1
|
Nadeem SA, Comellas AP, Chan K, Hoffman EA, Fain SB, Saha PK. Automated CT-based measurements of radial and longitudinal expansion of airways due to breathing-related lung volume change. Med Phys 2025; 52:2316-2329. [PMID: 39704489 PMCID: PMC11972036 DOI: 10.1002/mp.17592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/04/2024] [Accepted: 12/07/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Respiratory function is impaired in chronic obstructive pulmonary disease (COPD). Automation of multi-volume CT-based measurements of different components of breathing-related airway deformations will help understand multi-pathway impairments in respiratory mechanics in COPD. PURPOSE To develop and evaluate multi-volume chest CT-based automated measurements of breathing-related radial and longitudinal expansion of individual airways between inspiratory and expiratory lung volumes. METHODS We developed a method to compute breathing-related airway deformation metrics and applied it to total lung capacity (TLC) and functional residual capacity (FRC) chest CT scans. The computational pipeline involves: (1) segmentation of airways; (2) skeletonization of airways; (3) labeling of anatomical airway segments at TLC and FRC; and (4) computation of radial and longitudinal expansion metrics of individual airways across lung volumes. Radial expansion (∆CSA) of an airway is computed as the percent change of its cross-sectional area (CSA) between two lung volumes. Longitudinal expansion (∆L) of an airway is computed as the percent change in its airway path-length from the carina between lung volumes. These measures are summarized at different airway anatomic generations. Agreement of automated measures with their manually derived values was examined in terms of concordance correlation coefficient (CCC) of automated measures with those derived using manual outlining. Intra-class correlation coefficient (ICC) of automated measures from repeat CT scans (n = 37) was computed to assess repeatability. The method was also applied to a set of participants from the Genetic Epidemiology of COPD (COPDGene) Iowa cohort, distributed across COPD severity groups (n = 4 × 60). RESULTS The CCC values for the automated ∆CSA measure with manually derived values were 0.930 at the trachea, 0.898 at primary bronchi, and greater than 0.95 at pre-segmental and segmental airways; these CCC values were consistently greater than 0.95 for ∆L at all airway generations. ICC values for repeatability of ∆CSA were 0.974, 0.950, 0.943, and 0.901 at trachea, primary bronchi, pre-segmental, and segmental airways, respectively; these ICC values for ∆L were 0.973, 0.954, and 0.952 at primary bronchi, pre-segmental, and segmental airways, respectively. ∆CSA values were significantly reduced (p < 0.001) with increasing COPD severity at each of primary bronchi, pre-segmental, and segmental airways. Significantly lower ∆L values were observed for moderate (p = 0.042 at pre-segmental and p = 0.037 at segmental) and severe (p = 0.019 at pre-segmental and p < 0.001 at segmental) COPD groups as compared to the preserved lung function group. Body mass index (BMI) and smoking status were found to significantly associate with ∆CSA at segmental airways (r = 0.17 and -0.19, respectively; significance threshold = 0.13), while age and sex were significantly associated with ∆L (r = -0.21 and -0.17, respectively); COPD severity was significantly associated with both ∆CSA and ∆L (r = -0.35 and -0.22, respectively). CONCLUSION Our CT-based automated measures of breathing-related radial and longitudinal expansion of airways are repeatable and in agreement with manually derived values. Automation of different airway mechanical biomarkers and their observed significant associations with age, sex, BMI, smoking, and COPD severity establish an effective tool to investigate multi-pathway impairments of respiratory mechanics in COPD and other lung diseases.
Collapse
Affiliation(s)
- Syed Ahmed Nadeem
- Department of Radiology, Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Alejandro P. Comellas
- Department of Internal Medicine, Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Kung‐Sik Chan
- Department of Statistics and Actuarial Science, College of Liberal Arts and SciencesUniversity of IowaIowa CityIowaUSA
| | - Eric A. Hoffman
- Department of Radiology, Carver College of MedicineUniversity of IowaIowa CityIowaUSA
- Department of Internal Medicine, Carver College of MedicineUniversity of IowaIowa CityIowaUSA
- Department of Biomedical Engineering, College of EngineeringUniversity of IowaIowa CityIowaUSA
| | - Sean B. Fain
- Department of Radiology, Carver College of MedicineUniversity of IowaIowa CityIowaUSA
- Department of Biomedical Engineering, College of EngineeringUniversity of IowaIowa CityIowaUSA
- Department of Electrical and Computer Engineering, College of EngineeringUniversity of IowaIowa CityIowaUSA
| | - Punam K. Saha
- Department of Radiology, Carver College of MedicineUniversity of IowaIowa CityIowaUSA
- Department of Electrical and Computer Engineering, College of EngineeringUniversity of IowaIowa CityIowaUSA
| |
Collapse
|
2
|
Nadeem SA, Zhang X, Nagpal P, Hoffman EA, Chan KS, Comellas AP, Saha PK. Automated CT-based decoupling of the effects of airway narrowing and wall thinning on airway counts in chronic obstructive pulmonary disease. Br J Radiol 2025; 98:150-159. [PMID: 39447037 PMCID: PMC11652725 DOI: 10.1093/bjr/tqae211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 09/09/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024] Open
Abstract
OBJECTIVE We examine pathways of airway alteration due to wall thinning, narrowing, and obliteration in chronic obstructive pulmonary disease (COPD) using CT-derived airway metrics. METHODS Ex-smokers (N = 649; age mean ± std: 69 ± 6 years; 52% male) from the COPDGene Iowa cohort (September 2013-July 2017) were studied. Total airway count (TAC), peripheral TAC beyond 7th generation (TACp), and airway wall thickness (WT) were computed from chest CT scans using previously validated automated methods. Causal relationships among demographic, smoking, spirometry, COPD severity, airway counts, WT, and scanner variables were analysed using causal inference techniques including direct acyclic graphs to assess multi-pathway alterations of airways in COPD. RESULTS TAC, TACp, and WT were significantly lower (P < .0001) in mild, moderate, and severe COPD compared to the preserved lung function group. TAC (TACp) losses attributed to narrowing and obliteration of small airways were 4.59%, 13.29%, and 32.58% (4.64%, 17.82%, and 45.51%) in mild, moderate, and severe COPD, while the losses attributed to wall thinning were 8.24%, 17.01%, and 22.95% (12.79%, 25.66%, and 33.95%) in respective groups. CONCLUSIONS Different pathways of airway alteration in COPD are observed using CT-derived automated airway metrics. Wall thinning is a dominant contributor to both TAC and TACp loss in mild and moderate COPD while narrowing and obliteration of small airways is dominant in severe COPD. ADVANCES IN KNOWLEDGE This automated CT-based study shows that wall thinning dominates airway alteration in mild and moderate COPD while narrowing and obliteration of small airways leads the alteration process in severe COPD.
Collapse
Affiliation(s)
- Syed Ahmed Nadeem
- Department of Radiology, University of Iowa, Iowa City, IA 52242, United States
| | - Xinyu Zhang
- Department of Statistics and Actuarial Science, University of Iowa, Iowa City, IA 52242, United States
| | - Prashant Nagpal
- Department of Radiology, University of Wisconsin, Madison, WI 53792, United States
| | - Eric A Hoffman
- Department of Radiology, University of Iowa, Iowa City, IA 52242, United States
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, United States
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, United States
| | - Kung-Sik Chan
- Department of Statistics and Actuarial Science, University of Iowa, Iowa City, IA 52242, United States
| | - Alejandro P Comellas
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, United States
| | - Punam K Saha
- Department of Radiology, University of Iowa, Iowa City, IA 52242, United States
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA 52242, United States
| |
Collapse
|
3
|
Huang W, Gong H, Zhang H, Wang Y, Wan X, Li G, Li H, Shen H. BCNet: Bronchus Classification via Structure Guided Representation Learning. IEEE TRANSACTIONS ON MEDICAL IMAGING 2025; 44:489-498. [PMID: 39178085 DOI: 10.1109/tmi.2024.3448468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
CT-based bronchial tree analysis is a key step for the diagnosis of lung and airway diseases. However, the topology of bronchial trees varies across individuals, which presents a challenge to the automatic bronchus classification. To solve this issue, we propose the Bronchus Classification Network (BCNet), a structure-guided framework that exploits the segment-level topological information using point clouds to learn the voxel-level features. BCNet has two branches, a Point-Voxel Graph Neural Network (PV-GNN) for segment classification, and a Convolutional Neural Network (CNN) for voxel labeling. The two branches are simultaneously trained to learn topology-aware features for their shared backbone while it is feasible to run only the CNN branch for the inference. Therefore, BCNet maintains the same inference efficiency as its CNN baseline. Experimental results show that BCNet significantly exceeds the state-of-the-art methods by over 8.0% both on F1-score for classifying bronchus. Furthermore, we contribute BronAtlas: an open-access benchmark of bronchus imaging analysis with high-quality voxel-wise annotations of both anatomical and abnormal bronchial segments. The benchmark is available at https://osf.io/pskr9/?viewonly=94fa3d87274b4095ac9a4b88cc9a1341.
