1
|
Zhang M, Fang S, Cai W, Huynh C, Göktepe F, Oh J, Wang Z, Ekanayake I, Göktepe Ö, Baughman RH. Mandrel-free fabrication of giant spring-index and stroke muscles for diverse applications. Science 2025; 387:1101-1108. [PMID: 40048538 DOI: 10.1126/science.adr6708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 01/17/2025] [Indexed: 04/23/2025]
Abstract
Methods for making high-spring-index polymer fiber or yarn muscles have required expensive fabrication by wrapping around a mandrel, which limits their practical applications. We demonstrate an inexpensive mandrel-free method for making polymer muscles that can have a spring index of >50 and a contractile tensile stroke exceeding 97%. This method enables the spring index to be varied along a muscle's length by varying the plying twist, resulting in muscles that transition between homochiral and heterochiral when either heated or cooled. We demonstrate use of these polymer muscles for robots and environmentally driven comfort-adjusting jackets. This mandrel-free method was used to make high-spring-index carbon nanotube yarns for mechanical energy harvesters, self-powered strain sensors, and solvent-driven and electrochemically driven artificial muscles.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, USA
| | - Shaoli Fang
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, USA
| | - Wenting Cai
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, USA
| | - Chi Huynh
- Lintec of America, Inc., Nano-Science & Technology Center, Plano, TX, USA
| | - Fatma Göktepe
- Textile Engineering Department, Çorlu Engineering Faculty, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Jiyoung Oh
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, USA
| | - Zhong Wang
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, USA
| | - Ishara Ekanayake
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, USA
| | - Özer Göktepe
- Textile Engineering Department, Çorlu Engineering Faculty, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Ray H Baughman
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
2
|
Zhang J. Ply for a large stroke. Science 2025; 387:1038-1039. [PMID: 40048544 DOI: 10.1126/science.adw2181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
A simple coiling of two or more twisted fibers makes artificial muscles with a high spring index.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Mechanical Engineering, University of Nevada, Reno, NV, USA
| |
Collapse
|
3
|
Perrier R, Linares JM, Tadrist L. Resilience of hierarchical actuators highlighted by a myosin-to-muscle mock-up. BIOINSPIRATION & BIOMIMETICS 2025; 20:026013. [PMID: 39847867 DOI: 10.1088/1748-3190/adadd5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/23/2025] [Indexed: 01/25/2025]
Abstract
Skeletal muscle is the main actuator of various families of vertebrates (mammals, fish, reptiles). It displays remarkable robustness to micro-damage, that supposedly originates both from its redundant hierarchical structure and its nervous command. A bioinspired mock-up was designed and manufactured mimicking sarcomeres (micro-scale) and its series and parallel structure from fibre to muscle. First, the mechanical performances namely the force-velocity curve of the intact muscle mock-up were measured and modelled. Then, mimicking micro-damage by making some myosin heads inoperative, the mechanical performances were again measured to determine the resilience of the actuator. The mock-up is shown to be resilient: in the event of 10% damage of the mock-up, the mechanical performance of the mock-up was around 80% of the intact one. In this multi degrees of freedom actuator with hierarchical structure, the resilience is shown to be almost linear with the damage level for uniformly distributed damage (both maximal force and velocity decrease). Differently when micro-damage are clustered on a fibre, this decreases the maximal force with little effect on velocity.
Collapse
Affiliation(s)
| | | | - Loïc Tadrist
- Aix Marseille Univ, CNRS, ISM, Marseille, France
| |
Collapse
|
4
|
Ding H, Yang D, Ding S, Ma F. Reprogrammable Flexible Piezoelectric Actuator Arrays with a High Degree of Freedom for Shape Morphing and Locomotion. Soft Robot 2025. [PMID: 39792479 DOI: 10.1089/soro.2024.0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
The high degree of freedom (DoF) shape morphing widely exists in biology for mimicry, camouflage, and locomotion. Currently, a lot of bionic soft/flexible actuators and robots with shape-morphing functions have been developed to realize conformity, grasp, and movement. Among these solutions, two-dimensional responsive materials and structures that can shape morph into different three-dimensional configurations are valuable for creating reversible high DoF shape morphing. However, most existing methods are predetermined through the fabrication process and cannot reprogram their shape, facing limitations on multifunction. Besides, the achievable geometries are very limited due to the device's low integrated level of actuator elements. Here, we develop a polyvinylidene fluoride flexible piezoelectric actuator array based on a row/column addressing (RCA) scheme for reprogrammable high DoF shape morphing and locomotion. The specially designed row/column electrodes form a 6 × 6 array, which contains 36 actuator elements. By developing a high-voltage RCA control system, we can individually control all the elements in the array, leading to a highly reprogrammable array with various sophisticated high DoF shape morphing. We also demonstrate that the array is capable of propelling a robotic fish with various locomotions. This research provides a new method and approach for biomimetic robotics with better mimicry, aero/hydrodynamic efficiency, and maneuverability, as well as haptic display and object manipulation.
Collapse
Affiliation(s)
- Hong Ding
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China
| | - Dengfei Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China
- Advanced Institute of Information Technology, Peking University, Hangzhou, China
| | - Shuo Ding
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Fangyi Ma
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China
- School of Electromechanical Engineering & Transportation, Shaoxing Vocational & Technical College, Shaoxing, China
| |
Collapse
|
5
|
Bezsudnov I, Khmelnitskaia A, Kalinina A, Monakhova K, Ponomarenko S. Liquid-Gas Phase Transition Actuator: Rejuvenation Procedure Extended and Open-Air Performance. Polymers (Basel) 2024; 17:20. [PMID: 39795423 PMCID: PMC11722774 DOI: 10.3390/polym17010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/13/2025] Open
Abstract
To achieve the actuation of silicone-based foamed composites, a liquid-gas phase transition of the liquid captured in its pores is employed. The uncertainty of key parameters for a single or sequential open-air performance of such soft actuators limits their application. To define the main characteristics of the composites, in this work, two functions of the liquid there were separated: the pore-forming agent (FPA) and working liquid (WL). It was demonstrated that the composites can be fabricated using either ethanol or methanol as the PFA, while any of the C1-C4 alcohols can be used as the WL. The results of the sequential actuation tests of the composites revealed that pore formation depends on the composite viscosity during curation, while their expansion in single heat experiments can be approximated by a unified linear relation. Based on a Mendeleev-Clapeyron equation, the qualitative model for predicting the actuator strain is proposed. It was found that the composites with C3-C4 alcohols as the WL outperform ethanol-containing composites on the number of cycles survived under open-air conditions. These findings pave the way to control the operation of soft actuators by manipulating WL variation and PFA content during the composite cure to set the operation temperature and degree of expansion of pre-formed actuators.
Collapse
Affiliation(s)
- Igor Bezsudnov
- Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences (ISPM RAS), Profsoyuznaya Str. 70, 117393 Moscow, Russia; (A.K.); (A.K.); (K.M.); (S.P.)
| | | | | | | | | |
Collapse
|
6
|
Wang L, Chen Z, Wang X, Wang B. Anti-disturbance control of CPG bionic reflection in pneumatic muscle actuator. iScience 2024; 27:111264. [PMID: 39584161 PMCID: PMC11583730 DOI: 10.1016/j.isci.2024.111264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/23/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024] Open
Abstract
Addressing the joint control problem of pneumatic muscle-driven robots, this study aims to design a bionic reflex mechanism to enhance the robots' adaptive capacity to various disturbances. Based on the biological reflex mechanism, we developed a spindle reflex and deep tendon reflex control system based on CPG (central pattern generator) to mitigate the sudden impact on the hip joint and the continuous blocking force on the knee joint, respectively. The spindle reflex controller incorporates the fast response of sliding mode control to effectively minimize the trajectory deviation of the hip joint under impact disturbances. The deep tendon reflex controller integrates RBF neural network adaptive control and the Tegotae framework to suppress excessive tension in the knee joint and augment the system's adaptability to the blocking force disturbances. The experimental results confirm that the two reflex mechanisms significantly enhance the robustness and flexibility of the pneumatic muscle-driven robot in motion.
Collapse
Affiliation(s)
- Lina Wang
- The Institute of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, China
- The Zhejiang Province Key Laboratory of On-line Testing Equipment Calibration Technology Research, China Jiliang University, Hangzhou 310018, China
| | - Zeling Chen
- The Institute of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, China
| | - Xiaofeng Wang
- The Institute of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, China
| | - Binrui Wang
- The Institute of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, China
- The Zhejiang Province Key Laboratory of On-line Testing Equipment Calibration Technology Research, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
7
|
Zuñiga S, Bravo D, Rengifo C. Design and construction of a servomechanism using a memory alloy linear actuator. HARDWAREX 2024; 20:e00587. [PMID: 39398531 PMCID: PMC11466666 DOI: 10.1016/j.ohx.2024.e00587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/08/2024] [Accepted: 09/14/2024] [Indexed: 10/15/2024]
Abstract
This work shows the design and construction of a servomechanism of a rotator-type joint based on NiTi Shape Memory Alloys (SMA) with an angular position measurement based on a potentiometer sensor and digital electronic position control. The expected application of this prototype is for the use of small charges that emulate the movement of the human being, being bio-inspired and activated by artificial muscles, their potential applications they will be in medical and humanoid robotics. Computer Aided Design (CAD) allows evaluating and validating the most convenient parameters for construction of servomechanism, experimental results validate allowed us to obtain the values of the range of motion ± 20 ° and a maximum torque of 1.01 kg-cm exerted on the axis of rotation for the prototype.
Collapse
Affiliation(s)
| | - Diego Bravo
- Physics Department, Universidad del Cauca, Colombia
| | - Carlos Rengifo
- Instrumentation and Control Department, Universidad del Cauca, Colombia
| |
Collapse
|
8
|
Jeong J, Cho M, Kyung KU. Soft Artificial Muscle Based on Pre-Detwinned Shape Memory Alloy Spring Actuator Achieving High Passive Assistive Torque for Wearable Robot. Soft Robot 2024; 11:835-844. [PMID: 38324013 DOI: 10.1089/soro.2023.0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024] Open
Abstract
For designing the assistive wearable rehabilitation robots, it is challenging to design the robot as energy efficient because the actuators have to be capable of overcoming human loads such as gravity of the body and spastic torque continuously during the assistance. To address these challenges, we propose a novel design of soft artificial muscle that utilizes shape memory alloy (SMA) spring actuators with pre-detwinning process. The SMA spring was fabricated through a process called pre-detwinning, which enhances the linearity of the SMA spring in martensite phase and unpowered restoring force, which is called passive force. The fabricated SMA spring can contract >60%. Finally, the soft wearable robot that can assist not only the gravitational torque exerted on the elbow by passive force, but also the elbow movements with active force was designed with a soft artificial muscle. A soft artificial muscle consists of the bundles of pre-detwinned SMA springs integrated with the stretchable coolant vessel. The stiffness of the muscle was measured as 1125 N/m in martensite phase and 1732 N/m in austenite phase. In addition, the muscle showed great actuation frequency performances, the bandwidth of which was measured as 0.5 Hz. The proposed wearable mechanism can fully compensate the gravitational torque for all the angles in passive mode. In addition, the proposed mechanism can produce high torque up to 3.5 Nm and movements in active mode.
