1
|
Zhong L, Qian K, Liao X, Huang Z, Liu Y, Zhang S, Wang G. UniSAL: Unified Semi-supervised Active Learning for histopathological image classification. Med Image Anal 2025; 102:103542. [PMID: 40101375 DOI: 10.1016/j.media.2025.103542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 02/17/2025] [Accepted: 03/03/2025] [Indexed: 03/20/2025]
Abstract
Histopathological image classification using deep learning is crucial for accurate and efficient cancer diagnosis. However, annotating a large amount of histopathological images for training is costly and time-consuming, leading to a scarcity of available labeled data for training deep neural networks. To reduce human efforts and improve efficiency for annotation, we propose a Unified Semi-supervised Active Learning framework (UniSAL) that effectively selects informative and representative samples for annotation. First, unlike most existing active learning methods that only train from labeled samples in each round, dual-view high-confidence pseudo training is proposed to utilize both labeled and unlabeled images to train a model for selecting query samples, where two networks operating on different augmented versions of an input image provide diverse pseudo labels for each other, and pseudo label-guided class-wise contrastive learning is introduced to obtain better feature representations for effective sample selection. Second, based on the trained model at each round, we design novel uncertain and representative sample selection strategy. It contains a Disagreement-aware Uncertainty Selector (DUS) to select informative uncertain samples with inconsistent predictions between the two networks, and a Compact Selector (CS) to remove redundancy of selected samples. We extensively evaluate our method on three public pathological image classification datasets, i.e., CRC5000, Chaoyang and CRC100K datasets, and the results demonstrate that our UniSAL significantly surpasses several state-of-the-art active learning methods, and reduces the annotation cost to around 10% to achieve a performance comparable to full annotation. Code is available at https://github.com/HiLab-git/UniSAL.
Collapse
Affiliation(s)
- Lanfeng Zhong
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Kun Qian
- Department of Information and Intelligence Development, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China.
| | - Xin Liao
- Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Zongyao Huang
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610042, China
| | - Yang Liu
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610042, China
| | - Shaoting Zhang
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China; Shanghai AI Lab, Shanghai 200030, China
| | - Guotai Wang
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China; Shanghai AI Lab, Shanghai 200030, China.
| |
Collapse
|
2
|
Yang Y, Sun G, Zhang T, Wang R, Su J. Semi-supervised medical image segmentation via weak-to-strong perturbation consistency and edge-aware contrastive representation. Med Image Anal 2025; 101:103450. [PMID: 39798528 DOI: 10.1016/j.media.2024.103450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 12/02/2024] [Accepted: 12/26/2024] [Indexed: 01/15/2025]
Abstract
Despite that supervised learning has demonstrated impressive accuracy in medical image segmentation, its reliance on large labeled datasets poses a challenge due to the effort and expertise required for data acquisition. Semi-supervised learning has emerged as a potential solution. However, it tends to yield satisfactory segmentation performance in the central region of the foreground, but struggles in the edge region. In this paper, we propose an innovative framework that effectively leverages unlabeled data to improve segmentation performance, especially in edge regions. Our proposed framework includes two novel designs. Firstly, we introduce a weak-to-strong perturbation strategy with corresponding feature-perturbed consistency loss to efficiently utilize unlabeled data and guide our framework in learning reliable regions. Secondly, we propose an edge-aware contrastive loss that utilizes uncertainty to select positive pairs, thereby learning discriminative pixel-level features in the edge regions using unlabeled data. In this way, the model minimizes the discrepancy of multiple predictions and improves representation ability, ultimately aiming at impressive performance on both primary and edge regions. We conducted a comparative analysis of the segmentation results on the publicly available BraTS2020 dataset, LA dataset, and the 2017 ACDC dataset. Through extensive quantification and visualization experiments under three standard semi-supervised settings, we demonstrate the effectiveness of our approach and set a new state-of-the-art for semi-supervised medical image segmentation. Our code is released publicly at https://github.com/youngyzzZ/SSL-w2sPC.