Collapse
|
4
|
Zhang Q, Li J, Nan X, Zhang X. Detail-sensitive 3D-UNet for pulmonary airway segmentation from CT images. Med Biol Eng Comput 2024; 62:3749-3762. [PMID: 39017831 DOI: 10.1007/s11517-024-03169-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 07/06/2024] [Indexed: 07/18/2024]
Abstract
The segmentation of airway from computed tomography (CT) images plays a vital role in pulmonary disease diagnosis, evaluation, surgical planning, and treatment. Nevertheless, it is still challenging for current methods to handle distal thin and low-contrast airways, leading to mis-segmentation issues. This paper proposes a detail-sensitive 3D-UNet (DS-3D-UNet) that incorporates two new modules into 3D-UNet to segment airways accurately from CT images. The feature recalibration module is designed to give more attention to the foreground airway features through a new attention mechanism. The detail extractor module aims to restore multi-scale detailed features by fusion of features at different levels. Extensive experiments were conducted on the ATM'22 challenge dataset composed of 300 CT scans with airway annotations to evaluate its performance. Quantitative comparisons prove that the proposed model achieves the best performance in terms of Dice similarity coefficient (92.6%) and Intersection over Union (86.3%), outperforming other state-of-the-art methods. Qualitative comparisons further exhibit the superior performance of our method in segmenting thin and confused distal bronchi. The proposed model could provide important references for the diagnosis and treatment of pulmonary diseases, holding promising prospects in the field of digital medicine. Codes are available at https://github.com/nighlevil/DS-3D-UNet/tree/master .
Collapse
Affiliation(s)
- Qin Zhang
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510000, China
| | - Jiajie Li
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510000, China
| | - Xiangling Nan
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510000, China
| | - Xiaodong Zhang
- Shenzhen Children's Hospital, Shenzhen, Guangdong, 518000, China.
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518000, China.
| |
Collapse
|
5
|
Zhang X, Nadeem SA, DiCamillo PA, Shibli-Rahhal A, Regan EA, Barr RG, Hoffman EA, Comellas AP, Saha PK. Ultra-low dose hip CT-based automated measurement of volumetric bone mineral density at proximal femoral subregions. Med Phys 2024; 51:8213-8231. [PMID: 39042053 PMCID: PMC11661458 DOI: 10.1002/mp.17319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/07/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND Forty to fifty percent of women and 13%-22% of men experience an osteoporosis-related fragility fracture in their lifetimes. After the age of 50 years, the risk of hip fracture doubles in every 10 years. x-Ray based DXA is currently clinically used to diagnose osteoporosis and predict fracture risk. However, it provides only 2-D representation of bone and is associated with other technical limitations. Thus, alternative methods are needed. PURPOSE To develop and evaluate an ultra-low dose (ULD) hip CT-based automated method for assessment of volumetric bone mineral density (vBMD) at proximal femoral subregions. METHODS An automated method was developed to segment the proximal femur in ULD hip CT images and delineate femoral subregions. The computational pipeline consists of deep learning (DL)-based computation of femur likelihood map followed by shape model-based femur segmentation and finite element analysis-based warping of a reference subregion labeling onto individual femur shapes. Finally, vBMD is computed over each subregion in the target image using a calibration phantom scan. A total of 100 participants (50 females) were recruited from the Genetic Epidemiology of COPD (COPDGene) study, and ULD hip CT imaging, equivalent to 18 days of background radiation received by U.S. residents, was performed on each participant. Additional hip CT imaging using a clinical protocol was performed on 12 participants and repeat ULD hip CT was acquired on another five participants. ULD CT images from 80 participants were used to train the DL network; ULD CT images of the remaining 20 participants as well as clinical and repeat ULD CT images were used to evaluate the accuracy, generalizability, and reproducibility of segmentation of femoral subregions. Finally, clinical CT and repeat ULD CT images were used to evaluate accuracy and reproducibility of ULD CT-based automated measurements of femoral vBMD. RESULTS Dice scores of accuracy (n = 20), reproducibility (n = 5), and generalizability (n = 12) of ULD CT-based automated subregion segmentation were 0.990, 0.982, and 0.977, respectively, for the femoral head and 0.941, 0.970, and 0.960, respectively, for the femoral neck. ULD CT-based regional vBMD showed Pearson and concordance correlation coefficients of 0.994 and 0.977, respectively, and a root-mean-square coefficient of variation (RMSCV) (%) of 1.39% with the clinical CT-derived reference measure. After 3-digit approximation, each of Pearson and concordance correlation coefficients as well as intraclass correlation coefficient (ICC) between baseline and repeat scans were 0.996 with RMSCV of 0.72%. Results of ULD CT-based bone analysis on 100 participants (age (mean ± SD) 73.6 ± 6.6 years) show that males have significantly greater (p < 0.01) vBMD at the femoral head and trochanteric regions than females, while females have moderately greater vBMD (p = 0.05) at the medial half of the femoral neck than males. CONCLUSION Deep learning, combined with shape model and finite element analysis, offers an accurate, reproducible, and generalizable algorithm for automated segmentation of the proximal femur and anatomic femoral subregions using ULD hip CT images. ULD CT-based regional measures of femoral vBMD are accurate and reproducible and demonstrate regional differences between males and females.
Collapse
Affiliation(s)
- Xiaoliu Zhang
- Department of Electrical and Computer Engineering, College of Engineering, University of Iowa, Iowa City, Iowa, USA
| | - Syed Ahmed Nadeem
- Department of Radiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Paul A DiCamillo
- Department of Radiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Amal Shibli-Rahhal
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Elizabeth A Regan
- Department of Medicine, Division of Rheumatology, National Jewish Health, Denver, Colorado, USA
| | - R Graham Barr
- Department of Medicine, Columbia University, New York, New York, USA
| | - Eric A Hoffman
- Department of Radiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, Iowa, USA
| | - Alejandro P Comellas
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Punam K Saha
- Department of Electrical and Computer Engineering, College of Engineering, University of Iowa, Iowa City, Iowa, USA
- Department of Radiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
6
|
Støverud KH, Bouget D, Pedersen A, Leira HO, Amundsen T, Langø T, Hofstad EF. AeroPath: An airway segmentation benchmark dataset with challenging pathology and baseline method. PLoS One 2024; 19:e0311416. [PMID: 39356679 PMCID: PMC11446458 DOI: 10.1371/journal.pone.0311416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024] Open
Abstract
To improve the prognosis of patients suffering from pulmonary diseases, such as lung cancer, early diagnosis and treatment are crucial. The analysis of CT images is invaluable for diagnosis, whereas high quality segmentation of the airway tree are required for intervention planning and live guidance during bronchoscopy. Recently, the Multi-domain Airway Tree Modeling (ATM'22) challenge released a large dataset, both enabling training of deep-learning based models and bringing substantial improvement of the state-of-the-art for the airway segmentation task. The ATM'22 dataset includes a large group of COVID'19 patients and a range of other lung diseases, however, relatively few patients with severe pathologies affecting the airway tree anatomy was found. In this study, we introduce a new public benchmark dataset (AeroPath), consisting of 27 CT images from patients with pathologies ranging from emphysema to large tumors, with corresponding trachea and bronchi annotations. Second, we present a multiscale fusion design for automatic airway segmentation. Models were trained on the ATM'22 dataset, tested on the AeroPath dataset, and further evaluated against competitive open-source methods. The same performance metrics as used in the ATM'22 challenge were used to benchmark the different considered approaches. Lastly, an open web application is developed, to easily test the proposed model on new data. The results demonstrated that our proposed architecture predicted topologically correct segmentations for all the patients included in the AeroPath dataset. The proposed method is robust and able to handle various anomalies, down to at least the fifth airway generation. In addition, the AeroPath dataset, featuring patients with challenging pathologies, will contribute to development of new state-of-the-art methods. The AeroPath dataset and the web application are made openly available.
