1
|
Ruisch J, de Bakker JMK, van Helvert M, Schoonbrood MJP, Groot Jebbink E, Holewijn S, Reijnen MMPJ, de Korte CL, Saris AECM. Ultrasound-based Velocity Vector Imaging in the Carotid Bifurcation: Repeatability and an In Vivo Comparison With 4-D Flow MRI. ULTRASOUND IN MEDICINE & BIOLOGY 2025; 51:969-976. [PMID: 40055083 DOI: 10.1016/j.ultrasmedbio.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/10/2025] [Accepted: 02/11/2025] [Indexed: 04/20/2025]
Abstract
OBJECTIVE Ultrasound-based velocity vector imaging (US-VVI) is a promising technique to gain insight into complex blood flow patterns that play an important role in atherosclerosis. However, in vivo validation of the 2-D velocity vector fields in the carotid bifurcation, using an adaptive velocity compounding method, is lacking. Its performance was validated in vivo against 4-D flow magnetic resonance imaging (MRI). Furthermore, the repeatability of US-VVI was determined. METHODS High frame rate US-VVI, which was repeated three times, and 4-D flow MRI data were acquired of the carotid bifurcation of 20 healthy volunteers. A semiautomatic registration of all US-VVI (n = 60) and 4-D flow MRI data was performed. The 2-D velocity vector fields were compared using cosine similarity and the root-mean-square error of the velocity magnitude. Temporal velocity profiles from the common carotid artery and internal carotid artery were compared. The interobserver and intraobserver agreement of US-VVI was determined for peak systolic velocities and end-diastolic velocities. RESULTS The registration was successful in 83% of cases. The 2-D velocity vector fields matched well between modalities, which is supported by high cosine similarities and low root-mean-square error of the velocity magnitudes. Temporal profiles showed high resemblance, with similarity indices of 0.87 and 0.80, and mean peak systolic velocity differences of 0.91 and 7.9 cm/s in the common carotid artery and internal carotid artery, respectively. Good repeatability of US-VVI was shown with a highest bias and standard deviation of 1.7 and 11.7 cm/s, respectively. CONCLUSION Good agreements were found of both vector angles and velocity magnitudes between US-VVI and 4-D flow MRI. Given the high spatiotemporal resolution, US-VVI enables the capture of small recirculating regions of short duration that are missed by 4-D flow MRI.
Collapse
Affiliation(s)
- Janna Ruisch
- Medical Ultrasound Imaging Centre, Department of Medical Imaging, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Vascular Surgery, Rijnstate Hospital, Arnhem, the Netherlands.
| | - Joosje M K de Bakker
- Medical Ultrasound Imaging Centre, Department of Medical Imaging, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Majorie van Helvert
- Department of Vascular Surgery, Rijnstate Hospital, Arnhem, the Netherlands; Multi-Modality Medical Imaging group, TechMed Centre, University of Twente, Enschede, the Netherlands; Physics of Fluids group, TechMed Centre, University of Twente, Enschede, the Netherlands
| | - Maxime J P Schoonbrood
- Medical Ultrasound Imaging Centre, Department of Medical Imaging, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Vascular Surgery, Rijnstate Hospital, Arnhem, the Netherlands
| | - Erik Groot Jebbink
- Department of Vascular Surgery, Rijnstate Hospital, Arnhem, the Netherlands; Multi-Modality Medical Imaging group, TechMed Centre, University of Twente, Enschede, the Netherlands
| | - Suzanne Holewijn
- Department of Vascular Surgery, Rijnstate Hospital, Arnhem, the Netherlands
| | - Michel M P J Reijnen
- Department of Vascular Surgery, Rijnstate Hospital, Arnhem, the Netherlands; Multi-Modality Medical Imaging group, TechMed Centre, University of Twente, Enschede, the Netherlands
| | - Chris L de Korte
- Medical Ultrasound Imaging Centre, Department of Medical Imaging, Radboud University Medical Centre, Nijmegen, the Netherlands; Physics of Fluids group, TechMed Centre, University of Twente, Enschede, the Netherlands
| | - Anne E C M Saris
- Medical Ultrasound Imaging Centre, Department of Medical Imaging, Radboud University Medical Centre, Nijmegen, the Netherlands
| |
Collapse
|
2
|
Haslund LE, Henriksen AC, Yiu BYS, Salari A, Traberg MS, Jørgensen LT, Tomov BG, Nielsen MB, Jensen JA. Precision of in vivo pressure gradient estimations using synthetic aperture ultrasound. ULTRASONICS 2025; 149:107574. [PMID: 39862616 DOI: 10.1016/j.ultras.2025.107574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 01/09/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025]
Abstract
Non-invasive estimation of pressure differences using 2D synthetic aperture ultrasound imaging offers a precise, low-cost, and risk-free diagnostic tool. Unlike invasive techniques, this preserves natural blood flow and avoids the limitations of devices that occupy lumen space. This paper evaluates a previously published estimator, modified to incorporate Singular Value Decomposition (SVD) echo-cancellation, using data from ten healthy volunteers and one patient. It is hypothesized that the estimator will enable precise pressure differences from the common carotid artery with a coefficient of variation of approximately 10% over a 10-second data acquisition period. Here, precision is essential to demonstrate the method's consistency and its ability to differentiate between healthy and diseased arteries at the earliest possible stage. Data are acquired using a GE-9L-D, 5.2 MHz linear transducer connected to a Vantage 256 research scanner. The estimator was applied to the left common carotid artery of ten healthy volunteers, with precision being evaluated over the recorded heart cycles by using the coefficient of variation. Eight out of ten individuals showed precision below 10%, whereas two individuals showed precision above 20%. The best precision was attained by subject_03 with a coefficient of variation of 4.64% (16.1 Pa) and the worst precision was attained by subject 09 with a coefficient of variation of 23.3% (30.2 Pa). The average range of pressure differences across volunteers (from maximum positive to maximum negative pressure difference) was 297 Pa when measured across a 14 mm streamline. The corresponding average coefficient of variation was found to be 9.95% (24.6 Pa). A comparison of peak systolic velocities between the experimental scanner and the reference scanner demonstrates a strong positive linear correlation (R2 = 0.76). The corresponding slope of the linear best fit is 0.95, indicating that the relationship between the two scanners is close to a one-to-one match, with the experimental scanner's measurements being slightly less than those of the reference scanner. Finally, data attained from a single patient example shows pressure differences ranging from -61.81 Pa to 1240.82 Pa with blood velocities as high as 1.73 m/s, which is significantly higher than seen in any of the healthy volunteers, supporting the likelihood of differentiating between stenosis grades in future studies. While this study is limited to 10 healthy volunteers and one patient, a different study design is needed to quantify the severity of stenosis and correlate it with pressure differences.
Collapse
Affiliation(s)
- Lars Emil Haslund
- The Center for Fast Ultrasound Imaging, Department of Health Technology. Technical University of Denmark, Ørsteds Plads Building 349, Lyngby, DK-2800, Denmark.
| | - Alexander Cuculiza Henriksen
- Department of Diagnostic Radiology, Copenhagen University Hospital, Copenhagen, DK-2100, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, DK-2100, Denmark
| | - Billy Yat Shun Yiu
- The Center for Fast Ultrasound Imaging, Department of Health Technology. Technical University of Denmark, Ørsteds Plads Building 349, Lyngby, DK-2800, Denmark
| | - Ali Salari
- The Center for Fast Ultrasound Imaging, Department of Health Technology. Technical University of Denmark, Ørsteds Plads Building 349, Lyngby, DK-2800, Denmark
| | - Marie Sand Traberg
- The Center for Fast Ultrasound Imaging, Department of Health Technology. Technical University of Denmark, Ørsteds Plads Building 349, Lyngby, DK-2800, Denmark
| | - Lasse Thurmann Jørgensen
- The Center for Fast Ultrasound Imaging, Department of Health Technology. Technical University of Denmark, Ørsteds Plads Building 349, Lyngby, DK-2800, Denmark
| | - Borislav Gueorguiev Tomov
- The Center for Fast Ultrasound Imaging, Department of Health Technology. Technical University of Denmark, Ørsteds Plads Building 349, Lyngby, DK-2800, Denmark
| | - Michael Bachmann Nielsen
- Department of Diagnostic Radiology, Copenhagen University Hospital, Copenhagen, DK-2100, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, DK-2100, Denmark
| | - Jørgen Arendt Jensen
- The Center for Fast Ultrasound Imaging, Department of Health Technology. Technical University of Denmark, Ørsteds Plads Building 349, Lyngby, DK-2800, Denmark
| |
Collapse
|
3
|
Wang Y, Chen W, He Y, Tang J. Angle-Independent Blood Flow Velocity Measurement With Ultrasound Speckle Decorrelation Analysis. IEEE TRANSACTIONS ON MEDICAL IMAGING 2025; 44:2283-2294. [PMID: 40030922 DOI: 10.1109/tmi.2025.3529033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Precise measurement of the blood flow velocity in major arteries is important for the assessment of circulation dysfunction but challenging when using a one-dimensional (1D) ultrasound transducer array. Current available ultrasound velocimetry methods are susceptible to the probe-to-vessel angle and require the vessels to be well-aligned within the imaging plane of the 1D transducer array. In this study, a novel angle-independent velocimetry (VT-vUS) based on the ultrasound speckle decorrelation analysis of the ultrasound field signal is proposed to measure the blood flow velocity using a conventional 1D ultrasound transducer array. We first introduced the principle and evaluated this technique with numerical simulation and phantom experiments, which demonstrated that VT-vUS can accurately reconstruct the velocity magnitude of blood flow at arbitrary probe-to-vessel angles for different preset flow speeds (up to ~2.5 m/s). Further, we applied VT-vUS to measure the pulsatile flow of the radial artery and carotid artery in a healthy volunteer. Results show that the absolute velocity profiles obtained with VT-vUS at different probe-to-vessel angles have high consistency and agree well with the absolute speed obtained with the color Doppler-corrected velocimetry throughout the cardiac cycle. With the ability to alleviate the dependency on probe-to-vessel angle, VT-vUS has the potential for circulation-related disease screening in clinical practices.