Collapse
Affiliation(s)
- Yang Yang
- School of Computer Science and Technology, Harbin Institute of Technology at Shenzhen, Shenzhen, 518055, China
| | - Guoying Sun
- School of Computer Science and Technology, Harbin Institute of Technology at Shenzhen, Shenzhen, 518055, China
| | - Tong Zhang
- Department of Network Intelligence, Peng Cheng Laboratory, Shenzhen, 518055, China
| | - Ruixuan Wang
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China; Department of Network Intelligence, Peng Cheng Laboratory, Shenzhen, 518055, China.
| | - Jingyong Su
- School of Computer Science and Technology, Harbin Institute of Technology at Shenzhen, Shenzhen, 518055, China; National Key Laboratory of Smart Farm Technologies and Systems, Harbin, 150001, China.
| |
Collapse
|
3
|
Han K, Lou Q, Lu F. A semi-supervised domain adaptation method with scale-aware and global-local fusion for abdominal multi-organ segmentation. J Appl Clin Med Phys 2025; 26:e70008. [PMID: 39924943 PMCID: PMC11905256 DOI: 10.1002/acm2.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 11/02/2024] [Accepted: 11/27/2024] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND Abdominal multi-organ segmentation remains a challenging task. Semi-supervised domain adaptation (SSDA) has emerged as an innovative solution. However, SSDA frameworks based on UNet struggle to capture multi-scale and global information. PURPOSE Our work aimed to propose a novel SSDA method to achieve more accurate abdominal multi-organ segmentation with limited labeled target domain data, which has a superior ability to capture the multi-scale features and integrate local and global information effectively. METHODS The proposed network is based on UNet. In the encoder part, a scale-aware with domain-specific batch normalization (SAD) module is integrated to adaptively extract multi-scale features and to get better generalization across source and target domains. In the bottleneck part, a global-local fusion (GLF) module is utilized for capturing and integrating both local and global information. They are integrated into the framework of self-ensembling mean-teacher (SE-MT) to enhance the model's capability to learn common features across source and target domains. RESULTS To validate the performance of the proposed model, we evaluated it on the public CHAOS and BTCV datasets. For CHAOS, the proposed method obtains an average DSC of 88.97% and ASD of 1.12 mm with only 20% labeled target data. For BTCV, it achieves an average DSC of 88.95% and ASD of 1.13 mm with 20% labeled target data. Compared with the state-of-the-art methods, DSC and ASD increased by at least 0.72% and 0.33 mm on CHAOS, 1.29% and 0.06 mm on BTCV, respectively. Ablation studies were also conducted to verify the contribution of each component of the model. The proposed method achieves a DSC improvement of 3.17% over the baseline with 20% labeled target data. CONCLUSION The proposed SSDA method for abdominal multi-organ segmentation has a powerful ability to extract multi-scale and more global features, significantly improving segmentation accuracy and robustness.
Collapse
Affiliation(s)
- Kexin Han
- School of Science, Zhejiang University of Science and Technology, Hangzhou, China
| | - Qiong Lou
- School of Science, Zhejiang University of Science and Technology, Hangzhou, China
| | - Fang Lu
- School of Science, Zhejiang University of Science and Technology, Hangzhou, China
| |
Collapse
|
4
|
Rauby B, Xing P, Gasse M, Provost J. Deep Learning in Ultrasound Localization Microscopy: Applications and Perspectives. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:1765-1784. [PMID: 39288061 DOI: 10.1109/tuffc.2024.3462299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Ultrasound localization microscopy (ULM) is a novel super-resolution imaging technique that can image the vasculature in vivo at depth with resolution far beyond the conventional limit of diffraction. By relying on the localization and tracking of clinically approved microbubbles injected in the blood stream, ULM can provide not only anatomical visualization but also hemodynamic quantification of the microvasculature. Several deep learning approaches have been proposed to address challenges in ULM including denoising, improving microbubble localization, estimating blood flow velocity, or performing aberration correction. Proposed deep learning methods often outperform their conventional counterparts by improving image quality and reducing processing time. In addition, their robustness to high concentrations of microbubbles can lead to reduced acquisition times in ULM, addressing a major hindrance to ULM clinical application. Herein, we propose a comprehensive review of the diversity of deep learning applications in ULM focusing on approaches assuming a sparse microbubble distribution. We first provide an overview of how existing studies vary in the constitution of their datasets or in the tasks targeted by the deep learning model. We also take a deeper look into the numerous approaches that have been proposed to improve the localization of microbubbles since they differ highly in their formulation of the optimization problem, their evaluation, or their network architectures. We finally discuss the current limitations and challenges of these methods, as well as the promises and potential of deep learning for ULM in the future.