Collapse
Affiliation(s)
| | - David Bouget
- Department of Health Research, SINTEF, Trondheim, Norway
| | - André Pedersen
- Department of Health Research, SINTEF, Trondheim, Norway
- Sopra Steria, Application Solutions, Trondheim, Norway
| | - Håkon Olav Leira
- Department of Thoracic Medicine, St. Olavs Hospital, Trondheim, Norway
| | - Tore Amundsen
- Department of Thoracic Medicine, St. Olavs Hospital, Trondheim, Norway
| | - Thomas Langø
- Department of Health Research, SINTEF, Trondheim, Norway
- Department of Research, St. Olavs Hospital, Trondheim, Norway
| | | |
Collapse
|
7
|
Nan Y, Xing X, Wang S, Tang Z, Felder FN, Zhang S, Ledda RE, Ding X, Yu R, Liu W, Shi F, Sun T, Cao Z, Zhang M, Gu Y, Zhang H, Gao J, Wang P, Tang W, Yu P, Kang H, Chen J, Lu X, Zhang B, Mamalakis M, Prinzi F, Carlini G, Cuneo L, Banerjee A, Xing Z, Zhu L, Mesbah Z, Jain D, Mayet T, Yuan H, Lyu Q, Qayyum A, Mazher M, Wells A, Walsh SL, Yang G. Hunting imaging biomarkers in pulmonary fibrosis: Benchmarks of the AIIB23 challenge. Med Image Anal 2024; 97:103253. [PMID: 38968907 DOI: 10.1016/j.media.2024.103253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/16/2024] [Accepted: 06/22/2024] [Indexed: 07/07/2024]
Abstract
Airway-related quantitative imaging biomarkers are crucial for examination, diagnosis, and prognosis in pulmonary diseases. However, the manual delineation of airway structures remains prohibitively time-consuming. While significant efforts have been made towards enhancing automatic airway modelling, current public-available datasets predominantly concentrate on lung diseases with moderate morphological variations. The intricate honeycombing patterns present in the lung tissues of fibrotic lung disease patients exacerbate the challenges, often leading to various prediction errors. To address this issue, the 'Airway-Informed Quantitative CT Imaging Biomarker for Fibrotic Lung Disease 2023' (AIIB23) competition was organized in conjunction with the official 2023 International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI). The airway structures were meticulously annotated by three experienced radiologists. Competitors were encouraged to develop automatic airway segmentation models with high robustness and generalization abilities, followed by exploring the most correlated QIB of mortality prediction. A training set of 120 high-resolution computerised tomography (HRCT) scans were publicly released with expert annotations and mortality status. The online validation set incorporated 52 HRCT scans from patients with fibrotic lung disease and the offline test set included 140 cases from fibrosis and COVID-19 patients. The results have shown that the capacity of extracting airway trees from patients with fibrotic lung disease could be enhanced by introducing voxel-wise weighted general union loss and continuity loss. In addition to the competitive image biomarkers for mortality prediction, a strong airway-derived biomarker (Hazard ratio>1.5, p < 0.0001) was revealed for survival prognostication compared with existing clinical measurements, clinician assessment and AI-based biomarkers.
Collapse
Affiliation(s)
- Yang Nan
- Bioengineering Department and Imperial-X, Imperial College London, London, UK; Royal Brompton Hospital, London, UK.
| | - Xiaodan Xing
- Bioengineering Department and Imperial-X, Imperial College London, London, UK.
| | - Shiyi Wang
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Zeyu Tang
- Bioengineering Department and Imperial-X, Imperial College London, London, UK
| | - Federico N Felder
- Royal Brompton Hospital, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Sheng Zhang
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Xiaoliu Ding
- Shanghai MicroPort MedBot (Group) Co., Ltd., China
| | - Ruiqi Yu
- Shanghai MicroPort MedBot (Group) Co., Ltd., China
| | - Weiping Liu
- Shanghai MicroPort MedBot (Group) Co., Ltd., China
| | - Feng Shi
- Shanghai United Imaging Intelligence Co., Ltd., China
| | - Tianyang Sun
- Shanghai United Imaging Intelligence Co., Ltd., China
| | - Zehong Cao
- Shanghai United Imaging Intelligence Co., Ltd., China
| | - Minghui Zhang
- Institute of Medical Robotics, Shanghai Jiao Tong University, China
| | - Yun Gu
- Institute of Medical Robotics, Shanghai Jiao Tong University, China
| | - Hanxiao Zhang
- Institute of Medical Robotics, Shanghai Jiao Tong University, China
| | - Jian Gao
- Department Computational Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Pingyu Wang
- Cambridge International Exam Centre in Shanghai Experimental School, China
| | - Wen Tang
- InferVision Medical Technology Co., Ltd., China
| | - Pengxin Yu
- InferVision Medical Technology Co., Ltd., China
| | - Han Kang
- InferVision Medical Technology Co., Ltd., China
| | - Junqiang Chen
- Shanghai MediWorks Precision Instruments Co., Ltd, China
| | - Xing Lu
- Sanmed Biotech Ltd., Zhuhai, China
| | | | | | - Francesco Prinzi
- Department of Biomedicine, University of Palermo, Palermo, Italy
| | - Gianluca Carlini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Lisa Cuneo
- Istituto Italiano di Tecnologia, Nanoscopy, Genova, Italy
| | - Abhirup Banerjee
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, UK
| | - Zhaohu Xing
- Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China
| | - Lei Zhu
- Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China
| | - Zacharia Mesbah
- INSA Rouen Normandie, Univ Rouen Normandie, Université Le Havre Normandie, France; Nuclear Medicine Department, Henri Becquerel Cancer Center, Rouen, France
| | - Dhruv Jain
- INSA Rouen Normandie, Univ Rouen Normandie, Université Le Havre Normandie, France
| | - Tsiry Mayet
- INSA Rouen Normandie, Univ Rouen Normandie, Université Le Havre Normandie, France
| | - Hongyu Yuan
- Department of Radiology, Wake Forest University School of Medicine, USA
| | - Qing Lyu
- Department of Radiology, Wake Forest University School of Medicine, USA
| | - Abdul Qayyum
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Moona Mazher
- Department of Computer Science, University College London, United Kingdom
| | - Athol Wells
- Royal Brompton Hospital, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Simon Lf Walsh
- Royal Brompton Hospital, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Guang Yang
- Bioengineering Department and Imperial-X, Imperial College London, London, UK; Royal Brompton Hospital, London, UK; National Heart and Lung Institute, Imperial College London, London, UK; School of Biomedical Engineering & Imaging Sciences, King's College London, UK.
| |
Collapse
|
8
|
Pennati F, Aliboni L, Aliverti A. Modeling Realistic Geometries in Human Intrathoracic Airways. Diagnostics (Basel) 2024; 14:1979. [PMID: 39272764 PMCID: PMC11393895 DOI: 10.3390/diagnostics14171979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Geometrical models of the airways offer a comprehensive perspective on the complex interplay between lung structure and function. Originating from mathematical frameworks, these models have evolved to include detailed lung imagery, a crucial enhancement that aids in the early detection of morphological changes in the airways, which are often the first indicators of diseases. The accurate representation of airway geometry is crucial in research areas such as biomechanical modeling, acoustics, and particle deposition prediction. This review chronicles the evolution of these models, from their inception in the 1960s based on ideal mathematical constructs, to the introduction of advanced imaging techniques like computerized tomography (CT) and, to a lesser degree, magnetic resonance imaging (MRI). The advent of these techniques, coupled with the surge in data processing capabilities, has revolutionized the anatomical modeling of the bronchial tree. The limitations and challenges in both mathematical and image-based modeling are discussed, along with their applications. The foundation of image-based modeling is discussed, and recent segmentation strategies from CT and MRI scans and their clinical implications are also examined. By providing a chronological review of these models, this work offers insights into the evolution and potential future of airway geometry modeling, setting the stage for advancements in diagnosing and treating lung diseases. This review offers a novel perspective by highlighting how advancements in imaging techniques and data processing capabilities have significantly enhanced the accuracy and applicability of airway geometry models in both clinical and research settings. These advancements provide unique opportunities for developing patient-specific models.
Collapse
Affiliation(s)
- Francesca Pennati
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy
| | - Lorenzo Aliboni
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy
| | - Andrea Aliverti
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy
| |
Collapse
|
9
|
Wu Y, Xia S, Liang Z, Chen R, Qi S. Artificial intelligence in COPD CT images: identification, staging, and quantitation. Respir Res 2024; 25:319. [PMID: 39174978 PMCID: PMC11340084 DOI: 10.1186/s12931-024-02913-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/09/2024] [Indexed: 08/24/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) stands as a significant global health challenge, with its intricate pathophysiological manifestations often demanding advanced diagnostic strategies. The recent applications of artificial intelligence (AI) within the realm of medical imaging, especially in computed tomography, present a promising avenue for transformative changes in COPD diagnosis and management. This review delves deep into the capabilities and advancements of AI, particularly focusing on machine learning and deep learning, and their applications in COPD identification, staging, and imaging phenotypes. Emphasis is laid on the AI-powered insights into emphysema, airway dynamics, and vascular structures. The challenges linked with data intricacies and the integration of AI in the clinical landscape are discussed. Lastly, the review casts a forward-looking perspective, highlighting emerging innovations in AI for COPD imaging and the potential of interdisciplinary collaborations, hinting at a future where AI doesn't just support but pioneers breakthroughs in COPD care. Through this review, we aim to provide a comprehensive understanding of the current state and future potential of AI in shaping the landscape of COPD diagnosis and management.