Collapse
Affiliation(s)
- Jaeyeon Jeong
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Minjae Cho
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Ki-Uk Kyung
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| |
Collapse
|
9
|
Kim S, Lee SN, Melvin AA, Choi JW. Stimuli-Responsive Polymer Actuator for Soft Robotics. Polymers (Basel) 2024; 16:2660. [PMID: 39339124 PMCID: PMC11436224 DOI: 10.3390/polym16182660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Polymer actuators are promising, as they are widely used in various fields, such as sensors and soft robotics, for their unique properties, such as their ability to form high-quality films, sensitivity, and flexibility. In recent years, advances in structural and fabrication processes have significantly improved the reliability of polymer sensing-based actuators. Polymer actuators have attracted considerable attention for use in artificial or biohybrid systems, as they have the potential to operate under diverse conditions with high durability. This review briefly describes different types of polymer actuators and provides an understanding of their working mechanisms. It focuses on actuation modes controlled by diverse or multiple stimuli. Furthermore, it discusses the fabrication processes of polymer actuators; the fabrication process is an important consideration in the development of high-quality actuators with sensing properties for a wide range of applications in soft robotics. Additionally, the high potential of polymer actuators for use in sensing technology is examined, and the latest developments in the field of polymer actuators, such as the development of biohybrid polymers and the use of polymer actuators in 4D printing, are briefly described.
Collapse
Affiliation(s)
- Seewoo Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Sang-Nam Lee
- Uniance Gene Inc., 273, Digital-ro, Guro-gu, Seoul 08381, Republic of Korea
| | - Ambrose Ashwin Melvin
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| |
Collapse
|
10
|
Garofalo S, Morano C, Perrelli M, Pagnotta L, Carbone G, Mundo D, Bruno L. A critical review of transitioning from conventional actuators to artificial muscles in upper-limb rehabilitation devices. JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES 2024; 35:1263-1290. [DOI: 10.1177/1045389x241263878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Brain injuries resulting from spinal cord injuries, strokes, or cerebral palsy are among the traumas most capable of compromising the motor activities of human limbs, hence the necessity for the development of exoskeletons dedicated to the rehabilitation of these organs. This review examines the landscape of actuators essential for the design of cutting-edge upper-limb rehabilitation exoskeletal structures. Beyond merely surveying the current types of actuators available, the paper aims to provide guidelines for selecting actuators that fit optimally with the objectives of upper-limb rehabilitation. The description starts with a brief discussion on the biomechanics of the upper limbs, focusing on the kinematics of pivotal joints (wrist, elbow, shoulder). Subsequently, the existing actuators are systematically reviewed, offering detailed insights into their primary features, operational principles, strengths, weaknesses, and noteworthy applications within the realm of rehabilitation robotics. After the discussion about the actuators, the paper advances by furnishing valuable guidelines for actuators’ selection tailored for upper limb rehabilitation. These guidelines discuss crucial factors, such as the forces required and the natural Range Of Motions (ROMs) of upper limb joints. Finally, the manuscript serves as a valuable resource for researchers, engineers, and practitioners involved in the development of innovative upper-limb rehabilitation devices.
Collapse
Affiliation(s)
- Salvatore Garofalo
- Department of Mechanical, Energy, and Management Engineering, University of Calabria, Cosenza, Rende, Italy
| | - Chiara Morano
- Department of Mechanical, Energy, and Management Engineering, University of Calabria, Cosenza, Rende, Italy
| | - Michele Perrelli
- Department of Mechanical, Energy, and Management Engineering, University of Calabria, Cosenza, Rende, Italy
| | - Leonardo Pagnotta
- Department of Mechanical, Energy, and Management Engineering, University of Calabria, Cosenza, Rende, Italy
| | - Giuseppe Carbone
- Department of Mechanical, Energy, and Management Engineering, University of Calabria, Cosenza, Rende, Italy
| | - Domenico Mundo
- Department of Mechanical, Energy, and Management Engineering, University of Calabria, Cosenza, Rende, Italy
| | - Luigi Bruno
- Department of Mechanical, Energy, and Management Engineering, University of Calabria, Cosenza, Rende, Italy
| |
Collapse
|
11
|
Chen Y, Wu S, Guo B, Jin B, Yang H, Chen J, Wu W, Zhang L. Separating Charge Centers of Chain Segments in Dielectric Elastomer through Steric Hindrance Engineering. Macromol Rapid Commun 2024; 45:e2400295. [PMID: 38771981 DOI: 10.1002/marc.202400295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/20/2024] [Indexed: 05/23/2024]
Abstract
Theoretically, separating the positive and negative charge centers of the chain segments of dielectric elastomers (DEs) is a viable alternative to the conventional decoration of chain backbone with polar handles, since it can dramatically increase the dipole vector and hence the dielectric constant (ε') of the DEs while circumvent the undesired impact of the decorated polar handles on the dielectric loss (tan δ). Herein, a novel and universal method is demonstrated to achieve effective separation of the charge centers of chain segments in homogeneous DEs by steric hindrance engineering, i.e., by incorporating a series of different included angle-containing building blocks into the networks. Both experimental and simulation results have shown that the introduction of these building blocks can create a spatially fixed included angle between two adjacent chain segments, thus separating the charge center of the associated region. Accordingly, incorporating a minimal amount of these building blocks (≈5 mol%) can lead to a considerably sharp increase (≈50%) in the ε' of the DEs while maintaining an extremely low tan δ (≈0.006@1 kHz), indicating that this methodology can substantially optimize the dielectric performance of DEs based on a completely different mechanism from the established methods.
Collapse
Affiliation(s)
- Yifu Chen
- Institute of Emergent Elastomers, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Siwu Wu
- Institute of Emergent Elastomers, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Baochun Guo
- Institute of Emergent Elastomers, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Binjie Jin
- Institute of Emergent Elastomers, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Haixin Yang
- Institute of Emergent Elastomers, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Jialiang Chen
- Institute of Emergent Elastomers, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Wenjie Wu
- Institute of Emergent Elastomers, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Liqun Zhang
- Institute of Emergent Elastomers, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
- State Key Laboratory of Organic/Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
12
|
Yi J, Ren X, Li Y, Yuan Y, Tang W, Wang X, Yu J, Yu S, Li W, Wang J, Loh XJ, Hu B, Chen X. Rapid-Response Water-Shrink Films with High Output Work Density Based on Polyethylene Oxide and α-Cyclodextrin for Autonomous Wound Closure. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403551. [PMID: 38837826 DOI: 10.1002/adma.202403551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/28/2024] [Indexed: 06/07/2024]
Abstract
Conventional wound closure methods, including sutures and tissue adhesives, present significant challenges for self-care treatment, particularly in the context of bleeding wounds. Existing stimuli-responsive contractile materials designed for autonomous wound closure frequently lack sufficient output work density to generate the force needed to bring the wound edges into proximity or necessitate stimuli that are not compatible with the human body. Here, semi-transparent, flexible, and water-responsive shrinkable films, composed of poly(ethylene oxide) and α-cyclodextrin, are reported. These films exhibit remarkable stability under ambient conditions and demonstrate significant contraction (≈50%) within 6 s upon exposure to water, generating substantial contractile stress (up to 6 MPa) and output work density (≈1028 kJ m-3), which is 100 times larger than that of conventional hydrogel and 25 times larger than that of skeletal muscles. Remarkably, upon hydration, these films are capable of lifting objects 10 000 times their own weight. Leveraging this technology, water-shrink tapes, which, upon contact with water, effectively constrict human skin and autonomously close bleeding wounds in animal models within 10 seconds, are developed further. This work offers a novel approach to skin wound management, showing significant potential for emergency and self-care scenarios.
Collapse
Affiliation(s)
- Junqi Yi
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xueyang Ren
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, China
| | - Yanzhen Li
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yuehui Yuan
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
| | - Wenjie Tang
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaoshi Wang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jing Yu
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Shujin Yu
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Wenlong Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Jianwu Wang
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Benhui Hu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
- Jiangsu Province Hospital, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Xiaodong Chen
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
13
|
Sabelhaus AP, Patterson ZJ, Wertz AT, Majidi C. Safe Supervisory Control of Soft Robot Actuators. Soft Robot 2024; 11:561-572. [PMID: 38324015 DOI: 10.1089/soro.2022.0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024] Open
Abstract
Although soft robots show safer interactions with their environment than traditional robots, soft mechanisms and actuators still have significant potential for damage or degradation particularly during unmodeled contact. This article introduces a feedback strategy for safe soft actuator operation during control of a soft robot. To do so, a supervisory controller monitors actuator state and dynamically saturates control inputs to avoid conditions that could lead to physical damage. We prove that, under certain conditions, the supervisory controller is stable and verifiably safe. We then demonstrate completely onboard operation of the supervisory controller using a soft thermally actuated robot limb with embedded shape memory alloy actuators and sensing. Tests performed with the supervisor verify its theoretical properties and show stabilization of the robot limb's pose in free space. Finally, experiments show that our approach prevents overheating during contact, including environmental constraints and human touch, or when infeasible motions are commanded. This supervisory controller, and its ability to be executed with completely onboard sensing, has the potential to make soft robot actuators reliable enough for practical use.
Collapse
Affiliation(s)
- Andrew P Sabelhaus
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts, USA
| | - Zach J Patterson
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Anthony T Wertz
- Robotics Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Carmel Majidi
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
- Robotics Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
14
|
Holzer S, Konstantinidi S, Koenigsdorff M, Martinez T, Civet Y, Gerlach G, Perriard Y. Fiber-Reinforced Equibiaxial Dielectric Elastomer Actuator for Out-of-Plane Displacement. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3672. [PMID: 39124336 PMCID: PMC11313582 DOI: 10.3390/ma17153672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
Dielectric elastomer actuators (DEAs) have gained significant attention due to their potential in soft robotics and adaptive structures. However, their performance is often limited by their in-plane strain distribution and limited mechanical stability. We introduce a novel design utilizing fiber reinforcement to address these challenges. The fiber reinforcement provides enhanced mechanical integrity and improved strain distribution, enabling efficient energy conversion and out-of-plane displacement. We discuss an analytical model and the fabrication process, including material selection, to realize fiber-reinforced DEAs. Numerical simulations and experimental results demonstrate the performance of the fiber-reinforced equibiaxial DEAs and characterize their displacement and force capabilities. Actuators with four and eight fibers are fabricated with 100 μm and 200 μm dielectric thicknesses. A maximal out-of-plane displacement of 500 μm is reached, with a force of 0.18 N, showing promise for the development of haptic devices.
Collapse
Affiliation(s)
- Simon Holzer
- Integrated Actuators Laboratory, Ecole Polytechnique Fédérale de Lausanne, Rue de la Maladière 71b, 2000 Neuchâtel, Switzerland (Y.C.); (Y.P.)
| | - Stefania Konstantinidi
- Integrated Actuators Laboratory, Ecole Polytechnique Fédérale de Lausanne, Rue de la Maladière 71b, 2000 Neuchâtel, Switzerland (Y.C.); (Y.P.)
| | - Markus Koenigsdorff
- Institute of Solid-State Electronics, Faculty of Electrical and Computer Engineering, Dresden University of Technology, Mommsenstraße 15, 01069 Dresden, Germany; (M.K.); (G.G.)
| | - Thomas Martinez
- Integrated Actuators Laboratory, Ecole Polytechnique Fédérale de Lausanne, Rue de la Maladière 71b, 2000 Neuchâtel, Switzerland (Y.C.); (Y.P.)
| | - Yoan Civet
- Integrated Actuators Laboratory, Ecole Polytechnique Fédérale de Lausanne, Rue de la Maladière 71b, 2000 Neuchâtel, Switzerland (Y.C.); (Y.P.)
| | - Gerald Gerlach
- Institute of Solid-State Electronics, Faculty of Electrical and Computer Engineering, Dresden University of Technology, Mommsenstraße 15, 01069 Dresden, Germany; (M.K.); (G.G.)
| | - Yves Perriard
- Integrated Actuators Laboratory, Ecole Polytechnique Fédérale de Lausanne, Rue de la Maladière 71b, 2000 Neuchâtel, Switzerland (Y.C.); (Y.P.)
| |
Collapse
|
15
|
Yang L, Zhang Y, Cai W, Tan J, Hansen H, Wang H, Chen Y, Zhu M, Mu J. Electrochemically-driven actuators: from materials to mechanisms and from performance to applications. Chem Soc Rev 2024; 53:5956-6010. [PMID: 38721851 DOI: 10.1039/d3cs00906h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Soft actuators, pivotal for converting external energy into mechanical motion, have become increasingly vital in a wide range of applications, from the subtle engineering of soft robotics to the demanding environments of aerospace exploration. Among these, electrochemically-driven actuators (EC actuators), are particularly distinguished by their operation through ion diffusion or intercalation-induced volume changes. These actuators feature notable advantages, including precise deformation control under electrical stimuli, freedom from Carnot efficiency limitations, and the ability to maintain their actuated state with minimal energy use, akin to the latching state in skeletal muscles. This review extensively examines EC actuators, emphasizing their classification based on diverse material types, driving mechanisms, actuator configurations, and potential applications. It aims to illuminate the complicated driving mechanisms of different categories, uncover their underlying connections, and reveal the interdependencies among materials, mechanisms, and performances. We conduct an in-depth analysis of both conventional and emerging EC actuator materials, casting a forward-looking lens on their trajectories and pinpointing areas ready for innovation and performance enhancement strategies. We also navigate through the challenges and opportunities within the field, including optimizing current materials, exploring new materials, and scaling up production processes. Overall, this review aims to provide a scientifically robust narrative that captures the current state of EC actuators and sets a trajectory for future innovation in this rapidly advancing field.