Collapse
|
5
|
Liu W, Tian T, Wang L, Xu W, Li L, Li H, Zhao W, Tian S, Pan X, Deng Y, Gao F, Yang H, Wang X, Su R. DIAS: A dataset and benchmark for intracranial artery segmentation in DSA sequences. Med Image Anal 2024; 97:103247. [PMID: 38941857 DOI: 10.1016/j.media.2024.103247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/31/2024] [Accepted: 06/17/2024] [Indexed: 06/30/2024]
Abstract
The automated segmentation of Intracranial Arteries (IA) in Digital Subtraction Angiography (DSA) plays a crucial role in the quantification of vascular morphology, significantly contributing to computer-assisted stroke research and clinical practice. Current research primarily focuses on the segmentation of single-frame DSA using proprietary datasets. However, these methods face challenges due to the inherent limitation of single-frame DSA, which only partially displays vascular contrast, thereby hindering accurate vascular structure representation. In this work, we introduce DIAS, a dataset specifically developed for IA segmentation in DSA sequences. We establish a comprehensive benchmark for evaluating DIAS, covering full, weak, and semi-supervised segmentation methods. Specifically, we propose the vessel sequence segmentation network, in which the sequence feature extraction module effectively captures spatiotemporal representations of intravascular contrast, achieving intracranial artery segmentation in 2D+Time DSA sequences. For weakly-supervised IA segmentation, we propose a novel scribble learning-based image segmentation framework, which, under the guidance of scribble labels, employs cross pseudo-supervision and consistency regularization to improve the performance of the segmentation network. Furthermore, we introduce the random patch-based self-training framework, aimed at alleviating the performance constraints encountered in IA segmentation due to the limited availability of annotated DSA data. Our extensive experiments on the DIAS dataset demonstrate the effectiveness of these methods as potential baselines for future research and clinical applications. The dataset and code are publicly available at https://doi.org/10.5281/zenodo.11401368 and https://github.com/lseventeen/DIAS.
Collapse
Affiliation(s)
- Wentao Liu
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China.
| | - Tong Tian
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, China
| | - Lemeng Wang
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Weijin Xu
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Lei Li
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Haoyuan Li
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Wenyi Zhao
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Siyu Tian
- Ultrasonic Department, The Fourth Hospital of Hebei Medical University and Hebei Tumor Hospital, Shijiazhuang, China
| | - Xipeng Pan
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, China
| | - Yiming Deng
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Feng Gao
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Huihua Yang
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China; School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, China.