Collapse
Affiliation(s)
- Yanan Wu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China
| | - Shuyue Xia
- Respiratory Department, Central Hospital Affiliated to Shenyang Medical College, Shenyang, China
- Key Laboratory of Medicine and Engineering for Chronic Obstructive Pulmonary Disease in Liaoning Province, Shenyang, China
| | - Zhenyu Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Rongchang Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital, Shenzhen, China
| | - Shouliang Qi
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China.
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China.
| |
Collapse
|
10
|
Hu Z, Ren T, Ren M, Cui W, Dong E, Xue P. A Precise Pulmonary Airway Tree Segmentation Method Using Quasi-Spherical Region Constraint and Tracheal Wall Gap Sealing. SENSORS (BASEL, SWITZERLAND) 2024; 24:5104. [PMID: 39204799 PMCID: PMC11359827 DOI: 10.3390/s24165104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/23/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024]
Abstract
Accurate segmentation of the pulmonary airway tree is crucial for diagnosing lung diseases. To tackle the issues of low segmentation accuracy and frequent leaks in existing methods, this paper proposes a precise segmentation method using quasi-spherical region-constrained wavefront propagation with tracheal wall gap sealing. Based on the characteristic that the surface formed by seed points approximates the airway cross-section, the width of the unsegmented airway is calculated, determining the initial quasi-spherical constraint region. Using the wavefront propagation method, seed points are continuously propagated and segmented along the tracheal wall within the quasi-spherical constraint region, thus overcoming the need to determine complex segmentation directions. To seal tracheal wall gaps, a morphological closing operation is utilized to extract the characteristics of small holes and locate low-brightness tracheal wall gaps. By filling the CT values at these gaps, the method seals the tracheal wall gaps. Extensive experiments on the EXACT09 dataset demonstrate that our algorithm ranks third in segmentation completeness. Moreover, its performance in preventing airway leaks is significantly better than the top-two algorithms, effectively preventing large-scale leak-induced spread.
Collapse
Affiliation(s)
| | | | | | - Wentao Cui
- School of Mechanical, Electrical and Information Engineering, Shandong University, Weihai 264209, China
| | | | - Peng Xue
- School of Mechanical, Electrical and Information Engineering, Shandong University, Weihai 264209, China
| |
Collapse
|
11
|
Nan Y, Ser JD, Tang Z, Tang P, Xing X, Fang Y, Herrera F, Pedrycz W, Walsh S, Yang G. Fuzzy Attention Neural Network to Tackle Discontinuity in Airway Segmentation. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:7391-7404. [PMID: 37204954 DOI: 10.1109/tnnls.2023.3269223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Airway segmentation is crucial for the examination, diagnosis, and prognosis of lung diseases, while its manual delineation is unduly burdensome. To alleviate this time-consuming and potentially subjective manual procedure, researchers have proposed methods to automatically segment airways from computerized tomography (CT) images. However, some small-sized airway branches (e.g., bronchus and terminal bronchioles) significantly aggravate the difficulty of automatic segmentation by machine learning models. In particular, the variance of voxel values and the severe data imbalance in airway branches make the computational module prone to discontinuous and false-negative predictions, especially for cohorts with different lung diseases. The attention mechanism has shown the capacity to segment complex structures, while fuzzy logic can reduce the uncertainty in feature representations. Therefore, the integration of deep attention networks and fuzzy theory, given by the fuzzy attention layer, should be an escalated solution for better generalization and robustness. This article presents an efficient method for airway segmentation, comprising a novel fuzzy attention neural network (FANN) and a comprehensive loss function to enhance the spatial continuity of airway segmentation. The deep fuzzy set is formulated by a set of voxels in the feature map and a learnable Gaussian membership function. Different from the existing attention mechanism, the proposed channel-specific fuzzy attention addresses the issue of heterogeneous features in different channels. Furthermore, a novel evaluation metric is proposed to assess both the continuity and completeness of airway structures. The efficiency, generalization, and robustness of the proposed method have been proved by training on normal lung disease while testing on datasets of lung cancer, COVID-19, and pulmonary fibrosis.
Collapse
|
12
|
Nadeem SA, Comellas AP, Regan EA, Hoffman EA, Saha PK. Chest CT-based automated vertebral fracture assessment using artificial intelligence and morphologic features. Med Phys 2024; 51:4201-4218. [PMID: 38721977 PMCID: PMC11661457 DOI: 10.1002/mp.17072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Spinal degeneration and vertebral compression fractures are common among the elderly that adversely affect their mobility, quality of life, lung function, and mortality. Assessment of vertebral fractures in chronic obstructive pulmonary disease (COPD) is important due to the high prevalence of osteoporosis and associated vertebral fractures in COPD. PURPOSE We present new automated methods for (1) segmentation and labelling of individual vertebrae in chest computed tomography (CT) images using deep learning (DL), multi-parametric freeze-and-grow (FG) algorithm, and separation of apparently fused vertebrae using intensity autocorrelation and (2) vertebral deformity fracture detection using computed vertebral height features and parametric computational modelling of an established protocol outlined for trained human experts. METHODS A chest CT-based automated method was developed for quantitative deformity fracture assessment following the protocol by Genant et al. The computational method was accomplished in the following steps: (1) computation of a voxel-level vertebral body likelihood map from chest CT using a trained DL network; (2) delineation and labelling of individual vertebrae on the likelihood map using an iterative multi-parametric FG algorithm; (3) separation of apparently fused vertebrae in CT using intensity autocorrelation; (4) computation of vertebral heights using contour analysis on the central anterior-posterior (AP) plane of a vertebral body; (5) assessment of vertebral fracture status using ratio functions of vertebral heights and optimized thresholds. The method was applied to inspiratory or total lung capacity (TLC) chest scans from the multi-site Genetic Epidemiology of COPD (COPDGene) (ClinicalTrials.gov: NCT00608764) study, and the performance was examined (n = 3231). One hundred and twenty scans randomly selected from this dataset were partitioned into training (n = 80) and validation (n = 40) datasets for the DL-based vertebral body classifier. Also, generalizability of the method to low dose CT imaging (n = 236) was evaluated. RESULTS The vertebral segmentation module achieved a Dice score of .984 as compared to manual outlining results as reference (n = 100); the segmentation performance was consistent across images with the minimum and maximum of Dice scores among images being .980 and .989, respectively. The vertebral labelling module achieved 100% accuracy (n = 100). For low dose CT, the segmentation module produced image-level minimum and maximum Dice scores of .995 and .999, respectively, as compared to standard dose CT as the reference; vertebral labelling at low dose CT was fully consistent with standard dose CT (n = 236). The fracture assessment method achieved overall accuracy, sensitivity, and specificity of 98.3%, 94.8%, and 98.5%, respectively, for 40,050 vertebrae from 3231 COPDGene participants. For generalizability experiments, fracture assessment from low dose CT was consistent with the reference standard dose CT results across all participants. CONCLUSIONS Our CT-based automated method for vertebral fracture assessment is accurate, and it offers a feasible alternative to manual expert reading, especially for large population-based studies, where automation is important for high efficiency. Generalizability of the method to low dose CT imaging further extends the scope of application of the method, particularly since the usage of low dose CT imaging in large population-based studies has increased to reduce cumulative radiation exposure.
Collapse
Affiliation(s)
- Syed Ahmed Nadeem
- Department of Radiology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Alejandro P Comellas
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Elizabeth A Regan
- Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, Colorado, USA
- Division of Rheumatology, National Jewish Health, Denver, Colorado, USA
| | - Eric A Hoffman
- Department of Radiology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
- Department of Biomedical Engineering, College of Engineering, The University of Iowa, Iowa City, Iowa, USA
| | - Punam K Saha
- Department of Radiology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
- Department of Electrical and Computer Engineering, College of Engineering, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
13
|
Naik SN, Angelini ED, Barr RG, Allen N, Bertoni A, Hoffman EA, Manichaikul A, Pankow J, Post W, Sun Y, Watson K, Smith BM, Laine AF. UNSUPERVISED AIRWAY TREE CLUSTERING WITH DEEP LEARNING: THE MULTI-ETHNIC STUDY OF ATHEROSCLEROSIS (MESA) LUNG STUDY. PROCEEDINGS. IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING 2024; 2024:10.1109/isbi56570.2024.10635651. [PMID: 39398280 PMCID: PMC11467912 DOI: 10.1109/isbi56570.2024.10635651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
High-resolution full lung CT scans now enable the detailed segmentation of airway trees up to the 6th branching generation. The airway binary masks display very complex tree structures that may encode biological information relevant to disease risk and yet remain challenging to exploit via traditional methods such as meshing or skeletonization. Recent clinical studies suggest that some variations in shape patterns and caliber of the human airway tree are highly associated with adverse health outcomes, including all-cause mortality and incident COPD. However, quantitative characterization of variations observed on CT segmented airway tree remain incomplete, as does our understanding of the clinical and developmental implications of such. In this work, we present an unsupervised deep-learning pipeline for feature extraction and clustering of human airway trees, learned directly from projections of 3D airway segmentations. We identify four reproducible and clinically distinct airway sub-types in the MESA Lung CT cohort.
