1
|
Hashemi A, Dutta S, Georgeot B, Kouamé D, Sabet H. A novel perspective on denoising using quantum localization with application to medical imaging. ARXIV 2025:arXiv:2405.12226v3. [PMID: 38947935 PMCID: PMC11213148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background noise in many fields such as medical imaging poses significant challenges for accurate diagnosis, prompting the development of denoising algorithms. Traditional methodologies, however, often struggle to address the complexities of noisy environments in high dimensional imaging systems. This paper introduces a novel quantum-inspired approach for image denoising, drawing upon principles of quantum and condensed matter physics. Our approach views medical images as amorphous structures akin to those found in condensed matter physics and we propose an algorithm that incorporates the concept of mode resolved localization directly into the denoising process. Notably, unlike previous studies that considered localization as a hindrance, our approach considers quantum localization as a fundamental component of image reconstruction which is used to differentiate between noisy and non-noisy modes based on diffusivity and localization measurements. This perspective eliminates the need for hyperparameter tuning, making the proposed method a standalone algorithm which can be implemented with minimal manual intervention and can perform automatic filtering of noise regardless of noise level. Through numerical validation, we showcase the effectiveness of our approach in addressing noise-related challenges in imaging and especially medical imaging, underscoring its relevance for possible quantum computing applications.
Collapse
Affiliation(s)
- Amirreza Hashemi
- Massachusetts General Hospital & Harvard Medical School, Department of Radiology, Boston, 02129, USA
| | - Sayantan Dutta
- Weill Cornell Medicine, Department of Radiology, New York, 10065, USA
- Advanced Technology Group, GE HealthCare, Bangalore 560066, India
| | | | - Denis Kouamé
- Université de Toulouse, CNRS, IRIT, Toulouse, 31042, France
| | - Hamid Sabet
- Massachusetts General Hospital & Harvard Medical School, Department of Radiology, Boston, 02129, USA
| |
Collapse
|
2
|
Hashemi A, Dutta S, Georgeot B, Kouamé D, Sabet H. Quantum inspired approach for denoising with application to medical imaging. RESEARCH SQUARE 2024:rs.3.rs-4600863. [PMID: 39070639 PMCID: PMC11275693 DOI: 10.21203/rs.3.rs-4600863/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Background noise in many fields such as medical imaging poses significant challenges for accurate diagnosis, prompting the development of denoising algorithms. Traditional methodologies, however, often struggle to address the complexities of noisy environments in high dimensional imaging systems. This paper introduces a novel quantum-inspired approach for image denoising, drawing upon principles of quantum and condensed matter physics. Our approach views medical images as amorphous structures akin to those found in condensed matter physics and we propose an algorithm that incorporates the concept of mode resolved localization directly into the denoising process. Notably, our approach eliminates the need for hyperparameter tuning. The proposed method is a standalone algorithm with minimal manual intervention, demonstrating its potential to use quantum-based techniques in classical signal denoising. Through numerical validation, we showcase the effectiveness of our approach in addressing noise-related challenges in imaging and especially medical imaging, underscoring its relevance for possible quantum computing applications.
Collapse
Affiliation(s)
| | | | | | | | - Hamid Sabet
- Massachusetts General Hospital & Harvard Medical School
| |
Collapse
|
3
|
Sanaat A, Amini M, Arabi H, Zaidi H. The quest for multifunctional and dedicated PET instrumentation with irregular geometries. Ann Nucl Med 2024; 38:31-70. [PMID: 37952197 PMCID: PMC10766666 DOI: 10.1007/s12149-023-01881-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023]
Abstract
We focus on reviewing state-of-the-art developments of dedicated PET scanners with irregular geometries and the potential of different aspects of multifunctional PET imaging. First, we discuss advances in non-conventional PET detector geometries. Then, we present innovative designs of organ-specific dedicated PET scanners for breast, brain, prostate, and cardiac imaging. We will also review challenges and possible artifacts by image reconstruction algorithms for PET scanners with irregular geometries, such as non-cylindrical and partial angular coverage geometries and how they can be addressed. Then, we attempt to address some open issues about cost/benefits analysis of dedicated PET scanners, how far are the theoretical conceptual designs from the market/clinic, and strategies to reduce fabrication cost without compromising performance.