| | - Xin Wang
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ruisheng Su
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands; Medical Image Analysis group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
6
|
Qu Y, Lu T, Zhang S, Wang G. ScribSD+: Scribble-supervised medical image segmentation based on simultaneous multi-scale knowledge distillation and class-wise contrastive regularization. Comput Med Imaging Graph 2024; 116:102416. [PMID: 39018640 DOI: 10.1016/j.compmedimag.2024.102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/16/2024] [Accepted: 07/04/2024] [Indexed: 07/19/2024]
Abstract
Despite that deep learning has achieved state-of-the-art performance for automatic medical image segmentation, it often requires a large amount of pixel-level manual annotations for training. Obtaining these high-quality annotations is time-consuming and requires specialized knowledge, which hinders the widespread application that relies on such annotations to train a model with good segmentation performance. Using scribble annotations can substantially reduce the annotation cost, but often leads to poor segmentation performance due to insufficient supervision. In this work, we propose a novel framework named as ScribSD+ that is based on multi-scale knowledge distillation and class-wise contrastive regularization for learning from scribble annotations. For a student network supervised by scribbles and the teacher based on Exponential Moving Average (EMA), we first introduce multi-scale prediction-level Knowledge Distillation (KD) that leverages soft predictions of the teacher network to supervise the student at multiple scales, and then propose class-wise contrastive regularization which encourages feature similarity within the same class and dissimilarity across different classes, thereby effectively improving the segmentation performance of the student network. Experimental results on the ACDC dataset for heart structure segmentation and a fetal MRI dataset for placenta and fetal brain segmentation demonstrate that our method significantly improves the student's performance and outperforms five state-of-the-art scribble-supervised learning methods. Consequently, the method has a potential for reducing the annotation cost in developing deep learning models for clinical diagnosis.
Collapse
Affiliation(s)
- Yijie Qu
- University of Electronic Science and Technology of China, Chengdu, China
| | - Tao Lu
- Sichuan Provincial People's Hospital, Chengdu, China
| | - Shaoting Zhang
- University of Electronic Science and Technology of China, Chengdu, China; Shanghai AI lab, Shanghai, China
| | - Guotai Wang
- University of Electronic Science and Technology of China, Chengdu, China; Shanghai AI lab, Shanghai, China.
| |
Collapse
|
7
|
Wu J, Guo D, Wang G, Yue Q, Yu H, Li K, Zhang S. FPL+: Filtered Pseudo Label-Based Unsupervised Cross-Modality Adaptation for 3D Medical Image Segmentation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:3098-3109. [PMID: 38602852 DOI: 10.1109/tmi.2024.3387415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Adapting a medical image segmentation model to a new domain is important for improving its cross-domain transferability, and due to the expensive annotation process, Unsupervised Domain Adaptation (UDA) is appealing where only unlabeled images are needed for the adaptation. Existing UDA methods are mainly based on image or feature alignment with adversarial training for regularization, and they are limited by insufficient supervision in the target domain. In this paper, we propose an enhanced Filtered Pseudo Label (FPL+)-based UDA method for 3D medical image segmentation. It first uses cross-domain data augmentation to translate labeled images in the source domain to a dual-domain training set consisting of a pseudo source-domain set and a pseudo target-domain set. To leverage the dual-domain augmented images to train a pseudo label generator, domain-specific batch normalization layers are used to deal with the domain shift while learning the domain-invariant structure features, generating high-quality pseudo labels for target-domain images. We then combine labeled source-domain images and target-domain images with pseudo labels to train a final segmentor, where image-level weighting based on uncertainty estimation and pixel-level weighting based on dual-domain consensus are proposed to mitigate the adverse effect of noisy pseudo labels. Experiments on three public multi-modal datasets for Vestibular Schwannoma, brain tumor and whole heart segmentation show that our method surpassed ten state-of-the-art UDA methods, and it even achieved better results than fully supervised learning in the target domain in some cases.
