1
|
Li Z, Benabdallah N, Laforest R, Wahl RL, Thorek DLJ, Jha AK. Joint Regional Uptake Quantification of Thorium-227 and Radium-223 Using a Multiple-Energy-Window Projection-Domain Quantitative SPECT Method. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:4281-4293. [PMID: 38968009 PMCID: PMC11807287 DOI: 10.1109/tmi.2024.3420228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Thorium-227 ( )-based -particle radiopharmaceutical therapies ( -RPTs) are currently being investigated in several clinical and pre-clinical studies. After administration, decays to , another -particle-emitting isotope, which redistributes within the patient. Reliable dose quantification of both and is clinically important, and SPECT may perform this quantification as these isotopes also emit X- and -ray photons. However, reliable quantification is challenging for several reasons: the orders-of-magnitude lower activity compared to conventional SPECT, resulting in a very low number of detected counts, the presence of multiple photopeaks, substantial overlap in the emission spectra of these isotopes, and the image-degrading effects in SPECT. To address these issues, we propose a multiple-energy-window projection-domain quantification (MEW-PDQ) method that jointly estimates the regional activity uptake of both and directly using the SPECT projection data from multiple energy windows. We evaluated the method with realistic simulation studies conducted with anthropomorphic digital phantoms, including a virtual imaging trial, in the context of imaging patients with bone metastases of prostate cancer who were treated with -based -RPTs. The proposed method yielded reliable (accurate and precise) regional uptake estimates of both isotopes and outperformed state-of-the-art methods across different lesion sizes and contrasts, as well as in the virtual imaging trial. This reliable performance was also observed with moderate levels of intra-regional heterogeneous uptake as well as when there were moderate inaccuracies in the definitions of the support of various regions. Additionally, we demonstrated the effectiveness of using multiple energy windows and the variance of the estimated uptake using the proposed method approached the Cramér-Rao-lower-bound-defined theoretical limit. These results provide strong evidence in support of this method for reliable uptake quantification in -based -RPTs.
Collapse
|
2
|
Zannoni EM, Sankar P, Jin Y, Liu C, Sinusas AJ, Metzler SD, Meng LJ. Design and development of the DE-SPECT system: a clinical SPECT system for broadband multi-isotope imaging of peripheral vascular disease. Phys Med Biol 2024; 69:125016. [PMID: 38815617 PMCID: PMC11167601 DOI: 10.1088/1361-6560/ad5266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/05/2024] [Accepted: 05/30/2024] [Indexed: 06/01/2024]
Abstract
Objective. Peripheral Vascular Disease (PVD) affects more than 230 million people worldwide and is one of the leading causes of disability among people over age 60. Nowadays, PVD remains largely underdiagnosed and undertreated, and requires the development of tailored diagnostic approaches. We present the full design of the Dynamic Extremity SPECT (DE-SPECT) system, the first organ-dedicated SPECT system for lower extremity imaging, based on 1 cm thick Cadmium Zinc Telluride (CZT) spectrometers and a dynamic dual field-of-view (FOV) synthetic compound-eye (SCE) collimator.Approach. The proposed DE-SPECT detection system consists of 48 1 cm thick 3D-position-sensitive CZT spectrometers arranged in a partial ring of 59 cm in diameter in a checkerboard pattern. The detection system is coupled with a compact dynamic SCE collimator that allows the user to select between two different FOVs at any time during an imaging study: a wide-FOV (28 cm diameter) configuration for dual-leg or scout imaging or a high-resolution and high-sensitivity (HR-HS) FOV (16 cm diameter) for single-leg or focused imaging.Main results.The preliminary experimental data show that the CZT spectrometer achieves a 3D intrinsic spatial resolution of <0.75 mm FWHM and an excellent energy resolution over a broad energy range (2.6 keV FWHM at 218, 3.3 keV at 440 keV). From simulations, the wide-FOV configuration offers a 0.034% averaged sensitivity at 140 keV and <8 mm spatial resolution, whereas the HR-HS configuration presents a peak central sensitivity of 0.07% at 140 keV and a ∼5 mm spatial resolution. The dynamic SCE collimator enables the capability to perform joint reconstructions that would ensure an overall improvement in imaging performance.Significance. The DE-SPECT system is a stationary and high-performance SPECT system that offers an excellent spectroscopic performance with a unique computer-controlled dual-FOV imaging capability, and a relatively high sensitivity for multi-tracer and multi-functional SPECT imaging of the extremities.