Collapse
|
4
|
Praesius SK, Jorgensen LT, Jensen JA. Real-Time Full-Volume Row-Column Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; PP:109-126. [PMID: 40030559 DOI: 10.1109/tuffc.2024.3509683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
An implementation of volumetric beamforming for row-column addressed arrays (RCAs) is proposed, with optimizations for Graphics Processing Units (GPUs). It is hypothesized that entire volumes can imaged in real time by a consumer-class GPU at an emission rate ≥12 kHz. A separable beamforming algorithm was used to reduce the number of calculations with a negligible impact on the image quality. Here, a single image was beamformed for each emission and then extrapolated to reproduce the volume, which resulted in 65 times fewer calculations per volume. Reusing computations and samples among adjacent pixels and frames reduced the amount of overhead and load instructions, increasing performance. A GPU beamformer, written in CUDA C++, was modified to implement the dual-stage imaging with optimizations. In-vivo rat kidney data was acquired using a 6 MHz Vermon 128+128 RCA probe and a Verasonics Vantage 256 scanner. The acquisition used 96 defocused emissions at a 12 kHz rate for a volume acquisition rate of 125 Hz. Processing time, including all pre-processing, was measured for an NVIDIA GeForce RTX 4090 GPU, and the resulting beamforming rate was 1440 volumes per second, greatly exceeding the real-time rate. Based on the GPU's floating-point throughput, this corresponds to 22% of the theoretically achievable rate. High efficiency was also shown for an RTX 2080 Ti and RTX 3090, both achieving real-time imaging. This shows that 3D imaging can be performed in real time with a setup similar to 2D imaging: Using a single graphics card, one scanner, and 128 transmit/receive channels.
Collapse
|
5
|
Wang Y, He Y, Chen W, Tan J, Tang J. Ultrasound Speckle Decorrelation Analysis-Based Velocimetry for 3D-Velocity-Components Measurement Using a 1D Transducer Array. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401173. [PMID: 39031549 PMCID: PMC11348193 DOI: 10.1002/advs.202401173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/07/2024] [Indexed: 07/22/2024]
Abstract
Ultrasound velocimetry has been widely used for blood flow imaging. However, the flow measurements are constrained to resolve the in-plane 2D flow components when using a 1D transducer array. In this work, an ultrasound speckle decorrelation analysis-based velocimetry (3C-vUS) is proposed for 3D velocity components measurement using a 1D transducer array. The 3C-vUS theory is first derived and validated with numerical simulations and phantom experiments. The in vivo testing results show that 3C-vUS can accurately measure the blood flow 3D-velocity-components of the human carotid artery at arbitrary probe-to-vessel angles throughout the cardiac cycle. With such capability, the 3C-vUS will alleviate the requirement of operators and promote disease screening for blood flow-related disorders.
Collapse
Affiliation(s)
- Yongchao Wang
- Department of Biomedical EngineeringGuangdong Provincial Key Laboratory of Advanced BiomaterialsSouthern University of Science and TechnologyShenZhenGuangdong518055China
| | - Yetao He
- Department of Biomedical EngineeringGuangdong Provincial Key Laboratory of Advanced BiomaterialsSouthern University of Science and TechnologyShenZhenGuangdong518055China
| | - Wenkai Chen
- Department of Biomedical EngineeringGuangdong Provincial Key Laboratory of Advanced BiomaterialsSouthern University of Science and TechnologyShenZhenGuangdong518055China
| | - Jiyong Tan
- Department of Biomedical EngineeringGuangdong Provincial Key Laboratory of Advanced BiomaterialsSouthern University of Science and TechnologyShenZhenGuangdong518055China
| | - Jianbo Tang
- Department of Biomedical EngineeringGuangdong Provincial Key Laboratory of Advanced BiomaterialsSouthern University of Science and TechnologyShenZhenGuangdong518055China
| |
Collapse
|
6
|
Petrescu A, Voigt JU. [Echocardiography with high frame rates in the clinical practice : Principles, applications and perspectives]. Herz 2023; 48:339-351. [PMID: 37530782 DOI: 10.1007/s00059-023-05199-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2023] [Indexed: 08/03/2023]
Abstract
Continuous developments in cardiovascular imaging, software and hardware have led to technological advancements that open new ways for assessing myocardial mechanics, hemodynamics, and function. Through new scan modalities, echocardiographic scanners can nowadays achieve very high frame rates up to 5000 frames s-1 which enables a wide variety of new applications, including shear wave elastography, ultrafast speckle tracking, the visualization of intracardiac blood flow and myocardial perfusion imaging. This review provides an overview of these advances and demonstrates possible applications and their potential added value in the clinical practice.
Collapse
Affiliation(s)
- Aniela Petrescu
- Abteilung für Kardiologie, Universitätsmedizin Mainz, Mainz, Deutschland
| | - Jens-Uwe Voigt
- Department of Cardiology, University Hospital Leuven, University of Leuven, Herestraat 49, 3000, Leuven, Belgien.
| |
Collapse
|
7
|
Hvid R, Stuart MB, Jensen JA, Traberg MS. Intra-Cardiac Flow from Geometry Prescribed Computational Fluid Dynamics: Comparison with Ultrasound Vector Flow Imaging. Cardiovasc Eng Technol 2023; 14:489-504. [PMID: 37322241 PMCID: PMC10465406 DOI: 10.1007/s13239-023-00666-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 03/12/2023] [Indexed: 06/17/2023]
Abstract
PURPOSE This paper investigates the accuracy of blood flow velocities simulated from a geometry prescribed computational fluid dynamics (CFD) pipeline by applying it to a dynamic heart phantom. The CFD flow patterns are compared to a direct flow measurement by ultrasound vector flow imaging (VFI). The hypothesis is that the simulated velocity magnitudes are within one standard deviation of the measured velocities. METHODS The CFD pipeline uses computed tomography angiography (CTA) images with 20 volumes per cardiac cycle as geometry input. Fluid domain movement is prescribed from volumetric image registration using the CTA image data. Inlet and outlet conditions are defined by the experimental setup. VFI is systematically measured in parallel planes, and compared to the corresponding planes in the simulated time dependent three dimensional fluid velocity field. RESULTS The measured VFI and simulated CFD have similar flow patterns when compared qualitatively. A quantitative comparison of the velocity magnitude is also performed at specific regions of interest. These are evaluated at 11 non-overlapping time bins and compared by linear regression giving R2 = 0.809, SD = 0.060 m/s, intercept = - 0.039 m/s, and slope = 1.09. Excluding an outlier at the inlet, the correspondence between CFD and VFI improves to: R2 = 0.823, SD = 0.048 m/s, intercept = -0.030 m/s, and slope = 1.01. CONCLUSION The direct comparison of flow patterns shows that the proposed CFD pipeline provide realistic flow patterns in a well-controlled experimental setup. The demanded accuracy is obtained close to the inlet and outlet, but not in locations far from these.
Collapse
Affiliation(s)
- Rasmus Hvid
- Department of Health Technology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Matthias Bo Stuart
- Department of Health Technology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Jørgen Arendt Jensen
- Department of Health Technology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Marie Sand Traberg
- Department of Health Technology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
8
|
Yan S, Shou J, Yu J, Song J, Mao Y, Xu K. Ultrafast Ultrasound Vector Doppler for Small Vasculature Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:613-624. [PMID: 37224370 DOI: 10.1109/tuffc.2023.3279452] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Ultrafast Doppler has been accepted as a novel modality for small vasculature imaging with high sensitivity, high spatiotemporal resolution, and high penetration. However, the conventional Doppler estimator adopted in studies of ultrafast ultrasound imaging is only sensitive to the velocity component along the beam direction and has angle-dependent limitations. Vector Doppler has been developed with the goal of angle-independent velocity estimation but is typically employed for relatively large vessels. In this study, combining multiangle vector Doppler strategy and ultrafast sequencing, ultrafast ultrasound vector Doppler (ultrafast UVD) is developed for small vasculature hemodynamic imaging. The validity of the technique is demonstrated through experiments on a rotational phantom, rat brain, human brain, and human spinal cord. A rat brain experiment shows that compared with the ultrasound localization microscopy (ULM) velocimetry, which is widely accepted as an accurate flow velocimetry technique, the average relative error (ARE) of the velocity magnitude estimated by ultrafast UVD is approximately 16.2%, with a root-mean-square error (RMSE) of the velocity direction of 26.7°. It is demonstrated that ultrafast UVD is a promising tool for accurate blood flow velocity measurement, especially for the organs, including brain and spinal cord with vasculature typically exhibiting tendential alignment of vascular trees.
Collapse
|
9
|
Jørgensen LT, Stuart MB, Jensen JA. Transverse oscillation tensor velocity imaging using a row-column addressed array: Experimental validation. ULTRASONICS 2023; 132:106962. [PMID: 36906961 DOI: 10.1016/j.ultras.2023.106962] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/02/2023] [Accepted: 02/13/2023] [Indexed: 05/29/2023]
Abstract
Tensor velocity imaging (TVI) performance with a row-column probe was assessed for constant flow in a straight vessel phantom and pulsatile flow in a carotid artery phantom. TVI, i.e., estimating the 3-D velocity vector as a function of time and spatial position, was performed using the transverse oscillation cross-correlation estimator, and the flow was acquired with a Vermon 128+128 row-column array probe connected to a Verasonics 256 research scanner. The emission sequence used 16 emissions per image, and a TVI volume rate of 234 Hz was obtained for a pulse repetition frequency (fprf) of 15 kHz. The TVI was validated by comparing estimates of the flow rate through several cross-sections with the flow rate set by the pump. For the constant 8 mL/s flow in the straight vessel phantom with relative estimator bias (RB) and standards deviation (RSD) was found in the range of -2.18% to 0.55% and 4.58% to 2.48% in measurements performed with an fprf of 15, 10, 8, and 5 kHz. The pulsatile flow in the carotid artery phantom the was set to an average flow rate of 2.44 mL/s, and the flow was acquired with an fprf of 15, 10, and 8 kHz. The pulsatile flow was estimated from two measurement sites: one at a straight section of the artery and one at the bifurcation. In the straight section, the estimator predicted the average flow rate with an RB value ranging from -7.99% to 0.10% and an RSD value ranging from 10.76% to 6.97%. At the bifurcation, RB and RSD values were between -7.47% to 2.02% and 14.46% to 8.89%. This demonstrates that an RCA with 128 receive elements can accurately capture the flow rate through any cross-section at a high sampling rate.
