to develop deep neural network models to estimate the dose distribution by using a simulated dataset of BNCT Compton camera images. The models pursue the avoidance of the iteration time associated with the maximum-likelihood expectation-maximization algorithm (MLEM), enabling a prompt dose reconstruction during the treatment. The U-Net architecture and two variants based on the deep convolutional framelets framework have been used for noise and artifact reduction in few-iteration reconstructed images. RESULTS This approach has led to promising results in terms of reconstruction accuracy and processing time, with a reduction by a factor of about 6 with respect to classical iterative algorithms. CONCLUSIONS This can be considered a good reconstruction time performance, considering typical BNCT treatment times. Further enhancements may be achieved by optimizing the reconstruction of input images with different deep learning techniques.
Collapse
Affiliation(s)
- Angelo Didonna
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125 Bari, Italy (N.F.)
- Scuola di Specializzazione in Fisica Medica, Università degli Studi di Milano, 20133 Milan, Italy
| | - Dayron Ramos Lopez
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125 Bari, Italy (N.F.)
- Dipartimento Interateneo di Fisica, Politecnico di Bari, 70125 Bari, Italy
| | - Giuseppe Iaselli
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125 Bari, Italy (N.F.)
- Dipartimento Interateneo di Fisica, Politecnico di Bari, 70125 Bari, Italy
| | - Nicola Amoroso
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125 Bari, Italy (N.F.)
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
| | - Nicola Ferrara
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125 Bari, Italy (N.F.)
- Dipartimento Interateneo di Fisica, Politecnico di Bari, 70125 Bari, Italy
| | - Gabriella Maria Incoronata Pugliese
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125 Bari, Italy (N.F.)
- Dipartimento Interateneo di Fisica, Politecnico di Bari, 70125 Bari, Italy
| |
Collapse
|
3
|
Wang S, Yang Y, Stevens GM, Yin Z, Wang AS. Emulating Low-Dose PCCT Image Pairs With Independent Noise for Self-Supervised Spectral Image Denoising. IEEE TRANSACTIONS ON MEDICAL IMAGING 2025; 44:530-542. [PMID: 39196747 DOI: 10.1109/tmi.2024.3449817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Photon counting CT (PCCT) acquires spectral measurements and enables generation of material decomposition (MD) images that provide distinct advantages in various clinical situations. However, noise amplification is observed in MD images, and denoising is typically applied. Clean or high-quality references are rare in clinical scans, often making supervised learning (Noise2Clean) impractical. Noise2Noise is a self-supervised counterpart, using noisy images and corresponding noisy references with zero-mean, independent noise. PCCT counts transmitted photons separately, and raw measurements are assumed to follow a Poisson distribution in each energy bin, providing the possibility to create noise-independent pairs. The approach is to use binomial selection to split the counts into two low-dose scans with independent noise. We prove that the reconstructed spectral images inherit the noise independence from counts domain through noise propagation analysis and also validated it in numerical simulation and experimental phantom scans. The method offers the flexibility to split measurements into desired dose levels while ensuring the reconstructed images share identical underlying features, thereby strengthening the model's robustness for input dose levels and capability of preserving fine details. In both numerical simulation and experimental phantom scans, we demonstrated that Noise2Noise with binomial selection outperforms other common self-supervised learning methods based on different presumptive conditions.
Collapse
|
4
|
Song Z, Xue L, Xu J, Zhang B, Jin C, Yang J, Zou C. Real-World Low-Dose CT Image Denoising by Patch Similarity Purification. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2024; PP:196-208. [PMID: 40030715 DOI: 10.1109/tip.2024.3515878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Reducing the radiation dose in CT scanning is important to alleviate the damage to the human health in clinical scenes. A promising way is to replace the normal-dose CT (NDCT) imaging by low-dose CT (LDCT) imaging with lower tube voltage and tube current. This often brings severe noise to the LDCT images, which adversely affects the diagnosis accuracy. Most of existing LDCT image denoising networks are trained either with synthetic LDCT images or real-world LDCT and NDCT image pairs with huge spatial misalignment. However, the synthetic noise is very different from the complex noise in real-world LDCT images, while the huge spatial misalignment brings inaccurate predictions of tissue structures in the denoised LDCT images. To well utilize real-world LDCT and NDCT image pairs for LDCT image denoising, in this paper, we introduce a new Patch Similarity Purification (PSP) strategy to construct high-quality training dataset for network training. Specifically, our PSP strategy first perform binarization for each pair of image patches cropped from the corresponding LDCT and NDCT image pairs. For each pair of binary masks, it then computes their similarity ratio by common mask calculation, and the patch pair can be selected as a training sample if their mask similarity ratio is higher than a threshold. By using our PSP strategy, each training set of our Rabbit and Patient datasets contain hundreds of thousands of real-world LDCT and NDCT image patch pairs with negligible misalignment. Extensive experiments demonstrate the usefulness of our PSP strategy on purifying the training data and the effectiveness of training LDCT image denoising networks on our datasets. The code and dataset are provided at https://github.com/TuTusong/PSP.
Collapse
|
5
|
Montgomery ME, Andersen FL, Mathiasen R, Borgwardt L, Andersen KF, Ladefoged CN. CT-Free Attenuation Correction in Paediatric Long Axial Field-of-View Positron Emission Tomography Using Synthetic CT from Emission Data. Diagnostics (Basel) 2024; 14:2788. [PMID: 39767149 PMCID: PMC11727418 DOI: 10.3390/diagnostics14242788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Background/Objectives: Paediatric PET/CT imaging is crucial in oncology but poses significant radiation risks due to children's higher radiosensitivity and longer post-exposure life expectancy. This study aims to minimize radiation exposure by generating synthetic CT (sCT) images from emission PET data, eliminating the need for attenuation correction (AC) CT scans in paediatric patients. Methods: We utilized a cohort of 128 paediatric patients, resulting in 195 paired PET and CT images. Data were acquired using Siemens Biograph Vision 600 and Long Axial Field-of-View (LAFOV) Siemens Vision Quadra PET/CT scanners. A 3D parameter transferred conditional GAN (PT-cGAN) architecture, pre-trained on adult data, was adapted and trained on the paediatric cohort. The model's performance was evaluated qualitatively by a nuclear medicine specialist and quantitatively by comparing sCT-derived PET (sPET) with standard PET images. Results: The model demonstrated high qualitative and quantitative performance. Visual inspection showed no significant (19/23) or minor clinically insignificant (4/23) differences in image quality between PET and sPET. Quantitative analysis revealed a mean SUV relative difference of -2.6 ± 5.8% across organs, with a high agreement in lesion overlap (Dice coefficient of 0.92 ± 0.08). The model also performed robustly in low-count settings, maintaining performance with reduced acquisition times. Conclusions: The proposed method effectively reduces radiation exposure in paediatric PET/CT imaging by eliminating the need for AC CT scans. It maintains high diagnostic accuracy and minimises motion-induced artifacts, making it a valuable alternative for clinical application. Further testing in clinical settings is warranted to confirm these findings and enhance patient safety.
Collapse
Affiliation(s)
- Maria Elkjær Montgomery
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark; (M.E.M.); (F.L.A.); (L.B.); (K.F.A.)
| | - Flemming Littrup Andersen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark; (M.E.M.); (F.L.A.); (L.B.); (K.F.A.)
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - René Mathiasen
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark;
- Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Lise Borgwardt
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark; (M.E.M.); (F.L.A.); (L.B.); (K.F.A.)
| | - Kim Francis Andersen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark; (M.E.M.); (F.L.A.); (L.B.); (K.F.A.)
| | - Claes Nøhr Ladefoged
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark; (M.E.M.); (F.L.A.); (L.B.); (K.F.A.)
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
6
|
Jang Y, Jung J, Hong Y, Lee J, Jeong H, Shim H, Chang HJ. Fully Convolutional Hybrid Fusion Network With Heterogeneous Representations for Identification of S1 and S2 From Phonocardiogram. IEEE J Biomed Health Inform 2024; 28:7151-7163. [PMID: 39028592 DOI: 10.1109/jbhi.2024.3431028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Heart auscultation is a simple and inexpensive first-line diagnostic test for the early screening of heart abnormalities. A phonocardiogram (PCG) is a digital recording of an analog heart sound acquired using an electronic stethoscope. A computerized algorithm for PCG analysis can aid in detecting abnormal signal patterns and support the clinical use of auscultation. It is important to detect fundamental components, such as the first and second heart sounds (S1 and S2), to accurately diagnose heart abnormalities. In this study, we developed a fully convolutional hybrid fusion network to identify S1 and S2 locations in PCG. It enables timewise, high-level feature fusion from dimensionally heterogeneous features: 1D envelope and 2D spectral features. For the fusion of heterogeneous features, we proposed a novel convolutional multimodal factorized bilinear pooling approach that enables high-level fusion without temporal distortion. We experimentally demonstrated the benefits of the comprehensive interpretation of heterogeneous features, with the proposed method outperforming other state-of-the-art PCG segmentation methods. To the best of our knowledge, this is the first study to interpret heterogeneous features through a high level of feature fusion in PCG analysis.
Collapse
|
7
|
Csikos C, Barna S, Kovács Á, Czina P, Budai Á, Szoliková M, Nagy IG, Husztik B, Kiszler G, Garai I. AI-Based Noise-Reduction Filter for Whole-Body Planar Bone Scintigraphy Reliably Improves Low-Count Images. Diagnostics (Basel) 2024; 14:2686. [PMID: 39682594 DOI: 10.3390/diagnostics14232686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Background/Objectives: Artificial intelligence (AI) is a promising tool for the enhancement of physician workflow and serves to further improve the efficiency of their diagnostic evaluations. This study aimed to assess the performance of an AI-based bone scan noise-reduction filter on noisy, low-count images in a routine clinical environment. Methods: The performance of the AI bone-scan filter (BS-AI filter) in question was retrospectively evaluated on 47 different patients' 99mTc-MDP bone scintigraphy image pairs (anterior- and posterior-view images), which were obtained in such a manner as to represent the diverse characteristics of the general patient population. The BS-AI filter was tested on artificially degraded noisy images-75, 50, and 25% of total counts-which were generated by binominal sampling. The AI-filtered and unfiltered images were concurrently appraised for image quality and contrast by three nuclear medicine physicians. It was also determined whether there was any difference between the lesions seen on the unfiltered and filtered images. For quantitative analysis, an automatic lesion detector (BS-AI annotator) was utilized as a segmentation algorithm. The total number of lesions and their locations as detected by the BS-AI annotator in the BS-AI-filtered low-count images was compared to the total-count filtered images. The total number of pixels labeled as lesions in the filtered low-count images in relation to the number of pixels in the total-count filtered images was also compared to ensure the filtering process did not change lesion sizes significantly. The comparison of pixel numbers was performed using the reduced-count filtered images that contained only those lesions that were detected in the total-count images. Results: Based on visual assessment, observers agreed that image contrast and quality were better in the BS-AI-filtered images, increasing their diagnostic confidence. Similarities in lesion numbers and sites detected by the BS-AI annotator compared to filtered total-count images were 89%, 83%, and 75% for images degraded to counts of 75%, 50%, and 25%, respectively. No significant difference was found in the number of annotated pixels between filtered images with different counts (p > 0.05). Conclusions: Our findings indicate that the BS-AI noise-reduction filter enhances image quality and contrast without loss of vital information. The implementation of this filter in routine diagnostic procedures reliably improves diagnostic confidence in low-count images and elicits a reduction in the administered dose or acquisition time by a minimum of 50% relative to the original dose or acquisition time.
