1
|
Vecchi JT, Rhomberg M, Guymon CA, Hansen MR. The geometry of photopolymerized topography influences neurite pathfinding by directing growth cone morphology and migration. J Neural Eng 2024; 21:026027. [PMID: 38547528 PMCID: PMC10993768 DOI: 10.1088/1741-2552/ad38dc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/15/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
Objective. Cochlear implants provide auditory perception to those with severe to profound sensorineural hearing loss: however, the quality of sound perceived by users does not approximate natural hearing. This limitation is due in part to the large physical gap between the stimulating electrodes and their target neurons. Therefore, directing the controlled outgrowth of processes from spiral ganglion neurons (SGNs) into close proximity to the electrode array could provide significantly increased hearing function.Approach.For this objective to be properly designed and implemented, the ability and limits of SGN neurites to be guided must first be determined. In this work, we engineer precise topographical microfeatures with angle turn challenges of various geometries to study SGN pathfinding and use live imaging to better understand how neurite growth is guided by these cues.Main Results.We find that the geometry of the angled microfeatures determines the ability of neurites to navigate the angled microfeature turns. SGN neurite pathfinding fidelity is increased by 20%-70% through minor increases in microfeature amplitude (depth) and by 25% if the angle of the patterned turn is made obtuse. Further, we see that dorsal root ganglion neuron growth cones change their morphology and migration to become more elongated within microfeatures. Our observations also indicate complexities in studying neurite turning. First, as the growth cone pathfinds in response to the various cues, the associated neurite often reorients across the angle topographical microfeatures. Additionally, neurite branching is observed in response to topographical guidance cues, most frequently when turning decisions are most uncertain.Significance.Overall, the multi-angle channel micropatterned substrate is a versatile and efficient system to assess neurite turning and pathfinding in response to topographical cues. These findings represent fundamental principles of neurite pathfinding that will be essential to consider for the design of 3D systems aiming to guide neurite growthin vivo.
Collapse
Affiliation(s)
- Joseph T Vecchi
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, United States of America
- Department of Otolaryngology Head-Neck Surgery, University of Iowa, Iowa City, IA, United States of America
| | - Madeline Rhomberg
- Department of Otolaryngology Head-Neck Surgery, University of Iowa, Iowa City, IA, United States of America
| | - C Allan Guymon
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA, United States of America
| | - Marlan R Hansen
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, United States of America
- Department of Otolaryngology Head-Neck Surgery, University of Iowa, Iowa City, IA, United States of America
| |
Collapse
|
2
|
Vecchi JT, Rhomberg M, Guymon CA, Hansen MR. The geometry of photopolymerized topography influences neurite pathfinding by directing growth cone morphology and migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555111. [PMID: 37693432 PMCID: PMC10491164 DOI: 10.1101/2023.08.28.555111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Cochlear implants (CIs) provide auditory perception to those with profound sensorineural hearing loss: however, the quality of sound perceived by a CI user does not approximate natural hearing. This limitation is due in part to the large physical gap between the stimulating electrodes and their target neurons. Therefore, directing the controlled outgrowth of processes from spiral ganglion neurons (SGNs) into close proximity to the electrode array could provide significantly increased hearing function. For this objective to be properly designed and implemented, the ability and limits of SGN neurites to be guided must first be determined. In this work, we engineered precise topographical microfeatures with angle turn challenges of various geometries to study SGN pathfinding. Additionally, we analyze sensory neurite growth in response to topographically patterned substrates and use live imaging to better understand how neurite growth is guided by these cues. In assessing the ability of neurites to sense and turn in response to topographical cues, we find that the geometry of the angled microfeatures determines the ability of neurites to navigate the angled microfeature turns. SGN neurite pathfinding fidelity can be increased by 20-70% through minor increases in microfeature amplitude (depth) and by 25% if the angle of the patterned turn is made more obtuse. Further, by using engineered topographies and live imaging of dorsal root ganglion neurons (DRGNs), we see that DRGN growth cones change their morphology and migration to become more elongated within microfeatures. However, our observations also indicate complexities in studying neurite turning. First, as the growth cone pathfinds in response to the various cues, the associated neurite often reorients across the angle topographical microfeatures. This reorientation is likely related to the tension the neurite shaft experiences when the growth cone elongates in the microfeature around a turn. Additionally, neurite branching is observed in response to topographical guidance cues, most frequently when turning decisions are most uncertain. Overall, the multi-angle channel micropatterned substrate is a versatile and efficient system to assess SGN neurite turning and pathfinding in response to topographical cues. These findings represent fundamental principles of neurite pathfinding that will be essential to consider for the design of 3D systems aiming to guide neurite growth in vivo.