Collapse
Affiliation(s)
- Lasse Thurmann Jørgensen
- Center for Fast Ultrasound Imaging, Department of Health Technology, Technical University of Denmark, DK-2800 Lyngby, Denmark.
| | - Matthias Bo Stuart
- Center for Fast Ultrasound Imaging, Department of Health Technology, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Jørgen Arendt Jensen
- Center for Fast Ultrasound Imaging, Department of Health Technology, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
10
|
Daae AS, Wigen MS, Halvorsrød MI, Løvstakken L, Støylen A, Fadnes S. Retrospective Ultrasound Doppler Quantification Using a Single Acquisition in Healthy Adults. ULTRASOUND IN MEDICINE & BIOLOGY 2023:S0301-5629(23)00146-1. [PMID: 37301662 DOI: 10.1016/j.ultrasmedbio.2023.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 06/12/2023]
Abstract
OBJECTIVE Using an experimental tool for retrospective ultrasound Doppler quantification-with high temporal resolution and large spatial coverage-simultaneous flow and tissue measurements were obtained. We compared and validated these experimental values against conventional measurements to determine if the experimental acquisition produced trustworthy tissue and flow velocities. METHODS We included 21 healthy volunteers. The only exclusion criterion was the presence of an irregular heartbeat. Two ultrasound examinations were performed for each participant, one using conventional and one using experimental acquisition. The experimental acquisition used multiple plane wave emissions combined with electrocardiography stitching to obtain continuous data with over 3500 frames per second. With two recordings covering a biplane apical view of the left ventricle, we retrospectively extracted selected flow and tissue velocities. RESULTS Flow and tissue velocities were compared between the two acquisitions. Statistical testing showed a small but significant difference. We also exemplified the possibility of extracting spectral tissue Doppler from different sample volumes in the myocardium within the imaging sector, showing a decrease in the velocities from the base to the apex. CONCLUSION This study demonstrates the feasibility of simultaneous, retrospective spectral and color Doppler of both tissue and flow from an experimental acquisition covering a full sector width. The measurements were significantly different between the two acquisitions but were still comparable, as the biases were small compared to clinical practice, and the two acquisitions were not done simultaneously. The experimental acquisition also enabled the study of deformation by simultaneous spectral velocity traces from all regions of the image sector.
Collapse
Affiliation(s)
- Annichen Søyland Daae
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway; Department of Cardiology, St. Olav Hospital/Trondheim University Hospital, Trondheim, Norway.
| | - Morten Smedsrud Wigen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Marlene Iversen Halvorsrød
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway; Department of Cardiology, St. Olav Hospital/Trondheim University Hospital, Trondheim, Norway
| | - Lasse Løvstakken
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Asbjørn Støylen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway; Department of Cardiology, St. Olav Hospital/Trondheim University Hospital, Trondheim, Norway
| | - Solveig Fadnes
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway; Møre og Romsdal Hospital Trust, Women's Health, Child and Adolescent Clinic, Ålesund Hospital, Ålesund, Norway
| |
Collapse
|
11
|
Ekroll IK, Saris AECM, Avdal J. FLUST: A fast, open source framework for ultrasound blood flow simulations. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 238:107604. [PMID: 37220679 DOI: 10.1016/j.cmpb.2023.107604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/08/2023] [Accepted: 05/14/2023] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND OBJECTIVE Ultrasound based blood velocity estimation is a continuously developing frontier, where the vast number of possible acquisition setups and velocity estimators makes it challenging to assess which combination is better suited for a given imaging application. FLUST, the Flow-Line based Ultrasound Simulation Tool, may be used to address this challenge, providing a common platform for evaluation of velocity estimation schemes on in silico data. However, the FLUST approach had some limitations in its original form, including reduced robustness for phase sensitive setups and the need for manual selection of integrity parameters. In addition, implementation of the technique and therefore also documentation of signal integrity was left to potential users of the approach. METHODS In this work, several improvements to the FLUST technique are proposed and investigated, and a robust, open source simulation framework developed. The software supports several transducer types and acquisition setups, in addition to a range of different flow phantoms. The main goal of this work is to offer a robust, computationally cheap and user-friendly framework to simulate ultrasound data from stationary blood velocity fields and thereby facilitate design and evaluation of estimation schemes, including acquisition design, velocity estimation and other post-processing steps. RESULTS The technical improvements proposed in this work resulted in reduced interpolation errors, reduced variability in signal power, and also automatic selection of spatial and temporal discretization parameters. Results are presented illustrating the challenges and the effectiveness of the solutions. The integrity of the improved simulation framework is validated in an extensive study, with results indicating that speckle statistics, spatial and temporal correlation and frequency content all correspond well with theoretical predictions. Finally, an illustrative example shows how FLUST may be used throughout the design and optimization process of a velocity estimator. CONCLUSIONS The FLUST framework is available as a part of the UltraSound ToolBox (USTB), and the results in this paper demonstrate that it can be used as an efficient and reliable tool for the development and validation of ultrasound-based velocity estimation schemes.
Collapse
Affiliation(s)
- Ingvild Kinn Ekroll
- CIUS and the Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Norway.
| | - Anne E C M Saris
- Medical Ultrasound Imaging Center, Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jørgen Avdal
- CIUS and the Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Norway; Department of Health Research, SINTEF Digital, Norway
| |
Collapse
|
12
|
Liang S, Lu M. Advanced Fourier migration for Plane-Wave vector flow imaging. ULTRASONICS 2023; 132:107001. [PMID: 37094522 DOI: 10.1016/j.ultras.2023.107001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/20/2023] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
Ultrafast ultrasound imaging modalities have been studied extensively in the ultrasound community. It breaks the compromise between the frame rate and the region of interest by imaging the whole medium with wide unfocused waves. Continuously available data allow monitoring fast transient dynamics at hundreds to thousands of frames per second. This feature enables a more accurate and robust velocity estimation in vector flow imaging (VFI). On the other hand, the huge amount of data and real-time processing demands are still challenging in VFI. A solution is to provide a more efficient beamforming approach with smaller computation complexity than the conventional time-domain beamformer like delay-and-sum (DAS). Fourier-domain beamformers are shown to be more computationally efficient and can provide equally good image quality as DAS. However, previous studies generally focus on B-mode imaging. In this study, we propose a new framework for VFI which is based on two advanced Fourier migration methods, namely, slant stack migration (SSM) and ultrasound Fourier slice beamform (UFSB). By carefully modifying the beamforming parameters, we successfully apply the cross-beam technique within the Fourier beamformers. The proposed Fourier-based VFI is validated in simulation studies, in vitro, and in vivo experiments. The velocity estimation is evaluated via bias and standard deviation and the results are compared with conventional time-domain VFI using the DAS beamformer. In the simulation, the bias is 6.4%, -6.2%, and 5.7%, and the standard deviation is 4.3%, 2.4%, and 3.9% for DAS, UFSB, and SSM, respectively. In vitro studies reveal a bias of 4.5%, -5.3%, and 4.3% and a standard deviation of 3.5%, 1.3%, and 1.6% from DAS, UFSB, and SSM, respectively. The in vivo imaging of the basilic vein and femoral bifurcation also generate similar results using all three methods. With the proposed Fourier beamformers, the computation time can be shortened by up to 9 times and 14 times using UFSB and SSM.
Collapse
Affiliation(s)
- Siyi Liang
- United Imaging Research Institute of Innovative Medical Equipment, Shenzhen, China.
| | - Minhua Lu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China.
| |
Collapse
|
13
|
Kawaji T, Shiomi H, Bao B, Hojo S, Tezuka Y, Yaku H, Nakatsuma K, Matsuda S, Kaneda K, Kato M, Yokomatsu T, Miki S. Intracardiac energy inefficiency during atrial fibrillation rhythm with heart failure: Assessment by echo-vector flow mapping. Int J Cardiol 2023; 379:136-142. [PMID: 36907447 DOI: 10.1016/j.ijcard.2023.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/09/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023]
Abstract
AIMS Intracardiac dynamics during atrial fibrillation(AF) complicated by heart failure(HF) are not fully understood. The aim of this study was to evaluate the impact of intracardiac dynamics assessed by echo-vector flow mapping on AF complicated by HF. METHODS AND RESULTS We enrolled 76 AF patients receiving sinus restoration therapy and assessed energy loss(EL) by echo-vector flow mapping during both AF rhythm and sinus rhythm. Patients were divided into 2 groups according to serum NT-proBNP level: high NT-proBNP group(≥1800 pg/ml during AF rhythm: N = 19), and low NT-proBNP group(N = 57). Outcome measures were average ELs/stroke volume(SV) in left ventricle(LV) and left atrium(LA). Average EL/SVs during AF rhythm in the LV and LA were significantly larger in the high NT-proBNP group than the low NT-proBNP group(54.2 mE/m·L versus 41.2 mE/m·L, P = 0.02; 3.2 mE/m·L versus 1.9 mE/m·L, P = 0.01). The significantly larger EL/SV in the high NT-proBNP group was recorded for maximum EL/SVs. In patients with high NT-proBNP, large vortex formation with extreme EL was detected in the LV and LA during the diastolic phase. After sinus restoration, the average decrease of EL/SV in the LV and LA was larger in the high NT-proBNP group(-21.4 mE/m·L versus +2.6 mE/m·L, P = 0.04; -1.6 mE/m·L versus -0.3 mE/m·L, P = 0.02). Average EL/SV during sinus rhythm did not significantly differ between the high and low NT-proBNP groups in the LV and LA. CONCLUSIONS High EL during AF rhythm as intracardiac energy inefficiency was associated with high serum NT-proBNP levels and improved after sinus restoration.
