1
|
Lequertier V, Testa É, Maxim V. CoReSi: a GPU-based software for Compton camera reconstruction and simulation in collimator-free SPECT. Phys Med Biol 2025; 70:045001. [PMID: 39813793 DOI: 10.1088/1361-6560/adaacc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/15/2025] [Indexed: 01/18/2025]
Abstract
Objective.Compton cameras (CCs) are imaging devices that may improve observation of sources ofγphotons. The images are obtained by solving a difficult inverse problem. We present CoReSi, a Compton reconstruction and simulation software implemented in Python and powered by PyTorch to leverage multi-threading and to easily interface with image processing and deep learning algorithms. The code is mainly dedicated to medical imaging and near-field experiments where images are reconstructed in 3D.Approach.The code was developed over several years in C++, with the initial version being proprietary. We have since redesigned and translated it into Python, adding new features to improve its adaptability and performances. This paper reviews the literature on CC mathematical models, explains the implementation strategies we have adopted and presents the features of CoReSi.Main results.The code includes state-of-the-art mathematical models from the literature, from the simplest, which allow limited knowledge of the sources, to more sophisticated ones with a finer description of the physics involved. It offers flexibility in defining the geometry of the CC and the detector materials. Several identical cameras can be considered at arbitrary positions in space. The main functions of the code are dedicated to the computation of the system matrix, leading to the forward and backward projector operators. These are the cornerstones of any image reconstruction algorithm. A simplified Monte Carlo data simulation function is provided to facilitate code development and fast prototyping.Significance.As far as we know, there is no open source code for CC reconstruction, except for MEGAlib, which is mainly dedicated to astronomy applications. This code aims to facilitate research as more and more teams from different communities such as applied mathematics, electrical engineering, physics, medical physics get involved in CC studies. Implementation with PyTorch will also facilitate interfacing with deep learning algorithms.
Collapse
Affiliation(s)
- Vincent Lequertier
- INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69100 Lyon, France
| | - Étienne Testa
- Université Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, UMR 5822, Villeurbanne, F-69100, France
| | - Voichiţa Maxim
- INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69100 Lyon, France
| |
Collapse
|
2
|
Sarrut D, Arbor N, Baudier T, Borys D, Etxebeste A, Fuchs H, Gajewski J, Grevillot L, Jan S, Kagadis GC, Kang HG, Kirov A, Kochebina O, Krzemien W, Lomax A, Papadimitroulas P, Pommranz C, Roncali E, Rucinski A, Winterhalter C, Maigne L. The OpenGATE ecosystem for Monte Carlo simulation in medical physics. Phys Med Biol 2022; 67:10.1088/1361-6560/ac8c83. [PMID: 36001985 PMCID: PMC11149651 DOI: 10.1088/1361-6560/ac8c83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/24/2022] [Indexed: 11/12/2022]
Abstract
This paper reviews the ecosystem of GATE, an open-source Monte Carlo toolkit for medical physics. Based on the shoulders of Geant4, the principal modules (geometry, physics, scorers) are described with brief descriptions of some key concepts (Volume, Actors, Digitizer). The main source code repositories are detailed together with the automated compilation and tests processes (Continuous Integration). We then described how the OpenGATE collaboration managed the collaborative development of about one hundred developers during almost 20 years. The impact of GATE on medical physics and cancer research is then summarized, and examples of a few key applications are given. Finally, future development perspectives are indicated.
