1
|
Lafond M, Payne A, Lafon C. Therapeutic ultrasound transducer technology and monitoring techniques: a review with clinical examples. Int J Hyperthermia 2024; 41:2389288. [PMID: 39134055 PMCID: PMC11375802 DOI: 10.1080/02656736.2024.2389288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 09/07/2024] Open
Abstract
The exponential growth of therapeutic ultrasound applications demonstrates the power of the technology to leverage the combinations of transducer technology and treatment monitoring techniques to effectively control the preferred bioeffect to elicit the desired clinical effect.Objective: This review provides an overview of the most commonly used bioeffects in therapeutic ultrasound and describes existing transducer technologies and monitoring techniques to ensure treatment safety and efficacy.Methods and materials: Literature reviews were conducted to identify key choices that essential in terms of transducer design, treatment parameters and procedure monitoring for therapeutic ultrasound applications. Effective combinations of these options are illustrated through descriptions of several clinical indications, including uterine fibroids, prostate disease, liver cancer, and brain cancer, that have been successful in leveraging therapeutic ultrasound to provide effective patient treatments.Results: Despite technological constraints, there are multiple ways to achieve a desired bioeffect with therapeutic ultrasound in a target tissue. Visualizations of the interplay of monitoring modality, bioeffect, and applied acoustic parameters are presented that demonstrate the interconnectedness of the field of therapeutic ultrasound. While the clinical indications explored in this review are at different points in the clinical evaluation path, based on the ever expanding research being conducted in preclinical realms, it is clear that additional clinical applications of therapeutic ultrasound that utilize a myriad of bioeffects will continue to grow and improve in the coming years.Conclusions: Therapeutic ultrasound will continue to improve in the next decades as the combination of transducer technology and treatment monitoring techniques will continue to evolve and be translated in clinical settings, leading to more personalized and efficient therapeutic ultrasound mediated therapies.
Collapse
Affiliation(s)
- Maxime Lafond
- LabTAU, INSERM, Centre Léon Bérard, Université, Lyon, France
| | - Allison Payne
- Department of Radiology and Imaging Sciences, University of UT, Salt Lake City, UT, USA
| | - Cyril Lafon
- LabTAU, INSERM, Centre Léon Bérard, Université, Lyon, France
| |
Collapse
|
2
|
Li R, Zhang Y, Cheng L, Zheng S, Li H, Zhang H, Du L, He W, Zhang W. Experimental study on monitoring microwave ablation efficacy by real-time shear wave elastography in ex vivo porcine brain. Int J Hyperthermia 2023; 41:2297649. [PMID: 38159561 DOI: 10.1080/02656736.2023.2297649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024] Open
Abstract
Objective: Glioma constitutes the most common primary malignant tumor in the central nervous system. In recent years, microwave ablation (MWA) was expected to be applied in the minimally invasive treatment of brain tumors. This study aims to evaluate the feasibility and accuracy of microwave ablation in ex vivo brain tissue by Shear Wave Elastography (SWE) to explore the application value of real-time SWE in monitoring the process of MWA of brain tissue.Methods: Thirty ex vivo brain tissues were treated with different microwave power and ablation duration. The morphologic and microscopic changes of MWA tissues were observed, and the diameter of the ablation areas was measured. In this experiment, SWE is used to quantitatively evaluate brain tissue's degree of thermal injury immediately after ablation.Results: This study It is found that the ablation range measured by SWE after ablation is in good consistency with the pathological range [ICCSWEL1-L1 = 0.975(95% CI:0.959 - 0.985), ICCSWEL2-L2 = 0.887(95% CI:0.779 - 0.938)]. At the same time, the SWE value after ablation is significantly higher than before (mean ± SD,9.88 ± 2.64 kPa vs.23.6 ± 13.75 kPa; p < 0.001). In this study, the SWE value of tissues in different pathological states was further analyzed by the ROC curve (AUC = 0.86), and the threshold for distinguishing normal tissue from tissue after ablation was 13.7 kPa. The accuracy of evaluating ablation tissue using SWE can reach 84.72%, providing data support for real-time quantitative observation of the ablation range.Conclusion: In conclusion the accurate visualization and real-time evaluation of the organizational change range of the MWA process can be realized by real-time SWE.