Collapse
|
14
|
Genkin D, Zanette B, Grzela P, Benkert T, Subbarao P, Moraes TJ, Katz S, Ratjen F, Santyr G, Kirby M. Semiautomated Segmentation and Analysis of Airway Lumen in Pediatric Patients Using Ultra Short Echo Time MRI. Acad Radiol 2024; 31:648-659. [PMID: 37550154 DOI: 10.1016/j.acra.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 08/09/2023]
Abstract
RATIONALE AND OBJECTIVES Ultra short echo time (UTE) magnetic resonance imaging (MRI) pulse sequences have shown promise for airway assessment, but the feasibility and repeatability in the pediatric lung are unknown. The purpose of this work was to develop a semiautomated UTE MRI airway segmentation pipeline from the trachea-to-tertiary airways in pediatric participants and assess repeatability and lumen diameter correlations to lung function. MATERIALS AND METHODS A total of 29 participants (n = 7 healthy, n = 11 cystic fibrosis, n = 6 asthma, and n = 5 ex-preterm), aged 7-18 years, were imaged using a 3D stack-of-spirals UTE examination at 3 T. Two independent observers performed airway segmentations using a pipeline developed in-house; observer 1 repeated segmentations 1 month later. Segmentations were extracted using region-growing with leak detection, then manually edited if required. The airway trees were skeletonized, pruned, and labeled. Airway lumen diameter measurements were extracted using ray casting. Intra- and interobserver variability was assessed using the Sørensen-Dice coefficient (DSC) and intra-class correlation coefficient (ICC). Correlations between lumen diameter and pulmonary function were assessed using Spearman's correlation coefficient. RESULTS For airway segmentations and lumen diameter, intra- and interobserver DSCs were 0.88 and 0.80, while ICCs were 0.95 and 0.89, respectively. The variability increased from the trachea-to-tertiary airways for intra- (DSC: 0.91-0.64; ICC: 0.91-0.49) and interobserver (DSC: 0.84-0.51; ICC: 0.89-0.21) measurements. Lumen diameter was significantly correlated with forced expiratory volume in 1 second and forced vital capacity (P < .05). CONCLUSION UTE MRI airway segmentation from the trachea-to-tertiary airways in pediatric participants across a range of diseases is feasible. The UTE MRI-derived lumen measurements were repeatable and correlated with lung function.
Collapse
Affiliation(s)
- Daniel Genkin
- Department of Electrical, Computer, and Biomedical Engineering, Toronto Metropolitan University, Toronto, ON, Canada (D.G.)
| | - Brandon Zanette
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada (B.Z., P.G., P.S., T.J.M., F.R., G.S.)
| | - Patrick Grzela
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada (B.Z., P.G., P.S., T.J.M., F.R., G.S.)
| | - Thomas Benkert
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany (T.B.)
| | - Padmaja Subbarao
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada (B.Z., P.G., P.S., T.J.M., F.R., G.S.); Department of Pediatrics, University of Toronto, Toronto, ON, Canada (P.S., T.J.M., F.R.)
| | - Theo J Moraes
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada (B.Z., P.G., P.S., T.J.M., F.R., G.S.); Department of Pediatrics, University of Toronto, Toronto, ON, Canada (P.S., T.J.M., F.R.)
| | - Sherri Katz
- Department of Pediatrics, University of Ottawa, Ottawa, ON, Canada (S.K.); Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada (S.K.)
| | - Felix Ratjen
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada (B.Z., P.G., P.S., T.J.M., F.R., G.S.); Department of Pediatrics, University of Toronto, Toronto, ON, Canada (P.S., T.J.M., F.R.)
| | - Giles Santyr
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada (B.Z., P.G., P.S., T.J.M., F.R., G.S.); Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada (G.S.)
| | - Miranda Kirby
- Department of Physics, Toronto Metropolitan University, Kerr Hall South Bldg., Room KHS-344, 350 Victoria St., Toronto, ON M5B 2K3, Canada (M.K.).
| |
Collapse
|
15
|
Zhang M, Wu Y, Zhang H, Qin Y, Zheng H, Tang W, Arnold C, Pei C, Yu P, Nan Y, Yang G, Walsh S, Marshall DC, Komorowski M, Wang P, Guo D, Jin D, Wu Y, Zhao S, Chang R, Zhang B, Lu X, Qayyum A, Mazher M, Su Q, Wu Y, Liu Y, Zhu Y, Yang J, Pakzad A, Rangelov B, Estepar RSJ, Espinosa CC, Sun J, Yang GZ, Gu Y. Multi-site, Multi-domain Airway Tree Modeling. Med Image Anal 2023; 90:102957. [PMID: 37716199 DOI: 10.1016/j.media.2023.102957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/07/2023] [Accepted: 09/04/2023] [Indexed: 09/18/2023]
Abstract
Open international challenges are becoming the de facto standard for assessing computer vision and image analysis algorithms. In recent years, new methods have extended the reach of pulmonary airway segmentation that is closer to the limit of image resolution. Since EXACT'09 pulmonary airway segmentation, limited effort has been directed to the quantitative comparison of newly emerged algorithms driven by the maturity of deep learning based approaches and extensive clinical efforts for resolving finer details of distal airways for early intervention of pulmonary diseases. Thus far, public annotated datasets are extremely limited, hindering the development of data-driven methods and detailed performance evaluation of new algorithms. To provide a benchmark for the medical imaging community, we organized the Multi-site, Multi-domain Airway Tree Modeling (ATM'22), which was held as an official challenge event during the MICCAI 2022 conference. ATM'22 provides large-scale CT scans with detailed pulmonary airway annotation, including 500 CT scans (300 for training, 50 for validation, and 150 for testing). The dataset was collected from different sites and it further included a portion of noisy COVID-19 CTs with ground-glass opacity and consolidation. Twenty-three teams participated in the entire phase of the challenge and the algorithms for the top ten teams are reviewed in this paper. Both quantitative and qualitative results revealed that deep learning models embedded with the topological continuity enhancement achieved superior performance in general. ATM'22 challenge holds as an open-call design, the training data and the gold standard evaluation are available upon successful registration via its homepage (https://atm22.grand-challenge.org/).
Collapse
Affiliation(s)
- Minghui Zhang
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, China; Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, 200240, China; Department of Automation, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yangqian Wu
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, China; Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, 200240, China; Department of Automation, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hanxiao Zhang
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yulei Qin
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao Zheng
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wen Tang
- InferVision Medical Technology Co., Ltd., Beijing, China
| | | | - Chenhao Pei
- InferVision Medical Technology Co., Ltd., Beijing, China
| | - Pengxin Yu
- InferVision Medical Technology Co., Ltd., Beijing, China
| | - Yang Nan
- Imperial College London, London, UK
| | | | | | | | | | - Puyang Wang
- Alibaba DAMO Academy, 969 West Wen Yi Road, Hangzhou, Zhejiang, China
| | - Dazhou Guo
- Alibaba DAMO Academy USA, 860 Washington Street, 8F, NY, USA
| | - Dakai Jin
- Alibaba DAMO Academy USA, 860 Washington Street, 8F, NY, USA
| | - Ya'nan Wu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Shuiqing Zhao
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Runsheng Chang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Boyu Zhang
- A.I R&D Center, Sanmed Biotech Inc., No. 266 Tongchang Road, Xiangzhou District, Zhuhai, Guangdong, China
| | - Xing Lu
- A.I R&D Center, Sanmed Biotech Inc., T220 Trade st. SanDiego, CA, USA
| | - Abdul Qayyum
- ENIB, UMR CNRS 6285 LabSTICC, Brest, 29238, France
| | - Moona Mazher
- Department of Computer Engineering and Mathematics, University Rovira I Virgili, Tarragona, Spain
| | - Qi Su
- Shanghai Jiao Tong University, Shanghai, China
| | - Yonghuang Wu
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Ying'ao Liu
- University of Science and Technology of China, Hefei, Anhui, China
| | | | - Jiancheng Yang
- Dianei Technology, Shanghai, China; EPFL, Lausanne, Switzerland
| | - Ashkan Pakzad
- Medical Physics and Biomedical Engineering Department, University College London, London, UK
| | - Bojidar Rangelov
- Center for Medical Image Computing, University College London, London, UK
| | | | | | - Jiayuan Sun
- Department of Respiratory and Critical Care Medicine, Department of Respiratory Endoscopy, Shanghai Chest Hospital, Shanghai, China.