Collapse
Affiliation(s)
- David Sarrut
- Université de Lyon; CREATIS; CNRS UMR5220; Inserm U1294; INSA-Lyon; Université Lyon 1, Léon Bérard cancer center, Lyon, France
| | - Nicolas Arbor
- Université de Strasbourg, IPHC, CNRS, UMR7178, F-67037 Strasbourg, France
| | - Thomas Baudier
- Université de Lyon; CREATIS; CNRS UMR5220; Inserm U1294; INSA-Lyon; Université Lyon 1, Léon Bérard cancer center, Lyon, France
| | - Damian Borys
- Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Ane Etxebeste
- Université de Lyon; CREATIS; CNRS UMR5220; Inserm U1294; INSA-Lyon; Université Lyon 1, Léon Bérard cancer center, Lyon, France
| | - Hermann Fuchs
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Medical University of Vienna, Department of Radiation Oncology, Vienna, Vienna, Währinger Gürtel 18-20, A-1090 Wien, Austria
| | - Jan Gajewski
- Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
| | | | - Sébastien Jan
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), F-91401 Orsay, France
| | - George C Kagadis
- 3DMI Research Group, Department of Medical Physics, School of Medicine, University of Patras, Patras, Greece
| | - Han Gyu Kang
- National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Assen Kirov
- Memorial Sloan Kettering Cancer, New York, NY 10021, United States of America
| | - Olga Kochebina
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), F-91401 Orsay, France
| | - Wojciech Krzemien
- High Energy Physics Division, National Centre for Nuclear Research, Otwock-Świerk, Poland
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Lojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40 St, 31 501 Krakow, Poland
| | - Antony Lomax
- Center for Proton Therapy, PSI, Switzerland
- Department of Physics, ETH Zurich, Switzerland
| | | | - Christian Pommranz
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Roentgenweg 13, D-72076 Tuebingen, Germany
- Institute for Astronomy and Astrophysics, Eberhard Karls University Tuebingen, Sand 1, D-72076 Tuebingen, Germany
| | - Emilie Roncali
- University of California Davis, Departments of Biomedical Engineering and Radiology, Davis, CA 95616, United States of America
| | - Antoni Rucinski
- Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
| | - Carla Winterhalter
- Center for Proton Therapy, PSI, Switzerland
- Department of Physics, ETH Zurich, Switzerland
| | - Lydia Maigne
- Université Clermont Auvergne, Laboratoire de Physique de Clermont, CNRS, UMR 6533, F-63178 Aubière, France
| |
Collapse
|
3
|
Valencia Lozano I, Dedes G, Peterson S, Mackin D, Zoglauer A, Beddar S, Avery S, Polf J, Parodi K. Comparison of reconstructed prompt gamma emissions using maximum likelihood estimation and origin ensemble algorithms for a Compton camera system tailored to proton range monitoring. Z Med Phys 2022:S0939-3889(22)00060-5. [PMID: 35750591 DOI: 10.1016/j.zemedi.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 10/18/2022]
Abstract
Compton-based prompt gamma (PG) imaging is being investigated by several groups as a potential solution for in vivo range monitoring in proton therapy. The performance of this technique depends on the detector system as well as the ability of the reconstruction method to obtain good spatial resolution to establish a quantitative correlation between the PG emission and the proton beam range in the patient. To evaluate the feasibility of PG imaging for range monitoring, we quantitatively evaluated the emission distributions reconstructed by a Maximum Likelihood Expectation Maximization (MLEM) and a Stochastic Origin Ensemble (SOE) algorithm. To this end, we exploit experimental and Monte Carlo (MC) simulation data acquired with the Polaris-J Compton Camera (CC) prototype. The differences between the proton beam range (RD) defined as the 80% distal dose fall-off and the PG range (RPG), obtained by fitting the distal end of the reconstructed profile with a sigmoid function, were quantified. A comparable performance of both reconstruction algorithms was found. For both experimental and simulated irradiation scenarios, the correlation between RD and RPG was within 5 mm. These values were consistent with the ground truth distance (RD-RPGg≈ 3 mm) calculated by using the expected PG emission available from MC simulation. Furthermore, shifts of 3 mm in the proton beam range were resolved with the MLEM algorithm by calculating the relative difference between the RPG for each reconstructed profile. In non-homogeneous targets, the spatial changes in the PG emission due to the different materials could not be fully resolved from the reconstructed profiles; however, the fall-off region still resembled the ground truth emission. For this scenario, the PG correlation (RD-RPG) varied from 0.1 mm to 4 mm, which is close to the ground truth correlation (3 mm). This work provides a framework for the evaluation of the range monitoring capabilities of a CC device for PG imaging. The two investigated image reconstruction algorithms showed a comparable and consistent performance for homogeneous and heterogeneous targets.
Collapse
Affiliation(s)
- Ingrid Valencia Lozano
- Department of Medical Physics, Ludwig-Maximilians-Universität, Garching b. München, Germany.