Collapse
Affiliation(s)
- Csaba Csikos
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Gyula Petrányi Doctoral School of Clinical Immunology and Allergology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Sándor Barna
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Scanomed Ltd., H-4032 Debrecen, Hungary
| | | | - Péter Czina
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | | | | | - Iván Gábor Nagy
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | | | | | - Ildikó Garai
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Gyula Petrányi Doctoral School of Clinical Immunology and Allergology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Scanomed Ltd., H-4032 Debrecen, Hungary
| |
Collapse
|
8
|
Ma X, Zhang Q, He L, Liu X, Xiao Y, Hu J, Cai S, Cai H, Yu B. Artificial intelligence application in the diagnosis and treatment of bladder cancer: advance, challenges, and opportunities. Front Oncol 2024; 14:1487676. [PMID: 39575423 PMCID: PMC11578829 DOI: 10.3389/fonc.2024.1487676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/16/2024] [Indexed: 11/24/2024] Open
Abstract
Bladder cancer (BC) is a serious and common malignant tumor of the urinary system. Accurate and convenient diagnosis and treatment of BC is a major challenge for the medical community. Due to the limited medical resources, the existing diagnosis and treatment protocols for BC without the assistance of artificial intelligence (AI) still have certain shortcomings. In recent years, with the development of AI technologies such as deep learning and machine learning, the maturity of AI has made it more and more applied to the medical field, including improving the speed and accuracy of BC diagnosis and providing more powerful treatment options and recommendations related to prognosis. Advances in medical imaging technology and molecular-level research have also contributed to the further development of such AI applications. However, due to differences in the sources of training information and algorithm design issues, there is still room for improvement in terms of accuracy and transparency for the broader use of AI in clinical practice. With the popularization of digitization of clinical information and the proposal of new algorithms, artificial intelligence is expected to learn more effectively and analyze similar cases more accurately and reliably, promoting the development of precision medicine, reducing resource consumption, and speeding up diagnosis and treatment. This review focuses on the application of artificial intelligence in the diagnosis and treatment of BC, points out some of the challenges it faces, and looks forward to its future development.
Collapse
Affiliation(s)
- Xiaoyu Ma
- Department of Urology, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Qiuchen Zhang
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lvqi He
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinyang Liu
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yang Xiao
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jingwen Hu
- School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Shengjie Cai
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Hongzhou Cai
- Department of Urology, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Bin Yu
- Department of Urology, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| |
Collapse
|
9
|
Kim W, Jeon SY, Byun G, Yoo H, Choi JH. A systematic review of deep learning-based denoising for low-dose computed tomography from a perceptual quality perspective. Biomed Eng Lett 2024; 14:1153-1173. [PMID: 39465112 PMCID: PMC11502640 DOI: 10.1007/s13534-024-00419-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/03/2024] [Accepted: 08/18/2024] [Indexed: 10/29/2024] Open
Abstract
Low-dose computed tomography (LDCT) scans are essential in reducing radiation exposure but often suffer from significant image noise that can impair diagnostic accuracy. While deep learning approaches have enhanced LDCT denoising capabilities, the predominant reliance on objective metrics like PSNR and SSIM has resulted in over-smoothed images that lack critical detail. This paper explores advanced deep learning methods tailored specifically to improve perceptual quality in LDCT images, focusing on generating diagnostic-quality images preferred in clinical practice. We review and compare current methodologies, including perceptual loss functions and generative adversarial networks, addressing the significant limitations of current benchmarks and the subjective nature of perceptual quality evaluation. Through a systematic analysis, this study underscores the urgent need for developing methods that balance both perceptual and diagnostic quality, proposing new directions for future research in the field.
Collapse
Affiliation(s)
- Wonjin Kim
- Department of Mechanical Engineering, Korean Advanced Institute of Science and Technology, 291, Daehak-ro, Yuseong-gu, Daejeon, 34141 Korea
- AI Analysis Team, Dotter Inc., 225 Gasan Digital 1-ro, Geumchoen-gu, Seoul, 08501 Korea
| | - Sun-Young Jeon
- Department of Artificial Intelligence and Software, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760 Korea
| | - Gyuri Byun
- Department of Artificial Intelligence and Software, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760 Korea
| | - Hongki Yoo
- Department of Mechanical Engineering, Korean Advanced Institute of Science and Technology, 291, Daehak-ro, Yuseong-gu, Daejeon, 34141 Korea
| | - Jang-Hwan Choi
- Department of Artificial Intelligence and Software, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760 Korea
- Computational Medicine, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760 Korea
| |
Collapse
|
10
|
Lu Y, Xu Z, Hyung Choi M, Kim J, Jung SW. Cross-Domain Denoising for Low-Dose Multi-Frame Spiral Computed Tomography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:3949-3963. [PMID: 38787677 DOI: 10.1109/tmi.2024.3405024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Computed tomography (CT) has been used worldwide as a non-invasive test to assist in diagnosis. However, the ionizing nature of X-ray exposure raises concerns about potential health risks such as cancer. The desire for lower radiation doses has driven researchers to improve reconstruction quality. Although previous studies on low-dose computed tomography (LDCT) denoising have demonstrated the effectiveness of learning-based methods, most were developed on the simulated data. However, the real-world scenario differs significantly from the simulation domain, especially when using the multi-slice spiral scanner geometry. This paper proposes a two-stage method for the commercially available multi-slice spiral CT scanners that better exploits the complete reconstruction pipeline for LDCT denoising across different domains. Our approach makes good use of the high redundancy of multi-slice projections and the volumetric reconstructions while leveraging the over-smoothing issue in conventional cascaded frameworks caused by aggressive denoising. The dedicated design also provides a more explicit interpretation of the data flow. Extensive experiments on various datasets showed that the proposed method could remove up to 70% of noise without compromised spatial resolution, while subjective evaluations by two experienced radiologists further supported its superior performance against state-of-the-art methods in clinical practice. Code is available at https://github.com/YCL92/TMD-LDCT.
Collapse
|
11
|
Tunissen SAM, Moriakov N, Mikerov M, Smit EJ, Sechopoulos I, Teuwen J. Deep learning-based low-dose CT simulator for non-linear reconstruction methods. Med Phys 2024; 51:6046-6060. [PMID: 38843540 DOI: 10.1002/mp.17232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 04/17/2024] [Accepted: 05/16/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Computer algorithms that simulate lower-doses computed tomography (CT) images from clinical-dose images are widely available. However, most operate in the projection domain and assume access to the reconstruction method. Access to commercial reconstruction methods may often not be available in medical research, making image-domain noise simulation methods useful. However, the introduction of non-linear reconstruction methods, such as iterative and deep learning-based reconstruction, makes noise insertion in the image domain intractable, as it is not possible to determine the noise textures analytically. PURPOSE To develop a deep learning-based image-domain method to generate low-dose CT images from clinical-dose CT (CDCT) images for non-linear reconstruction methods. METHODS We propose a fully image domain-based method, utilizing a series of three convolutional neural networks (CNNs), which, respectively, denoise CDCT images, predict the standard deviation map of the low-dose image, and generate the noise power spectra (NPS) of local patches throughout the low-dose image. All three models have U-net-based architectures and are partly or fully three-dimensional. As a use case for this study and with no loss of generality, we use paired low-dose and clinical-dose brain CT scans. A dataset of326 $\hskip.001pt 326$ paired scans was retrospectively obtained. All images were acquired with a wide-area detector clinical system and reconstructed using its standard clinical iterative algorithm. Each pair was registered using rigid registration to correct for motion between acquisitions. The data was randomly partitioned into training (251 $\hskip.001pt 251$ samples), validation (25 $\hskip.001pt 25$ samples), and test (50 $\hskip.001pt 50$ samples) sets. The performance of each of these three CNNs was validated separately. For the denoising CNN, the local standard deviation decrease, and bias were determined. For the standard deviation map CNN, the real and estimated standard deviations were compared locally. Finally, for the NPS CNN, the NPS of the synthetic and real low-dose noise were compared inside and outside the skull. Two proof-of-concept denoising studies were performed to determine if the performance of a CNN- or a gradient-based denoising filter on the synthetic low-dose data versus real data differed. RESULTS The denoising network had a median decrease in noise in the cerebrospinal fluid by a factor of1.71 $1.71$ and introduced a median bias of+ 0.7 $ + 0.7$ HU. The network for standard deviation map estimation had a median error of+ 0.1 $ + 0.1$ HU. The noise power spectrum estimation network was able to capture the anisotropic and shift-variant nature of the noise structure by showing good agreement between the synthetic and real low-dose noise and their corresponding power spectra. The two proof of concept denoising studies showed only minimal difference in standard deviation improvement ratio between the synthetic and real low-dose CT images with the median difference between the two being 0.0 and +0.05 for the CNN- and gradient-based filter, respectively. CONCLUSION The proposed method demonstrated good performance in generating synthetic low-dose brain CT scans without access to the projection data or to the reconstruction method. This method can generate multiple low-dose image realizations from one clinical-dose image, so it is useful for validation, optimization, and repeatability studies of image-processing algorithms.
Collapse
Affiliation(s)
| | - Nikita Moriakov
- Department of Medical Imaging, Radboudumc, Nijmegen, The Netherlands
- AI for Oncology Lab, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Mikhail Mikerov
- Department of Medical Imaging, Radboudumc, Nijmegen, The Netherlands
| | - Ewoud J Smit
- Department of Medical Imaging, Radboudumc, Nijmegen, The Netherlands
| | - Ioannis Sechopoulos
- Department of Medical Imaging, Radboudumc, Nijmegen, The Netherlands
- Dutch Expert Centre for Screening (LRCB), Nijmegen, The Netherlands
- Technical Medicine Centre, University of Twente, Enschede, The Netherlands
| | - Jonas Teuwen
- Department of Medical Imaging, Radboudumc, Nijmegen, The Netherlands
- AI for Oncology Lab, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Depatment of Radiology, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
12
|
Cam RM, Villa U, Anastasio MA. Learning a stable approximation of an existing but unknown inverse mapping: application to the half-time circular Radon transform. INVERSE PROBLEMS 2024; 40:085002. [PMID: 38933410 PMCID: PMC11197394 DOI: 10.1088/1361-6420/ad4f0a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/05/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024]
Abstract
Supervised deep learning-based methods have inspired a new wave of image reconstruction methods that implicitly learn effective regularization strategies from a set of training data. While they hold potential for improving image quality, they have also raised concerns regarding their robustness. Instabilities can manifest when learned methods are applied to find approximate solutions to ill-posed image reconstruction problems for which a unique and stable inverse mapping does not exist, which is a typical use case. In this study, we investigate the performance of supervised deep learning-based image reconstruction in an alternate use case in which a stable inverse mapping is known to exist but is not yet analytically available in closed form. For such problems, a deep learning-based method can learn a stable approximation of the unknown inverse mapping that generalizes well to data that differ significantly from the training set. The learned approximation of the inverse mapping eliminates the need to employ an implicit (optimization-based) reconstruction method and can potentially yield insights into the unknown analytic inverse formula. The specific problem addressed is image reconstruction from a particular case of radially truncated circular Radon transform (CRT) data, referred to as 'half-time' measurement data. For the half-time image reconstruction problem, we develop and investigate a learned filtered backprojection method that employs a convolutional neural network to approximate the unknown filtering operation. We demonstrate that this method behaves stably and readily generalizes to data that differ significantly from training data. The developed method may find application to wave-based imaging modalities that include photoacoustic computed tomography.