| | - Guang-Zhong Yang
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yun Gu
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, China; Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, 200240, China; Department of Automation, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
16
|
Saha PK, Nadeem SA, Comellas AP. A Survey on Artificial Intelligence in Pulmonary Imaging. WILEY INTERDISCIPLINARY REVIEWS. DATA MINING AND KNOWLEDGE DISCOVERY 2023; 13:e1510. [PMID: 38249785 PMCID: PMC10796150 DOI: 10.1002/widm.1510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 06/21/2023] [Indexed: 01/23/2024]
Abstract
Over the last decade, deep learning (DL) has contributed a paradigm shift in computer vision and image recognition creating widespread opportunities of using artificial intelligence in research as well as industrial applications. DL has been extensively studied in medical imaging applications, including those related to pulmonary diseases. Chronic obstructive pulmonary disease, asthma, lung cancer, pneumonia, and, more recently, COVID-19 are common lung diseases affecting nearly 7.4% of world population. Pulmonary imaging has been widely investigated toward improving our understanding of disease etiologies and early diagnosis and assessment of disease progression and clinical outcomes. DL has been broadly applied to solve various pulmonary image processing challenges including classification, recognition, registration, and segmentation. This paper presents a survey of pulmonary diseases, roles of imaging in translational and clinical pulmonary research, and applications of different DL architectures and methods in pulmonary imaging with emphasis on DL-based segmentation of major pulmonary anatomies such as lung volumes, lung lobes, pulmonary vessels, and airways as well as thoracic musculoskeletal anatomies related to pulmonary diseases.
Collapse
Affiliation(s)
- Punam K Saha
- Departments of Radiology and Electrical and Computer Engineering, University of Iowa, Iowa City, IA, 52242
| | | | | |
Collapse
|
17
|
Dudurych I, Garcia-Uceda A, Petersen J, Du Y, Vliegenthart R, de Bruijne M. Reproducibility of a combined artificial intelligence and optimal-surface graph-cut method to automate bronchial parameter extraction. Eur Radiol 2023; 33:6718-6725. [PMID: 37071168 PMCID: PMC10511366 DOI: 10.1007/s00330-023-09615-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 03/02/2023] [Accepted: 03/14/2023] [Indexed: 04/19/2023]
Abstract
OBJECTIVES Computed tomography (CT)-based bronchial parameters correlate with disease status. Segmentation and measurement of the bronchial lumen and walls usually require significant manpower. We evaluate the reproducibility of a deep learning and optimal-surface graph-cut method to automatically segment the airway lumen and wall, and calculate bronchial parameters. METHODS A deep-learning airway segmentation model was newly trained on 24 Imaging in Lifelines (ImaLife) low-dose chest CT scans. This model was combined with an optimal-surface graph-cut for airway wall segmentation. These tools were used to calculate bronchial parameters in CT scans of 188 ImaLife participants with two scans an average of 3 months apart. Bronchial parameters were compared for reproducibility assessment, assuming no change between scans. RESULTS Of 376 CT scans, 374 (99%) were successfully measured. Segmented airway trees contained a mean of 10 generations and 250 branches. The coefficient of determination (R2) for the luminal area (LA) ranged from 0.93 at the trachea to 0.68 at the 6th generation, decreasing to 0.51 at the 8th generation. Corresponding values for Wall Area Percentage (WAP) were 0.86, 0.67, and 0.42, respectively. Bland-Altman analysis of LA and WAP per generation demonstrated mean differences close to 0; limits of agreement (LoA) were narrow for WAP and Pi10 (± 3.7% of mean) and wider for LA (± 16.4-22.8% for 2-6th generations). From the 7th generation onwards, there was a sharp decrease in reproducibility and a widening LoA. CONCLUSION The outlined approach for automatic bronchial parameter measurement on low-dose chest CT scans is a reliable way to assess the airway tree down to the 6th generation. STATEMENT ON CLINICAL RELEVANCE This reliable and fully automatic pipeline for bronchial parameter measurement on low-dose CT scans has potential applications in screening for early disease and clinical tasks such as virtual bronchoscopy or surgical planning, while also enabling the exploration of bronchial parameters in large datasets. KEY POINTS • Deep learning combined with optimal-surface graph-cut provides accurate airway lumen and wall segmentations on low-dose CT scans. • Analysis of repeat scans showed that the automated tools had moderate-to-good reproducibility of bronchial measurements down to the 6th generation airway. • Automated measurement of bronchial parameters enables the assessment of large datasets with less man-hours.
Collapse
Affiliation(s)
- Ivan Dudurych
- Department of Radiology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Antonio Garcia-Uceda
- Department of Radiology and Nuclear Medicine, Erasmus MC, BIGR - Na 26-20, Doctor Molewaterplein 40, 3015 GD, Rotterdam, Netherlands
- Department of Paediatric Pulmonology and Allergology, Erasmus MC-Sophia Children Hospital, Rotterdam, Netherlands
| | - Jens Petersen
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Yihui Du
- Department of Epidemiology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Rozemarijn Vliegenthart
- Department of Radiology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
- Data Science in Health (DASH), University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Marleen de Bruijne
- Department of Radiology and Nuclear Medicine, Erasmus MC, BIGR - Na 26-20, Doctor Molewaterplein 40, 3015 GD, Rotterdam, Netherlands.
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
18
|
Wu Y, Zhao S, Qi S, Feng J, Pang H, Chang R, Bai L, Li M, Xia S, Qian W, Ren H. Two-stage contextual transformer-based convolutional neural network for airway extraction from CT images. Artif Intell Med 2023; 143:102637. [PMID: 37673569 DOI: 10.1016/j.artmed.2023.102637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 06/14/2023] [Accepted: 08/11/2023] [Indexed: 09/08/2023]
Abstract
Accurate airway segmentation from computed tomography (CT) images is critical for planning navigation bronchoscopy and realizing a quantitative assessment of airway-related chronic obstructive pulmonary disease (COPD). Existing methods face difficulty in airway segmentation, particularly for the small branches of the airway. These difficulties arise due to the constraints of limited labeling and failure to meet clinical use requirements in COPD. We propose a two-stage framework with a novel 3D contextual transformer for segmenting the overall airway and small airway branches using CT images. The method consists of two training stages sharing the same modified 3D U-Net network. The novel 3D contextual transformer block is integrated into both the encoder and decoder path of the network to effectively capture contextual and long-range information. In the first training stage, the proposed network segments the overall airway with the overall airway mask. To improve the performance of the segmentation result, we generate the intrapulmonary airway branch label, and train the network to focus on producing small airway branches in the second training stage. Extensive experiments were performed on in-house and multiple public datasets. Quantitative and qualitative analyses demonstrate that our proposed method extracts significantly more branches and longer lengths of the airway tree while accomplishing state-of-the-art airway segmentation performance. The code is available at https://github.com/zhaozsq/airway_segmentation.
Collapse
Affiliation(s)
- Yanan Wu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China; Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China; Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong, China.
| | - Shuiqing Zhao
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China.
| | - Shouliang Qi
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China; Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China.
| | - Jie Feng
- School of Chemical Equipment, Shenyang University of Technology, Liaoyang, China.
| | - Haowen Pang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China.
| | - Runsheng Chang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China.
| | - Long Bai
- Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong, China.
| | - Mengqi Li
- Department of Respiratory, the Second Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Shuyue Xia
- Respiratory Department, Central Hospital Affiliated to Shenyang Medical College, Shenyang, China.
| | - Wei Qian
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China.