Collapse
Affiliation(s)
- Rui Li
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yukang Zhang
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Linggang Cheng
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shuai Zheng
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hongbing Li
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hongxia Zhang
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lijuan Du
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wen He
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei Zhang
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Choquet K, Vappou J, Cabras P, Ishak O, Gangi A, Breton E. Magnetic Resonance Acoustic Radiation Force Imaging (MR-ARFI) for the monitoring of High Intensity Focused Ultrasound (HIFU) ablation in anisotropic tissue. MAGMA (NEW YORK, N.Y.) 2023; 36:737-747. [PMID: 36723689 DOI: 10.1007/s10334-023-01062-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 02/02/2023]
Abstract
OBJECTIVE We introduce a non-invasive MR-Acoustic Radiation Force Imaging (ARFI)-based elastography method that provides both the local shear modulus and temperature maps for the monitoring of High Intensity Focused Ultrasound (HIFU) therapy. MATERIALS AND METHODS To take tissue anisotropy into account, the local shear modulus μ is determined in selected radial directions around the focal spot by fitting the phase profiles to a linear viscoelastic model, including tissue-specific mechanical relaxation time τ. MR-ARFI was evaluated on a calibrated phantom, then applied to the monitoring of HIFU in a gel phantom, ex vivo and in vivo porcine muscle tissue, in parallel with MR-thermometry. RESULTS As expected, the shear modulus polar maps reflected the isotropy of phantoms and the anisotropy of muscle. In the HIFU monitoring experiments, both the shear modulus polar map and the thermometry map were updated with every pair of MR-ARFI phase images acquired with opposite MR-ARFI-encoding. The shear modulus was found to decrease (phantom and ex vivo) or increase (in vivo) during heating, before remaining steady during the cooling phase. The mechanical relaxation time, estimated pre- and post-HIFU, was found to vary in muscle tissue. DISCUSSION MR-ARFI allowed for monitoring of viscoelasticity changes around the HIFU focal spot even in anisotropic muscle tissue.
Collapse
Affiliation(s)
- Karine Choquet
- Université de Strasbourg, CNRS, ICube, UMR 7357, Strasbourg, France.
| | - Jonathan Vappou
- Université de Strasbourg, CNRS, ICube, UMR 7357, Strasbourg, France
| | - Paolo Cabras
- Université de Strasbourg, CNRS, ICube, UMR 7357, Strasbourg, France
- Image Guided Therapy, Pessac, France
| | - Ounay Ishak
- Université de Strasbourg, CNRS, ICube, UMR 7357, Strasbourg, France
| | - Afshin Gangi
- Université de Strasbourg, CNRS, ICube, UMR 7357, Strasbourg, France
- Department of Interventional Imaging, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Elodie Breton
- Université de Strasbourg, CNRS, ICube, UMR 7357, Strasbourg, France.
| |
Collapse
|
4
|
Odéen H, Hofstetter LW, Payne AH, Guiraud L, Dumont E, Parker DL. Simultaneous proton resonance frequency T 1 - MR shear wave elastography for MR-guided focused ultrasound multiparametric treatment monitoring. Magn Reson Med 2023; 89:2171-2185. [PMID: 36656135 PMCID: PMC10940047 DOI: 10.1002/mrm.29587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 01/20/2023]
Abstract
PURPOSE To develop an efficient MRI pulse sequence to simultaneously measure multiple parameters that have been shown to correlate with tissue nonviability following thermal therapies. METHODS A 3D segmented EPI pulse sequence was used to simultaneously measure proton resonance frequency shift (PRFS) MR thermometry (MRT), T1 relaxation time, and shear wave velocity induced by focused ultrasound (FUS) push pulses. Experiments were performed in tissue mimicking gelatin phantoms and ex vivo bovine liver. Using a carefully designed FUS triggering scheme, a heating duty cycle of approximately 65% was achieved by interleaving FUS ablation pulses with FUS push pulses to induce shear waves in the tissue. RESULTS In phantom studies, temperature increases measured with PRFS MRT and increases in T1 correlated with decreased shear wave velocity, consistent with material softening with increasing temperature. During ablation in ex vivo liver, temperature increase measured with PRFS MRT initially correlated with increasing T1 and decreasing shear wave velocity, and after tissue coagulation with decreasing T1 and increasing shear wave velocity. This is consistent with a previously described hysteresis in T1 versus PRFS curves and increased tissue stiffness with tissue coagulation. CONCLUSION An efficient approach for simultaneous and dynamic measurements of PRSF, T1 , and shear wave velocity during treatment is presented. This approach holds promise for providing co-registered dynamic measures of multiple parameters, which correlates to tissue nonviability during and following thermal therapies, such as FUS.