Collapse
Affiliation(s)
- Amirhossein Sanaat
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland
| | - Mehdi Amini
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland
| | - Hossein Arabi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland.
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, The Netherlands.
- Department of Nuclear Medicine, University of Southern Denmark, 500, Odense, Denmark.
- University Research and Innovation Center, Óbuda University, Budapest, Hungary.
| |
Collapse
|
4
|
Feng Y, Worstell W, Kupinski M, Furenlid LR, Sabet H. Resolution recovery on list mode MLEM reconstruction for dynamic cardiac SPECT system. Biomed Phys Eng Express 2023; 10:10.1088/2057-1976/ad0f40. [PMID: 37995364 PMCID: PMC11162156 DOI: 10.1088/2057-1976/ad0f40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 11/23/2023] [Indexed: 11/25/2023]
Abstract
The Dynamic Cardiac SPECT (DC-SPECT) system is being developed at the Massachusetts General Hospital, featuring a static cardio focus asymmetrical geometry enabling simultaneous high-resolution and high-sensitivity imaging. Among 14 design iterations of the DC-SPECT with varying number of detector heads, system sensitivity and resolution, the current version under development features 10 mm FWHM geometrical resolution (without resolution recovery) and 0.07% sensitivity at the center of the FOV, this is 1.5× resolution gain and 7× sensitivity gain compared to a conventional dual head gamma camera (0.01% sensitivity and 15-mm resolution). This work presents improvement in imaging resolution by implementing a spatially variant point spread function (SV-PSF) with list mode MLEM reconstruction. A resolution recovery method by PSF deconvolution is validated on list mode MLEM reconstruction for the DC-SPECT. A spatial invariant PSF is included as an additional test to show the influence of the PSF modelling accuracy on reconstructed image quality. We compare the MLEM reconstruction with and without PSF deconvolution; an analytic model is used for the calculation of system response, and the results are compared to the reconstruction with system modelling using Monte Carlo (MC) based methods. Results show that with PSF modelling applied, the quality of the reconstructed image is improved, and the DC-SPECT system can achieve a 4.5 mm central spatial resolution with average 795 counts/Mbq. Both the SV-PSF and the spatial-invariant PSF improve the image quality, and the reconstruction with SV-PSF generates line profiles closer to the ground truth. The results show substantial improvement over the GE Discovery 570c performance (7 mm spatial resolution with an average 460 counts/MBq, 5.8 mm resolution at the FOV center). The impact of PSF deconvolution is significant, improvement of the reconstructed image quality is evident in comparison to MC simulated system matrix with the same sampling size in the simulation.