Collapse
Affiliation(s)
- Tetsuma Kawaji
- Department of Cardiology, Mitsubishi Kyoto Hospital, Kyoto, Japan; Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Hiroki Shiomi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Bingyuan Bao
- Department of Cardiology, Mitsubishi Kyoto Hospital, Kyoto, Japan
| | - Shun Hojo
- Department of Cardiology, Mitsubishi Kyoto Hospital, Kyoto, Japan
| | - Yuji Tezuka
- Department of Cardiology, Mitsubishi Kyoto Hospital, Kyoto, Japan
| | - Hidenori Yaku
- Department of Cardiology, Mitsubishi Kyoto Hospital, Kyoto, Japan
| | - Kenji Nakatsuma
- Department of Cardiology, Mitsubishi Kyoto Hospital, Kyoto, Japan
| | - Shintaro Matsuda
- Department of Cardiology, Mitsubishi Kyoto Hospital, Kyoto, Japan
| | - Kazuhisa Kaneda
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masashi Kato
- Department of Cardiology, Mitsubishi Kyoto Hospital, Kyoto, Japan
| | | | - Shinji Miki
- Department of Cardiology, Mitsubishi Kyoto Hospital, Kyoto, Japan
| |
Collapse
|
14
|
Sørensen K, Fadnes S, Mertens L, Henry M, Segers P, Løvstakken L, Nyrnes SA. Assessment of Early Diastolic Intraventricular Pressure Difference in Children by Blood Speckle-Tracking Echocardiography. J Am Soc Echocardiogr 2023; 36:523-532.e3. [PMID: 36632939 DOI: 10.1016/j.echo.2022.12.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/24/2022] [Accepted: 12/30/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND The lack of reliable echocardiographic techniques to assess diastolic function in children is a major clinical limitation. Our aim was to develop and validate the intraventricular pressure difference (IVPD) calculation using blood speckle-tracking (BST) and investigate the method's potential role in the assessment of diastolic function in children. METHODS Blood speckle-tracking allows two-dimensional angle-independent blood flow velocity estimation. Blood speckle-tracking images of left ventricular (LV) inflow from the apical 4-chamber view in 138 controls, 10 patients with dilated cardiomyopathies (DCMs), and 21 patients with hypertrophic cardiomyopathies (HCMs) <18 years of age were analyzed to study LV IVPD during early diastole. Reproducibility of the IVPD analysis was assessed, IVPD estimates from BST and color M mode were compared, and the validity of the BST-based IVPD calculations was tested in a computer flow model. RESULTS Mean IVPD was significantly higher in controls (-2.28 ± 0.62 mm Hg) compared with in DCM (-1.21 ± 0.39 mm Hg, P < .001) and HCM (-1.57 ± 0.47 mm Hg, P < .001) patients. Feasibility was 88.3% in controls, 80% in DCM patients, and 90.4% in HCM patients. The peak relative negative pressure occurred earlier at the apex than at the base and preceded the peak E-wave LV filling velocity, indicating that it represents diastolic suction. Intraclass correlation coefficients for intra- and interobserver variability were 0.908 and 0.702, respectively. There was a nonsignificant mean difference of 0.15 mm Hg between IVPD from BST and color M mode. Estimation from two-dimensional velocities revealed a difference in peak IVPD of 0.12 mm Hg (6.6%) when simulated in a three-dimensional fluid mechanics model. CONCLUSIONS Intraventricular pressure difference calculation from BST is highly feasible and provides information on diastolic suction and early filling in children with heart disease. Intraventricular pressure difference was significantly reduced in children with DCM and HCM compared with controls, indicating reduced early diastolic suction in these patient groups.
Collapse
Affiliation(s)
- Kristian Sørensen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway; Division of Ålesund Hospital, Department of Pediatrics, Møre and Romsdal Hospital Trust, Ålesund, Norway.
| | - Solveig Fadnes
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway; Division of Ålesund Hospital, Department of Pediatrics, Møre and Romsdal Hospital Trust, Ålesund, Norway
| | - Luc Mertens
- Department of Cardiology, the Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Matthew Henry
- Department of Cardiology, the Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Patrick Segers
- Department of Electronics and Information Systems, IBiTech-bioMMeda, Ghent University, Ghent, Belgium
| | - Lasse Løvstakken
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Siri Ann Nyrnes
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway; Children's Clinic, St. Olav`s Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
15
|
Gill H, Fernandes J, Chehab O, Prendergast B, Redwood S, Chiribiri A, Nordsletten D, Rajani R, Lamata P. Evaluation of aortic stenosis: From Bernoulli and Doppler to Navier-Stokes. Trends Cardiovasc Med 2023; 33:32-43. [PMID: 34920129 DOI: 10.1016/j.tcm.2021.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 02/01/2023]
Abstract
Uni-dimensional Doppler echocardiography data provide the mainstay of quantative assessment of aortic stenosis, with the transvalvular pressure drop a key indicator of haemodynamic burden. Sophisticated methods of obtaining velocity data, combined with improved computational analysis, are facilitating increasingly robust and reproducible measurement. Imaging modalities which permit acquisition of three-dimensional blood velocity vector fields enable angle-independent valve interrogation and calculation of enhanced measures of the transvalvular pressure drop. This manuscript clarifies the fundamental principles of physics that underpin the evaluation of aortic stenosis and explores modern techniques that may provide more accurate means to grade aortic stenosis and inform appropriate management.
Collapse
Affiliation(s)
- Harminder Gill
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
| | - Joao Fernandes
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Omar Chehab
- Cardiology Department, Guy's and St. Thomas's Hospital NHS Foundation Trust, London, UK
| | - Bernard Prendergast
- Cardiology Department, Guy's and St. Thomas's Hospital NHS Foundation Trust, London, UK
| | - Simon Redwood
- Cardiology Department, Guy's and St. Thomas's Hospital NHS Foundation Trust, London, UK
| | - Amedeo Chiribiri
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - David Nordsletten
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK; Department of Surgery and Biomedical Engineering, University of Michigan, 2800 Plymouth Rd, 48109, Ann Arbor, MI, USA
| | - Ronak Rajani
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK; Cardiology Department, Guy's and St. Thomas's Hospital NHS Foundation Trust, London, UK
| | - Pablo Lamata
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|
16
|
Blood speckle imaging compared with conventional Doppler ultrasound for transvalvular pressure drop estimation in an aortic flow phantom. Cardiovasc Ultrasound 2022; 20:18. [PMID: 35840940 PMCID: PMC9287947 DOI: 10.1186/s12947-022-00286-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transvalvular pressure drops are assessed using Doppler echocardiography for the diagnosis of heart valve disease. However, this method is highly user-dependent and may overestimate transvalvular pressure drops by up to 54%. This work aimed to assess transvalvular pressure drops using velocity fields derived from blood speckle imaging (BSI), as a potential alternative to Doppler. METHODS: A silicone 3D-printed aortic valve model, segmented from a healthy CT scan, was placed within a silicone tube. A CardioFlow 5000MR flow pump was used to circulate blood mimicking fluid to create eight different stenotic conditions. Eight PendoTech pressure sensors were embedded along the tube wall to record ground-truth pressures (10 kHz). The simplified Bernoulli equation with measured probe angle correction was used to estimate pressure drop from maximum velocity values acquired across the valve using Doppler and BSI with a GE Vivid E95 ultrasound machine and 6S-D cardiac phased array transducer. RESULTS There were no significant differences between pressure drops estimated by Doppler, BSI and ground-truth at the lowest stenotic condition (10.4 ± 1.76, 10.3 ± 1.63 vs. 10.5 ± 1.00 mmHg, respectively; p > 0.05). Significant differences were observed between the pressure drops estimated by the three methods at the greatest stenotic condition (26.4 ± 1.52, 14.5 ± 2.14 vs. 20.9 ± 1.92 mmHg for Doppler, BSI and ground-truth, respectively; p < 0.05). Across all conditions, Doppler overestimated pressure drop (Bias = 3.92 mmHg), while BSI underestimated pressure drop (Bias = -3.31 mmHg). CONCLUSIONS BSI accurately estimated pressure drops only up to 10.5 mmHg in controlled phantom conditions of low stenotic burden. Doppler overestimated pressure drops of 20.9 mmHg. Although BSI offers a number of theoretical advantages to conventional Doppler echocardiography, further refinements and clinical studies are required with BSI before it can be used to improve transvalvular pressure drop estimation in the clinical evaluation of aortic stenosis.
Collapse
|
17
|
Comparison of ultrasound vector flow imaging and CFD simulations with PIV measurements of flow in a left ventricular outflow trackt phantom - Implications for clinical use and in silico studies. Comput Biol Med 2022; 146:105358. [DOI: 10.1016/j.compbiomed.2022.105358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/10/2022] [Accepted: 02/25/2022] [Indexed: 11/21/2022]
|
18
|
Strachinaru M, Voorneveld J, Keijzer LBH, Bowen DJ, Mutluer FO, Cate FT, de Jong N, Vos HJ, Bosch JG, van den Bosch AE. Left ventricular high frame rate echo-particle image velocimetry: clinical application and comparison with conventional imaging. Cardiovasc Ultrasound 2022; 20:11. [PMID: 35473581 PMCID: PMC9040345 DOI: 10.1186/s12947-022-00283-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Background Echo-Particle Image Velocimetry (echoPIV) tracks speckle patterns from ultrasound contrast agent(UCA), being less angle-sensitive than colour Doppler. High frame rate (HFR) echoPIV enables tracking of high velocity flow in the left ventricle (LV). We aimed to demonstrate the potential clinical use of HFR echoPIV and investigate the feasibility and accuracy in patients. Methods Nineteen patients admitted for heart failure were included. HFR contrast images were acquired from an apical long axis view (ALAX), using a fully-programmable ultrasound system. A clinical UCA was continuously infused with a dedicated pump. Additionally, echocardiographic images were obtained using a clinical system, including LV contrast-enhanced images and pulsed-wave (PW) Doppler of the LV inflow and outflow in ALAX. 11 patients underwent CMR and 4 cardiac CT as clinically indicated. These CMR and CT images were used as reference. In 10 patients with good echoPIV tracking and reference imaging, the intracavitary flow was compared between echoPIV, conventional and UCA echocardiography. Results EchoPIV tracking quality was good in 12/19 (63%), moderate in 2/19 (10%) and poor in 5/19 (26%) subjects. EchoPIV could determine inflow velocity in 17/19 (89%), and outflow in 14/19 (74%) patients. The correlation of echoPIV and PW Doppler was good for the inflow (R2 = 0.77 to PW peak; R2 = 0.80 PW mean velocity) and moderate for the outflow (R2 = 0.54 to PW peak; R2 = 0.44 to PW mean velocity), with a tendency for echoPIV to underestimate PW velocities. In selected patients, echoPIV was able in a single acquisition to demonstrate flow patterns which required multiple interrogations with classical echocardiography. Those flow patterns could also be linked to anatomical abnormalities as seen in CMR or CT. Conclusion HFR echoPIV tracks multidirectional and complex flow patterns which are unapparent with conventional echocardiography, while having comparable feasibility. EchoPIV tends to underestimate flow velocities as compared to PW Doppler. It has the potential to provide in one acquisition all the functional information obtained by conventional imaging, overcoming the angle dependency of Doppler and low frame rate of classical contrast imaging. Supplementary Information The online version contains supplementary material available at 10.1186/s12947-022-00283-4.