Collapse
Affiliation(s)
- Lixue Yang
- School of Mechanical Engineering, Tianjin University, 135 Yaguan Road, Tianjin 300350, China.
| | - Yiyao Zhang
- School of Mechanical Engineering, Tianjin University, 135 Yaguan Road, Tianjin 300350, China.
| | - Wenting Cai
- School of Chemistry, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, 710049, China
| | - Junlong Tan
- School of Mechanical Engineering, Tianjin University, 135 Yaguan Road, Tianjin 300350, China.
| | - Heather Hansen
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
- Shanghai Dianji University, 201306, Shanghai, China
| | - Yan Chen
- School of Mechanical Engineering, Tianjin University, 135 Yaguan Road, Tianjin 300350, China.
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, 135 Yaguan Road, Tianjin 300350, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Jiuke Mu
- School of Mechanical Engineering, Tianjin University, 135 Yaguan Road, Tianjin 300350, China.
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, 135 Yaguan Road, Tianjin 300350, China.
| |
Collapse
|
16
|
Yang J, Shankar MR, Zeng H. Photochemically responsive polymer films enable tunable gliding flights. Nat Commun 2024; 15:4684. [PMID: 38824184 PMCID: PMC11144244 DOI: 10.1038/s41467-024-49108-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 05/22/2024] [Indexed: 06/03/2024] Open
Abstract
Miniaturized passive fliers based on smart materials face challenges in precise control of shape-morphing for aerodynamics and contactless modulation of diverse gliding modes. Here, we present the optical control of gliding performances in azobenzene-crosslinked liquid crystal networks films through photochemical actuation, enabling reversible and bistable shape-morphing. First, an actuator film is integrated with additive constructs to form a rotating glider, inspired by the natural maple samara, surpassing natural counterparts in reversibly optical tuning of terminal velocity, rotational rate, and circling position. We demonstrate optical modulation dispersion of landing points for the photo-responsive microfliers indoors and outdoors. Secondly, we show the scalability of polymer film geometry for miniature gliders with similar light tunability. Thirdly, we extend the material platform to other three gliding modes: Javan cucumber seed-like glider, parachute and artificial dandelion seed. The findings pave the way for distributed microflier with contactless flight dynamics control.
Collapse
Affiliation(s)
- Jianfeng Yang
- Light Robots, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, Finland
| | - M Ravi Shankar
- Department of Industrial Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hao Zeng
- Light Robots, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, Finland.
| |
Collapse
|
17
|
Zhu Y, Jia Z, Niu X, Dong E. Design and Position Control of a Bionic Joint Actuated by Shape Memory Alloy Wires. Biomimetics (Basel) 2024; 9:210. [PMID: 38667220 PMCID: PMC11048082 DOI: 10.3390/biomimetics9040210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Bionic joints are crucial for robotic motion and are a hot topic in robotics research. Among various actuators for joints, shape memory alloys (SMAs) have attracted significant interest due to their similarity to natural muscles. SMA exhibits the shape memory effect (SME) based on martensite-to-austenite transformation and its inverse, which allows for force and displacement output through low-voltage heating. However, one of the main challenges with SMA is its limited axial stroke. In this article, a bionic joint based on SMA wires and a differential pulley set structure was proposed. The axial stroke of the SMA wires was converted into rotational motion by the stroke amplification of the differential pulley set, enabling the joint to rotate by a sufficient angle. We modeled the bionic joint and designed a proportional-integral (PI) controller. We demonstrated that the bionic joint exhibited good position control performance, achieving a rotation angle range of -30° to 30°. The proposed bionic joint, utilizing SMA wires and a differential pulley set, offers an innovative solution for enhancing the range of motion in SMA actuated bionic joints.
Collapse
Affiliation(s)
- Yida Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China; (Y.Z.); (Z.J.)
| | - Zhikun Jia
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China; (Y.Z.); (Z.J.)
| | - Xiaojie Niu
- Institute of Advanced Technology, University of Science and Technology of China, Hefei 230026, China;
| | - Erbao Dong
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China; (Y.Z.); (Z.J.)
| |
Collapse
|
18
|
Park CB, Hwang JS, Gong HS, Park HS. A Lightweight Dynamic Hand Orthosis With Sequential Joint Flexion Movement for Postoperative Rehabilitation of Flexor Tendon Repair Surgery. IEEE Trans Neural Syst Rehabil Eng 2024; 32:994-1004. [PMID: 38376979 DOI: 10.1109/tnsre.2024.3367990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
During the postoperative hand rehabilitation period, it is recommended that the repaired flexor tendons be continuously glided with sufficient tendon excursion and carefully managed protection to prevent adhesion with adjacent tissues. Thus, finger joints should be passively mobilized through a wide range of motion (ROM) with physiotherapy. During passive mobilization, sequential flexion of the metacarpophalangeal (MCP) joint followed by the proximal interphalangeal (PIP) joint is recommended for maximizing tendon excursion. This paper presents a lightweight device for postoperative flexor tendon rehabilitation that uses a single motor to achieve sequential joint flexion movement. The device consists of an orthosis, a cable, and a single motor. The degree of spatial stiffness and cable path of the orthosis were designed to apply a flexion moment to the MCP joint prior to the PIP joint. The device was tested on both healthy individuals and a patient who had undergone flexor tendon repair surgery, and both flexion and extension movement could be achieved with a wide ROM and sequential joint flexion movement using a single motor.
Collapse
|
19
|
Park J, Lee Y, Cho S, Choe A, Yeom J, Ro YG, Kim J, Kang DH, Lee S, Ko H. Soft Sensors and Actuators for Wearable Human-Machine Interfaces. Chem Rev 2024; 124:1464-1534. [PMID: 38314694 DOI: 10.1021/acs.chemrev.3c00356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Haptic human-machine interfaces (HHMIs) combine tactile sensation and haptic feedback to allow humans to interact closely with machines and robots, providing immersive experiences and convenient lifestyles. Significant progress has been made in developing wearable sensors that accurately detect physical and electrophysiological stimuli with improved softness, functionality, reliability, and selectivity. In addition, soft actuating systems have been developed to provide high-quality haptic feedback by precisely controlling force, displacement, frequency, and spatial resolution. In this Review, we discuss the latest technological advances of soft sensors and actuators for the demonstration of wearable HHMIs. We particularly focus on highlighting material and structural approaches that enable desired sensing and feedback properties necessary for effective wearable HHMIs. Furthermore, promising practical applications of current HHMI technology in various areas such as the metaverse, robotics, and user-interactive devices are discussed in detail. Finally, this Review further concludes by discussing the outlook for next-generation HHMI technology.
Collapse
Affiliation(s)
- Jonghwa Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Youngoh Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Seungse Cho
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Ayoung Choe
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Jeonghee Yeom
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Yun Goo Ro
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Jinyoung Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Dong-Hee Kang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Seungjae Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Hyunhyub Ko
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| |
Collapse
|
20
|
Firoozan M, Baniassadi M, Baghani M, Chortos A. In silico optimization of aligned fiber electrodes for dielectric elastomer actuators. Sci Rep 2024; 14:4703. [PMID: 38409334 PMCID: PMC10897417 DOI: 10.1038/s41598-024-54931-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/19/2024] [Indexed: 02/28/2024] Open
Abstract
Dielectric elastomer actuators (DEAs) exhibit fast actuation and high efficiencies, enabling applications in optics, wearable haptics, and insect-scale robotics. However, the non-uniformity and high sheet resistance of traditional soft electrodes based on nanomaterials limit the performance and operating frequency of the devices. In this work, we computationally investigate electrodes composed of arrays of stiff fiber electrodes. Aligning the fibers along one direction creates an electrode layer that exhibits zero stiffness in one direction and is predicted to possess high and uniform sheet resistance. A comprehensive parameter study of the fiber density and dielectric thickness reveals that the fiber density primary determines the electric field localization while the dielectric thickness primarily determines the unit cell stiffness. These trends identify an optimal condition for the actuation performance of the aligned electrode DEAs. This work demonstrates that deterministically designed electrodes composed of stiff materials could provide a new paradigm with the potential to surpass the performance of traditional soft planar electrodes.
Collapse
Affiliation(s)
- Mohammadreza Firoozan
- School of Mechanical Engineering, Purdue University, West Lafayette, USA
- School of Mechanical Engineering, University of Tehran, Tehran, Iran
| | - Majid Baniassadi
- School of Mechanical Engineering, University of Tehran, Tehran, Iran
| | - Mostafa Baghani
- School of Mechanical Engineering, University of Tehran, Tehran, Iran
| | - Alex Chortos
- School of Mechanical Engineering, Purdue University, West Lafayette, USA.
| |
Collapse
|
21
|
Zhang Q, Xue Y, Zhao Y, Zou K, Yuan W, Tian Y, Chen J, Chen J, Xi N. Shear stiffening gel-enabled twisted string for bio-inspired robot actuators. Sci Rep 2024; 14:4710. [PMID: 38409463 PMCID: PMC10897407 DOI: 10.1038/s41598-024-55405-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 02/22/2024] [Indexed: 02/28/2024] Open
Abstract
A rotary motor combined with fibrous string demonstrates excellent performance because it is powerful, lightweight, and prone to large strokes; however, the stiffness range and force-generating capability of twisted string transmission systems are limited. Here, we present a variable stiffness artificial muscle generated by impregnating shear stiffening gels (STGs) into a twisted string actuator (TSA). A high twisting speed produces a large impact force and causes shear stiffening of the STG, thereby improving the elasticity, stiffness, force capacity, and response time of the TSA. We show that at a twisting speed of 4186 rpm, the elasticity of an STG-TSA reached 30.92 N/mm, whereas at a low twisting speed of 200 rpm, it was only 10.51 N/mm. In addition, the STG-TSA exhibited a more prominent shear stiffening effect under a high stiffness load. Our work provides a promising approach for artificial muscles to coactivate with human muscles to effectively compensate for motion.