Collapse
Affiliation(s)
- Yuemeng Feng
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
| | | | - Matthew Kupinski
- Department of Radiology, and College of Optical Sciences, University of Arizona, Tucson, AZ, United States of America
| | - Lars R Furenlid
- Department of Radiology, and College of Optical Sciences, University of Arizona, Tucson, AZ, United States of America
| | - Hamid Sabet
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
5
|
Zarrini-Monfared Z, Karbasi S, Zamani A, Mosleh-Shirazi MA. Full modulation transfer functions of thick parallel- and focused-element scintillator arrays obtained by a Monte Carlo optical transport model. Med Phys 2023. [PMID: 36779548 DOI: 10.1002/mp.16306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 01/28/2023] [Accepted: 01/28/2023] [Indexed: 02/14/2023] Open
Abstract
BACKGROUND Arrays of thick segmented crystalline scintillators are useful x-ray converters for image-guided radiation therapy using electronic portal imaging (EPI) and megavoltage cone-beam computed tomography (MV-CBCT). Ionizing-radiation-only simulations previously showed relatively low modulation transfer function (MTF) in parallel-element arrays because of beam divergence. Hence, a focused-element geometry (matching the beam divergence) has been proposed. The "full" (ionizing and optical) MTF performance of such a focused geometry compared to its radiation-only MTF has, however, not been fully investigated. PURPOSE To study the full MTF performance of such arrays in a more realistic situation in which optical characteristics are also included using an in-house detector model that supports light transport, and quantify the errors in MTF estimation when the optical stage is ignored. METHODS First, radiation (x-ray and electron) transport was simulated. Then, transport of the generated optical photons was modeled using ScintSim2, an optical Monte Carlo (MC) code developed in MATLAB for simulation of two-dimensional (2D) parallel- and focused-element scintillator arrays. The full-MTF responses of focused- and parallel-element geometries, for a large array of 3 × 3 mm2 CsI:Tl detector elements of 10, 40, and 60 mm thicknesses, were examined. For each configuration, a composite line spread function (LSF) was calculated to obtain the MTF. RESULTS At the Nyquist frequency, for 10 mm-thick central elements and 60 mm-thick peripheral parallel elements, full-MTF exhibited a drop of up to 15 and 79 times, respectively, compared with radiation-only MTF. This was found to be partly attributable to the angular distribution of the light emerging from the detector-element exit face and the dependence on its aspect ratio, since the light exiting thicker scintillators exhibited a more forward-directed distribution. Focused elements provided an increase of up to nine times in peripheral-area full MTF values. CONCLUSIONS Full MTF was up to 79 times lower than radiation-only MTF. Focused arrays preserved full MTF by up to nine times compared to parallel elements. The differences in the results obtained with and without inclusion of optical photons emphasize the need to include light transport when optimizing thick segmented scintillation detectors. Besides their application in detector optimization for radiotherapy megavoltage photon imaging, these findings can also be useful for other segmented-scintillator-based imaging systems, for example, in nuclear medicine, or in 2D detection systems for quality assurance of MR-linacs.
Collapse
Affiliation(s)
- Zinat Zarrini-Monfared
- Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sareh Karbasi
- Physics Unit, Department of Radio-oncology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Zamani
- Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Amin Mosleh-Shirazi
- Physics Unit, Department of Radio-oncology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Schaart DR. Physics and technology of time-of-flight PET detectors. Phys Med Biol 2021; 66. [PMID: 33711831 DOI: 10.1088/1361-6560/abee56] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/12/2021] [Indexed: 01/04/2023]
Abstract
The imaging performance of clinical positron emission tomography (PET) systems has evolved impressively during the last ∼15 years. A main driver of these improvements has been the introduction of time-of-flight (TOF) detectors with high spatial resolution and detection efficiency, initially based on photomultiplier tubes, later silicon photomultipliers. This review aims to offer insight into the challenges encountered, solutions developed, and lessons learned during this period. Detectors based on fast, bright, inorganic scintillators form the scope of this work, as these are used in essentially all clinical TOF-PET systems today. The improvement of the coincidence resolving time (CRT) requires the optimization of the entire detection chain and a sound understanding of the physics involved facilitates this effort greatly. Therefore, the theory of scintillation detector timing is reviewed first. Once the fundamentals have been set forth, the principal detector components are discussed: the scintillator and the photosensor. The parameters that influence the CRT are examined and the history, state-of-the-art, and ongoing developments are reviewed. Finally, the interplay between these components and the optimization of the overall detector design are considered. Based on the knowledge gained to date, it appears feasible to improve the CRT from the values of 200-400 ps achieved by current state-of-the-art TOF-PET systems to about 100 ps or less, even though this may require the implementation of advanced methods such as time resolution recovery. At the same time, it appears unlikely that a system-level CRT in the order of ∼10 ps can be reached with conventional scintillation detectors. Such a CRT could eliminate the need for conventional tomographic image reconstruction and a search for new approaches to timestamp annihilation photons with ultra-high precision is therefore warranted. While the focus of this review is on timing performance, it attempts to approach the topic from a clinically driven perspective, i.e. bearing in mind that the ultimate goal is to optimize the value of PET in research and (personalized) medicine.