Collapse
Affiliation(s)
- Mihai Strachinaru
- Department of Biomedical Engineering, Erasmus MC, Rotterdam, Netherlands. .,Department of Cardiology, Erasmus MC, Rotterdam, Netherlands.
| | - Jason Voorneveld
- Department of Biomedical Engineering, Erasmus MC, Rotterdam, Netherlands
| | - Lana B H Keijzer
- Department of Medical Physics, Spaarne Gasthuis, Haarlem, Netherlands.,Amsterdam UMC, Department of Radiology and Nuclear Medicine, Amsterdam, Netherlands
| | - Daniel J Bowen
- Department of Cardiology, Erasmus MC, Rotterdam, Netherlands
| | - Ferit O Mutluer
- Department of Cardiology, Erasmus MC, Rotterdam, Netherlands.,Yeditepe University Hospital, Department of Cardiology, Istanbul, Turkey
| | | | - Nico de Jong
- Department of Biomedical Engineering, Erasmus MC, Rotterdam, Netherlands
| | - Hendrik J Vos
- Department of Biomedical Engineering, Erasmus MC, Rotterdam, Netherlands
| | - Johan G Bosch
- Department of Biomedical Engineering, Erasmus MC, Rotterdam, Netherlands
| | | |
Collapse
|
19
|
Jorgensen LT, Traberg MS, Stuart MB, Jensen JA. Performance Assessment of Row-Column Transverse Oscillation Tensor Velocity Imaging Using Computational Fluid Dynamics Simulation of Carotid Bifurcation Flow. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1230-1242. [PMID: 35133963 DOI: 10.1109/tuffc.2022.3150106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this work, the accuracy of row-column tensor velocity imaging (TVI), i.e., 3-D vector flow imaging (VFI) in 3-D space over time, is quantified on a complex, clinically relevant flow. The quantification is achieved by transferring the flow simulated using computational fluid dynamics (CFD) to a Field II simulation environment, and this allows for a direct comparison between the actual and estimated velocities. The carotid bifurcation flow simulations were performed with a peak inlet velocity of 80 cm/s, nonrigid vessel walls, and a flow cycle duration of 1.2 s. The flow was simulated from two observation angles, and it was acquired using a 3-MHz 62+62 row-column addressed array (RCA) at a pulse repetition frequency ( fprf ) of 10 and 20 kHz. The tensor velocities were obtained at a frame rate of 208.3 Hz, at fprf = 10 kHz , and the results from two velocity estimators were compared. The two estimators were the directional transverse oscillation (TO) cross correlation estimator and the proposed autocorrelation estimator. Linear regression between the actual and estimated velocity components yielded, for the cross correlation estimator, an R 2 value in the range of 0.89-0.91, 0.46-0.77, and 0.91-0.97 for the x -, y -, and z -components, and 0.87-0.89, 0.40-0.83, and 0.91-0.96 when using the autocorrelation estimator. The results demonstrate that an RCA can, with just 62 receive channels, measure complex 3-D flow fields at a high volume rate.
Collapse
|
20
|
Riemer K, Rowland EM, Broughton-Venner J, Leow CH, Tang M, Weinberg PD. Contrast Agent-Free Assessment of Blood Flow and Wall Shear Stress in the Rabbit Aorta using Ultrasound Image Velocimetry. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:437-449. [PMID: 34876322 PMCID: PMC8843088 DOI: 10.1016/j.ultrasmedbio.2021.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 10/07/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
Blood flow velocity and wall shear stress (WSS) influence and are influenced by vascular disease. Their measurement is consequently useful in the laboratory and clinic. Contrast-enhanced ultrasound image velocimetry (UIV) can estimate them accurately but the need to inject contrast agents limits utility. Singular value decomposition and high-frame-rate imaging may render contrast agents dispensable. Here we determined whether contrast agent-free UIV can measure flow and WSS. In simulation, accurate measurements were achieved with a signal-to-noise ratio of 13.5 dB or higher. Signal intensity in the rabbit aorta increased monotonically with mechanical index; it was lowest during stagnant flow and uneven across the vessel. In vivo measurements with contrast-free and contrast-enhanced UIV differed by 4.4% and 1.9% for velocity magnitude and angle and by 9.47% for WSS. Bland-Altman analysis of waveforms revealed good agreement between contrast-free and contrast-enhanced UIV. In five rabbits, the root-mean-square errors were as low as 0.022 m/s (0.81%) and 0.11 Pa (1.7%). This study indicates that with an optimised protocol, UIV can assess flow and WSS without contrast agents. Unlike contrast-enhanced UIV, contrast-free UIV could be routinely employed.
Collapse
Affiliation(s)
- Kai Riemer
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Ethan M Rowland
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | | | - Chee Hau Leow
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Mengxing Tang
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - P D Weinberg
- Department of Bioengineering, Imperial College London, London, United Kingdom.
| |
Collapse
|
21
|
Daae AS, Wigen MS, Fadnes S, Løvstakken L, Støylen A. Intraventricular Vector Flow Imaging with Blood Speckle Tracking in Adults: Feasibility, Normal Physiology and Mechanisms in Healthy Volunteers. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:3501-3513. [PMID: 34620522 DOI: 10.1016/j.ultrasmedbio.2021.08.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 08/24/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
This study examines the feasibility of blood speckle tracking for vector flow imaging in healthy adults and describes the physiologic flow pattern and vortex formation in relation to the wall motion in the left ventricle. The study included 21 healthy volunteers and quantified and visualized flow patterns with high temporal resolution down to a depth of 10-12 cm without the use of contrast agents. Intraventricular flow seems to originate during the isovolumetric relaxation with a propagation of blood from base to apex. With the E-wave, rapid inflow and vortex formation occurred on both sides of the valve basally. During diastasis the flow gathers in a large vortex before the pattern from the E-wave repeats during the A-wave. In isovolumetric contraction, the flow again gathers in a large vortex that seems to facilitate the flow out in the aorta during systole. No signs of a persistent systolic vortex were visualized. The geometry of the left ventricle and the movement of the AV-plane is important in creating vortices that are favorable for the blood flow and facilitate outflow. The quantitative measurements are in concordance with these findings, but the clinical interpretation must be evaluated in future clinical studies.
Collapse
Affiliation(s)
- Annichen Søyland Daae
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway; Department of Cardiology, St. Olav Hospital/Trondheim University Hospital, Trondheim, Norway.
| | - Morten Smedsrud Wigen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Solveig Fadnes
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway; Møre og Romsdal Hospital Trust, Women's Health, Child and Adolescent Clinic, Ålesund Hospital, Ålesund, Norway
| | - Lasse Løvstakken
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Asbjørn Støylen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway; Department of Cardiology, St. Olav Hospital/Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
22
|
Rossi S, Ramalli A, Tortoli P. On the Depth-Dependent Accuracy of Plane-Wave-Based Vector Velocity Measurements With Linear Arrays. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2707-2715. [PMID: 33909562 DOI: 10.1109/tuffc.2021.3076284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
High-frame-rate vector Doppler methods are used to measure blood velocities over large 2-D regions, but their accuracy is often estimated over a short range of depths. This article thoroughly examines the dependence of velocity measurement accuracy on the target position. Simulations were carried out on flat and parabolic flow profiles, for different Doppler angles, and considering a 2-D vector flow imaging (2-D VFI) method based on plane wave transmission and speckle tracking. The results were also compared with those obtained by the reference spectral Doppler (SD) method. Although, as expected, the bias and standard deviation generally tend to worsen at increasing depths, the measurements also show the following. First, the errors are much lower for the flat profile (from ≈ -4 ± 3% at 20 mm to ≈ -17 ± 4% at 100 mm) than for the parabolic profile (from ≈ -4 ± 3% to ≈ -38 ±%). Second, only part of the relative estimation error is related to the inherent low resolution of the 2-D VFI method. For example, even for SD, the error bias increases (on average) from -0.7% (20 mm) to -17% (60 mm) up to -26% (100 mm). Third, conversely, the beam divergence associated with the linear array acoustic lens was found to have a great impact on the velocity measurements. By simply removing such lens, the average bias for 2-D VFI at 60 and 100 mm dropped down to -9.4% and -19.4%, respectively. In conclusion, the results indicate that the transmission beam broadening on the elevation plane, which is not limited by reception dynamic focusing, is the main cause of velocity underestimation in the presence of high spatial gradients.
Collapse
|
23
|
Voorneveld J, Keijzer LBH, Strachinaru M, Bowen DJ, Mutluer FO, van der Steen AFW, Cate FJT, de Jong N, Vos HJ, van den Bosch AE, Bosch JG. Optimization of Microbubble Concentration and Acoustic Pressure for Left Ventricular High-Frame-Rate EchoPIV in Patients. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2432-2443. [PMID: 33720832 DOI: 10.1109/tuffc.2021.3066082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
High-frame-rate (HFR) echo-particle image velocimetry (echoPIV) is a promising tool for measuring intracardiac blood flow dynamics. In this study, we investigate the optimal ultrasound contrast agent (UCA: SonoVue) infusion rate and acoustic output to use for HFR echoPIV (PRF = 4900 Hz) in the left ventricle (LV) of patients. Three infusion rates (0.3, 0.6, and 1.2 ml/min) and five acoustic output amplitudes (by varying transmit voltage: 5, 10, 15, 20, and 30 V-corresponding to mechanical indices of 0.01, 0.02, 0.03, 0.04, and 0.06 at 60-mm depth) were tested in 20 patients admitted for symptoms of heart failure. We assess the accuracy of HFR echoPIV against pulsed-wave Doppler acquisitions obtained for mitral inflow and aortic outflow. In terms of image quality, the 1.2-ml/min infusion rate provided the highest contrast-to-background ratio (CBR) (3-dB improvement over 0.3 ml/min). The highest acoustic output tested resulted in the lowest CBR. Increased acoustic output also resulted in increased microbubble disruption. For the echoPIV results, the 1.2-ml/min infusion rate provided the best vector quality and accuracy; mid-range acoustic outputs (corresponding to 15-20-V transmit voltages) provided the best agreement with the pulsed-wave Doppler. Overall, the highest infusion rate (1.2 ml/min) and mid-range acoustic output amplitudes provided the best image quality and echoPIV results.
Collapse
|
24
|
Mawad W, Løvstakken L, Fadnes S, Grønli T, Segers P, Mertens L, Nyrnes SA. Right Ventricular Flow Dynamics in Dilated Right Ventricles: Energy Loss Estimation Based on Blood Speckle Tracking Echocardiography-A Pilot Study in Children. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:1514-1527. [PMID: 33685744 DOI: 10.1016/j.ultrasmedbio.2021.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/24/2020] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
Using blood speckle tracking (BST) based on high-frame-rate echocardiography (HFRE), we compared right ventricle (RV) flow dynamics in children with atrial septal defects (ASDs) and repaired tetralogy of Fallot (rTOF). Fifty-seven children with rTOF with severe pulmonary insufficiency (PI) (n = 21), large ASDs (n = 11) and healthy controls (CTL, n = 25) were included. Using a flow phantom, we studied the effects of imaging plane and smoothing parameters on 2-D energy loss (EL). RV diastolic EL was similar in ASD and rTOF, but both were greater than in CTL. Locations of high EL were similar in all groups in systole, occurring in the RV outflow tract and around the tricuspid valve leaflets in early diastole. An additional apical early diastolic area of EL was noted in rTOF, corresponding to colliding tricuspid inflow and PI. The flow phantom revealed that EL varied with imaging plane and smoothing settings but that the EL trend was preserved if kept consistent.