Collapse
Affiliation(s)
- Qingqing Zhang
- Department of Industrial and Manufacturing System Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Yuxuan Xue
- Department of Industrial and Manufacturing System Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Yafei Zhao
- Department of Industrial and Manufacturing System Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Kehan Zou
- Department of Industrial and Manufacturing System Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Wenbo Yuan
- Department of Industrial and Manufacturing System Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Yuqing Tian
- Department of Industrial and Manufacturing System Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Jiaming Chen
- Department of Industrial and Manufacturing System Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Jiangcheng Chen
- Department of Industrial and Manufacturing System Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Ning Xi
- Department of Industrial and Manufacturing System Engineering, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
22
|
Han MS, Harnett CK. Journey from human hands to robot hands: biological inspiration of anthropomorphic robotic manipulators. BIOINSPIRATION & BIOMIMETICS 2024; 19:021001. [PMID: 38316033 DOI: 10.1088/1748-3190/ad262c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
The development of robotic hands that can replicate the complex movements and dexterity of the human hand has been a longstanding challenge for scientists and engineers. A human hand is capable of not only delicate operation but also crushing with power. For performing tasks alongside and in place of humans, an anthropomorphic manipulator design is considered the most advanced implementation, because it is able to follow humans' examples and use tools designed for people. In this article, we explore the journey from human hands to robot hands, tracing the historical advancements and current state-of-the-art in hand manipulator development. We begin by investigating the anatomy and function of the human hand, highlighting the bone-tendon-muscle structure, skin properties, and motion mechanisms. We then delve into the field of robotic hand development, focusing on highly anthropomorphic designs. Finally, we identify the requirements and directions for achieving the next level of robotic hand technology.
Collapse
Affiliation(s)
- Michael Seokyoung Han
- J.B. Speed School of Engineering, University of Louisville, Louisville, KY 40208, United States of America
| | - Cindy K Harnett
- J.B. Speed School of Engineering, University of Louisville, Louisville, KY 40208, United States of America
| |
Collapse
|
23
|
Li Z, Wang Z, Wang WD. Constrained Origami Artificial Muscle-Driven Robotic Manipulator Capable of Coordinating Twisting and Grasping Motions for Object Manipulation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7850-7859. [PMID: 38300735 DOI: 10.1021/acsami.3c17978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Grasping and twisting motions are vital when manipulating objects due to their fundamental role in enabling precision, adaptability, and effective interaction. However, few studies in soft robotics exploiting artificial muscles have achieved object manipulation in situ through the coordination of twisting and grasping motions akin to our forearm and hand's capabilities. Especially, when using the same artificial muscle module to achieve these two motions will greatly simplify the manufacturing and control complexity. Here, we introduce identical origami artificial muscle modules (OAMMs) subjected to distinct end constraints into the design of the robotic manipulator, allowing it to achieve independent grasping and twisting motions to achieve effective, precise object manipulation. Applying different end constraints to the identical OAMMs yields distinct motions at their ends, where utilizing a fixed end and a sliding end realizes pure translation, while opting for a fixed end and a rotating end enables pure rotation. The differentially constrained OAMMs then serve as soft actuators for the manipulator's torsional mechanism and grasping mechanism to accomplish independent, controllable twisting and grasping motions. The coordination of twisting and grasping motions finally enables the manipulator to complete various tasks, including installing a light bubble, pouring the water from a lidded bottle into a cup, and sorting and stacking puzzle blocks. Our study pioneers the utilization of OAMMs for precise and versatile object manipulation through the coordination of independent twisting and grasping motions.
Collapse
Affiliation(s)
- Zhenhui Li
- Department of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Zifeng Wang
- Department of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Wei Dawid Wang
- Department of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
24
|
da Silva ABS, Mendes GEP, Bragato ES, Novelli GL, Monjardim M, Andrade RM. Finger Prosthesis Driven by DEA Pairs as Agonist-Antagonist Artificial Muscles. Biomimetics (Basel) 2024; 9:110. [PMID: 38392156 PMCID: PMC10887203 DOI: 10.3390/biomimetics9020110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Loss of an upper limb exerts a negative influence on an individual's ability to perform their activities of daily living (ADLs), reducing quality of life and self-esteem. A prosthesis capable of performing basic ADLs functions has the capability of restoring independence and autonomy to amputees. However, current technologies present in robotic prostheses are based on rigid actuators with several drawbacks, such as high weight and low compliance. Recent advances in robotics have allowed for the development of flexible actuators and artificial muscles to overcome the limitations of rigid actuators. Dielectric elastomer actuators (DEAs) consist of a thin elastomer membrane arranged between two compliant electrodes capable of changing dimensions when stimulated with an electrical potential difference. In this work, we present the design and testing of a finger prosthesis driven by two DEAs arranged as agonist-antagonist pairs as artificial muscles. The soft actuators are designed as fiber-constrained dielectric elastomers (FCDE), enabling displacement in just one direction as natural muscles. The finger prosthesis was designed and modeled to show bend movement using just one pair of DEAs and was made of PLA in an FDM 3D printer to be lightweight. The experimental results show great agreement with the proposed model and indicate that the proposed finger prosthesis is promising in overcoming the limitations of the current rigid based actuators.
Collapse
Affiliation(s)
- Alexandre B S da Silva
- Department of Mechanical Engineering, Universidade Federal do Espírito Santo, Vitoria 29075-910, Brazil
- Graduate Program of Mechanical Engineering, Universidade Federal do Espírito Santo, Vitoria 29075-910, Brazil
| | - Gabriel E P Mendes
- Department of Mechanical Engineering, Universidade Federal do Espírito Santo, Vitoria 29075-910, Brazil
| | - Eduardo S Bragato
- Department of Mechanical Engineering, Universidade Federal do Espírito Santo, Vitoria 29075-910, Brazil
| | - Guilherme L Novelli
- Department of Mechanical Engineering, Universidade Federal do Espírito Santo, Vitoria 29075-910, Brazil
- Graduate Program of Mechanical Engineering, Universidade Federal do Espírito Santo, Vitoria 29075-910, Brazil
| | - Marina Monjardim
- Graduate Program of Animal Biology, Universidade Federal do Espírito Santo, Vitoria 29075-910, Brazil
| | - Rafhael M Andrade
- Department of Mechanical Engineering, Universidade Federal do Espírito Santo, Vitoria 29075-910, Brazil
- Graduate Program of Mechanical Engineering, Universidade Federal do Espírito Santo, Vitoria 29075-910, Brazil
| |
Collapse
|
25
|
Xue E, Liu L, Wu W, Wang B. Soft Fiber/Textile Actuators: From Design Strategies to Diverse Applications. ACS NANO 2024; 18:89-118. [PMID: 38146868 DOI: 10.1021/acsnano.3c09307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Fiber/textile-based actuators have garnered considerable attention due to their distinctive attributes, encompassing higher degrees of freedom, intriguing deformations, and enhanced adaptability to complex structures. Recent studies highlight the development of advanced fibers and textiles, expanding the application scope of fiber/textile-based actuators across diverse emerging fields. Unlike sheet-like soft actuators, fibers/textiles with intricate structures exhibit versatile movements, such as contraction, coiling, bending, and folding, achieved through adjustable strain and stroke. In this review article, we provide a timely and comprehensive overview of fiber/textile actuators, including structures, fabrication methods, actuation principles, and applications. After discussing the hierarchical structure and deformation of the fiber/textile actuator, we discuss various spinning strategies, detailing the merits and drawbacks of each. Next, we present the actuation principles of fiber/fabric actuators, along with common external stimuli. In addition, we provide a summary of the emerging applications of fiber/textile actuators. Concluding with an assessment of existing challenges and future opportunities, this review aims to provide a valuable perspective on the enticing realm of fiber/textile-based actuators.
Collapse
Affiliation(s)
- Enbo Xue
- School of Electronic Science & Engineering, Southeast University, Nanjing, Jiangsu 210096, P. R. China
| | - Limei Liu
- College of Mechanical Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, P. R. China
| | - Wei Wu
- Laboratory of Printable Functional Materials and Printed Electronics, School of Physics and Technology, Wuhan University, Wuhan 430072, P. R. China
| | - Binghao Wang
- School of Electronic Science & Engineering, Southeast University, Nanjing, Jiangsu 210096, P. R. China
| |
Collapse
|
26
|
Villeda-Hernandez M, Baker BC, Romero C, Rossiter JM, Dicker MPM, Faul CFJ. Chemically Driven Oscillating Soft Pneumatic Actuation. Soft Robot 2023; 10:1159-1170. [PMID: 37384917 DOI: 10.1089/soro.2022.0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023] Open
Abstract
Pneumatic actuators are widely studied in soft robotics as they are facile, low cost, scalable, and robust and exhibit compliance similar to many systems found in nature. The challenge is to harness high energy density chemical and biochemical reactions that can generate sufficient pneumatic pressure to actuate soft systems in a controlled and ecologically compatible manner. This investigation evaluates the potential of chemical reactions as both positive and negative pressure sources for use in soft robotic pneumatic actuators. Considering the pneumatic actuation demands, the chemical mechanisms of the pressure sources, and the safety of the system, several gas evolution/consumption reactions are evaluated and compared. Furthermore, the novel coupling of both gas evolution and gas consumption reactions is discussed and evaluated for the design of oscillating systems, driven by the complementary evolution and consumption of carbon dioxide. Control over the speed of gas generation and consumption is achieved by adjusting the initial ratios of feed materials. Coupling the appropriate reactions with pneumatic soft-matter actuators has delivered autonomous cyclic actuation. The reversibility of these systems is demonstrated in a range of displacement experiments, and practical application is shown through a soft gripper that can move, pick up, and let go of objects. Our approach presents a significant step toward more autonomous, versatile soft robots driven by chemo-pneumatic actuators.
Collapse
Affiliation(s)
- Marcos Villeda-Hernandez
- School of Chemistry, University of Bristol, Bristol, United Kingdom
- School of Civil, Aerospace and Mechanical Engineering, University of Bristol, Bristol, United Kingdom
- Bristol Centre of Functional Nanomaterials, University of Bristol, Bristol, United Kingdom
| | - Benjamin C Baker
- School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Christian Romero
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
- Bristol Robotics Laboratory, University of Bristol, Bristol, United Kingdom
| | - Jonathan M Rossiter
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
- Bristol Robotics Laboratory, University of Bristol, Bristol, United Kingdom
| | - Michael P M Dicker
- School of Civil, Aerospace and Mechanical Engineering, University of Bristol, Bristol, United Kingdom
| | - Charl F J Faul
- School of Chemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
27
|
O'Neill CT, Young HT, Hohimer CJ, Proietti T, Rastgaar M, Artemiadis P, Walsh CJ. Tunable, Textile-Based Joint Impedance Module for Soft Robotic Applications. Soft Robot 2023; 10:937-947. [PMID: 37042697 DOI: 10.1089/soro.2021.0173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023] Open
Abstract
The design of soft actuators is often focused on achieving target trajectories or delivering specific forces and torques, rather than controlling the impedance of the actuator. This article outlines a new soft, tunable pneumatic impedance module based on an antagonistic actuator setup of textile-based pneumatic actuators intended to deliver bidirectional torques about a joint. Through mechanical programming of the actuators (select tuning of geometric parameters), the baseline torque to angle relationship of the module can be tuned. A high bandwidth fluidic controller that can rapidly modulate the pressure at up to 8 Hz in each antagonistic actuator was also developed to enable tunable impedance modulation. This high bandwidth was achieved through the characterization and modeling of the proportional valves used, derivation of a fluidic model, and derivation of control equations. The resulting impedance module was capable of modulating its stiffness from 0 to 100 Nm/rad, at velocities up to 120°/s and emulating asymmetric and nonlinear stiffness profiles, typical in wearable robotic applications.