Collapse
Affiliation(s)
- E M Zannoni
- Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana Champaign, Urbana, IL, United States of America
| | - P Sankar
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Y Jin
- Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana Champaign, Urbana, IL, United States of America
| | - C Liu
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States of America
| | - A J Sinusas
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States of America
- Department of Medicine, Yale University School of Medicine, New Haven, CT, United States of America
| | - S D Metzler
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - L J Meng
- Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana Champaign, Urbana, IL, United States of America
- Beckman Institute for Advance Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| |
Collapse
|
3
|
Kim H, Li Z, Son J, Fessler JA, Dewaraja YK, Chun SY. Physics-Guided Deep Scatter Estimation by Weak Supervision for Quantitative SPECT. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:2961-2973. [PMID: 37104110 PMCID: PMC10593395 DOI: 10.1109/tmi.2023.3270868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Accurate scatter estimation is important in quantitative SPECT for improving image contrast and accuracy. With a large number of photon histories, Monte-Carlo (MC) simulation can yield accurate scatter estimation, but is computationally expensive. Recent deep learning-based approaches can yield accurate scatter estimates quickly, yet full MC simulation is still required to generate scatter estimates as ground truth labels for all training data. Here we propose a physics-guided weakly supervised training framework for fast and accurate scatter estimation in quantitative SPECT by using a 100× shorter MC simulation as weak labels and enhancing them with deep neural networks. Our weakly supervised approach also allows quick fine-tuning of the trained network to any new test data for further improved performance with an additional short MC simulation (weak label) for patient-specific scatter modelling. Our method was trained with 18 XCAT phantoms with diverse anatomies / activities and then was evaluated on 6 XCAT phantoms, 4 realistic virtual patient phantoms, 1 torso phantom and 3 clinical scans from 2 patients for 177Lu SPECT with single / dual photopeaks (113, 208 keV). Our proposed weakly supervised method yielded comparable performance to the supervised counterpart in phantom experiments, but with significantly reduced computation in labeling. Our proposed method with patient-specific fine-tuning achieved more accurate scatter estimates than the supervised method in clinical scans. Our method with physics-guided weak supervision enables accurate deep scatter estimation in quantitative SPECT, while requiring much lower computation in labeling, enabling patient-specific fine-tuning capability in testing.
Collapse
Affiliation(s)
- Hanvit Kim
- Digital Biomedical Research Division, Electronics and Telecommunications Research Institute, Daejeon, South Korea
- Department of Electrical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Zongyu Li
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
| | - Jiye Son
- Interdisciplinary Program for Bioengineering, Seoul National University (SNU), Seoul, South Korea. This work was done when she was with the School of Electrical and Computer Engineering (ECE), UNIST
| | - Jeffrey A. Fessler
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
| | - Yuni K. Dewaraja
- Dewaraja is with the Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Se Young Chun
- Department of ECE, INMC & IPAI, SNU, Seoul, South Korea
| |
Collapse
|
4
|
Rahman MA, Li Z, Yu Z, Laforest R, Thorek DLJ, Jha AK. A list-mode multi-energy window low-count SPECT reconstruction method for isotopes with multiple emission peaks. EJNMMI Phys 2023; 10:40. [PMID: 37347319 PMCID: PMC10287621 DOI: 10.1186/s40658-023-00558-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/31/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Single-photon emission computed tomography (SPECT) provides a mechanism to perform absorbed-dose quantification tasks for [Formula: see text]-particle radiopharmaceutical therapies ([Formula: see text]-RPTs). However, quantitative SPECT for [Formula: see text]-RPT is challenging due to the low number of detected counts, the complex emission spectrum, and other image-degrading artifacts. Towards addressing these challenges, we propose a low-count quantitative SPECT reconstruction method for isotopes with multiple emission peaks. METHODS Given the low-count setting, it is important that the reconstruction method extracts the maximal possible information from each detected photon. Processing data over multiple energy windows and in list-mode (LM) format provide mechanisms to achieve that objective. Towards this goal, we propose a list-mode multi energy window (LM-MEW) ordered-subsets expectation-maximization-based SPECT reconstruction method that uses data from multiple energy windows in LM format and include the energy attribute of each detected photon. For computational efficiency, we developed a multi-GPU-based implementation of this method. The method was evaluated using 2-D SPECT simulation studies in a single-scatter setting conducted in the context of imaging [[Formula: see text]Ra]RaCl[Formula: see text], an FDA-approved RPT for metastatic prostate cancer. RESULTS The proposed method yielded improved performance on the task of estimating activity uptake within known regions of interest in comparison to approaches that use a single energy window or use binned data. The improved performance was observed in terms of both accuracy and precision and for different sizes of the region of interest. CONCLUSIONS Results of our studies show that the use of multiple energy windows and processing data in LM format with the proposed LM-MEW method led to improved quantification performance in low-count SPECT of isotopes with multiple emission peaks. These results motivate further development and validation of the LM-MEW method for such imaging applications, including for [Formula: see text]-RPT SPECT.