Collapse
Affiliation(s)
- Wadi Mawad
- The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Paediatrics, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada.
| | - Lasse Løvstakken
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Solveig Fadnes
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Thomas Grønli
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | - Luc Mertens
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Siri Ann Nyrnes
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Children's Clinic, St. Olav's University Hospital, Trondheim, Norway
| |
Collapse
|
25
|
Ramalli A, Boni E, Giangrossi C, Mattesini P, Dallai A, Liebgott H, Tortoli P. Real-Time 3-D Spectral Doppler Analysis With a Sparse Spiral Array. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:1742-1751. [PMID: 33444135 DOI: 10.1109/tuffc.2021.3051628] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
2-D sparse arrays may push the development of low-cost 3-D systems, not needing to control thousands of elements by expensive application-specific integrated circuits (ASICs). However, there is still some concern about their suitability in applications, such as Doppler investigation, which inherently involve poor signal-to-noise ratios (SNRs). In this article, a novel real-time 3-D pulsed-wave (PW) Doppler system, based on a 256-element 2-D spiral array, is presented. Coded transmission (TX) and matched filtering were implemented to improve the system SNR. Standard sonograms as well as multigate spectral Doppler (MSD) profiles, along lines that can be arbitrarily located in different planes, are presented. The performance of the system was assessed quantitatively on experimental data obtained from a straight tube flow phantom. An SNR increase of 11.4 dB was measured by transmitting linear chirps instead of standard sinusoidal bursts. For a qualitative assessment of the system performance in more realistic conditions, an anthropomorphic phantom of the carotid arteries was used. Finally, real-time B-mode and MSD images were obtained from healthy volunteers.
Collapse
|
26
|
Jorgensen LT, Schou M, Stuart MB, Jensen JA. Tensor Velocity Imaging With Motion Correction. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:1676-1686. [PMID: 33347407 DOI: 10.1109/tuffc.2020.3046101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This article presents a motion compensation procedure that significantly improves the accuracy of synthetic aperture tensor velocity estimates for row-column arrays. The proposed motion compensation scheme reduces motion effects by moving the image coordinates with the velocity field during summation of low-resolution volumes. The velocity field is estimated using a transverse oscillation cross-correlation estimator, and each image coordinate's local tensor velocity is determined by upsampling the field using spline interpolation. The motion compensation procedure is validated using Field II simulations and flow measurements acquired using a 3-MHz row-column addressed probe and the research scanner SARUS. For a peak velocity of 25 cm/s, a pulse repetition frequency of 2 kHz, and a beam-to-flow angle of 60°, the proposed motion compensation procedure was able to reduce the relative bias from -27.0% to -9.4% and the standard deviation from 8.6% to 8.1%. In simulations performed with a pulse repetition frequency of 10 kHz, the proposed method reduces the bias in all cases with beam-to-flow angles of 60° and 75° and peak velocities between 10 and 150 cm/s.
Collapse
|
27
|
Ekroll IK, Perrot V, Liebgott H, Avdal J. Tapered Vector Doppler for Improved Quantification of Low Velocity Blood Flow. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:1017-1031. [PMID: 33021928 DOI: 10.1109/tuffc.2020.3028874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A new vector velocity estimation scheme is developed, termed tapered vector Doppler (TVD), aiming to improve the accuracy of low velocity flow estimation. This is done by assessing the effects of singular value decomposition (SVD) and finite impulse response (FIR) filters and designing an estimator which accounts for signal loss due to filtering. Synthetic data created using a combination of in vivo recordings and flow simulations were used to investigate scenarios with low blood flow, in combination with true clutter motion. Using this approach, the accuracy and precision of TVD was investigated for a range of clutter-to-blood and signal-to-noise ratios. The results indicated that for the investigated carotid application and setup, the SVD filter performed as a frequency-based filter. For both SVD and FIR filters, suppression of the clutter signal resulted in large bias and variance in the estimated blood velocity magnitude and direction close to the vessel walls. Application of the proposed tapering technique yielded significant improvement in the accuracy and precision of near-wall vector velocity measurements, compared to non-TVD and weighted least squares approaches. In synthetic data, for a blood SNR of 5 dB, and in a near-wall region where the average blood velocity was 9 cm/s, the use of tapering reduced the average velocity magnitude bias from 26.3 to 1.4 cm/s. Complex flow in a carotid bifurcation was used to demonstrate the in vivo performance of TVD, and it was shown that tapering enables vector velocity estimation less affected by clutter and clutter filtering than what could be obtained by adaptive filter design only.
Collapse
|
28
|
Shekhar A, Aristizabal O, Fishman GI, Phoon CKL, Ketterling JA. Characterization of Vortex Flow in a Mouse Model of Ventricular Dyssynchrony by Plane-Wave Ultrasound Using Hexplex Processing. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:538-548. [PMID: 32763851 PMCID: PMC8054309 DOI: 10.1109/tuffc.2020.3014844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The rodent heart is frequently used to study human cardiovascular disease (CVD). Although advanced cardiovascular ultrasound imaging methods are available for human clinical practice, application of these techniques to small animals remains limited due to the temporal and spatial-resolution demands. Here, an ultrasound vector-flow workflow is demonstrated that enables visualization and quantification of the complex hemodynamics within the mouse heart. Wild type (WT) and fibroblast growth factor homologous factor 2 (FHF2)-deficient mice (Fhf2 KO/Y ), which present with hyperthermia-induced ECG abnormalities highly reminiscent of Brugada syndrome, were used as a mouse model of human CVD. An 18-MHz linear array was used to acquire high-speed (30 kHz), plane-wave data of the left ventricle (LV) while increasing core body temperature up to 41.5 °C. Hexplex (i.e., six output) processing of the raw data sets produced the output of vector-flow estimates (magnitude and phase); B-mode and color-Doppler images; Doppler spectrograms; and local time histories of vorticity and pericardium motion. Fhf2 WT/Y mice had repeatable beat-to-beat cardiac function, including vortex formation during diastole, at all temperatures. In contrast, Fhf2 KO/Y mice displayed dyssynchronous contractile motion that disrupted normal inflow vortex formation and impaired LV filling as temperature rose. The hexplex processing approach demonstrates the ability to visualize and quantify the interplay between hemodynamic and mechanical function in a mouse model of human CVD.
Collapse
|
29
|
Schou M, Jorgensen LT, Beers C, Traberg MS, Tomov BG, Bo Stuart M, Jensen JA. Fast 3-D Velocity Estimation in 4-D Using a 62 + 62 Row-Column Addressed Array. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:608-623. [PMID: 32804649 DOI: 10.1109/tuffc.2020.3016991] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This article presents an imaging scheme capable of estimating the full 3-D velocity vector field in a volume using row-column addressed arrays (RCAs) at a high volume rate. A 62 + 62 RCA array is employed with an interleaved synthetic aperture sequence. It contains repeated emissions with rows and columns interleaved with B-mode emissions. The sequence contains 80 emissions in total and can provide continuous volumetric data at a volume rate above 125 Hz. A transverse oscillation cross correlation estimator determines all three velocity components. The approach is investigated using Field II simulations and measurements using a specially built 3-MHz 62 + 62 RCA array connected to the SARUS experimental scanner. Both the B-mode and flow sequences have a penetration depth of 14 cm when measured on a tissue-mimicking phantom (0.5-dB/[ [Formula: see text]] attenuation). Simulations of a parabolic flow in a 12-mm-diameter vessel at a depth of 30 mm, beam-to-flow angle of 90°, and xy-rotation of 45° gave a standard deviation (SD) of (3.3, 3.4, 0.4)% and bias of (-3.3, -3.9, -0.1)%, for ( vx , vy , and vz ). Decreasing the beam-to-flow angle to 60° gave an SD of (8.9, 9.1, 0.8)% and bias of (-7.6, -9.5, -7.2)%, showing a slight increase. Measurements were carried out using a similar setup, and pulsing at 2 kHz yielded comparable results at 90° with an SD of (5.8, 5.5, 1.1)% and bias of (1.4, -6.4, 2.4)%. At 60°, the SD was (5.2, 4.7 1.2)% and bias (-4.6, 6.9, -7.4)%. Results from measurements across all tested settings showed a maximum SD of 6.8% and a maximum bias of 15.8% for a peak velocity of 10 cm/s. A tissue-mimicking phantom with a straight vessel was used to introduce clutter, tissue motion, and pulsating flow. The pulsating velocity magnitude was estimated across ten pulse periods and yielded an SD of 10.9%. The method was capable of estimating transverse flow components precisely but underestimated the flow with small beam-to-flow angles. The sequence provided continuous data in both time and space throughout the volume, allowing for retrospective analysis of the flow. Moreover, B-mode planes can be selected retrospectively anywhere in the volume. This shows that tensor velocity imaging (full 3-D volumetric vector flow imaging) can be estimated in 4-D ( x, y, z, and t ) using only 62 channels in receive, making 4-D volumetric imaging implementable on current scanner hardware.
Collapse
|
30
|
Chee AJY, Ishii T, Yiu BYS, Yu ACH. Helical toroid phantom for 3D flow imaging investigations. Phys Med Biol 2021; 66:045029. [PMID: 33586671 DOI: 10.1088/1361-6560/abda99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The medical physics community has hitherto lacked an effective calibration phantom to holistically evaluate the performance of three-dimensional (3D) flow imaging techniques. Here, we present the design of a new omnidirectional, three-component (3-C) flow phantom whose lumen is consisted of a helical toroid structure (4 mm lumen diameter; helically winded for 5 revolutions over a torus with 10 mm radius; 5 mm helix radius). This phantom's intraluminal flow trajectory embraces all combinations of x, y, and z directional components, as confirmed using computational fluid dynamics (CFD) simulations. The phantom was physically fabricated via lost-core casting with polyvinyl alcohol cryogel (PVA) as the tissue mimic. 3D ultrasound confirmed that the phantom lumen expectedly resembled a helical toroid geometry. Pulsed Doppler measurements showed that the phantom, when operating under steady flow conditions (3 ml s-1 flow rate), yielded flow velocity magnitudes that agreed well with those derived from CFD at both the inner torus (-47.6 ± 5.7 versus -52.0 ± 2.2 cm s-1; mean ± 1 S.D.) and the outer torus (49.5 ± 4.2 versus 48.0 ± 1.7 cm s-1). Additionally, 3-C velocity vectors acquired from multi-angle pulsed Doppler showed good agreement with CFD-derived velocity vectors (<7% and 10° difference in magnitude and flow angle, respectively). Ultrasound color flow imaging further revealed that the phantom's axial flow pattern was aligned with the CFD-derived flow profile. Overall, the helical toroid phantom has strong potential as an investigative tool in 3D flow imaging innovation endeavors, such as the development of flow vector estimators and visualization algorithms.