| | - Hongliang Ren
- Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
19
|
Vijayan R, Sheth N, Mekki L, Lu A, Uneri A, Sisniega A, Magaraggia J, Kleinszig G, Vogt S, Thiboutot J, Lee H, Yarmus L, Siewerdsen JH. 3D-2D image registration in the presence of soft-tissue deformation in image-guided transbronchial interventions. Phys Med Biol 2022; 68. [PMID: 36317269 DOI: 10.1088/1361-6560/ac9e3c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
Purpose. Target localization in pulmonary interventions (e.g. transbronchial biopsy of a lung nodule) is challenged by deformable motion and may benefit from fluoroscopic overlay of the target to provide accurate guidance. We present and evaluate a 3D-2D image registration method for fluoroscopic overlay in the presence of tissue deformation using a multi-resolution/multi-scale (MRMS) framework with an objective function that drives registration primarily by soft-tissue image gradients.Methods. The MRMS method registers 3D cone-beam CT to 2D fluoroscopy without gating of respiratory phase by coarse-to-fine resampling and global-to-local rescaling about target regions-of-interest. A variation of the gradient orientation (GO) similarity metric (denotedGO') was developed to downweight bone gradients and drive registration via soft-tissue gradients. Performance was evaluated in terms of projection distance error at isocenter (PDEiso). Phantom studies determined nominal algorithm parameters and capture range. Preclinical studies used a freshly deceased, ventilated porcine specimen to evaluate performance in the presence of real tissue deformation and a broad range of 3D-2D image mismatch.Results. Nominal algorithm parameters were identified that provided robust performance over a broad range of motion (0-20 mm), including an adaptive parameter selection technique to accommodate unknown mismatch in respiratory phase. TheGO'metric yielded median PDEiso= 1.2 mm, compared to 6.2 mm for conventionalGO.Preclinical studies with real lung deformation demonstrated median PDEiso= 1.3 mm with MRMS +GO'registration, compared to 2.2 mm with a conventional transform. Runtime was 26 s and can be reduced to 2.5 s given a prior registration within ∼5 mm as initialization.Conclusions. MRMS registration via soft-tissue gradients achieved accurate fluoroscopic overlay in the presence of deformable lung motion. By driving registration via soft-tissue image gradients, the method avoided false local minima presented by bones and was robust to a wide range of motion magnitude.
Collapse
Affiliation(s)
- R Vijayan
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - N Sheth
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - L Mekki
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - A Lu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - A Uneri
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - A Sisniega
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | | | | | - S Vogt
- Siemens Healthineers, Erlangen, Germany
| | - J Thiboutot
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins Medical Institution, Baltimore, MD, United States of America
| | - H Lee
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins Medical Institution, Baltimore, MD, United States of America
| | - L Yarmus
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins Medical Institution, Baltimore, MD, United States of America
| | - J H Siewerdsen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America.,Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| |
Collapse
|
20
|
Nadeem SA, Comellas AP, Hoffman EA, Saha PK. Airway Detection in COPD at Low-Dose CT Using Deep Learning and Multiparametric Freeze and Grow. Radiol Cardiothorac Imaging 2022; 4:e210311. [PMID: 36601453 PMCID: PMC9806731 DOI: 10.1148/ryct.210311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 09/27/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
PURPOSE To present and validate a fully automated airway detection method at low-dose CT in patients with chronic obstructive pulmonary disease (COPD). MATERIALS AND METHODS In this retrospective study, deep learning (DL) and freeze-and-grow (FG) methods were optimized and applied to automatically detect airways at low-dose CT. Four data sets were used: two data sets consisting of matching standard- and low-dose CT scans from the Genetic Epidemiology of COPD (COPDGene) phase II (2014-2017) cohort (n = 2 × 236; mean age ± SD, 70 years ± 9; 123 women); one data set consisting of low-dose CT scans from the COPDGene phase III (2018-2020) cohort (n = 335; mean age ± SD, 73 years ± 8; 173 women); and one data set consisting of low-dose, anonymized CT scans from the 2003 Dutch-Belgian Randomized Lung Cancer Screening trial (n = 55) acquired by using different CT scanners. Performance measures for different methods were computed and compared by using the Wilcoxon signed rank test. RESULTS At low-dose CT, 56 294 of 62 480 (90.1%) airways of the reference total airway count (TAC) and 32 109 of 37 864 (84.8%) airways of the peripheral TAC (TACp), detected at standard-dose CT, were detected. Significant losses (P < .001) of 14 526 of 76 453 (19.0%) airways and 884 of 6908 (12.8%) airways in the TAC and 12 256 of 43 462 (28.2%) airways and 699 of 3882 (18.0%) airways in the TACp were observed, respectively, for the multiprotocol and multiscanner data without retraining. When using the automated low-dose CT method, TAC values of 347, 342, 323, and 266 and TACp values of 205, 202, 289, and 141 were observed for those who have never smoked and participants at Global Initiative for Chronic Obstructive Lung Disease stages 0, 1, and 2, respectively, which were superior to the respective values previously reported for matching groups when using a semiautomated method at standard-dose CT. CONCLUSION A low-cost, automated CT-based airway detection method was suitable for investigation of airway phenotypes at low-dose CT.Keywords: Airway, Airway Count, Airway Detection, Chronic Obstructive Pulmonary Disease, CT, Deep Learning, Generalizability, Low-Dose CT, Segmentation, Thorax, LungClinical trial registration no. NCT00608764 Supplemental material is available for this article. © RSNA, 2022.
Collapse
|
21
|
Li H, Tang Z, Nan Y, Yang G. Human treelike tubular structure segmentation: A comprehensive review and future perspectives. Comput Biol Med 2022; 151:106241. [PMID: 36379190 DOI: 10.1016/j.compbiomed.2022.106241] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/16/2022] [Accepted: 10/22/2022] [Indexed: 12/27/2022]
Abstract
Various structures in human physiology follow a treelike morphology, which often expresses complexity at very fine scales. Examples of such structures are intrathoracic airways, retinal blood vessels, and hepatic blood vessels. Large collections of 2D and 3D images have been made available by medical imaging modalities such as magnetic resonance imaging (MRI), computed tomography (CT), Optical coherence tomography (OCT) and ultrasound in which the spatial arrangement can be observed. Segmentation of these structures in medical imaging is of great importance since the analysis of the structure provides insights into disease diagnosis, treatment planning, and prognosis. Manually labelling extensive data by radiologists is often time-consuming and error-prone. As a result, automated or semi-automated computational models have become a popular research field of medical imaging in the past two decades, and many have been developed to date. In this survey, we aim to provide a comprehensive review of currently publicly available datasets, segmentation algorithms, and evaluation metrics. In addition, current challenges and future research directions are discussed.
Collapse
Affiliation(s)
- Hao Li
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom; Department of Bioengineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| | - Zeyu Tang
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom; Department of Bioengineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| | - Yang Nan
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Guang Yang
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom; Royal Brompton Hospital, London, United Kingdom.
| |
Collapse
|
22
|
Xing H, Zhang X, Nie Y, Wang S, Wang T, Jing H, Li F. A deep learning-based post-processing method for automated pulmonary lobe and airway trees segmentation using chest CT images in PET/CT. Quant Imaging Med Surg 2022; 12:4747-4757. [PMID: 36185049 PMCID: PMC9511416 DOI: 10.21037/qims-21-1116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 07/17/2022] [Indexed: 11/30/2022]
Abstract
Background The proposed algorithm could support accurate localization of lung disease. To develop and validate an automated deep learning model combined with a post-processing algorithm to segment six pulmonary anatomical regions in chest computed tomography (CT) images acquired during positron emission tomography/computed tomography (PET/CT) scans. The pulmonary regions have five pulmonary lobes and airway trees. Methods Patients who underwent both PET/CT imaging with an extra chest CT scan were retrospectively enrolled. The pulmonary segmentation of six regions in CT was performed via a convolutional neural network (CNN) of DenseVNet architecture with some post-processing algorithms. Three evaluation metrics were used to assess the performance of this method, which combined deep learning and the post-processing method. The agreement between the combined model and ground truth segmentations in the test set was analyzed. Results A total of 640 cases were enrolled. The combined model, which involved deep learning and post-processing methods, had a higher performance than the single deep learning model. In the test set, the all-lobes overall Dice coefficient, Hausdorff distance, and Jaccard coefficient were 0.972, 12.025 mm, and 0.948, respectively. The airway-tree Dice coefficient, Hausdorff distance, and Jaccard coefficient were 0.849, 32.076 mm, and 0.815, respectively. A good agreement was observed between our segmentation in every plot. Conclusions The proposed model combining two methods can automatically segment five pulmonary lobes and airway trees on chest CT imaging in PET/CT. The performance of the combined model was higher than the single deep learning model in each region in the test set.