Collapse
Affiliation(s)
- Refik Mert Cam
- Department of Electrical and Computer Engineering, University of Illinois Urbana–Champaign, Urbana, IL 61801, United States of America
| | - Umberto Villa
- Oden Institute for Computational Engineering & Sciences, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Mark A Anastasio
- Department of Electrical and Computer Engineering, University of Illinois Urbana–Champaign, Urbana, IL 61801, United States of America
- Department of Bioengineering, University of Illinois Urbana–Champaign, Urbana, IL 61801, United States of America
| |
Collapse
|
13
|
Zhou Z, Gong H, Hsieh S, McCollough CH, Yu L. Image quality evaluation in deep-learning-based CT noise reduction using virtual imaging trial methods: Contrast-dependent spatial resolution. Med Phys 2024; 51:5399-5413. [PMID: 38555876 PMCID: PMC11321944 DOI: 10.1002/mp.17029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Deep-learning-based image reconstruction and noise reduction methods (DLIR) have been increasingly deployed in clinical CT. Accurate image quality assessment of these methods is challenging as the performance measured using physical phantoms may not represent the true performance of DLIR in patients since DLIR is trained mostly on patient images. PURPOSE In this work, we aim to develop a patient-data-based virtual imaging trial framework and, as a first application, use it to measure the spatial resolution properties of a DLIR method. METHODS The patient-data-based virtual imaging trial framework consists of five steps: (1) insertion of lesions into projection domain data using the acquisition geometry of the patient exam to simulate different lesion characteristics; (2) insertion of noise into projection domain data using a realistic photon statistical model of the CT system to simulate different dose levels; (3) creation of DLIR-processed images from projection or image data; (4) creation of ensembles of DLIR-processed patient images from a large number of noise and lesion realizations; and (5) evaluation of image quality using ensemble DLIR images. This framework was applied to measure the spatial resolution of a ResNet based deep convolutional neural network (DCNN) trained on patient images. Lesions in a cylindrical shape and different contrast levels (-500, -100, -50, -20, -10 HU) were inserted to the lower right lobe of the liver in a patient case. Multiple dose levels were simulated (50%, 25%, 12.5%). Each lesion and dose condition had 600 noise realizations. Multiple reconstruction and denoising methods were used on all the noise realizations, including the original filtered-backprojection (FBP), iterative reconstruction (IR), and the DCNN method with three different strength setting (DCNN-weak, DCNN-medium, and DCNN-strong). Mean lesion signal was calculated by performing ensemble averaging of all the noise realizations for each lesion and dose condition and then subtracting the lesion-present images from the lesion absent images. Modulation transfer functions (MTFs) both in-plane and along the z-axis were calculated based on the mean lesion signals. The standard deviations of MTFs at each condition were estimated with bootstrapping: randomly sampling (with replacement) all the DLIR/FBP/IR images from the ensemble data (600 samples) at each condition. The impact of varying lesion contrast, dose levels, and denoising strengths were evaluated. Statistical analysis with paired t-test was used to compare the z-axis and in-plane spatial resolution of five algorithms for five different contrasts and three dose levels. RESULTS The in-plane and z-axis spatial resolution degradation of DCNN becomes more severe as the contrast or radiation dose decreased, or DCNN denoising strength increased. In comparison with FBP, a 59.5% and 4.1% reduction of in-plane and z-axis MTF (in terms of spatial frequencies at 50% MTF), respectively, was observed at low contrast (-10 HU) for DCNN with the highest denoising strength at 25% routine dose level. When the dose level reduces from 50% to 12.5% of routine dose, the in-plane and z-axis MTFs reduces from 92.1% to 76.3%, and from 98.9% to 95.5%, respectively, at contrast of -100 HU, using FBP as the reference. For most conditions of contrasts and dose levels, significant differences were found among the five algorithms, with the following relationship in both in-plane and cross-plane spatial resolution: FBP > DCNN-Weak > IR > DCNN-Medium > DCNN-Strong. The spatial resolution difference among algorithms decreases at higher contrast or dose levels. CONCLUSIONS A patient-data-based virtual imaging trial framework was developed and applied to measuring the spatial resolution properties of a DCNN noise reduction method at different contrast and dose levels using real patient data. As with other non-linear image reconstruction and post-processing techniques, the evaluated DCNN method degraded the in-plane and z-axis spatial resolution at lower contrast levels, lower radiation dose, and higher denoising strength.
Collapse
Affiliation(s)
| | - Hao Gong
- Department of Radiology, Mayo Clinic, Rochester, MN, US
| | - Scott Hsieh
- Department of Radiology, Mayo Clinic, Rochester, MN, US
| | | | - Lifeng Yu
- Department of Radiology, Mayo Clinic, Rochester, MN, US
| |
Collapse
|
14
|
Yao L, Wang J, Wu Z, Du Q, Yang X, Li M, Zheng J. Parallel processing model for low-dose computed tomography image denoising. Vis Comput Ind Biomed Art 2024; 7:14. [PMID: 38865022 PMCID: PMC11169366 DOI: 10.1186/s42492-024-00165-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/20/2024] [Indexed: 06/13/2024] Open
Abstract
Low-dose computed tomography (LDCT) has gained increasing attention owing to its crucial role in reducing radiation exposure in patients. However, LDCT-reconstructed images often suffer from significant noise and artifacts, negatively impacting the radiologists' ability to accurately diagnose. To address this issue, many studies have focused on denoising LDCT images using deep learning (DL) methods. However, these DL-based denoising methods have been hindered by the highly variable feature distribution of LDCT data from different imaging sources, which adversely affects the performance of current denoising models. In this study, we propose a parallel processing model, the multi-encoder deep feature transformation network (MDFTN), which is designed to enhance the performance of LDCT imaging for multisource data. Unlike traditional network structures, which rely on continual learning to process multitask data, the approach can simultaneously handle LDCT images within a unified framework from various imaging sources. The proposed MDFTN consists of multiple encoders and decoders along with a deep feature transformation module (DFTM). During forward propagation in network training, each encoder extracts diverse features from its respective data source in parallel and the DFTM compresses these features into a shared feature space. Subsequently, each decoder performs an inverse operation for multisource loss estimation. Through collaborative training, the proposed MDFTN leverages the complementary advantages of multisource data distribution to enhance its adaptability and generalization. Numerous experiments were conducted on two public datasets and one local dataset, which demonstrated that the proposed network model can simultaneously process multisource data while effectively suppressing noise and preserving fine structures. The source code is available at https://github.com/123456789ey/MDFTN .
Collapse
Affiliation(s)
- Libing Yao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Jiping Wang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Zhongyi Wu
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China.
| | - Qiang Du
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Xiaodong Yang
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Ming Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China.
| | - Jian Zheng
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| |
Collapse
|
15
|
Meng M, Wang Y, Zhu M, Tao X, Mao Z, Liao J, Bian Z, Zeng D, Ma J. DDT-Net: Dose-Agnostic Dual-Task Transfer Network for Simultaneous Low-Dose CT Denoising and Simulation. IEEE J Biomed Health Inform 2024; 28:3613-3625. [PMID: 38478459 DOI: 10.1109/jbhi.2024.3376628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Deep learning (DL) algorithms have achieved unprecedented success in low-dose CT (LDCT) imaging and are expected to be a new generation of CT reconstruction technology. However, most DL-based denoising models often lack the ability to generalize to unseen dose data. Moreover, most simulation tools for LDCT typically operate on proprietary projection data, which is generally not accessible without an established collaboration with CT manufacturers. To alleviate these issues, in this work, we propose a dose-agnostic dual-task transfer network, termed DDT-Net, for simultaneous LDCT denoising and simulation. Concretely, the dual-task learning module is constructed to integrate the LDCT denoising and simulation tasks into a unified optimization framework by learning the joint distribution of LDCT and NDCT data. We approximate the joint distribution of continuous dose level data by training DDT-Net with discrete dose data, which can be generalized to denoising and simulation of unseen dose data. In particular, the mixed-dose training strategy adopted by DDT-Net can promote the denoising performance of lower-dose data. The paired dataset simulated by DDT-Net can be used for data augmentation to further restore the tissue texture of LDCT images. Experimental results on synthetic data and clinical data show that the proposed DDT-Net outperforms competing methods in terms of denoising and generalization performance at unseen dose data, and it also provides a simulation tool that can quickly simulate realistic LDCT images at arbitrary dose levels.
Collapse
|
16
|
Sun P, Yang J, Tian X, Yuan G. Image fusion-based low-dose CBCT enhancement method for visualizing miniscrew insertion in the infrazygomatic crest. BMC Med Imaging 2024; 24:114. [PMID: 38760689 PMCID: PMC11100247 DOI: 10.1186/s12880-024-01289-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/03/2024] [Indexed: 05/19/2024] Open
Abstract
Digital dental technology covers oral cone-beam computed tomography (CBCT) image processing and low-dose CBCT dental applications. A low-dose CBCT image enhancement method based on image fusion is proposed to address the need for subzygomatic small screw insertion. Specifically, firstly, a sharpening correction module is proposed, where the CBCT image is sharpened to compensate for the loss of details in the underexposed/over-exposed region. Secondly, a visibility restoration module based on type II fuzzy sets is designed, and a contrast enhancement module using curve transformation is designed. In addition to this, we propose a perceptual fusion module that fuses visibility and contrast of oral CBCT images. As a result, the problems of overexposure/underexposure, low visibility, and low contrast that occur in oral CBCT images can be effectively addressed with consistent interpretability. The proposed algorithm was analyzed in comparison experiments with a variety of algorithms, as well as ablation experiments. After analysis, compared with advanced enhancement algorithms, this algorithm achieved excellent results in low-dose CBCT enhancement and effective observation of subzygomatic small screw implantation. Compared with the best performing method, the evaluation metric is 0.07-2 higher on both datasets. The project can be found at: https://github.com/sunpeipei2024/low-dose-CBCT .
Collapse
Affiliation(s)
- Peipei Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jinghui Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xue Tian
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Guohua Yuan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
| |
Collapse
|
17
|
Li X, Jing K, Yang Y, Wang Y, Ma J, Zheng H, Xu Z. Noise-Generating and Imaging Mechanism Inspired Implicit Regularization Learning Network for Low Dose CT Reconstrution. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:1677-1689. [PMID: 38145543 DOI: 10.1109/tmi.2023.3347258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Low-dose computed tomography (LDCT) helps to reduce radiation risks in CT scanning while maintaining image quality, which involves a consistent pursuit of lower incident rays and higher reconstruction performance. Although deep learning approaches have achieved encouraging success in LDCT reconstruction, most of them treat the task as a general inverse problem in either the image domain or the dual (sinogram and image) domains. Such frameworks have not considered the original noise generation of the projection data and suffer from limited performance improvement for the LDCT task. In this paper, we propose a novel reconstruction model based on noise-generating and imaging mechanism in full-domain, which fully considers the statistical properties of intrinsic noises in LDCT and prior information in sinogram and image domains. To solve the model, we propose an optimization algorithm based on the proximal gradient technique. Specifically, we derive the approximate solutions of the integer programming problem on the projection data theoretically. Instead of hand-crafting the sinogram and image regularizers, we propose to unroll the optimization algorithm to be a deep network. The network implicitly learns the proximal operators of sinogram and image regularizers with two deep neural networks, providing a more interpretable and effective reconstruction procedure. Numerical results demonstrate our proposed method improvements of > 2.9 dB in peak signal to noise ratio, > 1.4% promotion in structural similarity metric, and > 9 HU decrements in root mean square error over current state-of-the-art LDCT methods.
Collapse
|
18
|
Sherwani MK, Gopalakrishnan S. A systematic literature review: deep learning techniques for synthetic medical image generation and their applications in radiotherapy. FRONTIERS IN RADIOLOGY 2024; 4:1385742. [PMID: 38601888 PMCID: PMC11004271 DOI: 10.3389/fradi.2024.1385742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/11/2024] [Indexed: 04/12/2024]
Abstract
The aim of this systematic review is to determine whether Deep Learning (DL) algorithms can provide a clinically feasible alternative to classic algorithms for synthetic Computer Tomography (sCT). The following categories are presented in this study: ∙ MR-based treatment planning and synthetic CT generation techniques. ∙ Generation of synthetic CT images based on Cone Beam CT images. ∙ Low-dose CT to High-dose CT generation. ∙ Attenuation correction for PET images. To perform appropriate database searches, we reviewed journal articles published between January 2018 and June 2023. Current methodology, study strategies, and results with relevant clinical applications were analyzed as we outlined the state-of-the-art of deep learning based approaches to inter-modality and intra-modality image synthesis. This was accomplished by contrasting the provided methodologies with traditional research approaches. The key contributions of each category were highlighted, specific challenges were identified, and accomplishments were summarized. As a final step, the statistics of all the cited works from various aspects were analyzed, which revealed that DL-based sCTs have achieved considerable popularity, while also showing the potential of this technology. In order to assess the clinical readiness of the presented methods, we examined the current status of DL-based sCT generation.