Collapse
Affiliation(s)
- Adrian J Y Chee
- Schlegel Research Institute for Aging and Department of Electrical and Computer Engineering, University of Waterloo, Waterloo ON, Canada
| | | | | | | |
Collapse
|
31
|
Petrescu A, D'hooge J, Voigt JU. Concepts and applications of ultrafast cardiac ultrasound imaging. Echocardiography 2021; 38:7-15. [PMID: 33471395 DOI: 10.1111/echo.14971] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/22/2020] [Indexed: 12/20/2022] Open
Abstract
The concept of ultrafast echocardiographic imaging has been around for decades. However, only recent progress in ultrasound machine hardware and computer technology allowed to apply this concept to echocardiography. High frame rate echocardiography can visualize phenomena that have never been captured before. It enables a wide variety of potential new applications, including shear wave imaging, speckle tracking, ultrafast Doppler imaging, and myocardial perfusion imaging. The principles of these applications and their potential clinical use will be presented in this manuscript.
Collapse
Affiliation(s)
- Aniela Petrescu
- Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium.,Department of Cardiology, Heart Valve Center, University Medical Center Mainz, Mainz, Germany
| | - Jan D'hooge
- Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Jens-Uwe Voigt
- Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium.,Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
32
|
Non-invasive estimation of relative pressure for intracardiac flows using virtual work-energy. Med Image Anal 2020; 68:101948. [PMID: 33383332 DOI: 10.1016/j.media.2020.101948] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 01/18/2023]
Abstract
Intracardiac blood flow is driven by differences in relative pressure, and assessing these is critical in understanding cardiac disease. Non-invasive image-based methods exist to assess relative pressure, however, the complex flow and dynamically moving fluid domain of the intracardiac space limits assessment. Recently, we proposed a method, νWERP, utilizing an auxiliary virtual field to probe relative pressure through complex, and previously inaccessible flow domains. Here we present an extension of νWERP for intracardiac flow assessments, solving the virtual field over sub-domains to effectively handle the dynamically shifting flow domain. The extended νWERP is validated in an in-silico benchmark problem, as well as in a patient-specific simulation model of the left heart, proving accurate over ranges of realistic image resolutions and noise levels, as well as superior to alternative approaches. Lastly, the extended νWERP is applied on clinically acquired 4D Flow MRI data, exhibiting realistic ventricular relative pressure patterns, as well as indicating signs of diastolic dysfunction in an exemplifying patient case. Summarized, the extended νWERP approach represents a directly applicable implementation for intracardiac flow assessments.
Collapse
|
33
|
Myelin detection in fluorescence microscopy images using machine learning. J Neurosci Methods 2020; 346:108946. [PMID: 32931810 DOI: 10.1016/j.jneumeth.2020.108946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/28/2020] [Accepted: 09/10/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The myelin sheath produced by glial cells insulates the axons, and supports the function of the nervous system. Myelin sheath degeneration causes neurodegenerative disorders, such as multiple sclerosis (MS). There are no therapies for MS that promote remyelination. Drug discovery frequently involves screening thousands of compounds. However, this is not feasible for remyelination drugs, since myelin quantification is a manual labor-intensive endeavor. Therefore, the development of assistive software for expedited myelin detection is instrumental for MS drug discovery by enabling high-content image-based drug screens. NEW METHOD In this study, we developed a machine learning based expedited myelin detection approach in fluorescence microscopy images. Multi-channel three-dimensional microscopy images of a mouse stem cell-based myelination assay were labeled by experts. A spectro-spatial feature extraction method was introduced to represent local dependencies of voxels both in spatial and spectral domains. Feature extraction yielded two data set of over forty-seven thousand annotated images in total. RESULTS Myelin detection performances of 23 different supervised machine learning techniques including a customized-convolutional neural network (CNN), were assessed using various train/test split ratios of the data sets. The highest accuracy values of 98.84±0.09% and 98.46±0.11% were achieved by Boosted Trees and customized-CNN, respectively. COMPARISON WITH EXISTING METHODS Our approach can detect myelin in a common experimental setup. Myelin extending in any orientation in 3 dimensions is segmented from 3 channel z-stack fluorescence images. CONCLUSIONS Our results suggest that the proposed expedited myelin detection approach is a feasible and robust method for remyelination drug screening.
Collapse
|
34
|
Vos HJ, Voorneveld JD, Groot Jebbink E, Leow CH, Nie L, van den Bosch AE, Tang MX, Freear S, Bosch JG. Contrast-Enhanced High-Frame-Rate Ultrasound Imaging of Flow Patterns in Cardiac Chambers and Deep Vessels. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2875-2890. [PMID: 32843233 DOI: 10.1016/j.ultrasmedbio.2020.07.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Cardiac function and vascular function are closely related to the flow of blood within. The flow velocities in these larger cavities easily reach 1 m/s, and generally complex spatiotemporal flow patterns are involved, especially in a non-physiologic state. Visualization of such flow patterns using ultrasound can be greatly enhanced by administration of contrast agents. Tracking the high-velocity complex flows is challenging with current clinical echographic tools, mostly because of limitations in signal-to-noise ratio; estimation of lateral velocities; and/or frame rate of the contrast-enhanced imaging mode. This review addresses the state of the art in 2-D high-frame-rate contrast-enhanced echography of ventricular and deep-vessel flow, from both technological and clinical perspectives. It concludes that current advanced ultrasound equipment is technologically ready for use in human contrast-enhanced studies, thus potentially leading to identification of the most clinically relevant flow parameters for quantifying cardiac and vascular function.
Collapse
Affiliation(s)
- Hendrik J Vos
- Biomedical Engineering, Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands; Medical Imaging, Department of Imaging Physics, Applied Sciences, Delft University of Technology, Delft, The Netherlands.
| | - Jason D Voorneveld
- Biomedical Engineering, Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Erik Groot Jebbink
- M3i: Multi-modality Medical Imaging Group, Technical Medical Centre, University of Twente, Enschede, The Netherlands; Department of Vascular Surgery, Rijnstate Hospital, Arnhem, The Netherlands
| | - Chee Hau Leow
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Luzhen Nie
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, United Kingdom
| | | | - Meng-Xing Tang
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Steven Freear
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, United Kingdom
| | - Johan G Bosch
- Biomedical Engineering, Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
35
|
Lindsey BD, Jing B, Kim S, Collins GC, Padala M. 3-D Intravascular Characterization of Blood Flow Velocity Fields with a Forward-Viewing 2-D Array. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2560-2571. [PMID: 32616428 PMCID: PMC7429285 DOI: 10.1016/j.ultrasmedbio.2020.05.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 04/06/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
Risk stratification in coronary artery disease is an ongoing challenge for which few tools are available for quantifying physiology within coronary arteries. Recently, anatomy-driven computational fluid dynamic modeling has enabled the mapping of local flow dynamics in coronary stenoses, with derived parameters such as WSS exhibiting a strong capability for predicting adverse clinical events on a patient-specific basis. As cardiac catheterization is common in patients with coronary artery disease, minimally invasive technologies capable of identifying pathologic flow in situ in real time could have a significant impact on clinical decision- making. As a step toward in vivo quantification of slow flow near the arterial wall, proof-of-concept for 3-D intravascular imaging of blood flow dynamics is provided using a 118-element forward-viewing ring array transducer and a research ultrasound system. Blood flow velocity components are estimated in the direction of primary flow using an unfocused wave Doppler approach, and in the lateral and elevation directions, using a transverse oscillation approach. This intravascular 3-D vector velocity system is illustrated by acquiring real-time 3-D data sets in phantom experiments and in vivo in the femoral artery of a pig. The effect of the catheter on blood flow dynamics is also experimentally assessed in flow phantoms with both straight and stenotic vessels. Results indicate that 3-D flow dynamics can be measured using a small form factor device and that a hollow catheter design may provide minimal disturbance to flow measurements in a stenosis (peak velocity: 54.97 ± 2.13 cm/s without catheter vs. 51.37 ± 1.08 cm/s with hollow catheter, 6.5% error). In the future, such technologies could enable estimation of 3-D flow dynamics near the wall in patients already undergoing catheterization.
Collapse
Affiliation(s)
- Brooks D Lindsey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA; Electrical and Computer Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA; Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Bowen Jing
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Saeyoung Kim
- Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA; Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Graham C Collins
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Muralidhar Padala
- Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA; Division of Cardiothoracic Surgery, Joseph P. Whitehead Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA; Structural Heart Research and Innovation Laboratory, Carlyle Fraser Heart Center at Emory University Hospital Midtown, Atlanta, GA, USA
| |
Collapse
|
36
|
Villemain O, Baranger J, Friedberg MK, Papadacci C, Dizeux A, Messas E, Tanter M, Pernot M, Mertens L. Ultrafast Ultrasound Imaging in Pediatric and Adult Cardiology. JACC Cardiovasc Imaging 2020; 13:1771-1791. [DOI: 10.1016/j.jcmg.2019.09.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 02/08/2023]
|
37
|
Ramalli A, Rodriguez-Molares A, Avdal J, D'hooge J, Lovstakken L. High-Frame-Rate Color Doppler Echocardiography: A Quantitative Comparison of Different Approaches. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:923-933. [PMID: 31825865 DOI: 10.1109/tuffc.2019.2958031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ultrasound color Doppler imaging (CDI) provides a map of the axial blood flow velocities in a 2-D/3-D region of interest. While CDI is clinically effective for a qualitative analysis of abnormal blood flows, e.g., for valvular disease in cardiology, it is in limited use for quantitative measures, mainly hampered by low frame rate and measurement bias. These limitations can be reduced by different approaches toward high-frame-rate (HFR) imaging at the expense of reduced image quality and penetration depth. The aim of this study was to compare the impact of different HFR sequences on CDI quantitatively. Different cardiac scan sequences, including diverging waves and multiline transmission, were designed, implemented on a research system, and compared in terms of patient safety parameters, image quality, and penetration depth. Furthermore, in vivo images were acquired and compared for healthy volunteers. Results showed that the HFR techniques spread artifacts on larger areas than the standard single-line scans (> +50%). In addition, due to patient safety limitations, they reduce the penetration depth up to -5 cm. On the other hand, the HFR techniques provide comparable velocity estimates (relative difference <6%) and enhance the time resolution of the color Doppler images, achieving frame rates up to 625 Hz in continuous acquisition.