Collapse
|
8
|
Liu Z, Kainth K, Zhou A, Deyer TW, Fayad ZA, Greenspan H, Mei X. A review of self-supervised, generative, and few-shot deep learning methods for data-limited magnetic resonance imaging segmentation. NMR IN BIOMEDICINE 2024; 37:e5143. [PMID: 38523402 DOI: 10.1002/nbm.5143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/26/2024]
Abstract
Magnetic resonance imaging (MRI) is a ubiquitous medical imaging technology with applications in disease diagnostics, intervention, and treatment planning. Accurate MRI segmentation is critical for diagnosing abnormalities, monitoring diseases, and deciding on a course of treatment. With the advent of advanced deep learning frameworks, fully automated and accurate MRI segmentation is advancing. Traditional supervised deep learning techniques have advanced tremendously, reaching clinical-level accuracy in the field of segmentation. However, these algorithms still require a large amount of annotated data, which is oftentimes unavailable or impractical. One way to circumvent this issue is to utilize algorithms that exploit a limited amount of labeled data. This paper aims to review such state-of-the-art algorithms that use a limited number of annotated samples. We explain the fundamental principles of self-supervised learning, generative models, few-shot learning, and semi-supervised learning and summarize their applications in cardiac, abdomen, and brain MRI segmentation. Throughout this review, we highlight algorithms that can be employed based on the quantity of annotated data available. We also present a comprehensive list of notable publicly available MRI segmentation datasets. To conclude, we discuss possible future directions of the field-including emerging algorithms, such as contrastive language-image pretraining, and potential combinations across the methods discussed-that can further increase the efficacy of image segmentation with limited labels.
Collapse
Affiliation(s)
- Zelong Liu
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Komal Kainth
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alexander Zhou
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Timothy W Deyer
- East River Medical Imaging, New York, New York, USA
- Department of Radiology, Cornell Medicine, New York, New York, USA
| | - Zahi A Fayad
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hayit Greenspan
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Xueyan Mei
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
9
|
Zeng B, Chen L, Zheng Y, Chen X. Adaptive Multi-Dimensional Weighted Network With Category-Aware Contrastive Learning for Fine-Grained Hand Bone Segmentation. IEEE J Biomed Health Inform 2024; 28:3985-3996. [PMID: 38640043 DOI: 10.1109/jbhi.2024.3391387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Accurately delineating and categorizing individual hand bones in 3D ultrasound (US) is a promising technology for precise digital diagnostic analysis. However, this is a challenging task due to the inherent imaging limitations of the US and the insignificant feature differences among numerous bones. In this study, we have proposed a novel deep learning-based solution for pediatric hand bone segmentation in the US. Our method is unique in that it allows for effective detailed feature mining through an adaptive multi-dimensional weighting attention mechanism. It innovatively implements a category-aware contrastive learning method to highlight inter-class semantic feature differences, thereby enhancing the category discrimination performance of the model. Extensive experiments on the challenging pediatric clinical hand 3D US datasets show the outstanding performance of the proposed method in segmenting thirty-eight bone structures, with the average Dice coefficient of 90.0%. The results outperform other state-of-the-art methods, demonstrating its effectiveness in fine-grained hand bone segmentation. Our method will be globally released as a plugin in the 3D Slicer, providing an innovative and reliable tool for relevant clinical applications.
Collapse
|
10
|
Zhang H, Liu J, Liu W, Chen H, Yu Z, Yuan Y, Wang P, Qin J. MHD-Net: Memory-Aware Hetero-Modal Distillation Network for Thymic Epithelial Tumor Typing With Missing Pathology Modality. IEEE J Biomed Health Inform 2024; 28:3003-3014. [PMID: 38470599 DOI: 10.1109/jbhi.2024.3376462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Fusing multi-modal radiology and pathology data with complementary information can improve the accuracy of tumor typing. However, collecting pathology data is difficult since it is high-cost and sometimes only obtainable after the surgery, which limits the application of multi-modal methods in diagnosis. To address this problem, we propose comprehensively learning multi-modal radiology-pathology data in training, and only using uni-modal radiology data in testing. Concretely, a Memory-aware Hetero-modal Distillation Network (MHD-Net) is proposed, which can distill well-learned multi-modal knowledge with the assistance of memory from the teacher to the student. In the teacher, to tackle the challenge in hetero-modal feature fusion, we propose a novel spatial-differentiated hetero-modal fusion module (SHFM) that models spatial-specific tumor information correlations across modalities. As only radiology data is accessible to the student, we store pathology features in the proposed contrast-boosted typing memory module (CTMM) that achieves type-wise memory updating and stage-wise contrastive memory boosting to ensure the effectiveness and generalization of memory items. In the student, to improve the cross-modal distillation, we propose a multi-stage memory-aware distillation (MMD) scheme that reads memory-aware pathology features from CTMM to remedy missing modal-specific information. Furthermore, we construct a Radiology-Pathology Thymic Epithelial Tumor (RPTET) dataset containing paired CT and WSI images with annotations. Experiments on the RPTET and CPTAC-LUAD datasets demonstrate that MHD-Net significantly improves tumor typing and outperforms existing multi-modal methods on missing modality situations.