Collapse
Affiliation(s)
- Moiz Khan Sherwani
- Section for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
19
|
Tunissen SAM, Oostveen LJ, Moriakov N, Teuwen J, Michielsen K, Smit EJ, Sechopoulos I. Development, validation, and simplification of a scanner-specific CT simulator. Med Phys 2024; 51:2081-2095. [PMID: 37656009 PMCID: PMC10904672 DOI: 10.1002/mp.16679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Simulated computed tomography (CT) images allow for knowledge of the underlying ground truth and for easy variation of imaging conditions, making them ideal for testing and optimization of new applications or algorithms. However, simulating all processes that affect CT images can result in simulations that are demanding in terms of processing time and computer memory. Therefore, it is of interest to determine how much the simulation can be simplified while still achieving realistic results. PURPOSE To develop a scanner-specific CT simulation using physics-based simulations for the position-dependent effects and shift-invariant image corruption methods for the detector effects. And to investigate the impact on image realism of introducing simplifications in the simulation process that lead to faster and less memory-demanding simulations. METHODS To make the simulator realistic and scanner-specific, the spatial resolution and noise characteristics, and the exposure-to-detector output relationship of a clinical CT system were determined. The simulator includes a finite focal spot size, raytracing of the digital phantom, gantry rotation during projection acquisition, and finite detector element size. Previously published spectral models were used to model the spectrum for the given tube voltage. The integrated energy at each element of the detector was calculated using the Beer-Lambert law. The resulting angular projections were subsequently corrupted by the detector modulation transfer function (MTF), and by addition of noise according to the noise power spectrum (NPS) and signal mean-variance relationship, which were measured for different scanner settings. The simulated sinograms were reconstructed on the clinical CT system and compared to real CT images in terms of CT numbers, noise magnitude using the standard deviation, noise frequency content using the NPS, and spatial resolution using the MTF throughout the field of view (FOV). The CT numbers were validated using a multi-energy CT phantom, the noise magnitude and frequency were validated with a water phantom, and the spatial resolution was validated with a tungsten wire. These metrics were compared at multiple scanner settings, and locations in the FOV. Once validated, the simulation was simplified by reducing the level of subsampling of the focal spot area, rotation and of detector pixel size, and the changes in MTFs were analyzed. RESULTS The average relative errors for spatial resolution within and across image slices, noise magnitude, and noise frequency content within and across slices were 3.4%, 3.3%, 4.9%, 3.9%, and 6.2%, respectively. The average absolute difference in CT numbers was 10.2 HU and the maximum was 22.5 HU. The simulation simplification showed that all subsampling can be avoided, except for angular, while the error in frequency at 10% MTF would be maximum 16.3%. CONCLUSION The simulation of a scanner-specific CT allows for the generation of realistic CT images by combining physics-based simulations for the position-dependent effects and image-corruption methods for the shift-invariant ones. Together with the available ground truth of the digital phantom, it results in a useful tool to perform quantitative analysis of reconstruction or post-processing algorithms. Some simulation simplifications allow for reduced time and computer power requirements with minimal loss of realism.
Collapse
Affiliation(s)
| | - Luuk J. Oostveen
- Department of Medical Imaging, Radboudumc, Nijmegen, The Netherlands
| | - Nikita Moriakov
- Department of Medical Imaging, Radboudumc, Nijmegen, The Netherlands
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jonas Teuwen
- Department of Medical Imaging, Radboudumc, Nijmegen, The Netherlands
- AI for Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Koen Michielsen
- Department of Medical Imaging, Radboudumc, Nijmegen, The Netherlands
| | - Ewoud J. Smit
- Department of Medical Imaging, Radboudumc, Nijmegen, The Netherlands
| | - Ioannis Sechopoulos
- Department of Medical Imaging, Radboudumc, Nijmegen, The Netherlands
- Dutch Expert Centre for Screening (LRCB), Nijmegen, The Netherlands
- Technical Medicine Centre, University of Twente, Enschede, The Netherlands
| |
Collapse
|
20
|
Zhang J, Gong W, Ye L, Wang F, Shangguan Z, Cheng Y. A Review of deep learning methods for denoising of medical low-dose CT images. Comput Biol Med 2024; 171:108112. [PMID: 38387380 DOI: 10.1016/j.compbiomed.2024.108112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/18/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024]
Abstract
To prevent patients from being exposed to excess of radiation in CT imaging, the most common solution is to decrease the radiation dose by reducing the X-ray, and thus the quality of the resulting low-dose CT images (LDCT) is degraded, as evidenced by more noise and streaking artifacts. Therefore, it is important to maintain high quality CT image while effectively reducing radiation dose. In recent years, with the rapid development of deep learning technology, deep learning-based LDCT denoising methods have become quite popular because of their data-driven and high-performance features to achieve excellent denoising results. However, to our knowledge, no relevant article has so far comprehensively introduced and reviewed advanced deep learning denoising methods such as Transformer structures in LDCT denoising tasks. Therefore, based on the literatures related to LDCT image denoising published from year 2016-2023, and in particular from 2020 to 2023, this study presents a systematic survey of current situation, and challenges and future research directions in LDCT image denoising field. Four types of denoising networks are classified according to the network structure: CNN-based, Encoder-Decoder-based, GAN-based, and Transformer-based denoising networks, and each type of denoising network is described and summarized from the perspectives of structural features and denoising performances. Representative deep-learning denoising methods for LDCT are experimentally compared and analyzed. The study results show that CNN-based denoising methods capture image details efficiently through multi-level convolution operation, demonstrating superior denoising effects and adaptivity. Encoder-decoder networks with MSE loss, achieve outstanding results in objective metrics. GANs based methods, employing innovative generators and discriminators, obtain denoised images that exhibit perceptually a closeness to NDCT. Transformer-based methods have potential for improving denoising performances due to their powerful capability in capturing global information. Challenges and opportunities for deep learning based LDCT denoising are analyzed, and future directions are also presented.
Collapse
Affiliation(s)
- Ju Zhang
- College of Information Science and Technology, Hangzhou Normal University, Hangzhou, China.
| | - Weiwei Gong
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China.
| | - Lieli Ye
- College of Information Science and Technology, Hangzhou Normal University, Hangzhou, China.
| | - Fanghong Wang
- Zhijiang College, Zhejiang University of Technology, Shaoxing, China.
| | - Zhibo Shangguan
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China.
| | - Yun Cheng
- Department of Medical Imaging, Zhejiang Hospital, Hangzhou, China.
| |
Collapse
|
21
|
Kang Y, Liu J, Wu F, Wang K, Qiang J, Hu D, Zhang Y. Deep convolutional dictionary learning network for sparse view CT reconstruction with a group sparse prior. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 244:108010. [PMID: 38199137 DOI: 10.1016/j.cmpb.2024.108010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/25/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Purpose Numerous techniques based on deep learning have been utilized in sparse view computed tomography (CT) imaging. Nevertheless, the majority of techniques are instinctively constructed utilizing state-of-the-art opaque convolutional neural networks (CNNs) and lack interpretability. Moreover, CNNs tend to focus on local receptive fields and neglect nonlocal self-similarity prior information. Obtaining diagnostically valuable images from sparsely sampled projections is a challenging and ill-posed task. Method To address this issue, we propose a unique and understandable model named DCDL-GS for sparse view CT imaging. This model relies on a network comprised of convolutional dictionary learning and a nonlocal group sparse prior. To enhance the quality of image reconstruction, we utilize a neural network in conjunction with a statistical iterative reconstruction framework and perform a set number of iterations. Inspired by group sparsity priors, we adopt a novel group thresholding operation to improve the feature representation and constraint ability and obtain a theoretical interpretation. Furthermore, our DCDL-GS model incorporates filtered backprojection (FBP) reconstruction, fast sliding window nonlocal self-similarity operations, and a lightweight and interpretable convolutional dictionary learning network to enhance the applicability of the model. Results The efficiency of our proposed DCDL-GS model in preserving edges and recovering features is demonstrated by the visual results obtained on the LDCT-P and UIH datasets. Compared to the results of the most advanced techniques, the quantitative results are enhanced, with increases of 0.6-0.8 dB for the peak signal-to-noise ratio (PSNR), 0.005-0.01 for the structural similarity index measure (SSIM), and 1-1.3 for the regulated Fréchet inception distance (rFID) on the test dataset. The quantitative results also show the effectiveness of our proposed deep convolution iterative reconstruction module and nonlocal group sparse prior. Conclusion In this paper, we create a consolidated and enhanced mathematical model by integrating projection data and prior knowledge of images into a deep iterative model. The model is more practical and interpretable than existing approaches. The results from the experiment show that the proposed model performs well in comparison to the others.
Collapse
Affiliation(s)
- Yanqin Kang
- College of Computer and Information, Anhui Polytechnic University, Wuhu, China; Key Laboratory of Computer Network and Information Integration (Southeast University) Ministry of Education Nanjing, China
| | - Jin Liu
- College of Computer and Information, Anhui Polytechnic University, Wuhu, China; Key Laboratory of Computer Network and Information Integration (Southeast University) Ministry of Education Nanjing, China.
| | - Fan Wu
- College of Computer and Information, Anhui Polytechnic University, Wuhu, China
| | - Kun Wang
- College of Computer and Information, Anhui Polytechnic University, Wuhu, China
| | - Jun Qiang
- College of Computer and Information, Anhui Polytechnic University, Wuhu, China
| | - Dianlin Hu
- Key Laboratory of Computer Network and Information Integration (Southeast University) Ministry of Education Nanjing, China; School of Computer Science and Engineering, Southeast University, Nanjing, China
| | - Yikun Zhang
- Key Laboratory of Computer Network and Information Integration (Southeast University) Ministry of Education Nanjing, China; School of Computer Science and Engineering, Southeast University, Nanjing, China
| |
Collapse
|
22
|
Kim W, Lee J, Choi JH. An unsupervised two-step training framework for low-dose computed tomography denoising. Med Phys 2024; 51:1127-1144. [PMID: 37432026 DOI: 10.1002/mp.16628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/25/2023] [Accepted: 06/25/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Although low-dose computed tomography (CT) imaging has been more widely adopted in clinical practice to reduce radiation exposure to patients, the reconstructed CT images tend to have more noise, which impedes accurate diagnosis. Recently, deep neural networks using convolutional neural networks to reduce noise in the reconstructed low-dose CT images have shown considerable improvement. However, they need a large number of paired normal- and low-dose CT images to fully train the network via supervised learning methods. PURPOSE To propose an unsupervised two-step training framework for image denoising that uses low-dose CT images of one dataset and unpaired high-dose CT images from another dataset. METHODS Our proposed framework trains the denoising network in two steps. In the first training step, we train the network using 3D volumes of CT images and predict the center CT slice from them. This pre-trained network is used in the second training step to train the denoising network and is combined with the memory-efficient denoising generative adversarial network (DenoisingGAN), which further enhances both objective and perceptual quality. RESULTS The experimental results on phantom and clinical datasets show superior performance over the existing traditional machine learning and self-supervised deep learning methods, and the results are comparable to the fully supervised learning methods. CONCLUSIONS We proposed a new unsupervised learning framework for low-dose CT denoising, convincingly improving noisy CT images from both objective and perceptual quality perspectives. Because our denoising framework does not require physics-based noise models or system-dependent assumptions, our proposed method can be easily reproduced; consequently, it can also be generally applicable to various CT scanners or dose levels.
Collapse
Affiliation(s)
- Wonjin Kim
- Division of Mechanical and Biomedical Engineering, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Jaayeon Lee
- Division of Mechanical and Biomedical Engineering, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Jang-Hwan Choi
- Division of Mechanical and Biomedical Engineering, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
23
|
Sadia RT, Chen J, Zhang J. CT image denoising methods for image quality improvement and radiation dose reduction. J Appl Clin Med Phys 2024; 25:e14270. [PMID: 38240466 PMCID: PMC10860577 DOI: 10.1002/acm2.14270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/15/2023] [Accepted: 12/28/2023] [Indexed: 02/13/2024] Open
Abstract
With the ever-increasing use of computed tomography (CT), concerns about its radiation dose have become a significant public issue. To address the need for radiation dose reduction, CT denoising methods have been widely investigated and applied in low-dose CT images. Numerous noise reduction algorithms have emerged, such as iterative reconstruction and most recently, deep learning (DL)-based approaches. Given the rapid advancements in Artificial Intelligence techniques, we recognize the need for a comprehensive review that emphasizes the most recently developed methods. Hence, we have performed a thorough analysis of existing literature to provide such a review. Beyond directly comparing the performance, we focus on pivotal aspects, including model training, validation, testing, generalizability, vulnerability, and evaluation methods. This review is expected to raise awareness of the various facets involved in CT image denoising and the specific challenges in developing DL-based models.