Collapse
|
38
|
Voorneveld J, Saaid H, Schinkel C, Radeljic N, Lippe B, Gijsen FJH, van der Steen AFW, de Jong N, Claessens T, Vos HJ, Kenjeres S, Bosch JG. 4-D Echo-Particle Image Velocimetry in a Left Ventricular Phantom. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:805-817. [PMID: 31924419 DOI: 10.1016/j.ultrasmedbio.2019.11.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 10/29/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
Left ventricular (LV) blood flow is an inherently complex time-varying 3-D phenomenon, where 2-D quantification often ignores the effect of out-of-plane motion. In this study, we describe high frame rate 4-D echocardiographic particle image velocimetry (echo-PIV) using a prototype matrix transesophageal transducer and a dynamic LV phantom for testing the accuracy of echo-PIV in the presence of complex flow patterns. Optical time-resolved tomographic PIV (tomo-PIV) was used as a reference standard for comparison. Echo-PIV and tomo-PIV agreed on the general profile of the LV flow patterns, but echo-PIV smoothed out the smaller flow structures. Echo-PIV also underestimated the flow rates at greater imaging depths, where the PIV kernel size and transducer point spread function were large relative to the velocity gradients. We demonstrate that 4-D echo-PIV could be performed in just four heart cycles, which would require only a short breath-hold, providing promising results. However, methods for resolving high velocity gradients in regions of poor spatial resolution are required before clinical translation.
Collapse
Affiliation(s)
- Jason Voorneveld
- Department of Biomedical Engineering, Thorax Center, Erasmus MC University Medical Center, Rotterdam, the Netherlands.
| | - Hicham Saaid
- Institute Biomedical Technology, Ghent University, Ghent, Belgium
| | - Christiaan Schinkel
- Transport Phenomena Section, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology; the Netherlands
| | | | | | - Frank J H Gijsen
- Department of Biomedical Engineering, Thorax Center, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Antonius F W van der Steen
- Department of Biomedical Engineering, Thorax Center, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Laboratory of Acoustical Wavefield Imaging, Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands
| | - Nico de Jong
- Department of Biomedical Engineering, Thorax Center, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Laboratory of Acoustical Wavefield Imaging, Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands
| | - Tom Claessens
- Department of Materials, Textiles and Chemical Engineering, Ghent University, Ghent, Belgium
| | - Hendrik J Vos
- Department of Biomedical Engineering, Thorax Center, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Laboratory of Acoustical Wavefield Imaging, Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands
| | - Sasa Kenjeres
- Transport Phenomena Section, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology; the Netherlands
| | - Johan G Bosch
- Department of Biomedical Engineering, Thorax Center, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
39
|
Mattesini P, Ramalli A, Petrusca L, Basset O, Liebgott H, Tortoli P. Spectral Doppler Measurements With 2-D Sparse Arrays. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:278-285. [PMID: 31562082 DOI: 10.1109/tuffc.2019.2944090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The 2-D sparse arrays, in which a few hundreds of elements are distributed on the probe surface according to an optimization procedure, represent an alternative to full 2-D arrays, including thousands of elements usually organized in a grid. Sparse arrays have already been used in B-mode imaging tests, but their application to Doppler investigations has not been reported yet. Since the sparsity of the elements influences the acoustic field, a corresponding influence on the mean frequency (Fm), bandwidth (BW), and signal-to-noise ratio (SNR) of the Doppler spectra is expected. This article aims to assess, by simulations and experiments, to what extent the use of a sparse rather than a full gridded 2-D array has an impact on spectral Doppler measurements. Parabolic flows were investigated by a 3 MHz, 1024-element gridded array and by a sparse array; the latter was obtained by properly selecting a subgroup of 256 elements from the full array. Simulations show that the mean Doppler frequency does not change between the sparse and the full array while there are significant differences on the BW (average reduction of 17.2% for the sparse array, due to different apertures of the two probes) and on the signal power (Ps) (22 dB, due to the different number of active elements). These results are confirmed by flow phantom experiments, which also highlight that the most critical difference between sparse and full gridded array in Doppler measurements is in terms of SNR (-16.8 dB).
Collapse
|
40
|
Nyrnes SA, Fadnes S, Wigen MS, Mertens L, Lovstakken L. Blood Speckle-Tracking Based on High-Frame Rate Ultrasound Imaging in Pediatric Cardiology. J Am Soc Echocardiogr 2020; 33:493-503.e5. [PMID: 31987749 DOI: 10.1016/j.echo.2019.11.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/05/2019] [Accepted: 11/05/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND Flow properties play an important role in cardiac function, remodeling, and morphogenesis but cannot be displayed in detail with today's echocardiographic techniques. The authors hypothesized that blood speckle-tracking (BST) could visualize and quantify flow patterns. The aim of this study was to determine the feasibility, accuracy, and potential clinical applications of BST in pediatric cardiology. METHODS BST is based on high-frame rate ultrasound, using a combination of plane-wave imaging and parallel receive beamforming. Pattern-matching techniques are used to quantify blood speckle motion. Accuracy of BST velocity measurements was validated using a rotating phantom and by comparing BST-derived inflow velocities with pulsed-wave Doppler obtained in the left ventricles of healthy control subjects. To test clinical feasibility, 102 subjects (21 weeks to 11.5 years of age) were prospectively enrolled, including healthy fetuses (n = 4), healthy control subjects (n = 51), and patients with different cardiac diseases (n = 47). RESULTS The phantom data showed a good correlation (r = 0.95, with a tracking quality threshold of 0.4) between estimated BST velocities and reference velocities down to a depth of 8 cm. There was a good correlation (r = 0.76) between left ventricular inflow velocity measured using BST and pulsed-wave Doppler. BST displayed lower velocities (mean ± SD, 0.59 ± 0.14 vs 0.82 ± 0.21 m/sec for pulsed-wave Doppler). However, the velocity amplitude in BST increases with reduced smoothing. The clinical feasibility of BST was high, as flow patterns in the area of interest could be visualized in all but one case (>99%). CONCLUSIONS BST is highly feasible in fetal and pediatric echocardiography and provides a novel approach for visualizing blood flow patterns. BST provides accurate velocity measurements down to 8 cm, but compared with pulsed-wave Doppler, BST displays lower velocities. Studying blood flow properties may provide novel insights into the pathophysiology of pediatric heart disease and could become an important diagnostic tool.
Collapse
Affiliation(s)
- Siri A Nyrnes
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway; Children's Clinic, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.
| | - Solveig Fadnes
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Morten Smedsrud Wigen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Luc Mertens
- Department of Cardiology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Lasse Lovstakken
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
41
|
Ramalli A, Harput S, Bezy S, Boni E, Eckersley RJ, Tortoli P, D'Hooge J. High-Frame-Rate Tri-Plane Echocardiography With Spiral Arrays: From Simulation to Real-Time Implementation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:57-69. [PMID: 31514130 DOI: 10.1109/tuffc.2019.2940289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Major cardiovascular diseases (CVDs) are associated with (regional) dysfunction of the left ventricle. Despite the 3-D nature of the heart and its dynamics, the assessment of myocardial function is still largely based on 2-D ultrasound imaging, thereby making diagnosis heavily susceptible to the operator's expertise. Unfortunately, to date, 3-D echocardiography cannot provide adequate spatiotemporal resolution in real-time. Hence, tri-plane imaging has been introduced as a compromise between 2-D and true volumetric ultrasound imaging. However, tri-plane imaging typically requires high-end ultrasound systems equipped with fully populated matrix array probes embedded with expensive and little flexible electronics for two-stage beamforming. This article presents an advanced ultrasound system for real-time, high frame rate (HFR), and tri-plane echocardiography based on low element count sparse arrays, i.e., the so-called spiral arrays. The system was simulated, experimentally validated, and implemented for real-time operation on the ULA-OP 256 system. Five different array configurations were tested together with four different scan sequences, including multi-line and planar diverging wave transmission. In particular, the former can be exploited to achieve, in tri-plane imaging, the same temporal resolution currently used in clinical 2-D echocardiography, at the expenses of contrast (-3.5 dB) and signal-to-noise ratio (SNR) (-8.7 dB). On the other hand, the transmission of planar diverging waves boosts the frame rate up to 250 Hz, but further compromises contrast (-10.5 dB), SNR (-9.7 dB), and lateral resolution (+46%). In conclusion, despite an unavoidable loss in image quality and sensitivity due to the limited number of elements, HFR tri-plane imaging with spiral arrays is shown to be feasible in real-time and may enable real-time functional analysis of all left ventricular segments of the heart.
Collapse
|
42
|
Fiorentini S, Espeland T, Berg EAR, Aakhus S, Torp H, Avdal J. Combining Automatic Angle Correction and 3-D Tracking Doppler for the Assessment of Aortic Stenosis Severity. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:1404-1412. [PMID: 31180850 DOI: 10.1109/tuffc.2019.2921818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Aortic valve stenosis (AS) is a narrowing of the aortic valve opening, which causes increased load on the left ventricle. Untreated, this condition can eventually lead to heart failure and death. According to current recommendations, an accurate diagnosis of AS mandates the use of multiple acoustic windows to determine the highest velocity. Furthermore, the optimal positioning of both patient and transducer to reduce the beam-to-flow angle is emphasized. Being operator dependent, the beam alignment is a potential source of uncertainty. In this work, we perform noncompounded 3-D plane wave imaging for retrospective estimation of maximum velocities in aortic jets with automatic angle correction. This is achieved by combining a hybrid 3-D speckle tracking method to estimate the jet direction and 3-D tracking Doppler to generate angle-corrected sonograms, using the direction from speckle tracking as input. Results from simulations of flow through an orifice show that 3-D speckle tracking can estimate the jet orientation with acceptable accuracy for signal-to-noise ratios above 10 dB. Results from 12 subjects show that sonograms recorded from a standard apical view using the proposed method yield a maximum velocity that matches continuous wave (CW) Doppler sonograms recorded from the acoustic window with the lowest angle within a ±10% margin, provided that a high enough pulse repetition frequency could be achieved. These results motivate further validation and optimization studies.
Collapse
|