| | - George Dedes
- Department of Medical Physics, Ludwig-Maximilians-Universität, Garching b. München, Germany
| | - Steve Peterson
- Department of Physics, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Dennis Mackin
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andreas Zoglauer
- Space Sciences Laboratory, University of California at Berkeley, Berkeley, CA, USA
| | - Sam Beddar
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephen Avery
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jerimy Polf
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Katia Parodi
- Department of Medical Physics, Ludwig-Maximilians-Universität, Garching b. München, Germany
| |
Collapse
|
4
|
Sarrut D, Bała M, Bardiès M, Bert J, Chauvin M, Chatzipapas K, Dupont M, Etxebeste A, M Fanchon L, Jan S, Kayal G, S Kirov A, Kowalski P, Krzemien W, Labour J, Lenz M, Loudos G, Mehadji B, Ménard L, Morel C, Papadimitroulas P, Rafecas M, Salvadori J, Seiter D, Stockhoff M, Testa E, Trigila C, Pietrzyk U, Vandenberghe S, Verdier MA, Visvikis D, Ziemons K, Zvolský M, Roncali E. Advanced Monte Carlo simulations of emission tomography imaging systems with GATE. Phys Med Biol 2021; 66:10.1088/1361-6560/abf276. [PMID: 33770774 PMCID: PMC10549966 DOI: 10.1088/1361-6560/abf276] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/26/2021] [Indexed: 12/13/2022]
Abstract
Built on top of the Geant4 toolkit, GATE is collaboratively developed for more than 15 years to design Monte Carlo simulations of nuclear-based imaging systems. It is, in particular, used by researchers and industrials to design, optimize, understand and create innovative emission tomography systems. In this paper, we reviewed the recent developments that have been proposed to simulate modern detectors and provide a comprehensive report on imaging systems that have been simulated and evaluated in GATE. Additionally, some methodological developments that are not specific for imaging but that can improve detector modeling and provide computation time gains, such as Variance Reduction Techniques and Artificial Intelligence integration, are described and discussed.
Collapse
Affiliation(s)
- David Sarrut
- Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1294, INSA-Lyon, Université Lyon 1, Lyon, France
| | | | - Manuel Bardiès
- Cancer Research Institute of Montpellier, U1194 INSERM/ICM/Montpellier University, 208 Av des Apothicaires, F-34298 Montpellier cedex 5, France
| | - Julien Bert
- LaTIM, INSERM UMR 1101, IBRBS, Faculty of Medicine, Univ Brest, 22 avenue Camille Desmoulins, F-29238, Brest, France
| | - Maxime Chauvin
- CRCT, UMR 1037, INSERM, Université Toulouse III Paul Sabatier, Toulouse, France
| | | | | | - Ane Etxebeste
- Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1294, INSA-Lyon, Université Lyon 1, Lyon, France
| | - Louise M Fanchon
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, United States of America
| | - Sébastien Jan
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, F-91401, Orsay, France
| | - Gunjan Kayal
- CRCT, UMR 1037, INSERM, Université Toulouse III Paul Sabatier, Toulouse, France
- SCK CEN, Belgian Nuclear Research Centre, Boeretang 200, Mol 2400, Belgium
| | - Assen S Kirov
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, United States of America
| | - Paweł Kowalski
- High Energy Physics Division, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Wojciech Krzemien
- High Energy Physics Division, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Joey Labour
- Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1294, INSA-Lyon, Université Lyon 1, Lyon, France
| | - Mirjam Lenz
- FH Aachen University of Applied Sciences, Forschungszentrum Jülich, Jülich, Germany
- Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - George Loudos
- Bioemission Technology Solutions (BIOEMTECH), Alexandras Av. 116, Athens, Greece
| | | | - Laurent Ménard
- Université Paris-Saclay, CNRS/IN2P3, IJCLab, F-91405 Orsay, France
- Université de Paris, IJCLab, F-91405 Orsay France
| | | | | | - Magdalena Rafecas
- Institute of Medical Engineering, University of Lübeck, Lübeck, Germany
| | - Julien Salvadori
- Department of Nuclear Medicine and Nancyclotep molecular imaging platform, CHRU-Nancy, Université de Lorraine, F-54000, Nancy, France
| | - Daniel Seiter
- Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, 53705, United States of America
| | - Mariele Stockhoff
- Medical Image and Signal Processing (MEDISIP), Ghent University, Ghent, Belgium
| | - Etienne Testa
- Univ. Lyon, Univ. Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, F-69622, Villeurbanne, France
| | - Carlotta Trigila
- Department of Biomedical Engineering, University of California, Davis, CA 95616 United States of America
| | - Uwe Pietrzyk
- Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | | | - Marc-Antoine Verdier
- Université Paris-Saclay, CNRS/IN2P3, IJCLab, F-91405 Orsay, France
- Université de Paris, IJCLab, F-91405 Orsay France
| | - Dimitris Visvikis
- LaTIM, INSERM UMR 1101, IBRBS, Faculty of Medicine, Univ Brest, 22 avenue Camille Desmoulins, F-29238, Brest, France
| | - Karl Ziemons
- FH Aachen University of Applied Sciences, Forschungszentrum Jülich, Jülich, Germany
| | - Milan Zvolský
- Institute of Medical Engineering, University of Lübeck, Lübeck, Germany
| | - Emilie Roncali
- Department of Biomedical Engineering, University of California, Davis, CA 95616 United States of America
| |
Collapse
|