Collapse
|
11
|
Li W, Song H, Ai D, Shi J, Wang Y, Wu W, Yang J. Semi-supervised segmentation of orbit in CT images with paired copy-paste strategy. Comput Biol Med 2024; 171:108176. [PMID: 38401453 DOI: 10.1016/j.compbiomed.2024.108176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/06/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
The segmentation of the orbit in computed tomography (CT) images plays a crucial role in facilitating the quantitative analysis of orbital decompression surgery for patients with Thyroid-associated Ophthalmopathy (TAO). However, the task of orbit segmentation, particularly in postoperative images, remains challenging due to the significant shape variation and limited amount of labeled data. In this paper, we present a two-stage semi-supervised framework for the automatic segmentation of the orbit in both preoperative and postoperative images, which consists of a pseudo-label generation stage and a semi-supervised segmentation stage. A Paired Copy-Paste strategy is concurrently introduced to proficiently amalgamate features extracted from both preoperative and postoperative images, thereby augmenting the network discriminative capability in discerning changes within orbital boundaries. More specifically, we employ a random cropping technique to transfer regions from labeled preoperative images (foreground) onto unlabeled postoperative images (background), as well as unlabeled preoperative images (foreground) onto labeled postoperative images (background). It is imperative to acknowledge that every set of preoperative and postoperative images belongs to the identical patient. The semi-supervised segmentation network (stage 2) utilizes a combination of mixed supervisory signals from pseudo labels (stage 1) and ground truth to process the two mixed images. The training and testing of the proposed method have been conducted on the CT dataset obtained from the Eye Hospital of Wenzhou Medical University. The experimental results demonstrate that the proposed method achieves a mean Dice similarity coefficient (DSC) of 91.92% with only 5% labeled data, surpassing the performance of the current state-of-the-art method by 2.4%.
Collapse
Affiliation(s)
- Wentao Li
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, 100081, China.
| | - Hong Song
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, 100081, China.
| | - Danni Ai
- School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China.
| | - Jieliang Shi
- Eye Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| | - Yuanyuan Wang
- School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China.
| | - Wencan Wu
- Eye Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| | - Jian Yang
- School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
12
|
Kumari S, Singh P. Deep learning for unsupervised domain adaptation in medical imaging: Recent advancements and future perspectives. Comput Biol Med 2024; 170:107912. [PMID: 38219643 DOI: 10.1016/j.compbiomed.2023.107912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/02/2023] [Accepted: 12/24/2023] [Indexed: 01/16/2024]
Abstract
Deep learning has demonstrated remarkable performance across various tasks in medical imaging. However, these approaches primarily focus on supervised learning, assuming that the training and testing data are drawn from the same distribution. Unfortunately, this assumption may not always hold true in practice. To address these issues, unsupervised domain adaptation (UDA) techniques have been developed to transfer knowledge from a labeled domain to a related but unlabeled domain. In recent years, significant advancements have been made in UDA, resulting in a wide range of methodologies, including feature alignment, image translation, self-supervision, and disentangled representation methods, among others. In this paper, we provide a comprehensive literature review of recent deep UDA approaches in medical imaging from a technical perspective. Specifically, we categorize current UDA research in medical imaging into six groups and further divide them into finer subcategories based on the different tasks they perform. We also discuss the respective datasets used in the studies to assess the divergence between the different domains. Finally, we discuss emerging areas and provide insights and discussions on future research directions to conclude this survey.