Collapse
Affiliation(s)
- Md Ashequr Rahman
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, USA
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, USA
| | - Zekun Li
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, USA
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, USA
| | - Zitong Yu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, USA
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, USA
| | - Richard Laforest
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, USA
| | - Daniel L. J. Thorek
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, USA
| | - Abhinav K. Jha
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, USA
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, USA
| |
Collapse
|
5
|
Outcomes following transarterial radioembolization with 90Y and nanoparticles loaded resin microspheres. Appl Radiat Isot 2022; 188:110405. [PMID: 35987141 DOI: 10.1016/j.apradiso.2022.110405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/26/2022] [Accepted: 08/04/2022] [Indexed: 11/21/2022]
Abstract
90Y bremsstrahlung Single-Photon Emission Tomography (SPECT) imaging is employed to check the possibility of extrahepatic uptake and the quantification of delivered dose in Transarterial Radioembolization (TARE). 90Y bremsstrahlung SPECT imaging is challenging due to the nature of bremsstrahlung photons. We reported a Monte Carlo study using the resin microspheres loaded with 90Y and Nanoparticles (NPs) in the TARE. By injection of Bismuth (Bi) and Europium (Eu) NPs into the resin microspheres, the sensitivity and the contrast to noise ratio increased for the bremsstrahlung planar images. The highest signal to background ratio was observed in the characteristic X-ray planar images taken with the energy window at the Kα1 ± 10 keV when Eu NPs were incorporated into the microsphere. The dose enhancement ratio decreased dramatically at NP concentrations >2.4 M. Incorporating NPs into the resin microspheres improves the quality of post-treatment images and establishes a standardized imaging protocol for post-treatment imaging by characteristic X-rays.
Collapse
|
6
|
Nguyen MP, Goorden MC, Ramakers RM, Beekman FJ. Efficient Monte-Carlo based system modelling for image reconstruction in preclinical pinhole SPECT. Phys Med Biol 2021; 66. [PMID: 34049291 DOI: 10.1088/1361-6560/ac0682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/28/2021] [Indexed: 11/11/2022]
Abstract
The use of multi-pinhole collimation has enabled ultra-high-resolution imaging of SPECT and PET tracers in small animals. Key for obtaining high-quality images is the use of statistical iterative image reconstruction with accurate energy-dependent photon transport modelling through collimator and detector. This can be incorporated in a system matrix that contains the probabilities that a photon emitted from a certain voxel is detected at a specific detector pixel. Here we introduce a fast Monte-Carlo based (FMC-based) matrix generation method for pinhole imaging that is easy to apply to various radionuclides. The method is based on accelerated point source simulations combined with model-based interpolation to straightforwardly change or combine photon energies of the radionuclide of interest. The proposed method was evaluated for a VECTor PET-SPECT system with (i) a HE-UHR-M collimator and (ii) an EXIRAD-3D 3D autoradiography collimator. Both experimental scans with99mTc,111In, and123I, and simulated scans with67Ga and90Y were performed for evaluation. FMC was compared with two currently used approaches, one based on a set of point source measurements with99mTc (dubbed traditional method), and the other based on an energy-dependent ray-tracing simulation (ray-tracing method). The reconstruction results show better image quality when using FMC-based matrices than when applying the traditional or ray-tracing matrices in various cases. FMC-based matrices generalise better than the traditional matrices when imaging radionuclides with energies deviating too much from the energy used in the calibration and are computationally more efficient for very-high-resolution imaging than the ray-tracing matrices. In addition, FMC has the advantage of easily combining energies in a single matrix which is relevant when imaging radionuclides with multiple photopeak energies (e.g.67Ga and111In) or with a continuous energy spectrum (e.g.90Y). To conclude, FMC is an efficient, accurate, and versatile tool for creating system matrices for ultra-high-resolution pinhole SPECT.
Collapse
Affiliation(s)
- Minh Phuong Nguyen
- Section Biomedical Imaging, Delft University of Technology, Delft, The Netherlands
| | - Marlies C Goorden
- Section Biomedical Imaging, Delft University of Technology, Delft, The Netherlands
| | - Ruud M Ramakers
- Section Biomedical Imaging, Delft University of Technology, Delft, The Netherlands.,MILabs B.V., Utrecht, The Netherlands.,Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands
| | - Freek J Beekman
- Section Biomedical Imaging, Delft University of Technology, Delft, The Netherlands.,MILabs B.V., Utrecht, The Netherlands.,Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands
| |
Collapse
|