Collapse
Affiliation(s)
- Ciarán T O'Neill
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Harrison T Young
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Cameron J Hohimer
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Tommaso Proietti
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Mo Rastgaar
- Polytechnic Institute, Purdue University, West Lafayette, Indiana, USA
| | - Panagiotis Artemiadis
- Department of Mechanical Engineering, College of Engineering, University of Delaware, Newark, Delaware, USA
| | - Conor J Walsh
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
28
|
Feng M, Yang D, Ren L, Wei G, Gu G. X-crossing pneumatic artificial muscles. SCIENCE ADVANCES 2023; 9:eadi7133. [PMID: 37729399 PMCID: PMC10511197 DOI: 10.1126/sciadv.adi7133] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/17/2023] [Indexed: 09/22/2023]
Abstract
Artificial muscles are promising in soft exoskeletons, locomotion robots, and operation machines. However, their performance in contraction ratio, output force, and dynamic response is often imbalanced and limited by materials, structures, or actuation principles. We present lightweight, high-contraction ratio, high-output force, and positive pressure-driven X-crossing pneumatic artificial muscles (X-PAMs). Unlike PAMs, our X-PAMs harness the X-crossing mechanism to directly convert linear motion along the actuator axis, achieving an unprecedented 92.9% contraction ratio and an output force of 207.9 Newtons per kilogram per kilopascal with excellent dynamic properties, such as strain rate (1603.0% per second), specific power (5.7 kilowatts per kilogram), and work density (842.9 kilojoules per meter cubed). These properties can overcome the slow actuation of conventional PAMs, providing robotic elbow, jumping robot, and lightweight gripper with fast, powerful performance. The robust design of X-PAMs withstands extreme environments, including high-temperature, underwater, and long-duration actuation, while being scalable to parallel, asymmetric, and ring-shaped configurations for potential applications.
Collapse
Affiliation(s)
- Miao Feng
- Robotics Institute, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL, UK
- School of Science, Engineering and Environment, The University of Salford, Salford M5 4WT, UK
| | - Dezhi Yang
- Robotics Institute, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Ren
- Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL, UK
- Key Laboratory of Bionic Engineering, Jilin University, Changchun 130015, China
| | - Guowu Wei
- School of Science, Engineering and Environment, The University of Salford, Salford M5 4WT, UK
| | - Guoying Gu
- Robotics Institute, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
- Meta Robotics Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
29
|
Tarasenkov AN, Parshina MS, Goncharuk GP, Borisov KM, Golubev EK, Meshkov IB, Cherkaev GV, Shevchenko VG, Ponomarenko SA, Muzafarov AM. Thioether-Containing Zirconium(Alkoxy)Siloxanes: Synthesis and Study of Dielectric and Mechanical Properties of Silica-Filled Polydimethylsiloxane Compositions Cured by Them. Polymers (Basel) 2023; 15:3361. [PMID: 37631420 PMCID: PMC10458246 DOI: 10.3390/polym15163361] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
A number of thioether-containing zirconium siloxanes, differing in their composition and metal atom shielding degree with a siloxy substituent, were synthesized and characterized. Synthesis of such compounds made it possible to evaluate the effect of sulfur atoms' presence in the cured compositions on their dielectric properties, as well as to evaluate their curing ability and influence on mechanical characteristics compared to the sulfur-free analogs obtained earlier. Studying a wide range of compositions differing in their content and ratio of metallosiloxane and silica components revealed that such systems are still typical dielectrics. At the same time, the introduction of thioether groups can provide increased dielectric constant and conductivity in comparison with previously obtained sulfur-free similar compositions in the <102 Hz frequency range (dielectric constant up to ~10-30 at frequency range 1-10 Hz). As before, the dielectric parameters increase is directly determined by the silica component proportion in the cured material. It is also shown that varying sulfur-containing zirconium siloxanes structure and functionality and its combination with previously obtained sulfur-free analogs, along with varying the functionality and rubber chain length, can be an effective tool for changing the dielectric and mechanical material parameters in a wide range (tensile strength 0.5-7 Mpa, elastic deformation 2-300%), which determine the prospects for the use of such cured systems as dielectric elastomers for various purposes.
Collapse
Affiliation(s)
- Alexander N. Tarasenkov
- N. S. Enikolopov Institute of Synthetic Polymer Materials, Russian Academy of Sciences (ISPM RAS), Profsoyuznaya 70, 117393 Moscow, Russia; (M.S.P.); (G.P.G.); (K.M.B.); (E.K.G.); (I.B.M.); (G.V.C.); (V.G.S.); (S.A.P.); (A.M.M.)
| | - Maria S. Parshina
- N. S. Enikolopov Institute of Synthetic Polymer Materials, Russian Academy of Sciences (ISPM RAS), Profsoyuznaya 70, 117393 Moscow, Russia; (M.S.P.); (G.P.G.); (K.M.B.); (E.K.G.); (I.B.M.); (G.V.C.); (V.G.S.); (S.A.P.); (A.M.M.)
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (INEOS RAS), Vavilova 28, 119991 Moscow, Russia
| | - Galina P. Goncharuk
- N. S. Enikolopov Institute of Synthetic Polymer Materials, Russian Academy of Sciences (ISPM RAS), Profsoyuznaya 70, 117393 Moscow, Russia; (M.S.P.); (G.P.G.); (K.M.B.); (E.K.G.); (I.B.M.); (G.V.C.); (V.G.S.); (S.A.P.); (A.M.M.)
| | - Kirill M. Borisov
- N. S. Enikolopov Institute of Synthetic Polymer Materials, Russian Academy of Sciences (ISPM RAS), Profsoyuznaya 70, 117393 Moscow, Russia; (M.S.P.); (G.P.G.); (K.M.B.); (E.K.G.); (I.B.M.); (G.V.C.); (V.G.S.); (S.A.P.); (A.M.M.)
| | - Evgeniy K. Golubev
- N. S. Enikolopov Institute of Synthetic Polymer Materials, Russian Academy of Sciences (ISPM RAS), Profsoyuznaya 70, 117393 Moscow, Russia; (M.S.P.); (G.P.G.); (K.M.B.); (E.K.G.); (I.B.M.); (G.V.C.); (V.G.S.); (S.A.P.); (A.M.M.)
| | - Ivan B. Meshkov
- N. S. Enikolopov Institute of Synthetic Polymer Materials, Russian Academy of Sciences (ISPM RAS), Profsoyuznaya 70, 117393 Moscow, Russia; (M.S.P.); (G.P.G.); (K.M.B.); (E.K.G.); (I.B.M.); (G.V.C.); (V.G.S.); (S.A.P.); (A.M.M.)
| | - Georgiy V. Cherkaev
- N. S. Enikolopov Institute of Synthetic Polymer Materials, Russian Academy of Sciences (ISPM RAS), Profsoyuznaya 70, 117393 Moscow, Russia; (M.S.P.); (G.P.G.); (K.M.B.); (E.K.G.); (I.B.M.); (G.V.C.); (V.G.S.); (S.A.P.); (A.M.M.)
| | - Vitaliy G. Shevchenko
- N. S. Enikolopov Institute of Synthetic Polymer Materials, Russian Academy of Sciences (ISPM RAS), Profsoyuznaya 70, 117393 Moscow, Russia; (M.S.P.); (G.P.G.); (K.M.B.); (E.K.G.); (I.B.M.); (G.V.C.); (V.G.S.); (S.A.P.); (A.M.M.)
| | - Sergey A. Ponomarenko
- N. S. Enikolopov Institute of Synthetic Polymer Materials, Russian Academy of Sciences (ISPM RAS), Profsoyuznaya 70, 117393 Moscow, Russia; (M.S.P.); (G.P.G.); (K.M.B.); (E.K.G.); (I.B.M.); (G.V.C.); (V.G.S.); (S.A.P.); (A.M.M.)
| | - Aziz M. Muzafarov
- N. S. Enikolopov Institute of Synthetic Polymer Materials, Russian Academy of Sciences (ISPM RAS), Profsoyuznaya 70, 117393 Moscow, Russia; (M.S.P.); (G.P.G.); (K.M.B.); (E.K.G.); (I.B.M.); (G.V.C.); (V.G.S.); (S.A.P.); (A.M.M.)
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (INEOS RAS), Vavilova 28, 119991 Moscow, Russia
| |
Collapse
|
30
|
Lee JH, Han MW. Design and Evaluation of Smart Textile Actuator with Chain Structure. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5517. [PMID: 37629808 PMCID: PMC10456553 DOI: 10.3390/ma16165517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023]
Abstract
Textiles composed of fibers can have their mechanical properties adjusted by changing the arrangement of the fibers, such as strength and flexibility. Particularly, in the case of smart textiles incorporating active materials, various deformations could be created based on fiber patterns that determine the directivity of active materials. In this study, we design a smart fiber-based textile actuator with a chain structure and evaluate its actuation characteristics. Smart fiber composed of shape memory alloy (SMA) generates deformation when the electric current is applied, causing the phase transformation of SMA. We fabricated the smart chain column and evaluated its actuating mechanism based on the size of the chain and the number of rows. In addition, a crochet textile actuator was designed using interlooping smart chains and developed into a soft gripper that can grab objects. With experimental verifications, this study provides an investigation of the relationship between the chain actuator's deformation, actuating force, actuator temperature, and strain. The results of this study are expected to be relevant to textile applications, wearable devices, and other technical fields that require coordination with the human body. Additionally, it is expected that it can be utilized to configure a system capable of flexible operation by combining rigid elements such as batteries and sensors with textiles.
Collapse
Affiliation(s)
- Ju-Hee Lee
- Department of Mechanical Engineering, Dongguk University, 30 Pildong-ro 1 gil, Jung-gu, Seoul 04620, Republic of Korea
| | - Min-Woo Han
- Department of Mechanical Engineering, Dongguk University, 30 Pildong-ro 1 gil, Jung-gu, Seoul 04620, Republic of Korea
- Department of Mechanical, Robotics and Energy Engineering, Dongguk University, 30 Pildong-ro 1 gil, Jung-gu, Seoul 04620, Republic of Korea
| |
Collapse
|
31
|
Konda R, Bombara D, Zhang J. Overtwisting and Coiling Highly Enhance Strain Generation of Twisted String Actuators. Soft Robot 2023; 10:760-769. [PMID: 37192497 DOI: 10.1089/soro.2021.0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023] Open
Abstract
Twisted string actuators (TSAs) have exhibited great promise in robotic applications by generating high translational force with low input torque. To further facilitate their robotic applications, it is strongly desirable but challenging to enhance their consistent strain generation while maintaining compliance. Existing studies predominantly considered overtwisting and coiling after the regular twisting stage to be undesirable-nonuniform and unpredictable knots, entanglements, and coils formed to create an unstable and failure-prone structure. Overtwisting would work well for TSAs when uniform coils can be consistently formed. In this study, we realize uniform and consistent coil formation in overtwisted TSAs, which greatly increases their strain. Furthermore, we investigate methods for enabling uniform coil formation upon overtwisting the strings in a TSA and present a procedure to systematically "train" the strings. To the authors' best knowledge, this is the first study to experimentally investigate overtwisting for TSAs with different stiffnesses and realize consistent uniform coil formation. Ultrahigh molecular-weight polyethylene strings form the stiff TSAs, whereas compliant TSAs are realized with stretchable and conductive supercoiled polymer strings. The strain, force, velocity, and torque of each overtwisted TSA were studied. Overtwisting and coiling resulted in ∼70% strain in stiff TSAs and ∼60% strain in compliant TSAs. This is more than twice the strain achieved through regular twisting. Finally, the overtwisted TSA was successfully demonstrated in a robotic bicep.
Collapse
Affiliation(s)
- Revanth Konda
- Department of Mechanical Engineering, University of Nevada, Reno, Nevada, USA
| | - David Bombara
- Department of Mechanical Engineering, University of Nevada, Reno, Nevada, USA
| | - Jun Zhang
- Department of Mechanical Engineering, University of Nevada, Reno, Nevada, USA
| |
Collapse
|
32
|
Zhao S, Lu X, Wang K, Zhao D, Wang X, Ren L, Ren L. A TEC Cooling Soft Robot Driven by Twisted String Actuators. Biomimetics (Basel) 2023; 8:221. [PMID: 37366816 DOI: 10.3390/biomimetics8020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Similar to biological muscles in nature, artificial muscles have unique advantages for driving bionic robots. However, there is still a large gap between the performance of existing artificial muscles and biological muscles. Twisted polymer actuators (TPAs) convert rotary motion from torsional to linear motion. TPAs are known for their high energy efficiency and large linear strain and stress outputs. A simple, lightweight, low-cost, self-sensing robot powered using a TPA and cooled using a thermoelectric cooler (TEC) was proposed in this study. Because TPA burns easily at high temperatures, traditional soft robots driven by TPAs have low movement frequencies. In this study, a temperature sensor and TEC were combined to develop a closed-loop temperature control system to ensure that the internal temperature of the robot was 5 °C to cool the TPAs quickly. The robot could move at a frequency of 1 Hz. Moreover, a self-sensing soft robot was proposed based on the TPA contraction length and resistance. When the motion frequency was 0.01 Hz, the TPA had good self-sensing ability and the root-mean-square error of the angle of the soft robot was less than 3.89% of the measurement amplitude. This study not only proposed a new cooling method for improving the motion frequency of soft robots but also verified the autokinetic performance of the TPAs.