Collapse
Affiliation(s)
- Joseph T. Vecchi
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, Iowa City, IA, USA
- Department of Otolaryngology Head-Neck Surgery, Carver College of Medicine, Iowa City, IA, USA
| | - Madeline Rhomberg
- Department of Otolaryngology Head-Neck Surgery, Carver College of Medicine, Iowa City, IA, USA
| | - C. Allan Guymon
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA, USA
| | - Marlan R. Hansen
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, Iowa City, IA, USA
- Department of Otolaryngology Head-Neck Surgery, Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
3
|
KASAI N. Nano-biointerfaces for Detection and Control of Biological Information. ELECTROCHEMISTRY 2016. [DOI: 10.5796/electrochemistry.84.688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Nahoko KASAI
- NTT Basic Research Laboratories, NTT Corporation
| |
Collapse
|
4
|
KASAI N, LU R, FILIP R, GOTO T, TANAKA A, SUMITOMO K. Neuronal Growth on a-Si and Au Nanopillars. ELECTROCHEMISTRY 2016. [DOI: 10.5796/electrochemistry.84.296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Nahoko KASAI
- NTT Basic Research Laboratories, NTT Corporation
| | - Rick LU
- NTT Basic Research Laboratories, NTT Corporation
| | - Roxana FILIP
- NTT Basic Research Laboratories, NTT Corporation
| | | | - Aya TANAKA
- NTT Basic Research Laboratories, NTT Corporation
| | | |
Collapse
|
5
|
Smirnov MS, Cabral KA, Geller HM, Urbach JS. The effects of confinement on neuronal growth cone morphology and velocity. Biomaterials 2014; 35:6750-7. [PMID: 24840617 DOI: 10.1016/j.biomaterials.2014.04.097] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 04/21/2014] [Indexed: 11/25/2022]
Abstract
Optimizing growth cone guidance through the use of patterned substrates is important for designing regenerative substrates to aid in recovery from neuronal injury. Using laser ablation, we designed micron-scale patterns capable of confining dissociated mouse cerebellar granule neuron growth cones to channels of different widths ranging from 1.5 to 12 μm. Growth cone dynamics in these channels were observed using time-lapse microscopy. Growth cone area was decreased in channels between 1.5 and 6 μm as compared to that in 12 μm and unpatterned substrates. Growth cone aspect ratio was also affected as narrower channels forced growth cones into a narrow, elongated shape. There was no difference in the overall rate of growth cone advance in uniform channels between 1.5 and 12 μm as compared to growth on unpatterned substrates. The percentage of time growth cones advanced, paused, and retracted was also similar. However, growth cones did respond to changes in confinement: growth cones in narrow lanes rapidly sped up when encountering a wide region and then slowed down as they entered another narrow region. Our results suggest that the rate of neurite extension is not affected by the degree of confinement, but does respond to changes in confinement.