Collapse
Affiliation(s)
- Rabeya Tus Sadia
- Department of Computer ScienceUniversity of KentuckyLexingtonKentuckyUSA
| | - Jin Chen
- Department of Medicine‐NephrologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Jie Zhang
- Department of RadiologyUniversity of KentuckyLexingtonKentuckyUSA
| |
Collapse
|
24
|
Ge H, Sun Z, Lu X, Jiang Y, Lv M, Li G, Zhang Y. THz spectrum processing method based on optimal wavelet selection. OPTICS EXPRESS 2024; 32:4457-4472. [PMID: 38297647 DOI: 10.1364/oe.511001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/05/2024] [Indexed: 02/02/2024]
Abstract
Terahertz spectrum is easily interfered by system noise and water-vapor absorption. In order to obtain high quality spectrum and better prediction accuracy in qualitative and quantitative analysis model, different wavelet basis functions and levels of decompositions are employed to perform denoising processing. In this study, the terahertz spectra of wheat samples are denoised using wavelet transform. The compound evaluation indicators (T) are used for systematically analyzing the quality effect of wavelet transform in terahertz spectrum preprocessing. By comparing the optimal denoising effects of different wavelet families, the wavelets of coiflets and symlets are more suitable for terahertz spectrum denoising processing than the wavelets of fejer-korovkin and daubechies, and the performance of symlets 8 wavelet basis function with 4-level decomposition is the optimum. The results show that the proposed method can select the optimal wavelet basis function and decomposition level of wavelet denoising processing in the field of terahertz spectrum analysis.
Collapse
|
25
|
Ke J, Liu K, Sun Y, Xue Y, Huang J, Lu Y, Dai J, Chen Y, Han X, Shen Y, Shen D. Artifact Detection and Restoration in Histology Images With Stain-Style and Structural Preservation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:3487-3500. [PMID: 37352087 DOI: 10.1109/tmi.2023.3288940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
Abstract
The artifacts in histology images may encumber the accurate interpretation of medical information and cause misdiagnosis. Accordingly, prepending manual quality control of artifacts considerably decreases the degree of automation. To close this gap, we propose a methodical pre-processing framework to detect and restore artifacts, which minimizes their impact on downstream AI diagnostic tasks. First, the artifact recognition network AR-Classifier first differentiates common artifacts from normal tissues, e.g., tissue folds, marking dye, tattoo pigment, spot, and out-of-focus, and also catalogs artifact patches by their restorability. Then, the succeeding artifact restoration network AR-CycleGAN performs de-artifact processing where stain styles and tissue structures can be maximally retained. We construct a benchmark for performance evaluation, curated from both clinically collected WSIs and public datasets of colorectal and breast cancer. The functional structures are compared with state-of-the-art methods, and also comprehensively evaluated by multiple metrics across multiple tasks, including artifact classification, artifact restoration, downstream diagnostic tasks of tumor classification and nuclei segmentation. The proposed system allows full automation of deep learning based histology image analysis without human intervention. Moreover, the structure-independent characteristic enables its processing with various artifact subtypes. The source code and data in this research are available at https://github.com/yunboer/AR-classifier-and-AR-CycleGAN.
Collapse
|
26
|
Mello-Thoms C, Mello CAB. Clinical applications of artificial intelligence in radiology. Br J Radiol 2023; 96:20221031. [PMID: 37099398 PMCID: PMC10546456 DOI: 10.1259/bjr.20221031] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/27/2023] Open
Abstract
The rapid growth of medical imaging has placed increasing demands on radiologists. In this scenario, artificial intelligence (AI) has become an attractive partner, one that may complement case interpretation and may aid in various non-interpretive aspects of the work in the radiological clinic. In this review, we discuss interpretative and non-interpretative uses of AI in the clinical practice, as well as report on the barriers to AI's adoption in the clinic. We show that AI currently has a modest to moderate penetration in the clinical practice, with many radiologists still being unconvinced of its value and the return on its investment. Moreover, we discuss the radiologists' liabilities regarding the AI decisions, and explain how we currently do not have regulation to guide the implementation of explainable AI or of self-learning algorithms.
Collapse
Affiliation(s)
| | - Carlos A B Mello
- Centro de Informática, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
27
|
Yu J, Zhang H, Zhang P, Zhu Y. Unsupervised learning-based dual-domain method for low-dose CT denoising. Phys Med Biol 2023; 68:185010. [PMID: 37567225 DOI: 10.1088/1361-6560/acefa2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/10/2023] [Indexed: 08/13/2023]
Abstract
Objective. Low-dose CT (LDCT) is an important research topic in the field of CT imaging because of its ability to reduce radiation damage in clinical diagnosis. In recent years, deep learning techniques have been widely applied in LDCT imaging and a large number of denoising methods have been proposed. However, One major challenge of supervised deep learning-based methods is the exactly geometric pairing of datasets with different doses. Therefore, the aim of this study is to develop an unsupervised learning-based LDCT imaging method to address the aforementioned challenges.Approach. In this paper, we propose an unsupervised learning-based dual-domain method for LDCT denoising, which consists of two stages: the first stage is projection domain denoising, in which the unsupervised learning method Noise2Self is applied to denoise the projection data with statistically independent and zero-mean noise. The second stage is an iterative enhancement approach, which combines the prior information obtained from the generative model with an iterative reconstruction algorithm to enhance the details of the reconstructed image.Main results. Experimental results show that our proposed method outperforms the comparison method in terms of denoising effect. Particularly, in terms of SSIM, the denoised results obtained using our method achieve the highest SSIM.Significance. In conclusion, our unsupervised learning-based method can be a promising alternative to the traditional supervised methods for LDCT imaging, especially when the availability of the labeled datasets is limited.
Collapse
Affiliation(s)
- Jie Yu
- School of Mathematical Sciences, Capital Normal University, Beijing, 100048, People's Republic of China
| | - Huitao Zhang
- School of Mathematical Sciences, Capital Normal University, Beijing, 100048, People's Republic of China
- Shenzhen National Applied Mathematics Center, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Peng Zhang
- School of Mathematical Sciences, Capital Normal University, Beijing, 100048, People's Republic of China
| | - Yining Zhu
- School of Mathematical Sciences, Capital Normal University, Beijing, 100048, People's Republic of China
- Shenzhen National Applied Mathematics Center, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| |
Collapse
|
28
|
Li M, Wang J, Chen Y, Tang Y, Wu Z, Qi Y, Jiang H, Zheng J, Tsui BMW. Low-Dose CT Image Synthesis for Domain Adaptation Imaging Using a Generative Adversarial Network With Noise Encoding Transfer Learning. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:2616-2630. [PMID: 37030685 DOI: 10.1109/tmi.2023.3261822] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Deep learning (DL) based image processing methods have been successfully applied to low-dose x-ray images based on the assumption that the feature distribution of the training data is consistent with that of the test data. However, low-dose computed tomography (LDCT) images from different commercial scanners may contain different amounts and types of image noise, violating this assumption. Moreover, in the application of DL based image processing methods to LDCT, the feature distributions of LDCT images from simulation and clinical CT examination can be quite different. Therefore, the network models trained with simulated image data or LDCT images from one specific scanner may not work well for another CT scanner and image processing task. To solve such domain adaptation problem, in this study, a novel generative adversarial network (GAN) with noise encoding transfer learning (NETL), or GAN-NETL, is proposed to generate a paired dataset with a different noise style. Specifically, we proposed a method to perform noise encoding operator and incorporate it into the generator to extract a noise style. Meanwhile, with a transfer learning (TL) approach, the image noise encoding operator transformed the noise type of the source domain to that of the target domain for realistic noise generation. One public and two private datasets are used to evaluate the proposed method. Experiment results demonstrated the feasibility and effectiveness of our proposed GAN-NETL model in LDCT image synthesis. In addition, we conduct additional image denoising study using the synthesized clinical LDCT data, which verified the merit of the proposed synthesis in improving the performance of the DL based LDCT processing method.
Collapse
|
29
|
Shan H, Vimieiro RB, Borges LR, Vieira MAC, Wang G. Impact of loss functions on the performance of a deep neural network designed to restore low-dose digital mammography. Artif Intell Med 2023; 142:102555. [PMID: 37316093 PMCID: PMC10267506 DOI: 10.1016/j.artmed.2023.102555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 06/16/2023]
Abstract
Digital mammography is currently the most common imaging tool for breast cancer screening. Although the benefits of using digital mammography for cancer screening outweigh the risks associated with the x-ray exposure, the radiation dose must be kept as low as possible while maintaining the diagnostic utility of the generated images, thus minimizing patient risks. Many studies investigated the feasibility of dose reduction by restoring low-dose images using deep neural networks. In these cases, choosing the appropriate training database and loss function is crucial and impacts the quality of the results. In this work, we used a standard residual network (ResNet) to restore low-dose digital mammography images and evaluated the performance of several loss functions. For training purposes, we extracted 256,000 image patches from a dataset of 400 images of retrospective clinical mammography exams, where dose reduction factors of 75% and 50% were simulated to generate low and standard-dose pairs. We validated the network in a real scenario by using a physical anthropomorphic breast phantom to acquire real low-dose and standard full-dose images in a commercially available mammography system, which were then processed through our trained model. We benchmarked our results against an analytical restoration model for low-dose digital mammography. Objective assessment was performed through the signal-to-noise ratio (SNR) and the mean normalized squared error (MNSE), decomposed into residual noise and bias. Statistical tests revealed that the use of the perceptual loss (PL4) resulted in statistically significant differences when compared to all other loss functions. Additionally, images restored using the PL4 achieved the closest residual noise to the standard dose. On the other hand, perceptual loss PL3, structural similarity index (SSIM) and one of the adversarial losses achieved the lowest bias for both dose reduction factors. The source code of our deep neural network is available at https://github.com/WANG-AXIS/LdDMDenoising.
Collapse
Affiliation(s)
- Hongming Shan
- Institute of Science and Technology for Brain-inspired Intelligence and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; Shanghai Center for Brain Science and Brain-inspired Technology, Shanghai, China; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, USA.
| | - Rodrigo B Vimieiro
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, USA; Department of Electrical and Computer Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil.
| | - Lucas R Borges
- Department of Electrical and Computer Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil; Real Time Tomography, LLC, Villanova, USA.
| | - Marcelo A C Vieira
- Department of Electrical and Computer Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil.
| | - Ge Wang
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, USA.
| |
Collapse
|
30
|
Zhou Z, Inoue A, McCollough CH, Yu L. Self-trained deep convolutional neural network for noise reduction in CT. J Med Imaging (Bellingham) 2023; 10:044008. [PMID: 37636895 PMCID: PMC10449263 DOI: 10.1117/1.jmi.10.4.044008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023] Open
Abstract
Purpose Supervised deep convolutional neural network (CNN)-based methods have been actively used in clinical CT to reduce image noise. The networks of these methods are typically trained using paired high- and low-quality data from a massive number of patients and/or phantom images. This training process is tedious, and the network trained under a given condition may not be generalizable to patient images acquired and reconstructed under different conditions. We propose a self-trained deep CNN (ST_CNN) method for noise reduction in CT that does not rely on pre-existing training datasets. Approach The ST_CNN training was accomplished using extensive data augmentation in the projection domain, and the inference was applied to the data itself. Specifically, multiple independent noise insertions were applied to the original patient projection data to generate multiple realizations of low-quality projection data. Then, rotation augmentation was adopted for both the original and low-quality projection data by applying the rotation angle directly on the projection data so that images were rotated at arbitrary angles without introducing additional bias. A large number of paired low- and high-quality images from the same patient were reconstructed and paired for training the ST_CNN model. Results No significant difference was found between the ST_CNN and conventional CNN models in terms of the peak signal-to-noise ratio and structural similarity index measure. The ST_CNN model outperformed the conventional CNN model in terms of noise texture and homogeneity in liver parenchyma as well as better subjective visualization of liver lesions. The ST_CNN may sacrifice the sharpness of vessels slightly compared to the conventional CNN model but without affecting the visibility of peripheral vessels or diagnosis of vascular pathology. Conclusions The proposed ST_CNN method trained from the data itself may achieve similar image quality in comparison with conventional deep CNN denoising methods pre-trained on external datasets.