Collapse
Affiliation(s)
- Shun Zhao
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China
| | - Xuewei Lu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China
| | - Kunyang Wang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China
- Weihai Institute for Bionics, Jilin University, Weihai 264402, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
| | - Di Zhao
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China
| | - Xu Wang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China
| | - Lei Ren
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China
- Weihai Institute for Bionics, Jilin University, Weihai 264402, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China
- Weihai Institute for Bionics, Jilin University, Weihai 264402, China
| |
Collapse
|
33
|
Park CB, Park HS. Portable 3D-printed hand orthosis with spatial stiffness distribution personalized for assisting grasping in daily living. Front Bioeng Biotechnol 2023; 11:895745. [PMID: 36815899 PMCID: PMC9932545 DOI: 10.3389/fbioe.2023.895745] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Stroke survivors having limited finger coordination require an active hand orthosis to assist them with grasping tasks for daily activities. The orthosis should be portable for constant use; however, portability imposes constraints on the number, size, and weight of the actuators, which increase the difficulty of the design process. Therefore, a tradeoff exists between portability and the assistive force. In this study, a personalized spatial stiffness distribution design is presented for a portable and strengthful hand orthosis. The spatial stiffness distribution of the orthosis was optimized based on measurements of individual hand parameters to satisfy the functional requirements of achieving sufficient grip aperture in the pre-grasping phase and minimal assistive force in the grasping phase. Ten stroke survivors were recruited to evaluate the system. Sufficient grip aperture and high grip strength-to-weight ratio were achieved by the orthosis via a single motor. Moreover, the orthosis significantly restored the range of motion and improved the performance of daily activities. The proposed spatial stiffness distribution can suggest a design solution to make strengthful hand orthoses with reduced weight.
Collapse
Affiliation(s)
| | - Hyung-Soon Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
34
|
Yang SY, Kim K, Ko JU, Seo S, Hwang ST, Park JH, Jung HS, Gong YJ, Suk JW, Rodrigue H, Moon H, Koo JC, Nam JD, Choi HR. Design and Control of Lightweight Bionic Arm Driven by Soft Twisted and Coiled Artificial Muscles. Soft Robot 2023; 10:17-29. [PMID: 35255238 DOI: 10.1089/soro.2021.0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Twisted and coiled actuators (TCAs), which are light but capable of producing significant power, were developed in recent times. After their introduction, there have been numerous improvements in performance, including development of techniques such as actuation strain and heating methods. However, the development of robots using TCA is still in its early stages. In this study, a bionic arm driven by TCAs was developed for light and flexible operation. The aim of this study was to gain a foothold in the future of robot development using TCA, which is considered as the appropriate artificial muscle. The main developments were with regard to the design (from actuator design to system design), system configuration for control, and control method. First, a process technology for repeatedly manufacturing TCA, which can be used practically and delivers sufficient performance, was developed. Based on the developed actuator, a joint was designed to move the elbow and hand. The final bionic arm was developed by integrating the TCA, pulley joint, and control system. It moved the elbow up to 100° and allowed the hand to move in three degrees of freedom. Using the control method for each joint, we were able to show the movement by using the hand and elbow.
Collapse
Affiliation(s)
- Sang Yul Yang
- School of Mechanical Engineering, Sungkyunkwan University, Suwonsi, Republic of Korea
| | - Kihyeon Kim
- School of Mechanical Engineering, Sungkyunkwan University, Suwonsi, Republic of Korea
| | - Jeong U Ko
- Robotic Mechanism Research Team, Hyundai Robotics, Youngin-si, Republic of Korea
| | - Sungwon Seo
- School of Mechanical Engineering, Sungkyunkwan University, Suwonsi, Republic of Korea
| | - Seong Taek Hwang
- School of Mechanical Engineering, Sungkyunkwan University, Suwonsi, Republic of Korea
| | - Jae Hyeong Park
- School of Mechanical Engineering, Sungkyunkwan University, Suwonsi, Republic of Korea
| | - Ho Sang Jung
- School of Mechanical Engineering, Sungkyunkwan University, Suwonsi, Republic of Korea
| | - Young Jin Gong
- School of Mechanical Engineering, Sungkyunkwan University, Suwonsi, Republic of Korea
| | - Ji Won Suk
- School of Mechanical Engineering, Sungkyunkwan University, Suwonsi, Republic of Korea
| | - Hugo Rodrigue
- School of Mechanical Engineering, Sungkyunkwan University, Suwonsi, Republic of Korea
| | - Hyungpil Moon
- School of Mechanical Engineering, Sungkyunkwan University, Suwonsi, Republic of Korea
| | - Ja Choon Koo
- School of Mechanical Engineering, Sungkyunkwan University, Suwonsi, Republic of Korea
| | - Jae-do Nam
- Department of Polymer Science and Engineering, Sungkyunkwan University, Suwon-si, Republic of Korea
| | - Hyouk Ryeol Choi
- School of Mechanical Engineering, Sungkyunkwan University, Suwonsi, Republic of Korea
| |
Collapse
|
35
|
Hu L, Bonnemain J, Saeed MY, Singh M, Quevedo Moreno D, Vasilyev NV, Roche ET. An implantable soft robotic ventilator augments inspiration in a pig model of respiratory insufficiency. Nat Biomed Eng 2023; 7:110-123. [PMID: 36509912 PMCID: PMC9991903 DOI: 10.1038/s41551-022-00971-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 10/26/2022] [Indexed: 12/14/2022]
Abstract
Severe diaphragm dysfunction can lead to respiratory failure and to the need for permanent mechanical ventilation. Yet permanent tethering to a mechanical ventilator through the mouth or via tracheostomy can hinder a patient's speech, swallowing ability and mobility. Here we show, in a porcine model of varied respiratory insufficiency, that a contractile soft robotic actuator implanted above the diaphragm augments its motion during inspiration. Synchronized actuation of the diaphragm-assist implant with the native respiratory effort increased tidal volumes and maintained ventilation flow rates within the normal range. Robotic implants that intervene at the diaphragm rather than at the upper airway and that augment physiological metrics of ventilation may restore respiratory performance without sacrificing quality of life.
Collapse
Affiliation(s)
- Lucy Hu
- Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jean Bonnemain
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Adult Intensive Care Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Mossab Y Saeed
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Manisha Singh
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Diego Quevedo Moreno
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nikolay V Vasilyev
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ellen T Roche
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
36
|
Morris L, Diteesawat RS, Rahman N, Turton A, Cramp M, Rossiter J. The-state-of-the-art of soft robotics to assist mobility: a review of physiotherapist and patient identified limitations of current lower-limb exoskeletons and the potential soft-robotic solutions. J Neuroeng Rehabil 2023; 20:18. [PMID: 36717869 PMCID: PMC9885398 DOI: 10.1186/s12984-022-01122-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/16/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Soft, wearable, powered exoskeletons are novel devices that may assist rehabilitation, allowing users to walk further or carry out activities of daily living. However, soft robotic exoskeletons, and the more commonly used rigid exoskeletons, are not widely adopted clinically. The available evidence highlights a disconnect between the needs of exoskeleton users and the engineers designing devices. This review aimed to explore the literature on physiotherapist and patient perspectives of the longer-standing, and therefore greater evidenced, rigid exoskeleton limitations. It then offered potential solutions to these limitations, including soft robotics, from an engineering standpoint. METHODS A state-of-the-art review was carried out which included both qualitative and quantitative research papers regarding patient and/or physiotherapist perspectives of rigid exoskeletons. Papers were themed and themes formed the review's framework. RESULTS Six main themes regarding the limitations of soft exoskeletons were important to physiotherapists and patients: safety; a one-size-fits approach; ease of device use; weight and placement of device; cost of device; and, specific to patients only, appearance of the device. Potential soft-robotics solutions to address these limitations were offered, including compliant actuators, sensors, suit attachments fitting to user's body, and the use of control algorithms. CONCLUSIONS It is evident that current exoskeletons are not meeting the needs of their users. Solutions to the limitations offered may inform device development. However, the solutions are not infallible and thus further research and development is required.
Collapse
Affiliation(s)
- Leah Morris
- Centre for Health and Clinical Research, University of the West of England, Bristol, UK
- Bristol Robotics Laboratory, Bristol, UK
| | - Richard S. Diteesawat
- Bristol Robotics Laboratory, Bristol, UK
- Department of Engineering Mathematics, University of Bristol, Bristol, UK
| | - Nahian Rahman
- Bristol Robotics Laboratory, Bristol, UK
- Department of Engineering Mathematics, University of Bristol, Bristol, UK
| | - Ailie Turton
- Centre for Health and Clinical Research, University of the West of England, Bristol, UK
| | - Mary Cramp
- Centre for Health and Clinical Research, University of the West of England, Bristol, UK
| | - Jonathan Rossiter
- Bristol Robotics Laboratory, Bristol, UK
- Department of Engineering Mathematics, University of Bristol, Bristol, UK
| |
Collapse
|
37
|
Xu C, Jiang Z, Zhong T, Chen C, Ren W, Sun T, Fu F. Multi-strand Fibers with Hierarchical Helical Structures Driven by Water or Moisture for Soft Actuators. ACS OMEGA 2023; 8:2243-2252. [PMID: 36687042 PMCID: PMC9850490 DOI: 10.1021/acsomega.2c06487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Smart actuators that combine excellent mechanical properties and responsive actuating performance like biological muscles have attracted considerable attention. In this study, a water/humidity responsive actuator, consisting of multi-strand carboxyl methyl cellulose (CMC) fibers with helical structures, was prepared using wet-spinning and twisting methods. The results showed that owing to the multi-strand structure, the actuator consisted of one-, two-, three-, and four-strand helical fibers, thus achieving a combination of high strength (∼27 MPa), high toughness (>10.34 MJ/m3), and large load limit (>0.30 N), which enable the actuator to theoretically withstand a weight that is at least 20,000 times its weight. Meanwhile, owing to the excellent moisture-responsive ability of CMC, the actuator, with a 5 g load, could achieve untwisting motion. Additionally, its maximum speed was approximately 2158 ± 233 rpm/m under water stimulation, whereas the recovery speed could reach 804 ± 44 rpm/m. Moreover, this untwisting-recovery reversible process was cyclic, whereas the shape and the actuating speed of the actuator remained stable after more than 150 cycles. The actuator improved the load limit that the fiber could withstand when driving under stimulation, thereby enabling the actuator to lift or move heavy objects like human muscles when executing spontaneously under external stimuli. This result shows considerable potential applications in artificial muscles and biomimetic robots.
Collapse
Affiliation(s)
- Chenxue Xu
- College
of Chemistry and Chemical Engineering, Research Center for Advanced
Mirco- and Nano-Fabrication Materials, Shanghai
University of Engineering Science, Shanghai 201620, P. R. China
| | - Zhenlin Jiang
- College
of Chemistry and Chemical Engineering, Research Center for Advanced
Mirco- and Nano-Fabrication Materials, Shanghai
University of Engineering Science, Shanghai 201620, P. R. China
- Science and Technology on
Advanced Ceramic
Fibers and Composites Laboratory, National
University of Defense Technology, Changsha 410073, P. R.