Collapse
Affiliation(s)
- Michael S Smirnov
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20057, USA; Department of Physics and the Institute for Soft Matter Synthesis and Metrology, Georgetown University, 320 Regents Hall, Washington, DC 20057, USA
| | - Katelyn A Cabral
- Developmental Neurobiology Section, Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Herbert M Geller
- Developmental Neurobiology Section, Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffrey S Urbach
- Department of Physics and the Institute for Soft Matter Synthesis and Metrology, Georgetown University, 320 Regents Hall, Washington, DC 20057, USA.
| |
Collapse
|
6
|
Spedden E, Staii C. Neuron biomechanics probed by atomic force microscopy. Int J Mol Sci 2013; 14:16124-40. [PMID: 23921683 PMCID: PMC3759903 DOI: 10.3390/ijms140816124] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 07/16/2013] [Accepted: 07/18/2013] [Indexed: 11/16/2022] Open
Abstract
Mechanical interactions play a key role in many processes associated with neuronal growth and development. Over the last few years there has been significant progress in our understanding of the role played by the substrate stiffness in neuronal growth, of the cell-substrate adhesion forces, of the generation of traction forces during axonal elongation, and of the relationships between the neuron soma elastic properties and its health. The particular capabilities of the Atomic Force Microscope (AFM), such as high spatial resolution, high degree of control over the magnitude and orientation of the applied forces, minimal sample damage, and the ability to image and interact with cells in physiologically relevant conditions make this technique particularly suitable for measuring mechanical properties of living neuronal cells. This article reviews recent advances on using the AFM for studying neuronal biomechanics, provides an overview about the state-of-the-art measurements, and suggests directions for future applications.
Collapse
Affiliation(s)
- Elise Spedden
- Department of Physics and Astronomy and Center for Nanoscopic Physics, Tufts University, 4 Colby Street, Medford, MA 02155, USA; E-Mail:
| | - Cristian Staii
- Department of Physics and Astronomy and Center for Nanoscopic Physics, Tufts University, 4 Colby Street, Medford, MA 02155, USA; E-Mail:
| |
Collapse
|
7
|
Chacko JV, Canale C, Harke B, Diaspro A. Sub-diffraction nano manipulation using STED AFM. PLoS One 2013; 8:e66608. [PMID: 23799123 PMCID: PMC3684569 DOI: 10.1371/journal.pone.0066608] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 05/07/2013] [Indexed: 11/18/2022] Open
Abstract
In the last two decades, nano manipulation has been recognized as a potential tool of scientific interest especially in nanotechnology and nano-robotics. Contemporary optical microscopy (super resolution) techniques have also reached the nanometer scale resolution to visualize this and hence a combination of super resolution aided nano manipulation ineluctably gives a new perspective to the scenario. Here we demonstrate how specificity and rapid determination of structures provided by stimulated emission depletion (STED) microscope can aid another microscopic tool with capability of mechanical manoeuvring, like an atomic force microscope (AFM) to get topological information or to target nano scaled materials. We also give proof of principle on how high-resolution real time visualization can improve nano manipulation capability within a dense sample, and how STED-AFM is an optimal combination for this job. With these evidences, this article points to future precise nano dissections and maybe even to a nano-snooker game with an AFM tip and fluorospheres.
Collapse
Affiliation(s)
- Jenu Varghese Chacko
- Istituto Italiano di Tecnologia, Genova, Italy
- Department of Physics, University of Genova, Genova, Italy
| | | | - Benjamin Harke
- Istituto Italiano di Tecnologia, Genova, Italy
- * E-mail: (BH) (BH); (AD) (AD)
| | - Alberto Diaspro
- Istituto Italiano di Tecnologia, Genova, Italy
- Department of Physics, University of Genova, Genova, Italy
- * E-mail: (BH) (BH); (AD) (AD)
| |
Collapse
|
8
|
Park JW, Kim HJ, Kang MW, Jeon NL. Advances in microfluidics-based experimental methods for neuroscience research. LAB ON A CHIP 2013; 13:509-521. [PMID: 23306275 DOI: 10.1039/c2lc41081h] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The application of microfluidics to neuroscience applications has always appealed to neuroscientists because of the capability to control the cellular microenvironment in both a spatial and temporal manner. Recently, there has been rapid development of biological micro-electro-mechanical systems (BioMEMS) for both fundamental and applied neuroscience research. In this review, we will discuss the applications of BioMEMS to various topics in the field of neuroscience. The purpose of this review is to summarise recent advances in the components and design of the BioMEMS devices, in vitro disease models, electrophysiology and neural stem cell research. We envision that microfluidics will play a key role in future neuroscience research, both fundamental and applied research.