Collapse
Affiliation(s)
- Zhongxing Zhou
- Mayo Clinic, Department of Radiology, Rochester, Minnesota, United States
| | - Akitoshi Inoue
- Mayo Clinic, Department of Radiology, Rochester, Minnesota, United States
| | | | - Lifeng Yu
- Mayo Clinic, Department of Radiology, Rochester, Minnesota, United States
| |
Collapse
|
31
|
Zhao Y, Wang S, Zhang Y, Qiao S, Zhang M. WRANet: wavelet integrated residual attention U-Net network for medical image segmentation. COMPLEX INTELL SYST 2023:1-13. [PMID: 37361970 PMCID: PMC10248349 DOI: 10.1007/s40747-023-01119-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023]
Abstract
Medical image segmentation is crucial for the diagnosis and analysis of disease. Deep convolutional neural network methods have achieved great success in medical image segmentation. However, they are highly susceptible to noise interference during the propagation of the network, where weak noise can dramatically alter the network output. As the network deepens, it can face problems such as gradient explosion and vanishing. To improve the robustness and segmentation performance of the network, we propose a wavelet residual attention network (WRANet) for medical image segmentation. We replace the standard downsampling modules (e.g., maximum pooling and average pooling) in CNNs with discrete wavelet transform, decompose the features into low- and high-frequency components, and remove the high-frequency components to eliminate noise. At the same time, the problem of feature loss can be effectively addressed by introducing an attention mechanism. The combined experimental results show that our method can effectively perform aneurysm segmentation, achieving a Dice score of 78.99%, an IoU score of 68.96%, a precision of 85.21%, and a sensitivity score of 80.98%. In polyp segmentation, a Dice score of 88.89%, an IoU score of 81.74%, a precision rate of 91.32%, and a sensitivity score of 91.07% were achieved. Furthermore, our comparison with state-of-the-art techniques demonstrates the competitiveness of the WRANet network.
Collapse
Affiliation(s)
- Yawu Zhao
- School of Computer Science and Technology, China University of Petroleum, Qingdao, Shandong China
| | - Shudong Wang
- School of Computer Science and Technology, China University of Petroleum, Qingdao, Shandong China
| | - Yulin Zhang
- College of Mathematics and System Science, Shandong University of Science and Technology, Qingdao, Shandong China
| | - Sibo Qiao
- School of Computer Science and Technology, China University of Petroleum, Qingdao, Shandong China
| | - Mufei Zhang
- Inspur Cloud Information Technology Co, Inspur, Jinan, Shandong China
| |
Collapse
|
32
|
Wang J, Tang Y, Wu Z, Du Q, Yao L, Yang X, Li M, Zheng J. A self-supervised guided knowledge distillation framework for unpaired low-dose CT image denoising. Comput Med Imaging Graph 2023; 107:102237. [PMID: 37116340 DOI: 10.1016/j.compmedimag.2023.102237] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/21/2023] [Accepted: 04/13/2023] [Indexed: 04/30/2023]
Abstract
Low-dose computed tomography (LDCT) can significantly reduce the damage of X-ray to the human body, but the reduction of CT dose will produce images with severe noise and artifacts, which will affect the diagnosis of doctors. Recently, deep learning has attracted more and more attention from researchers. However, most of the denoising networks applied to deep learning-based LDCT imaging are supervised methods, which require paired data for network training. In a realistic imaging scenario, obtaining well-aligned image pairs is challenging due to the error in the table re-positioning and the patient's physiological movement during data acquisition. In contrast, the unpaired learning method can overcome the drawbacks of supervised learning, making it more feasible to collect unpaired training data in most real-world imaging applications. In this study, we develop a novel unpaired learning framework, Self-Supervised Guided Knowledge Distillation (SGKD), which enables the guidance of supervised learning using the results generated by self-supervised learning. The proposed SGKD scheme contains two stages of network training. First, we can achieve the LDCT image quality improvement by the designed self-supervised cycle network. Meanwhile, it can also produce two complementary training datasets from the unpaired LDCT and NDCT images. Second, a knowledge distillation strategy with the above two datasets is exploited to further improve the LDCT image denoising performance. To evaluate the effectiveness and feasibility of the proposed method, extensive experiments were performed on the simulated AAPM challenging and real-world clinical LDCT datasets. The qualitative and quantitative results show that the proposed SGKD achieves better performance in terms of noise suppression and detail preservation compared with some state-of-the-art network models.
Collapse
Affiliation(s)
- Jiping Wang
- Institute of Electronic Information Engineering, Changchun University of Science and Technology, Changchun 130022, China; Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Yufei Tang
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Zhongyi Wu
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Qiang Du
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Libing Yao
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Xiaodong Yang
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Ming Li
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.
| | - Jian Zheng
- Institute of Electronic Information Engineering, Changchun University of Science and Technology, Changchun 130022, China; Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
33
|
Lee J, Jeon J, Hong Y, Jeong D, Jang Y, Jeon B, Baek HJ, Cho E, Shim H, Chang HJ. Generative adversarial network with radiomic feature reproducibility analysis for computed tomography denoising. Comput Biol Med 2023; 159:106931. [PMID: 37116238 DOI: 10.1016/j.compbiomed.2023.106931] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 04/30/2023]
Abstract
BACKGROUND Most computed tomography (CT) denoising algorithms have been evaluated using image quality analysis (IQA) methods developed for natural image, which do not adequately capture the texture details in medical imaging. Radiomics is an emerging image analysis technique that extracts texture information to provide a more objective basis for medical imaging diagnostics, overcoming the subjective nature of traditional methods. By utilizing the difficulty of reproducing radiomics features under different imaging protocols, we can more accurately evaluate the performance of CT denoising algorithms. METHOD We introduced radiomic feature reproducibility analysis as an evaluation metric for a denoising algorithm. Also, we proposed a low-dose CT denoising method based on a generative adversarial network (GAN), which outperformed well-known CT denoising methods. RESULTS Although the proposed model produced excellent results visually, the traditional image assessment metrics such as peak signal-to-noise ratio and structural similarity failed to show distinctive performance differences between the proposed method and the conventional ones. However, radiomic feature reproducibility analysis provided a distinctive assessment of the CT denoising performance. Furthermore, radiomic feature reproducibility analysis allowed fine-tuning of the hyper-parameters of the GAN. CONCLUSION We demonstrated that the well-tuned GAN architecture outperforms the well-known CT denoising methods. Our study is the first to introduce radiomics reproducibility analysis as an evaluation metric for CT denoising. We look forward that the study may bridge the gap between traditional objective and subjective evaluations in the clinical medical imaging field.
Collapse
Affiliation(s)
- Jina Lee
- CONNECT-AI Research Center, Yonsei University College of Medicine, Seoul, 03764, South Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, 03722, South Korea
| | - Jaeik Jeon
- CONNECT-AI Research Center, Yonsei University College of Medicine, Seoul, 03764, South Korea
| | - Youngtaek Hong
- CONNECT-AI Research Center, Yonsei University College of Medicine, Seoul, 03764, South Korea; Ontact Health, Seoul, 03764, South Korea.
| | - Dawun Jeong
- CONNECT-AI Research Center, Yonsei University College of Medicine, Seoul, 03764, South Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, 03722, South Korea
| | - Yeonggul Jang
- CONNECT-AI Research Center, Yonsei University College of Medicine, Seoul, 03764, South Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, 03722, South Korea
| | - Byunghwan Jeon
- Division of Computer Engineering, Hankuk University of Foreign Studies, Yongin, 17035, South Korea
| | - Hye Jin Baek
- Department of Radiology, Gyeongsang National University Changwon Hospital, Gyeongsang National University School of Medicine, Changwon, 51472, South Korea
| | - Eun Cho
- Department of Radiology, Gyeongsang National University Changwon Hospital, Gyeongsang National University School of Medicine, Changwon, 51472, South Korea
| | - Hackjoon Shim
- CONNECT-AI Research Center, Yonsei University College of Medicine, Seoul, 03764, South Korea
| | - Hyuk-Jae Chang
- CONNECT-AI Research Center, Yonsei University College of Medicine, Seoul, 03764, South Korea; Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, 03722, South Korea
| |
Collapse
|
34
|
Shen J, Luo M, Liu H, Liao P, Chen H, Zhang Y. MLF-IOSC: Multi-Level Fusion Network With Independent Operation Search Cell for Low-Dose CT Denoising. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:1145-1158. [PMID: 36423311 DOI: 10.1109/tmi.2022.3224396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Computed tomography (CT) is widely used in clinical medicine, and low-dose CT (LDCT) has become popular to reduce potential patient harm during CT acquisition. However, LDCT aggravates the problem of noise and artifacts in CT images, increasing diagnosis difficulty. Through deep learning, denoising CT images by artificial neural network has aroused great interest for medical imaging and has been hugely successful. We propose a framework to achieve excellent LDCT noise reduction using independent operation search cells, inspired by neural architecture search, and introduce the Laplacian to further improve image quality. Employing patch-based training, the proposed method can effectively eliminate CT image noise while retaining the original structures and details, hence significantly improving diagnosis efficiency and promoting LDCT clinical applications.
Collapse
|
35
|
Azour L, Hu Y, Ko JP, Chen B, Knoll F, Alpert JB, Brusca-Augello G, Mason DM, Wickstrom ML, Kwon YJF, Babb J, Liang Z, Moore WH. Deep Learning Denoising of Low-Dose Computed Tomography Chest Images: A Quantitative and Qualitative Image Analysis. J Comput Assist Tomogr 2023; 47:212-219. [PMID: 36790870 DOI: 10.1097/rct.0000000000001405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
PURPOSE To assess deep learning denoised (DLD) computed tomography (CT) chest images at various low doses by both quantitative and qualitative perceptual image analysis. METHODS Simulated noise was inserted into sinogram data from 32 chest CTs acquired at 100 mAs, generating anatomically registered images at 40, 20, 10, and 5 mAs. A DLD model was developed, with 23 scans selected for training, 5 for validation, and 4 for test.Quantitative analysis of perceptual image quality was assessed with Structural SIMilarity Index (SSIM) and Fréchet Inception Distance (FID). Four thoracic radiologists graded overall diagnostic image quality, image artifact, visibility of small structures, and lesion conspicuity. Noise-simulated and denoised image series were evaluated in comparison with one another, and in comparison with standard 100 mAs acquisition at the 4 mAs levels. Statistical tests were conducted at the 2-sided 5% significance level, with multiple comparison correction. RESULTS At the same mAs levels, SSIM and FID between noise-simulated and reconstructed DLD images indicated that images were closer to a perfect match with increasing mAs (closer to 1 for SSIM, and 0 for FID).In comparing noise-simulated and DLD images to standard-dose 100-mAs images, DLD improved SSIM and FID. Deep learning denoising improved SSIM of 40-, 20-, 10-, and 5-mAs simulations in comparison with standard-dose 100-mAs images, with change in SSIM from 0.91 to 0.94, 0.87 to 0.93, 0.67 to 0.87, and 0.54 to 0.84, respectively. Deep learning denoising improved FID of 40-, 20-, 10-, and 5-mAs simulations in comparison with standard-dose 100-mAs images, with change in FID from 20 to 13, 46 to 21, 104 to 41, and 148 to 69, respectively.Qualitative image analysis showed no significant difference in lesion conspicuity between DLD images at any mAs in comparison with 100-mAs images. Deep learning denoising images at 10 and 5 mAs were rated lower for overall diagnostic image quality ( P < 0.001), and at 5 mAs lower for overall image artifact and visibility of small structures ( P = 0.002), in comparison with 100 mAs. CONCLUSIONS Deep learning denoising resulted in quantitative improvements in image quality. Qualitative assessment demonstrated DLD images at or less than 10 mAs to be rated inferior to standard-dose images.