Collapse
Affiliation(s)
- Haiqun Xing
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, China
| | | | | | | | - Tong Wang
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, China
| | - Hongli Jing
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, China
| | - Fang Li
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, China
| |
Collapse
|
23
|
Hoffman EA. Origins of and lessons from quantitative functional X-ray computed tomography of the lung. Br J Radiol 2022; 95:20211364. [PMID: 35193364 PMCID: PMC9153696 DOI: 10.1259/bjr.20211364] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/20/2022] [Accepted: 01/27/2022] [Indexed: 12/16/2022] Open
Abstract
Functional CT of the lung has emerged from quantitative CT (qCT). Structural details extracted at multiple lung volumes offer indices of function. Additionally, single volumetric images, if acquired at standardized lung volumes and body posture, can be used to model function by employing such engineering techniques as computational fluid dynamics. With the emergence of multispectral CT imaging including dual energy from energy integrating CT scanners and multienergy binning using the newly released photon counting CT technology, function is tagged via use of contrast agents. Lung disease phenotypes have previously been lumped together by the limitations of spirometry and plethysmography. QCT and its functional embodiment have been imbedded into studies seeking to characterize chronic obstructive pulmonary disease, severe asthma, interstitial lung disease and more. Reductions in radiation dose by an order of magnitude or more have been achieved. At the same time, we have seen significant increases in spatial and density resolution along with methodologic validations of extracted metrics. Together, these have allowed attention to turn towards more mild forms of disease and younger populations. In early applications, clinical CT offered anatomic details of the lung. Functional CT offers regional measures of lung mechanics, the assessment of functional small airways disease, as well as regional ventilation-perfusion matching (V/Q) and more. This paper will focus on the use of quantitative/functional CT for the non-invasive exploration of dynamic three-dimensional functioning of the breathing lung and beating heart within the unique negative pressure intrathoracic environment of the closed chest.
Collapse
Affiliation(s)
- Eric A Hoffman
- Departments of Radiology, Internal Medicine and Biomedical Engineering University of Iowa, Iowa, United States
| |
Collapse
|
24
|
Wang G, Zhai S, Lasio G, Zhang B, Yi B, Chen S, Macvittie TJ, Metaxas D, Zhou J, Zhang S. Semi-Supervised Segmentation of Radiation-Induced Pulmonary Fibrosis From Lung CT Scans With Multi-Scale Guided Dense Attention. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:531-542. [PMID: 34606451 PMCID: PMC9271367 DOI: 10.1109/tmi.2021.3117564] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Computed Tomography (CT) plays an important role in monitoring radiation-induced Pulmonary Fibrosis (PF), where accurate segmentation of the PF lesions is highly desired for diagnosis and treatment follow-up. However, the task is challenged by ambiguous boundary, irregular shape, various position and size of the lesions, as well as the difficulty in acquiring a large set of annotated volumetric images for training. To overcome these problems, we propose a novel convolutional neural network called PF-Net and incorporate it into a semi-supervised learning framework based on Iterative Confidence-based Refinement And Weighting of pseudo Labels (I-CRAWL). Our PF-Net combines 2D and 3D convolutions to deal with CT volumes with large inter-slice spacing, and uses multi-scale guided dense attention to segment complex PF lesions. For semi-supervised learning, our I-CRAWL employs pixel-level uncertainty-based confidence-aware refinement to improve the accuracy of pseudo labels of unannotated images, and uses image-level uncertainty for confidence-based image weighting to suppress low-quality pseudo labels in an iterative training process. Extensive experiments with CT scans of Rhesus Macaques with radiation-induced PF showed that: 1) PF-Net achieved higher segmentation accuracy than existing 2D, 3D and 2.5D neural networks, and 2) I-CRAWL outperformed state-of-the-art semi-supervised learning methods for the PF lesion segmentation task. Our method has a potential to improve the diagnosis of PF and clinical assessment of side effects of radiotherapy for lung cancers.
Collapse
|
25
|
Bi Y, Jiang C, Qi H, Zhou H, Sun L. Computed Tomography Image Texture under Feature Extraction Algorithm in the Diagnosis of Effect of Specific Nursing Intervention on Mycoplasma Pneumonia in Children. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:6059060. [PMID: 34697567 PMCID: PMC8541873 DOI: 10.1155/2021/6059060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022]
Abstract
To evaluate the effect of specific nursing intervention in children with mycoplasma pneumonia (MP), a feature extraction algorithm based on gray level co-occurrence matrix (GLCM) was proposed and combined with computed tomography (CT) image texture features. Then, 98 children with MP were rolled into the observation group with 49 cases (specific nursing) and the control group with 49 cases (routine nursing). CT images based on feature extraction algorithm of optimized GLCM were used to examine the children before and after nursing intervention, and the recovery of the two groups of children was discussed. The results showed that the proportion of lung texture increase, rope shadow, ground glass shadow, atelectasis, and pleural effusion in the observation group (24.11%, 3.86%, 8.53%, 15.03%, and 3.74%) was significantly lower than that in the control group (28.53%, 10.23%, 13.34%, 21.15%, and 8.13%) after nursing (P < 0.05). There were no significant differences in the proportion of small patchy shadows, large patchy consolidation shadows, and bronchiectasis between the observation group and the control group (P > 0.05). In the course of nursing intervention, in the observation group, the disappearance time of cough, normal temperature, disappearance time of lung rales, and absorption time of lung shadow (2.15 ± 0.86 days, 4.81 ± 1.14 days, 3.64 ± 0.55 days, and 5.96 ± 0.62 days) were significantly shorter than those in the control group (2.87 ± 0.95 days, 3.95 ± 1.06 days, 4.51 ± 1.02 days, and 8.14 ± 1.35 days) (P < 0.05). After nursing intervention, the proportion of satisfaction and total satisfaction in the experimental group (67.08% and 28.66%) was significantly higher than that in the control group (40.21% and 47.39%), while the proportion of dissatisfaction (4.26%) was significantly lower than that in the control group (12.4%) (P < 0.05). To sum up, specific nursing intervention was more beneficial to improve the progress of characterization recovery and the overall recovery effect of children with MP relative to conventional nursing. CT image based on feature extraction algorithm of optimized GLCM was of good adoption value in the diagnosis and treatment of MP in children.
Collapse
Affiliation(s)
- Yuyan Bi
- Department of Pediatric Ward, Jinan City People's Hospital, Jinan 271199, Shandong Province, China
| | - Cuifeng Jiang
- Department of Pediatric Surgery, Jinan City People's Hospital, Jinan 271199, Shandong Province, China
| | - Hua Qi
- Department of Pediatric Ward, Jinan City People's Hospital, Jinan 271199, Shandong Province, China
| | - Haiwei Zhou
- Department of Pediatric Ward, Jinan City People's Hospital, Jinan 271199, Shandong Province, China
| | - Lixia Sun
- Department of Nursing, Jinan City People's Hospital, Jinan 271199, Shandong Province, China
| |
Collapse
|
26
|
Garcia-Uceda A, Selvan R, Saghir Z, Tiddens HAWM, de Bruijne M. Automatic airway segmentation from computed tomography using robust and efficient 3-D convolutional neural networks. Sci Rep 2021; 11:16001. [PMID: 34362949 PMCID: PMC8346579 DOI: 10.1038/s41598-021-95364-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/21/2021] [Indexed: 12/11/2022] Open
Abstract
This paper presents a fully automatic and end-to-end optimised airway segmentation method for thoracic computed tomography, based on the U-Net architecture. We use a simple and low-memory 3D U-Net as backbone, which allows the method to process large 3D image patches, often comprising full lungs, in a single pass through the network. This makes the method simple, robust and efficient. We validated the proposed method on three datasets with very different characteristics and various airway abnormalities: (1) a dataset of pediatric patients including subjects with cystic fibrosis, (2) a subset of the Danish Lung Cancer Screening Trial, including subjects with chronic obstructive pulmonary disease, and (3) the EXACT'09 public dataset. We compared our method with other state-of-the-art airway segmentation methods, including relevant learning-based methods in the literature evaluated on the EXACT'09 data. We show that our method can extract highly complete airway trees with few false positive errors, on scans from both healthy and diseased subjects, and also that the method generalizes well across different datasets. On the EXACT'09 test set, our method achieved the second highest sensitivity score among all methods that reported good specificity.
Collapse
Affiliation(s)
- Antonio Garcia-Uceda
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CE, Rotterdam, The Netherlands.
- Department of Pediatric Pulmonology and Allergology, Erasmus MC-Sophia Children Hospital, 3015 CE, Rotterdam, The Netherlands.
| | - Raghavendra Selvan
- Department of Computer Science, University of Copenhagen, 2100, Copenhagen, Denmark
- Department of Neuroscience, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Zaigham Saghir
- Department of Medicine, Section of Pulmonary Medicine, Herlev-Gentofte Hospital, Copenhagen University Hospital, 2900, Hellerup, Denmark
| | - Harm A W M Tiddens
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CE, Rotterdam, The Netherlands
- Department of Pediatric Pulmonology and Allergology, Erasmus MC-Sophia Children Hospital, 3015 CE, Rotterdam, The Netherlands
| | - Marleen de Bruijne
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CE, Rotterdam, The Netherlands.
- Department of Computer Science, University of Copenhagen, 2100, Copenhagen, Denmark.
| |
Collapse
|