China
| | - Tiantian Zhong
- College
of Chemistry and Chemical Engineering, Research Center for Advanced
Mirco- and Nano-Fabrication Materials, Shanghai
University of Engineering Science, Shanghai 201620, P. R. China
| | - Chen Chen
- College
of Chemistry and Chemical Engineering, Research Center for Advanced
Mirco- and Nano-Fabrication Materials, Shanghai
University of Engineering Science, Shanghai 201620, P. R. China
| | - Wanting Ren
- College
of Chemistry and Chemical Engineering, Research Center for Advanced
Mirco- and Nano-Fabrication Materials, Shanghai
University of Engineering Science, Shanghai 201620, P. R. China
| | - Tao Sun
- College
of Chemistry and Chemical Engineering, Research Center for Advanced
Mirco- and Nano-Fabrication Materials, Shanghai
University of Engineering Science, Shanghai 201620, P. R. China
| | - Fanfan Fu
- School
of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| |
Collapse
|
38
|
Rotational multimaterial printing of filaments with subvoxel control. Nature 2023; 613:682-688. [PMID: 36653452 DOI: 10.1038/s41586-022-05490-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 10/27/2022] [Indexed: 01/19/2023]
Abstract
Helical structures are ubiquitous in nature and impart unique mechanical properties and multifunctionality1. So far, synthetic architectures that mimic these natural systems have been fabricated by winding, twisting and braiding of individual filaments1-7, microfluidics8,9, self-shaping1,10-13 and printing methods14-17. However, those fabrication methods are unable to simultaneously create and pattern multimaterial, helically architected filaments with subvoxel control in arbitrary two-dimensional (2D) and three-dimensional (3D) motifs from a broad range of materials. Towards this goal, both multimaterial18-23 and rotational24 3D printing of architected filaments have recently been reported; however, the integration of these two capabilities has yet to be realized. Here we report a rotational multimaterial 3D printing (RM-3DP) platform that enables subvoxel control over the local orientation of azimuthally heterogeneous architected filaments. By continuously rotating a multimaterial nozzle with a controlled ratio of angular-to-translational velocity, we have created helical filaments with programmable helix angle, layer thickness and interfacial area between several materials within a given cylindrical voxel. Using this integrated method, we have fabricated functional artificial muscles composed of helical dielectric elastomer actuators with high fidelity and individually addressable conductive helical channels embedded within a dielectric elastomer matrix. We have also fabricated hierarchical lattices comprising architected helical struts containing stiff springs within a compliant matrix. Our additive-manufacturing platform opens new avenues to generating multifunctional architected matter in bioinspired motifs.
Collapse
|
39
|
Martínez-Mata AJ, Blanco-Ortega A, Guzmán-Valdivia CH, Abúndez-Pliego A, García-Velarde MA, Magadán-Salazar A, Osorio-Sánchez R. Engineering design strategies for force augmentation exoskeletons: A general review. INT J ADV ROBOT SYST 2023. [DOI: 10.1177/17298806221149473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In the industrial and military sector, work activities are required transporting or supporting heavy loads manually, affecting this the human spinal column due to the weight of the loads or the repetition of this labor. In this regard, the use of force-enhancing exoskeletons is a potential solution to this issue. Therefore, this article summarizes the state of the art in relevant contributions to structural design, control systems, actuators, and performance metrics to evaluate the proper functioning of exoskeletons used for load support and transfer. This is essential to address current and new open problems in these applications, and this includes reducing the metabolic cost and enhancing the loading force in exoskeletons, in which challenges such as structural design and kinetic interactions between the human and the robot are presented. The systematic review of the strategies found in the literature helps addressing these challenges in an orderly way. The proposal of some alternative solutions could help to solving some of the challenges mentioned above, as well as further research to improve the design of these devices is necessary.
Collapse
Affiliation(s)
- AJ Martínez-Mata
- Departamento de Ingeniería Mecánica, Tecnológico Nacional de México/CENIDET, Cuernavaca, Morelos, Mexico
| | - A Blanco-Ortega
- Departamento de Ingeniería Mecánica, Tecnológico Nacional de México/CENIDET, Cuernavaca, Morelos, Mexico
| | - CH Guzmán-Valdivia
- Centro de Ciencias de la Ingeniería, Universidad Autónoma de Aguascalientes, Aguascalientes, Morelos, Mexico
| | - A Abúndez-Pliego
- Departamento de Ingeniería Mecánica, Tecnológico Nacional de México/CENIDET, Cuernavaca, Morelos, Mexico
| | - MA García-Velarde
- Departamento de Ingeniería Mecánica, Tecnológico Nacional de México/CENIDET, Cuernavaca, Morelos, Mexico
| | - A Magadán-Salazar
- Departamento de Ciencias Computacionales, Tecnológico Nacional de México/CENIDET, Cuernavaca, Morelos, Mexico
| | - R Osorio-Sánchez
- Centro Universitario de los Valles, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| |
Collapse
|
40
|
Wu C, Zheng W, Wang Z, Yan B, Ma J, Fang G. Design and Application of a Twisted and Coiled Polymer Driven Artificial Musculoskeletal Actuation Module. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8261. [PMID: 36431746 PMCID: PMC9696038 DOI: 10.3390/ma15228261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Twisted and coiled polymer (TCP) artificial muscles can exhibit unidirectional actuation similar to skeletal muscles. This paper presents a TCP driven artificial musculoskeletal actuation module that can be used in soft robots. This module can contract in the axis direction, and the contraction displacement and force can be controlled easily. The main body of the actuation module consists of TCP muscles and leaf springs, and the deformation of the module is actuated by the TCP muscles. A prototype was made to test the performance of the module. The design and experimental results of the module are presented. The module can provide contraction motion. Results show that the module can provide a contraction force of 0.7 N with displacement of approximately 6.8 mm at 120 °C when exposed to electrical power of 24 V. The proposed artificial musculoskeletal actuation module can potentially be applied in biomimetic robots and the aerospace field.
Collapse
Affiliation(s)
- Chunbing Wu
- Space Structure and Mechanism Technology Laboratory of China Aerospace Science and Technology Group Co., Ltd., Institute of Aerospace System Engineering Shanghai, Shanghai 201108, China
| | - Wen Zheng
- Institute of Biomedical Manufacturing and Life Quality Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiyi Wang
- Space Structure and Mechanism Technology Laboratory of China Aerospace Science and Technology Group Co., Ltd., Institute of Aerospace System Engineering Shanghai, Shanghai 201108, China
| | - Biao Yan
- Space Structure and Mechanism Technology Laboratory of China Aerospace Science and Technology Group Co., Ltd., Institute of Aerospace System Engineering Shanghai, Shanghai 201108, China
| | - Jia Ma
- Space Structure and Mechanism Technology Laboratory of China Aerospace Science and Technology Group Co., Ltd., Institute of Aerospace System Engineering Shanghai, Shanghai 201108, China
| | - Guangqiang Fang
- Space Structure and Mechanism Technology Laboratory of China Aerospace Science and Technology Group Co., Ltd., Institute of Aerospace System Engineering Shanghai, Shanghai 201108, China
| |
Collapse
|
41
|
Li Y, Wu J, Yang P, Song L, Wang J, Xing Z, Zhao J. Multi-Degree-of-Freedom Robots Powered and Controlled by Microwaves. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203305. [PMID: 35986431 PMCID: PMC9561789 DOI: 10.1002/advs.202203305] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Microwaves have become a promising wireless driving strategy due to the advantages of transmissivity through obstacles, fast energy targeting, and selective heating. Although there are some studies on microwave powered artificial muscles based on different structures, the lack of studies on microwave control has limited the development of microwave-driven (MWD) robots. Here, a far-field MWD parallel robot controlled by adjusting energy distribution via changing the polarization direction of microwaves at 2.47 GHz is first reported. The parallel robot is based on three double-layer bending actuators composed of wave-absorbing sheets and bimetallic sheets, and it can implement circular and triangular path at a distance of 0.4 m under 700 W transmitting power. The thermal response rate of the actuator under microwaves is studied, and it is found that the electric-field components can provide a faster thermal response at the optimal length of actuator than magnetic-field components. The work of the parallel robot is demonstrated in an enclosed space composed of microwave-transparent materials. This developed method demonstrates the multi-degree-of-freedom controllability for robots using microwaves and offers potential solutions for some engineering cases, such as pipeline/reactors inspection and medical applications.
Collapse
Affiliation(s)
- Yongze Li
- Department of Mechanical EngineeringHarbin Institute of TechnologyWeihai264209China
| | - Jianyu Wu
- Department of Mechanical EngineeringHarbin Institute of TechnologyWeihai264209China
| | - Peizhuo Yang
- School of Information Science and EngineeringHarbin Institute of TechnologyWeihai264209China
| | - Lizhong Song
- School of Information Science and EngineeringHarbin Institute of TechnologyWeihai264209China
| | - Jun Wang
- School of Information Science and EngineeringHarbin Institute of TechnologyWeihai264209China
| | - Zhiguang Xing
- Department of Mechanical EngineeringHarbin Institute of TechnologyWeihai264209China
| | - Jianwen Zhao
- Department of Mechanical EngineeringHarbin Institute of TechnologyWeihai264209China
| |
Collapse
|
42
|
Skvortsova V, Nedelchev S, Brown J, Farkhatdinov I, Gaponov I. Design, characterisation and validation of a haptic interface based on twisted string actuation. Front Robot AI 2022; 9:977367. [PMID: 36185974 PMCID: PMC9525208 DOI: 10.3389/frobt.2022.977367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022] Open
Abstract
This paper presents the design and experimental characterisation of a wrist haptic interface based on a twisted string actuator. The interface is designed for controlled actuation of wrist flexion/extension and is capable of rendering torque feedback through a rotary handle driven by the twisted string actuator and spring-loaded cable mechanisms. The interface was characterised to obtain its static and dynamic haptic feedback rendering capabilities. Compliance in the spring and actuation mechanism makes the interface suitable for smooth rendering of haptic feedback of large magnitudes due to the high motion transmission ratio of the twisted strings. Haptic virtual wall rendering capabilities are demonstrated.
Collapse
Affiliation(s)
- Valeria Skvortsova
- Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Innopolis, Russia
- *Correspondence: Valeria Skvortsova,
| | - Simeon Nedelchev
- Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Innopolis, Russia
| | - Joshua Brown
- School of Electronic Engineering and Computer Science, Queen Mary University of London, London, United Kingdom
| | - Ildar Farkhatdinov
- School of Electronic Engineering and Computer Science, Queen Mary University of London, London, United Kingdom
| | - Igor Gaponov
- Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Innopolis, Russia
| |
Collapse
|
43
|
Tadrist L, Mammadi Y, Diperi J, Linares JM. Deformation and mechanics of a pulvinus-inspired material. BIOINSPIRATION & BIOMIMETICS 2022; 17:065002. [PMID: 35944519 DOI: 10.1088/1748-3190/ac884f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Mimosa pudicarapidly folds leaves when touched. Motion is created by pulvini, 'the plant muscles' that allow plants to produce various complex motions. Plants rely on local control of the turgor pressure to create on-demand motion. In this paper, the mechanics of a cellular material inspired from pulvinus ofM. pudicais studied. First, the manufacturing process of a cell-controllable material is described. Its deformation behaviour when pressured is tested, focusing on three pressure patterns of reference. The deformations are modelled based on the minimisation of elastic energy framework. Depending on pressurisation pattern and magnitude, reversible buckling-induced motion may occur.