Collapse
Affiliation(s)
- Dennis R Schaart
- Delft University of Technology, Radiation Science & Technology dept., section Medical Physics & Technology, Mekelweg 15, 2629 JB Delft, The Netherlands
| |
Collapse
|
7
|
Bläckberg L, Sajedi S, El Fakhri G, Sabet H. A layered single-side readout depth of interaction time-of-flight-PET detector. Phys Med Biol 2021; 66:045025. [PMID: 33570050 PMCID: PMC8130834 DOI: 10.1088/1361-6560/abd592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We are exploring a scintillator-based PET detector with potential of high sensitivity, depth of interaction (DOI) capability, and timing resolution, with single-side readout. Our design combines two previous concepts: (1) multiple scintillator arrays stacked with relative offset, yielding inherent DOI information, but good timing performance has not been demonstrated with conventional light sharing readout. (2) Single crystal array with one-to-one coupling to the photodetector, showing superior timing performance compared to its light sharing counterparts, but lacks DOI. The combination, where the first layer of a staggered design is coupled one-to-one to a photodetector array, may provide both DOI and timing resolution and this concept is here evaluated through light transport simulations. Results show that: (1) unpolished crystal pixels in the staggered configuration yield better performance across all metrics compared to polished pixels, regardless of readout scheme. (2) One-to-one readout of the first layer allows for accurate DOI extraction using a single threshold. The number of multi pixel photon counter (MPPC) pixels with signal amplitudes exceeding the threshold corresponds to the interaction layer. This approach was not possible with conventional light sharing readout. (3) With a threshold of 2 optical photons, the layered approach with one-to-one coupled first layer improves timing close to the MPPC compared to the conventional one-to-one coupling non-DOI detector, due to effectively reduced crystal thickness. Single detector timing resolution values of 91, 127, 151 and 164 ps were observed per layer in the 4-layer design, to be compared to 148 ps for the single array with one-to-one coupling. (4) For the layered design with light sharing readout, timing improves with increased MPPC pixel size due to higher signal per channel. In conclusion, the combination of straightforward DOI determination, good timing performance, and relatively simple design makes the proposed concept promising for DOI-Time-of-Flight PET detectors.
Collapse
Affiliation(s)
- L Bläckberg
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
| | - S Sajedi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
| | - G El Fakhri
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
| | - H Sabet
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
8
|
Sanaat A, Ashrafi-Belgabad A, Zaidi H. Polaroid-PET: a PET scanner with detectors fitted with Polaroid for filtering unpolarized optical photons-a Monte Carlo simulation study. Phys Med Biol 2020; 65:235044. [PMID: 33263320 DOI: 10.1088/1361-6560/abaeb8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We propose and evaluate the performance of an improved preclinical positron emission tomography (PET) scanner design, referred to as Polaroid-PET, consisting of a detector equipped with a layer of horizontal Polaroid to filter scintillation photons with vertical polarization. This makes it possible to improve the spatial resolution of PET scanners based on monolithic crystals. First, a detector module based on a lutetium-yttrium orthosilicate monolithic crystal with 10 mm thickness and silicon photomultipliers (SiPMs) was implemented in the GEANT4 Monte Carlo toolkit. Subsequently, a layer of Polaroid was inserted between the crystal and the SiPMs. Two preclinical PET scanners based on ten detector modules with and without Polaroid were simulated. The performance of the proposed detector modules and corresponding PET scanner for the two configurations (with and without Polaroid) was assessed using standard performance parameters, including spatial resolution, sensitivity, optical photon ratio detected for positioning, and image quality. The detector module fitted with Polaroid led to higher spatial resolution (1.05 mm FWHM) in comparison with a detector without Polaroid (1.30 mm FHWM) for a point source located at the center of the detector module. From 100% of optical photons produced in the scintillator crystal, 65% and 66% were used for positioning in the detectors without and with Polaroid, respectively. Polaroid-PET resulted in higher axial spatial resolution (0.83 mm FWHM) compared to the scanner without Polaroid (1.01 mm FWHM) for a point source at the center of the field of view (CFOV). The absolute sensitivity at the CFOV was 4.37% and 4.31% for regular and Polaroid-PET, respectively. Planar images of a grid phantom demonstrated the potential of the detector with a Polaroid in distinguishing point sources located at close distances. Our results indicated that Polaroid-PET may improve spatial resolution by filtering the reflected optical photons according to their polarization state, while retaining the high sensitivity expected with monolithic crystal detector blocks.