Collapse
Affiliation(s)
- Jae Woo Park
- Division of WCU (World Class University) Multiscale Mechanical Design, School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Korea
| | | | | | | |
Collapse
|
9
|
|
10
|
Spedden E, White JD, Kaplan D, Staii C. Young’s Modulus of Cortical and P19 Derived Neurons Measured by Atomic Force Microscopy. ACTA ACUST UNITED AC 2012. [DOI: 10.1557/opl.2012.485] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
ABSTRACTIn this paper we use the Atomic Force Microscope to measure the Young’s modulus for two types of neuronal cell bodies: cortical neurons obtained from rat embryos and neurons derived from P19 mouse embryonic carcinoma stem cells. The neurons are plated on different substrates coated with two types of protein growth factors, poly-D-lysine and laminin. We report on the Young’s modulus of each type of neuron as well as the variation of modulus between cells plated on different protein substrates. We compare these results to various individual cell and bulk tissue measurements reported in literature. We additionally report on an observed change in the Young’s modulus of cortical neurons when subjected to a short-term reduction in ambient temperature.
Collapse
|
11
|
Franze K. Atomic force microscopy and its contribution to understanding the development of the nervous system. Curr Opin Genet Dev 2011; 21:530-7. [PMID: 21840706 DOI: 10.1016/j.gde.2011.07.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Accepted: 07/04/2011] [Indexed: 11/28/2022]
Abstract
While our understanding of the influence of biochemical signaling on cell functioning is increasing rapidly, the consequences of mechanical signaling are currently poorly understood. However, cells of the nervous system respond to their mechanical environment; their mechanosensitivity has important implications for development and disease. Atomic force microscopy provides a powerful technique to investigate the mechanical interaction of cells with their environment with high resolution. This method can be used to obtain high-resolution surface topographies, stiffness maps, and apply well-defined forces to samples at different length scales. This review summarizes recent advances of atomic force microscopy, provides an overview about state-of-the-art measurements, and suggests directions for future applications to investigate the involvement of mechanics in the development of the nervous system.
Collapse
Affiliation(s)
- Kristian Franze
- Department of Physics, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, UK.
| |
Collapse
|
12
|
Staii C, Viesselmann C, Ballweg J, Williams JC, Dent EW, Coppersmith SN, Eriksson MA. Distance dependence of neuronal growth on nanopatterned gold surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:233-9. [PMID: 21121598 DOI: 10.1021/la102331x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Understanding network development in the brain is of tremendous fundamental importance, but it is immensely challenging because of the complexity of both its architecture and function. The mechanisms of axonal navigation to target regions and the specific interactions with guidance factors such as membrane-bound proteins, chemical gradients, mechanical guidance cues, etc., are largely unknown. A current limitation for the study of neural network formation is the ability to control precisely the connectivity of small groups of neurons. A first step in designing such networks is to understand the "rules" central nervous system (CNS) neurons use to form functional connections with one another. Here we begin to delineate novel rules for growth and connectivity of small numbers of neurons patterned on Au substrates in simplified geometries. These studies yield new insights into the mechanisms determining the organizational features present in intact systems. We use a previously reported atomic force microscopy (AFM) nanolithography method to control precisely the location and growth of neurons on these surfaces. By examining a series of systems with different geometrical parameters, we quantitatively and systematically analyze how neuronal growth depends on these parameters.
Collapse
Affiliation(s)
- Cristian Staii
- Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155, United States.
| | | | | | | | | | | | | |
Collapse
|