Collapse
Affiliation(s)
- Loïc Tadrist
- Aix-Marseille Université, CNRS, ISM, Marseille, France
| | | | - Julien Diperi
- Aix-Marseille Université, CNRS, ISM, Marseille, France
| | | |
Collapse
|
44
|
Kim D, Kim B, Shin B, Shin D, Lee CK, Chung JS, Seo J, Kim YT, Sung G, Seo W, Kim S, Hong S, Hwang S, Han S, Kang D, Lee HS, Koh JS. Actuating compact wearable augmented reality devices by multifunctional artificial muscle. Nat Commun 2022; 13:4155. [PMID: 35851053 PMCID: PMC9293895 DOI: 10.1038/s41467-022-31893-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 07/06/2022] [Indexed: 11/17/2022] Open
Abstract
An artificial muscle actuator resolves practical engineering problems in compact wearable devices, which are limited to conventional actuators such as electromagnetic actuators. Abstracting the fundamental advantages of an artificial muscle actuator provides a small-scale, high-power actuating system with a sensing capability for developing varifocal augmented reality glasses and naturally fit haptic gloves. Here, we design a shape memory alloy-based lightweight and high-power artificial muscle actuator, the so-called compliant amplified shape memory alloy actuator. Despite its light weight (0.22 g), the actuator has a high power density of 1.7 kW/kg, an actuation strain of 300% under 80 g of external payload. We show how the actuator enables image depth control and an immersive tactile response in the form of augmented reality glasses and two-way communication haptic gloves whose thin form factor and high power density can hardly be achieved by conventional actuators. Artificial muscle actuators enabled by responsive functional materials like shape memory alloys are promising candidates for compact e-wearable devices. Here, authors demonstrate augmented reality glasses and two-way communication haptic gloves capable of image depth control and immersive tactile response.
Collapse
Affiliation(s)
- Dongjin Kim
- Department of Mechanical Engineering, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea
| | - Baekgyeom Kim
- Department of Mechanical Engineering, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea
| | - Bongsu Shin
- Samsung Advanced Institute of Technology, Samsung Electronics, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea.,Samsung Electronics, 34, Seongchon-gil, Seocho-gu, Seoul, 06765, Republic of Korea
| | - Dongwook Shin
- Department of Mechanical Engineering, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea
| | - Chang-Kun Lee
- Samsung Advanced Institute of Technology, Samsung Electronics, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea.,Samsung Electronics, 34, Seongchon-gil, Seocho-gu, Seoul, 06765, Republic of Korea
| | - Jae-Seung Chung
- Samsung Advanced Institute of Technology, Samsung Electronics, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea.,Samsung Electronics, 34, Seongchon-gil, Seocho-gu, Seoul, 06765, Republic of Korea
| | - Juwon Seo
- Samsung Advanced Institute of Technology, Samsung Electronics, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea.,Samsung Electronics, 34, Seongchon-gil, Seocho-gu, Seoul, 06765, Republic of Korea
| | - Yun-Tae Kim
- Samsung Advanced Institute of Technology, Samsung Electronics, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea.,Samsung Electronics, 34, Seongchon-gil, Seocho-gu, Seoul, 06765, Republic of Korea
| | - Geeyoung Sung
- Samsung Advanced Institute of Technology, Samsung Electronics, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea.,Samsung Electronics, 34, Seongchon-gil, Seocho-gu, Seoul, 06765, Republic of Korea
| | - Wontaek Seo
- Samsung Advanced Institute of Technology, Samsung Electronics, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Sunil Kim
- Samsung Advanced Institute of Technology, Samsung Electronics, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Sunghoon Hong
- Samsung Advanced Institute of Technology, Samsung Electronics, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Sungwoo Hwang
- Samsung Advanced Institute of Technology, Samsung Electronics, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea.,Samsung SDS, 125, Olympic-ro, 35-gil, Songpa-gu, Seoul, 05510, Republic of Korea
| | - Seungyong Han
- Department of Mechanical Engineering, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea.
| | - Daeshik Kang
- Department of Mechanical Engineering, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea.
| | - Hong-Seok Lee
- Samsung Advanced Institute of Technology, Samsung Electronics, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea. .,Department of Electrical and Computer Engineering, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Je-Sung Koh
- Department of Mechanical Engineering, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea.
| |
Collapse
|
45
|
Dynamics and Computed-Muscle-Force Control of a Planar Muscle-Driven Snake Robot. ACTUATORS 2022. [DOI: 10.3390/act11070194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This paper presents the dynamic formulation of an artificial-muscle-driven and computed-muscle–force control for the planar locomotion of a snake robot. The snake robot uses a series of antagonistic pneumatic artificial muscles, assembled at the joints, to generate the locomotion. Kinematics of the artificial-muscle-driven robot in the joint and Cartesian spaces was derived with respect to the muscles’ motion. The Lagrangian mechanics was employed for the formulation of the dynamic model of the robot and deriving the equations of motion. A model-based computed-muscle-force control was designed to track the desired paths/trajectories in Cartesian space. The feedback linearization method based on a change of coordinate was utilized to determine an equivalent linear (input-to-state) system. Then, a full state feedback control law was designed, which satisfies the stability and tracking problems. The performance of the dynamic model and the controller were successfully demonstrated in simulation studies for tracking a circle-shape path and a square-shape path with a constant linear velocity while generating the lateral undulation gait. The results indicate a low magnitude of tracking errors where the controlled muscle force are bounded to the actual pneumatic artificial muscle’s limitations.
Collapse
|
46
|
Abstract
In this overview of recent developments in the field of biorobotics we cover the developments in materials such as the use of polyester fabric being used as artificial skin and the start of whole new ways to actuate artificial muscles as a whole. In this, we discuss all of the relevant innovations from the fields of nano and microtechnology, as well as in the field of soft robotics to summarize what has been over the last 4 years and what could be improved for artificial muscles in the future. The goal of this paper will be to gain a better understanding of where the current field of biorobotics is at and what its current trends in manufacturing and its techniques are within the last several years.
Collapse
|
47
|
Realmuto J, Sanger TD. Assisting Forearm Function in Children With Movement Disorders via A Soft Wearable Robot With Equilibrium-Point Control. Front Robot AI 2022; 9:877041. [PMID: 35783026 PMCID: PMC9240630 DOI: 10.3389/frobt.2022.877041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/26/2022] [Indexed: 11/25/2022] Open
Abstract
Wearable robots are envisioned to amplify the independence of people with movement impairments by providing daily physical assistance. For portable, comfortable, and safe devices, soft pneumatic-based robots are emerging as a potential solution. However, due to the inherent complexities, including compliance and nonlinear mechanical behavior, feedback control for facilitating human–robot interaction remains a challenge. Herein, we present the design, fabrication, and control architecture of a soft wearable robot that assists in supination and pronation of the forearm. The soft wearable robot integrates an antagonistic pair of pneumatic-based helical actuators to provide active pronation and supination torques. Our main contribution is a bio-inspired equilibrium-point control scheme for integrating proprioceptive feedback and exteroceptive input (e.g., the user’s muscle activation signals) directly with the on/off valve behavior of the soft pneumatic actuators. The proposed human–robot controller is directly inspired by the equilibrium-point hypothesis of motor control, which suggests that voluntary movements arise through shifts in the equilibrium state of the antagonistic muscle pair spanning a joint. We hypothesized that the proposed method would reduce the required effort during dynamic manipulation without affecting the error. In order to evaluate our proposed method, we recruited seven pediatric participants with movement disorders to perform two dynamic interaction tasks with a haptic manipulandum. Each task required the participant to track a sinusoidal trajectory while the haptic manipulandum behaved as a Spring-Dominate system or Inertia-Dominate system. Our results reveal that the soft wearable robot, when active, reduced user effort on average by 14%. This work demonstrates the practical implementation of an equilibrium-point volitional controller for wearable robots and provides a foundational path toward versatile, low-cost, and soft wearable robots.
Collapse
Affiliation(s)
- Jonathan Realmuto
- Department of Mechanical Engineering, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Jonathan Realmuto,
| | - Terence D. Sanger
- Department of Electrical Engineering and Computer Science, University of California, Irvine, Irvine, CA, United States
- Children’s Hospital of Orange County, Orange, CA, United States
| |
Collapse
|
48
|
Tang C, Du B, Jiang S, Shao Q, Dong X, Liu XJ, Zhao H. A pipeline inspection robot for navigating tubular environments in the sub-centimeter scale. Sci Robot 2022; 7:eabm8597. [PMID: 35613300 DOI: 10.1126/scirobotics.abm8597] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In complex systems like aircraft engines and oil refinery machines, pipeline inspection is an essential task for ensuring safety. Here, we proposed a type of smart material-driven pipeline inspection robot (weight, 2.2 grams; length, 47 millimeters; diameter, <10 millimeters) that could fit into pipes with sub-centimeter diameters and different curvatures. We adopted high-power density, long-life dielectric elastomer actuators as artificial muscles and smart composite microstructure-based, high-efficiency anchoring units as transmissions. Fast assembling of components using magnets with an adjustable number of units was used to fit varying pipeline geometries. We analyzed the dynamic characteristics of the robots by considering soft material's unique properties like viscoelasticity and dynamic vibrations and tuned the activation voltage's frequency and phase accordingly. Powered by tethered cables from outside the pipe, our peristaltic pipeline robot achieved rapid motions horizontally and vertically (horizontal: 1.19 body lengths per second, vertical: 1.08 body lengths per second) in a subcentimeter-sized pipe (diameter, 9.8 millimeters). Besides, it was capable of moving in pipes with varying geometries (diameter-changing pipe, L-shaped pipe, S-shaped pipe, or spiral-shaped pipe), filled media (air or oil), and materials (glass, metal, or carbon fiber). To demonstrate its capability for pipeline inspection, we installed a miniature camera on its front and controlled the robot manually from outside. The robot successfully finished an inspection task at different speeds.
Collapse
Affiliation(s)
- Chao Tang
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.,State Key Laboratory of Tribology, Beijing 100084, China.,Beijing Key Lab of Precision/Ultra-Precision Manufacturing Equipment and Control, Beijing 100084, China
| | - Boyuan Du
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.,State Key Laboratory of Tribology, Beijing 100084, China.,Beijing Key Lab of Precision/Ultra-Precision Manufacturing Equipment and Control, Beijing 100084, China
| | - Songwen Jiang
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.,State Key Laboratory of Tribology, Beijing 100084, China.,Beijing Key Lab of Precision/Ultra-Precision Manufacturing Equipment and Control, Beijing 100084, China
| | - Qi Shao
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.,State Key Laboratory of Tribology, Beijing 100084, China.,Beijing Key Lab of Precision/Ultra-Precision Manufacturing Equipment and Control, Beijing 100084, China
| | - Xuguang Dong
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.,State Key Laboratory of Tribology, Beijing 100084, China.,Beijing Key Lab of Precision/Ultra-Precision Manufacturing Equipment and Control, Beijing 100084, China
| | - Xin-Jun Liu
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.,State Key Laboratory of Tribology, Beijing 100084, China.,Beijing Key Lab of Precision/Ultra-Precision Manufacturing Equipment and Control, Beijing 100084, China
| | - Huichan Zhao
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.,State Key Laboratory of Tribology, Beijing 100084, China.,Beijing Key Lab of Precision/Ultra-Precision Manufacturing Equipment and Control, Beijing 100084, China
| |
Collapse
|
49
|
Yang SY, Kim K, Seo S, Shin D, Park JH, Gong YJ, Choi HR. Hybrid Antagonistic System With Coiled Shape Memory Alloy and Twisted and Coiled Polymer Actuator for Lightweight Robotic Arm. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3150875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sang Yul Yang
- Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, South Korea
| | - Kihyeon Kim
- Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, South Korea
| | - Sungwon Seo
- Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, South Korea
| | - Dongsu Shin
- Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, South Korea
| | - Jae Hyeong Park
- Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, South Korea
| | - Young Jin Gong
- Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, South Korea
| | - Hyouk Ryeol Choi
- Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, South Korea
| |
Collapse
|
50
|
Active-Type Continuously Variable Transmission System Based on a Twisted String Actuator. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3144782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|