Collapse
Affiliation(s)
- Suruchi Kumari
- Department of Computer Science and Engineering, Indian Institute of Technology Roorkee, India.
| | - Pravendra Singh
- Department of Computer Science and Engineering, Indian Institute of Technology Roorkee, India.
| |
Collapse
|
13
|
Shen N, Xu T, Huang S, Mu F, Li J. Expert-Guided Knowledge Distillation for Semi-Supervised Vessel Segmentation. IEEE J Biomed Health Inform 2023; 27:5542-5553. [PMID: 37669209 DOI: 10.1109/jbhi.2023.3312338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
In medical image analysis, blood vessel segmentation is of considerable clinical value for diagnosis and surgery. The predicaments of complex vascular structures obstruct the development of the field. Despite many algorithms have emerged to get off the tight corners, they rely excessively on careful annotations for tubular vessel extraction. A practical solution is to excavate the feature information distribution from unlabeled data. This work proposes a novel semi-supervised vessel segmentation framework, named EXP-Net, to navigate through finite annotations. Based on the training mechanism of the Mean Teacher model, we innovatively engage an expert network in EXP-Net to enhance knowledge distillation. The expert network comprises knowledge and connectivity enhancement modules, which are respectively in charge of modeling feature relationships from global and detailed perspectives. In particular, the knowledge enhancement module leverages the vision transformer to highlight the long-range dependencies among multi-level token components; the connectivity enhancement module maximizes the properties of topology and geometry by skeletonizing the vessel in a non-parametric manner. The key components are dedicated to the conditions of weak vessel connectivity and poor pixel contrast. Extensive evaluations show that our EXP-Net achieves state-of-the-art performance on subcutaneous vessel, retinal vessel, and coronary artery segmentations.
Collapse
|
14
|
Yu X, Luan S, Lei S, Huang J, Liu Z, Xue X, Ma T, Ding Y, Zhu B. Deep learning for fast denoising filtering in ultrasound localization microscopy. Phys Med Biol 2023; 68:205002. [PMID: 37703894 DOI: 10.1088/1361-6560/acf98f] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/13/2023] [Indexed: 09/15/2023]
Abstract
Objective.Addition of a denoising filter step in ultrasound localization microscopy (ULM) has been shown to effectively reduce the error localizations of microbubbles (MBs) and achieve resolution improvement for super-resolution ultrasound (SR-US) imaging. However, previous image-denoising methods (e.g. block-matching 3D, BM3D) requires long data processing times, making ULM only able to be processed offline. This work introduces a new way to reduce data processing time through deep learning.Approach.In this study, we propose deep learning (DL) denoising based on contrastive semi-supervised network (CS-Net). The neural network is mainly trained with simulated MBs data to extract MB signals from noise. And the performances of CS-Net denoising are evaluated in bothin vitroflow phantom experiment andin vivoexperiment of New Zealand rabbit tumor.Main results.Forin vitroflow phantom experiment, the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of single microbubble image are 26.91 dB and 4.01 dB, repectively. Forin vivoanimal experiment , the SNR and CNR were 12.29 dB and 6.06 dB. In addition, single microvessel of 24μm and two microvessels separated by 46μm could be clearly displayed. Most importantly,, the CS-Net denoising speeds forin vitroandin vivoexperiments were 0.041 s frame-1and 0.062 s frame-1, respectively.Significance.DL denoising based on CS-Net can improve the resolution of SR-US as well as reducing denoising time, thereby making further contributions to the clinical real-time imaging of ULM.