Collapse
Affiliation(s)
- Lea Azour
- From the Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health
| | - Yunan Hu
- From the Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health
| | - Jane P Ko
- From the Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health
| | - Baiyu Chen
- From the Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health
| | - Florian Knoll
- From the Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health
| | - Jeffrey B Alpert
- From the Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health
| | | | - Derek M Mason
- From the Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health
| | - Maj L Wickstrom
- From the Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health
| | | | - James Babb
- From the Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health
| | - Zhengrong Liang
- Departments of Radiology, Biomedical Engineering, Computer Science, and Electrical Engineering, Stony Brook University, Stony Brook, NY
| | - William H Moore
- From the Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health
| |
Collapse
|
36
|
Lu Z, Xia W, Huang Y, Hou M, Chen H, Zhou J, Shan H, Zhang Y. M 3NAS: Multi-Scale and Multi-Level Memory-Efficient Neural Architecture Search for Low-Dose CT Denoising. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:850-863. [PMID: 36327187 DOI: 10.1109/tmi.2022.3219286] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Lowering the radiation dose in computed tomography (CT) can greatly reduce the potential risk to public health. However, the reconstructed images from dose-reduced CT or low-dose CT (LDCT) suffer from severe noise which compromises the subsequent diagnosis and analysis. Recently, convolutional neural networks have achieved promising results in removing noise from LDCT images. The network architectures that are used are either handcrafted or built on top of conventional networks such as ResNet and U-Net. Recent advances in neural network architecture search (NAS) have shown that the network architecture has a dramatic effect on the model performance. This indicates that current network architectures for LDCT may be suboptimal. Therefore, in this paper, we make the first attempt to apply NAS to LDCT and propose a multi-scale and multi-level memory-efficient NAS for LDCT denoising, termed M3NAS. On the one hand, the proposed M3NAS fuses features extracted by different scale cells to capture multi-scale image structural details. On the other hand, the proposed M3NAS can search a hybrid cell- and network-level structure for better performance. In addition, M3NAS can effectively reduce the number of model parameters and increase the speed of inference. Extensive experimental results on two different datasets demonstrate that the proposed M3NAS can achieve better performance and fewer parameters than several state-of-the-art methods. In addition, we also validate the effectiveness of the multi-scale and multi-level architecture for LDCT denoising, and present further analysis for different configurations of super-net.
Collapse
|
37
|
Yin J, Xu SH, Du YB, Jia RS. Super resolution reconstruction of CT images based on multi-scale attention mechanism. MULTIMEDIA TOOLS AND APPLICATIONS 2023; 82:22651-22667. [PMID: 36778717 PMCID: PMC9902249 DOI: 10.1007/s11042-023-14436-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/24/2021] [Accepted: 01/29/2023] [Indexed: 06/01/2023]
Abstract
CT diagnosis has been widely used in clinic because of its special diagnostic value. The image resolution of CT imaging system is constrained by X-ray focus size, detector element spacing, reconstruction algorithm and other factors, which makes the generated CT image have some problems, such as low contrast, insufficient high-frequency information, poor perceptual quality and so on. To solve the above problems, a super-resolution reconstruction method of CT image based on multi-scale attention mechanism is proposed. First, use a 3 × 3 and a 1 × 1 convolution layer extracting shallow features. In order to better extract the high-frequency features of CT images and improve the image contrast, a multi-scale attention module is designed to adaptively detect the information of different scales, improve the expression ability of features, integrate the channel attention mechanism and spatial attention mechanism, and pay more attention to important information, retain more valuable information. Finally, sub-pixel convolution is used to improve the resolution of CT image and reconstruct high-resolution CT image. The experimental results show that this method can effectively improve the CT image contrast and suppress the noise. The peak signal-to-noise ratio and structural similarity of the reconstructed CT image are better than the comparison method, and has a good subjective visual effect.
Collapse
Affiliation(s)
- Jian Yin
- College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590 China
| | - Shao-Hua Xu
- College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590 China
- Shandong Province Key Laboratory of Wisdom Mine Information Technology, Shandong University of Science and Technology, Qingdao, 266590 China
| | - Yan-Bin Du
- College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590 China
| | - Rui-Sheng Jia
- College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590 China
- Shandong Province Key Laboratory of Wisdom Mine Information Technology, Shandong University of Science and Technology, Qingdao, 266590 China
| |
Collapse
|
38
|
A Super-resolution-based Approach for the Detection of Covid—19 Infection From Chest X-ray Images. RESONANCE 2023. [PMCID: PMC9844160 DOI: 10.1007/s12045-023-1530-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
39
|
Duan R, Chen Z, Zhang H, Wang X, Meng W, Sun G. Dual Residual Denoising Autoencoder with Channel Attention Mechanism for Modulation of Signals. SENSORS (BASEL, SWITZERLAND) 2023; 23:1023. [PMID: 36679819 PMCID: PMC9861137 DOI: 10.3390/s23021023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/03/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Aiming to address the problems of the high bit error rate (BER) of demodulation or low classification accuracy of modulation signals with a low signal-to-noise ratio (SNR), we propose a double-residual denoising autoencoder method with a channel attention mechanism, referred to as DRdA-CA, to improve the SNR of modulation signals. The proposed DRdA-CA consists of an encoding module and a decoding module. A squeeze-and-excitation (SE) ResNet module containing one residual connection is modified and then introduced into the autoencoder as the channel attention mechanism, to better extract the characteristics of the modulation signals and reduce the computational complexity of the model. Moreover, the other residual connection is further added inside the encoding and decoding modules to optimize the network degradation problem, which is beneficial for fully exploiting the multi-level features of modulation signals and improving the reconstruction quality of the signal. The ablation experiments prove that both the improved SE module and dual residual connections in the proposed method play an important role in improving the denoising performance. The subsequent experimental results show that the proposed DRdA-CA significantly improves the SNR values of eight modulation types in the range of -12 dB to 8 dB. Especially for 16QAM and 64QAM, the SNR is improved by 8.38 dB and 8.27 dB on average, respectively. Compared to the DnCNN denoising method, the proposed DRdA-CA makes the average classification accuracy increase by 67.59∼74.94% over the entire SNR range. When it comes to the demodulation, compared with the RLS and the DnCNN denoising algorithms, the proposed denoising method reduces the BER of 16QAM by an average of 63.5% and 40.5%, and reduces the BER of 64QAM by an average of 46.7% and 18.6%. The above results show that the proposed DRdA-CA achieves the optimal noise reduction effect.
Collapse
Affiliation(s)
- Ruifeng Duan
- School of Information Science and Technology, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center for Forestry-Oriented Intelligent Information Processing of National Forestry and Grassland Administration, Beijing 100083, China
| | - Ziyu Chen
- School of Information Science and Technology, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center for Forestry-Oriented Intelligent Information Processing of National Forestry and Grassland Administration, Beijing 100083, China
| | - Haiyan Zhang
- School of Information Science and Technology, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center for Forestry-Oriented Intelligent Information Processing of National Forestry and Grassland Administration, Beijing 100083, China
| | - Xu Wang
- School of Information Science and Technology, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center for Forestry-Oriented Intelligent Information Processing of National Forestry and Grassland Administration, Beijing 100083, China
| | - Wei Meng
- School of Information Science and Technology, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center for Forestry-Oriented Intelligent Information Processing of National Forestry and Grassland Administration, Beijing 100083, China
| | - Guodong Sun
- School of Information Science and Technology, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center for Forestry-Oriented Intelligent Information Processing of National Forestry and Grassland Administration, Beijing 100083, China
| |
Collapse
|
40
|
Liu Y, Wei C, Xu Q. Detector shifting and deep learning based ring artifact correction method for low-dose CT. Med Phys 2023. [PMID: 36647338 DOI: 10.1002/mp.16225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/13/2022] [Accepted: 01/02/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND In x-ray computed tomography (CT), the gain inconsistency of detector units leads to ring artifacts in the reconstructed images, seriously destroys the image structure, and is not conducive to image recognition. In addition, to reduce radiation dose and scanning time, especially photon counting CT, low-dose CT is required, so it is important to reduce the noise and suppress ring artifacts in low-dose CT images simultaneously. PURPOSE Deep learning is an effective method to suppress ring artifacts, but there are still residual artifacts in corrected images. And the feature recognition ability of the network for ring artifacts decreases due to the effect of noise in the low-dose CT images. In this paper, a method is proposed to achieve noise reduction and ring artifact removal simultaneously. METHODS To solve these problems, we propose a ring artifact correction method for low-dose CT based on detector shifting and deep learning in this paper. Firstly, at the CT scanning stage, the detector horizontally shifts randomly at each projection to alleviate the ring artifacts as front processing. Thus, the ring artifacts are transformed into dispersed noise in front processed images. Secondly, deep learning is used for dispersed noise and statistical noise reduction. RESULTS Both simulation and real data experiments are conducted to evaluate the proposed method. Compared to other methods, the results show that the proposed method in this paper has better effect on removing ring artifacts in the low-dose CT images. Specifically, the RMSEs and SSIMs of the two sets of simulated and experiment data are better compared to the raw images significantly. CONCLUSIONS The method proposed in this paper combines detector shifting and deep learning to remove ring artifacts and statistical noise simultaneously. The results show that the proposed method is able to get better performance.
Collapse
Affiliation(s)
- Yuedong Liu
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Cunfeng Wei
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China.,Jinan Laboratory of Applied Nuclear Science, Jinan, China
| | - Qiong Xu
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.,Jinan Laboratory of Applied Nuclear Science, Jinan, China
| |
Collapse
|
41
|
X-ray CT image denoising with MINF: A modularized iterative network framework for data from multiple dose levels. Comput Biol Med 2023; 152:106419. [PMID: 36527781 DOI: 10.1016/j.compbiomed.2022.106419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/30/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022]
Abstract
In clinical applications, multi-dose scan protocols will cause the noise levels of computed tomography (CT) images to fluctuate widely. The popular low-dose CT (LDCT) denoising network outputs denoised images through an end-to-end mapping between an LDCT image and its corresponding ground truth. The limitation of this method is that the reduced noise level of the image may not meet the diagnostic needs of doctors. To establish a denoising model adapted to the multi-noise levels robustness, we proposed a novel and efficient modularized iterative network framework (MINF) to learn the feature of the original LDCT and the outputs of the previous modules, which can be reused in each following module. The proposed network can achieve the goal of gradual denoising, outputting clinical images with different denoising levels, and providing the reviewing physicians with increased confidence in their diagnosis. Moreover, a multi-scale convolutional neural network (MCNN) module is designed to extract as much feature information as possible during the network's training. Extensive experiments on public and private clinical datasets were carried out, and comparisons with several state-of-the-art methods show that the proposed method can achieve satisfactory results for noise suppression of LDCT images. In further comparisons with modularized adaptive processing neural network (MAP-NN), the proposed network shows superior step-by-step or gradual denoising performance. Considering the high quality of gradual denoising results, the proposed method can obtain satisfactory performance in terms of image contrast and detail protection as the level of denoising increases, which shows its potential to be suitable for a multi-dose levels denoising task.
Collapse
|
42
|
Li D, Bian Z, Li S, He J, Zeng D, Ma J. Noise Characteristics Modeled Unsupervised Network for Robust CT Image Reconstruction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:3849-3861. [PMID: 35939459 DOI: 10.1109/tmi.2022.3197400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Deep learning (DL)-based methods show great potential in computed tomography (CT) imaging field. The DL-based reconstruction methods are usually evaluated on the training and testing datasets which are obtained from the same distribution, i.e., the same CT scan protocol (i.e., the region setting, kVp, mAs, etc.). In this work, we focus on analyzing the robustness of the DL-based methods against protocol-specific distribution shifts (i.e., the training and testing datasets are from different region settings, different kVp settings, or different mAs settings, respectively). The results show that the DL-based reconstruction methods are sensitive to the protocol-specific perturbations which can be attributed to the noise distribution shift between the training and testing datasets. Based on these findings, we presented a low-dose CT reconstruction method using an unsupervised strategy with the consideration of noise distribution to address the issue of protocol-specific perturbations. Specifically, unpaired sinogram data is enrolled into the network training, which represents unique information for specific imaging protocol, and a Gaussian mixture model (GMM) is introduced to characterize the noise distribution in CT images. It can be termed as GMM based unsupervised CT reconstruction network (GMM-unNet) method. Moreover, an expectation-maximization algorithm is designed to optimize the presented GMM-unNet method. Extensive experiments are performed on three datasets from different scan protocols, which demonstrate that the presented GMM-unNet method outperforms the competing methods both qualitatively and quantitatively.