Collapse
Affiliation(s)
- Amirhossein Sanaat
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva 1211, Switzerland
| | | | | |
Collapse
|
9
|
Mohammadi I, Castro IFC, Correia PMM, Silva ALM, Veloso JFCA. Minimization of parallax error in positron emission tomography using depth of interaction capable detectors: methods and apparatus. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab4a1b] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
10
|
Pizzichemi M, Polesel A, Stringhini G, Gundacker S, Lecoq P, Tavernier S, Paganoni M, Auffray E. On light sharing TOF-PET modules with depth of interaction and 157 ps FWHM coincidence time resolution. ACTA ACUST UNITED AC 2019; 64:155008. [DOI: 10.1088/1361-6560/ab2cb0] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Bläckberg L, Sajedi S, Mandl S, Mohan A, Vittum B, El Fakhri G, Sabet H. Exploring light confinement in laser-processed LYSO:Ce for photon counting CT application. Phys Med Biol 2019; 64:095020. [PMID: 30897557 PMCID: PMC7191943 DOI: 10.1088/1361-6560/ab1213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
With the goal of developing a low-cost scintillator-based photon counting detector (PCD) with high dose efficiency suitable for CT, the light transport characteristics in LYSO:Ce detectors containing laser induced optical barriers (LIOB) are simulated. Light confinement and light collection efficiencies (LCE) are studied for a variety of optical barrier patterns and properties (refractive index (RI) and barrier/crystal interface roughness). Up to 80% confinement is achievable with a simple pixel pattern with one barrier wall separating each pixel coupled one-to-one to a photodetector (PD) pixel. Confinement is heavily dependent on barrier properties, and rough interfaces and higher RI results in increased cross-talk. Three approaches to enhance performance beyond the basic pattern are explored: (1) Multiple barrier walls separating each crystal pixel. (2) Introduction of long and short range confinement by having multiple crystal pixels per PD pixel. (3) Combination of LIOB and laser ablation (LA). (1) Is effective for rough interfaces where confinement can be increased by up to 24% for double compared to single walls. (2) Results in high confinement in the pixel centered on the PD pixel, but lower confinement closer to the PD edge. This feature may be explored to achieve spatial resolution beyond the PD pixel size using light sharing based positioning algorithms. (3) Can increase confinement for smooth interfaces using a smooth ablation in the bottom part of the crystal. A general trend across all configurations is a trade-off between light confinement and LCE. The LCE attainable is found comparable to that for mechanically pixelated arrays. While the confinement achievable with LIOB is always lower compared to a mechanically pixelated array, the former may offer a high level of flexibility in terms of detector design. This, in combination with the possibility to fabricate sub-mm pixels in a cost-effective manner, makes LIOB a promising technology for scintillator-based PCDs.
Collapse
Affiliation(s)
- L Bläckberg
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | | | | | | | | | | | | |
Collapse
|