Collapse
Affiliation(s)
- Xiangyang Yu
- Shool of Integrated Circuit, Wuhan National Laboratory for optoelectronics, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Shunyao Luan
- Shool of Integrated Circuit, Wuhan National Laboratory for optoelectronics, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Shuang Lei
- Shool of Integrated Circuit, Wuhan National Laboratory for optoelectronics, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jing Huang
- Shool of Integrated Circuit, Wuhan National Laboratory for optoelectronics, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Zeqing Liu
- Shool of Integrated Circuit, Wuhan National Laboratory for optoelectronics, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xudong Xue
- Department of Radiation Oncology, Hubei Cancer Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Teng Ma
- The Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, People's Republic of China
| | - Yi Ding
- Department of Radiation Oncology, Hubei Cancer Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Benpeng Zhu
- Shool of Integrated Circuit, Wuhan National Laboratory for optoelectronics, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
15
|
Zhao Y, Lu K, Xue J, Wang S, Lu J. Semi-Supervised Medical Image Segmentation With Voxel Stability and Reliability Constraints. IEEE J Biomed Health Inform 2023; 27:3912-3923. [PMID: 37155391 DOI: 10.1109/jbhi.2023.3273609] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Semi-supervised learning is becoming an effective solution in medical image segmentation because annotations are costly and tedious to acquire. Methods based on the teacher-student model use consistency regularization and uncertainty estimation and have shown good potential in dealing with limited annotated data. Nevertheless, the existing teacher-student model is seriously limited by the exponential moving average algorithm, which leads to the optimization trap. Moreover, the classic uncertainty estimation method calculates the global uncertainty for images but does not consider local region-level uncertainty, which is unsuitable for medical images with blurry regions. In this article, the Voxel Stability and Reliability Constraint (VSRC) model is proposed to address these issues. Specifically, the Voxel Stability Constraint (VSC) strategy is introduced to optimize parameters and exchange effective knowledge between two independent initialized models, which can break through the performance bottleneck and avoid model collapse. Moreover, a new uncertainty estimation strategy, the Voxel Reliability Constraint (VRC), is proposed for use in our semi-supervised model to consider the uncertainty at the local region level. We further extend our model to auxiliary tasks and propose a task-level consistency regularization with uncertainty estimation. Extensive experiments on two 3D medical image datasets demonstrate that our method outperforms other state-of-the-art semi-supervised medical image segmentation methods under limited supervision.
Collapse
|
16
|
Wang Y, Xia W, Yan Z, Zhao L, Bian X, Liu C, Qi Z, Zhang S, Tang Z. Root canal treatment planning by automatic tooth and root canal segmentation in dental CBCT with deep multi-task feature learning. Med Image Anal 2023; 85:102750. [PMID: 36682153 DOI: 10.1016/j.media.2023.102750] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/16/2022] [Accepted: 01/10/2023] [Indexed: 01/21/2023]
Abstract
Accurate and automatic segmentation of individual tooth and root canal from cone-beam computed tomography (CBCT) images is an essential but challenging step for dental surgical planning. In this paper, we propose a novel framework, which consists of two neural networks, DentalNet and PulpNet, for efficient, precise, and fully automatic tooth instance segmentation and root canal segmentation from CBCT images. We first use the proposed DentalNet to achieve tooth instance segmentation and identification. Then, the region of interest (ROI) of the affected tooth is extracted and fed into the PulpNet to obtain precise segmentation of the pulp chamber and the root canal space. These two networks are trained by multi-task feature learning and evaluated on two clinical datasets respectively and achieve superior performances to several comparing methods. In addition, we incorporate our method into an efficient clinical workflow to improve the surgical planning process. In two clinical case studies, our workflow took only 2 min instead of 6 h to obtain the 3D model of tooth and root canal effectively for the surgical planning, resulting in satisfying outcomes in difficult root canal treatments.
Collapse
Affiliation(s)
- Yiwei Wang
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China
| | - Wenjun Xia
- Shanghai Xuhui District Dental Center, Shanghai 200031, China
| | - Zhennan Yan
- SenseBrain Technology, Princeton, NJ 08540, USA
| | - Liang Zhao
- SenseTime Research, Shanghai 200233, China
| | - Xiaohe Bian
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China
| | - Chang Liu
- SenseTime Research, Shanghai 200233, China
| | - Zhengnan Qi
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China
| | - Shaoting Zhang
- Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China; Centre for Perceptual and Interactive Intelligence (CPII), Hong Kong Special Administrative Region of China.
| | - Zisheng Tang
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China.
| |
Collapse
|