Collapse
|
43
|
Zhou B, Chen X, Xie H, Zhou SK, Duncan JS, Liu C. DuDoUFNet: Dual-Domain Under-to-Fully-Complete Progressive Restoration Network for Simultaneous Metal Artifact Reduction and Low-Dose CT Reconstruction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:3587-3599. [PMID: 35816532 PMCID: PMC9812027 DOI: 10.1109/tmi.2022.3189759] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
To reduce the potential risk of radiation to the patient, low-dose computed tomography (LDCT) has been widely adopted in clinical practice for reconstructing cross-sectional images using sinograms with reduced x-ray flux. The LDCT image quality is often degraded by different levels of noise depending on the low-dose protocols. The image quality will be further degraded when the patient has metallic implants, where the image suffers from additional streak artifacts along with further amplified noise levels, thus affecting the medical diagnosis and other CT-related applications. Previous studies mainly focused either on denoising LDCT without considering metallic implants or full-dose CT metal artifact reduction (MAR). Directly applying previous LDCT or MAR approaches to the issue of simultaneous metal artifact reduction and low-dose CT (MARLD) may yield sub-optimal reconstruction results. In this work, we develop a dual-domain under-to-fully-complete progressive restoration network, called DuDoUFNet, for MARLD. Our DuDoUFNet aims to reconstruct images with substantially reduced noise and artifact by progressive sinogram to image domain restoration with a two-stage progressive restoration network design. Our experimental results demonstrate that our method can provide high-quality reconstruction, superior to previous LDCT and MAR methods under various low-dose and metal settings.
Collapse
|
44
|
Kim W, Lee J, Kang M, Kim JS, Choi JH. Wavelet subband-specific learning for low-dose computed tomography denoising. PLoS One 2022; 17:e0274308. [PMID: 36084002 PMCID: PMC9462582 DOI: 10.1371/journal.pone.0274308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/25/2022] [Indexed: 11/19/2022] Open
Abstract
Deep neural networks have shown great improvements in low-dose computed tomography (CT) denoising. Early algorithms were primarily optimized to obtain an accurate image with low distortion between the denoised image and reference full-dose image at the cost of yielding an overly smoothed unrealistic CT image. Recent research has sought to preserve the fine details of denoised images with high perceptual quality, which has been accompanied by a decrease in objective quality due to a trade-off between perceptual quality and distortion. We pursue a network that can generate accurate and realistic CT images with high objective and perceptual quality within one network, achieving a better perception-distortion trade-off. To achieve this goal, we propose a stationary wavelet transform-assisted network employing the characteristics of high- and low-frequency domains of the wavelet transform and frequency subband-specific losses defined in the wavelet domain. We first introduce a stationary wavelet transform for the network training procedure. Then, we train the network using objective loss functions defined for high- and low-frequency domains to enhance the objective quality of the denoised CT image. With this network design, we train the network again after replacing the objective loss functions with perceptual loss functions in high- and low-frequency domains. As a result, we acquired denoised CT images with high perceptual quality using this strategy while minimizing the objective quality loss. We evaluated our algorithms on the phantom and clinical images, and the quantitative and qualitative results indicate that ours outperform the existing state-of-the-art algorithms in terms of objective and perceptual quality.
Collapse
Affiliation(s)
- Wonjin Kim
- Division of Mechanical and Biomedical Engineering, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Jaayeon Lee
- Division of Mechanical and Biomedical Engineering, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Mihyun Kang
- Department of Cyber Security, Ewha Womans University, Seoul, Republic of Korea
| | - Jin Sung Kim
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jang-Hwan Choi
- Division of Mechanical and Biomedical Engineering, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
45
|
Zavala-Mondragon LA, Rongen P, Bescos JO, de With PHN, van der Sommen F. Noise Reduction in CT Using Learned Wavelet-Frame Shrinkage Networks. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:2048-2066. [PMID: 35201984 DOI: 10.1109/tmi.2022.3154011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Encoding-decoding (ED) CNNs have demonstrated state-of-the-art performance for noise reduction over the past years. This has triggered the pursuit of better understanding the inner workings of such architectures, which has led to the theory of deep convolutional framelets (TDCF), revealing important links between signal processing and CNNs. Specifically, the TDCF demonstrates that ReLU CNNs induce low-rankness, since these models often do not satisfy the necessary redundancy to achieve perfect reconstruction (PR). In contrast, this paper explores CNNs that do meet the PR conditions. We demonstrate that in these type of CNNs soft shrinkage and PR can be assumed. Furthermore, based on our explorations we propose the learned wavelet-frame shrinkage network, or LWFSN and its residual counterpart, the rLWFSN. The ED path of the (r)LWFSN complies with the PR conditions, while the shrinkage stage is based on the linear expansion of thresholds proposed Blu and Luisier. In addition, the LWFSN has only a fraction of the training parameters (<1%) of conventional CNNs, very small inference times, low memory footprint, while still achieving performance close to state-of-the-art alternatives, such as the tight frame (TF) U-Net and FBPConvNet, in low-dose CT denoising.
Collapse
|
46
|
Chun M, Choi JH, Kim S, Ahn C, Kim JH. Fully automated image quality evaluation on patient CT: Multi-vendor and multi-reconstruction study. PLoS One 2022; 17:e0271724. [PMID: 35857804 PMCID: PMC9299323 DOI: 10.1371/journal.pone.0271724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/06/2022] [Indexed: 12/21/2022] Open
Abstract
While the recent advancements of computed tomography (CT) technology have contributed in reducing radiation dose and image noise, an objective evaluation of image quality in patient scans has not yet been established. In this study, we present a patient-specific CT image quality evaluation method that includes fully automated measurements of noise level, structure sharpness, and alteration of structure. This study used the CT images of 120 patients from four different CT scanners reconstructed with three types of algorithm: filtered back projection (FBP), vendor-specific iterative reconstruction (IR), and a vendor-agnostic deep learning model (DLM, ClariCT.AI, ClariPi Inc.). The structure coherence feature (SCF) was used to divide an image into the homogeneous (RH) and structure edge (RS) regions, which in turn were used to localize the regions of interests (ROIs) for subsequent analysis of image quality indices. The noise level was calculated by averaging the standard deviations from five randomly selected ROIs on RH, and the mean SCFs on RS was used to estimate the structure sharpness. The structure alteration was defined by the standard deviation ratio between RS and RH on the subtraction image between FBP and IR or DLM, in which lower structure alterations indicate successful noise reduction without degradation of structure details. The estimated structure sharpness showed a high correlation of 0.793 with manually measured edge slopes. Compared to FBP, IR and DLM showed 34.38% and 51.30% noise reduction, 2.87% and 0.59% lower structure sharpness, and 2.20% and -12.03% structure alteration, respectively, on an average. DLM showed statistically superior performance to IR in all three image quality metrics. This study is expected to contribute to enhance the CT protocol optimization process by allowing a high throughput and quantitative image quality evaluation during the introduction or adjustment of lower-dose CT protocol into routine practice.
Collapse
Affiliation(s)
- Minsoo Chun
- Department of Radiation Oncology, Chung-Ang University Gwang Myeong Hospital, Gyeonggi-do, Republic of Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Jin Hwa Choi
- Department of Radiation Oncology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Sihwan Kim
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Chulkyun Ahn
- Department of Transdisciplinary Studies, Program in Biomedical Radiation Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
- ClariPi Research, Seoul, Republic of Korea
| | - Jong Hyo Kim
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
- Department of Transdisciplinary Studies, Program in Biomedical Radiation Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
- ClariPi Research, Seoul, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Center for Medical-IT Convergence Technology Research, Advanced Institutes of Convergence Technology, Suwon, Republic of Korea
| |
Collapse
|
47
|
Hou H, Jin Q, Zhang G, Li Z. CT image quality enhancement via a dual-channel neural network with jointing denoising and super-resolution. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.04.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Hu D, Zhang Y, Liu J, Luo S, Chen Y. DIOR: Deep Iterative Optimization-Based Residual-Learning for Limited-Angle CT Reconstruction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:1778-1790. [PMID: 35100109 DOI: 10.1109/tmi.2022.3148110] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Limited-angle CT is a challenging problem in real applications. Incomplete projection data will lead to severe artifacts and distortions in reconstruction images. To tackle this problem, we propose a novel reconstruction framework termed Deep Iterative Optimization-based Residual-learning (DIOR) for limited-angle CT. Instead of directly deploying the regularization term on image space, the DIOR combines iterative optimization and deep learning based on the residual domain, significantly improving the convergence property and generalization ability. Specifically, the asymmetric convolutional modules are adopted to strengthen the feature extraction capacity in smooth regions for deep priors. Besides, in our DIOR method, the information contained in low-frequency and high-frequency components is also evaluated by perceptual loss to improve the performance in tissue preservation. Both simulated and clinical datasets are performed to validate the performance of DIOR. Compared with existing competitive algorithms, quantitative and qualitative results show that the proposed method brings a promising improvement in artifact removal, detail restoration and edge preservation.
Collapse
|
49
|
Wu Q, Tang H, Liu H, Chen YC. Masked Joint Bilateral Filtering via Deep Image Prior for Digital X-ray Image Denoising. IEEE J Biomed Health Inform 2022; 26:4008-4019. [PMID: 35653453 DOI: 10.1109/jbhi.2022.3179652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Medical image denoising faces great challenges. Although deep learning methods have shown great potential, their efficiency is severely affected by millions of trainable parameters. The non-linearity of neural networks also makes them difficult to be understood. Therefore, existing deep learning methods have been sparingly applied to clinical tasks. To this end, we integrate known filtering operators into deep learning and propose a novel Masked Joint Bilateral Filtering (MJBF) via deep image prior for digital X-ray image denoising. Specifically, MJBF consists of a deep image prior generator and an iterative filtering block. The deep image prior generator produces plentiful image priors by a multi-scale fusion network. The generated image priors serve as the guidance for the iterative filtering block, which is utilized for the actual edge-preserving denoising. The iterative filtering block contains three trainable Joint Bilateral Filters (JBFs), each with only 18 trainable parameters. Moreover, a masking strategy is introduced to reduce redundancy and improve the understanding of the proposed network. Experimental results on the ChestX-ray14 dataset and real data show that the proposed MJBF has achieved superior performance in terms of noise suppression and edge preservation. Tests on the portability of the proposed method demonstrate that this denoising modality is simple yet effective, and could have a clinical impact on medical imaging in the future.
Collapse
|
50
|
The use of deep learning methods in low-dose computed tomography image reconstruction: a systematic review. COMPLEX INTELL SYST 2022. [DOI: 10.1007/s40747-022-00724-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractConventional reconstruction techniques, such as filtered back projection (FBP) and iterative reconstruction (IR), which have been utilised widely in the image reconstruction process of computed tomography (CT) are not suitable in the case of low-dose CT applications, because of the unsatisfying quality of the reconstructed image and inefficient reconstruction time. Therefore, as the demand for CT radiation dose reduction continues to increase, the use of artificial intelligence (AI) in image reconstruction has become a trend that attracts more and more attention. This systematic review examined various deep learning methods to determine their characteristics, availability, intended use and expected outputs concerning low-dose CT image reconstruction. Utilising the methodology of Kitchenham and Charter, we performed a systematic search of the literature from 2016 to 2021 in Springer, Science Direct, arXiv, PubMed, ACM, IEEE, and Scopus. This review showed that algorithms using deep learning technology are superior to traditional IR methods in noise suppression, artifact reduction and structure preservation, in terms of improving the image quality of low-dose reconstructed images. In conclusion, we provided an overview of the use of deep learning approaches in low-dose CT image reconstruction together with their benefits, limitations, and opportunities for improvement.
Collapse
|