Collapse
Affiliation(s)
- Henrik Odéen
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Lorne W. Hofstetter
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Allison H. Payne
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| | | | | | - Dennis L. Parker
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
5
|
Ishak O, Breton E, Choquet K, Josset A, Cabras P, Vappou J. Monitoring MR-guided high intensity focused ultrasound therapy using transient supersonic shear wave MR-elastography. Phys Med Biol 2023; 68. [PMID: 36595333 DOI: 10.1088/1361-6560/acac5e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Objective.The aim of the paper is to propose an all-in-one method based on magnetic resonance-supersonic shear wave imaging (MR-SSI) and proton resonance frequency shift (PRFS) to monitor high intensity focused ultrasound (HIFU) thermal ablations.Approach.Mechanical properties have been shown to be related to tissue damage induced by thermal ablations. Monitoring elasticity in addition to temperature changes may help in ensuring the efficacy and the accuracy of HIFU therapies. For this purpose, an MR-SSI method has been developed where the ultrasonic transducer is used for both mechanical wave generation and thermal ablation. Transient quasi-planar shear waves are generated using the acoustic radiation force, and their propagation is monitored in motion-sensitized phase MR images. Using a single-shot gradient-echo echo-planar-imaging sequence, MR images can be acquired at a sufficiently high temporal resolution to provide an update of PRFS thermometry and MR-SSI elastography maps in real time.Main results.The proposed method was first validated on a calibrated elasticity phantom, in which both the possibility to detect inclusions with different stiffness and repeatability were demonstrated. The standard deviation between the 8 performed measurements was 2% on the background of the phantom and 11%, at most, on the inclusions. A second experiment consisted in performing a HIFU heating in a gelatin phantom. The temperature increase was estimated to be 9 °C and the shear modulus was found to decrease from 2.9 to 1.8 kPa, reflecting the gel softening around the HIFU focus, whereas it remained steady in non-heated areas.Significance.The proposed MR-SSI technique allows monitoring HIFU ablations using thermometry and elastography simultaneously, without the need for an additional external mechanical exciter such as those used in MR elastography.
Collapse
Affiliation(s)
- Ounay Ishak
- Université de Strasbourg, CNRS, ICube, UMR7357, Strasbourg, France
| | - Elodie Breton
- Université de Strasbourg, CNRS, ICube, UMR7357, Strasbourg, France
| | - Karine Choquet
- Université de Strasbourg, CNRS, ICube, UMR7357, Strasbourg, France
| | - Anne Josset
- Université de Strasbourg, CNRS, ICube, UMR7357, Strasbourg, France
| | - Paolo Cabras
- Université de Strasbourg, CNRS, ICube, UMR7357, Strasbourg, France.,Image Guided Therapy, Pessac, France
| | - Jonathan Vappou
- Université de Strasbourg, CNRS, ICube, UMR7357, Strasbourg, France
| |
Collapse
|
6
|
Li S, Zhou Z, Wu S, Wu W. A Review of Quantitative Ultrasound-Based Approaches to Thermometry and Ablation Zone Identification Over the Past Decade. ULTRASONIC IMAGING 2022; 44:213-228. [PMID: 35993226 DOI: 10.1177/01617346221120069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Percutaneous thermal therapy is an important clinical treatment method for some solid tumors. It is critical to use effective image visualization techniques to monitor the therapy process in real time because precise control of the therapeutic zone directly affects the prognosis of tumor treatment. Ultrasound is used in thermal therapy monitoring because of its real-time, non-invasive, non-ionizing radiation, and low-cost characteristics. This paper presents a review of nine quantitative ultrasound-based methods for thermal therapy monitoring and their advances over the last decade since 2011. These methods were analyzed and compared with respect to two applications: ultrasonic thermometry and ablation zone identification. The advantages and limitations of these methods were compared and discussed, and future developments were suggested.
Collapse
Affiliation(s)
- Sinan Li
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Zhuhuang Zhou
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Shuicai Wu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Weiwei Wu
- College of Biomedical Engineering, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Byra M, Klimonda Z, Kruglenko E, Gambin B. Unsupervised deep learning based approach to temperature monitoring in focused ultrasound treatment. ULTRASONICS 2022; 122:106689. [PMID: 35134653 DOI: 10.1016/j.ultras.2022.106689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 11/25/2021] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Temperature monitoring in ultrasound (US) imaging is important for various medical treatments, such as high-intensity focused US (HIFU) therapy or hyperthermia. In this work, we present a deep learning based approach to temperature monitoring based on radio-frequency (RF) US data. We used Siamese neural networks in an unsupervised way to spatially compare RF data collected at different time points of the heating process. The Siamese model consisted of two identical networks initially trained on a large set of simulated RF data to assess tissue backscattering properties. To illustrate our approach, we experimented with a tissue-mimicking phantom and an ex-vivo tissue sample, which were both heated with a HIFU transducer. During the experiments, we collected RF data with a regular US scanner. To determine spatiotemporal variations in temperature distribution within the samples, we extracted small 2D patches of RF data and compared them with the Siamese network. Our method achieved good performance in determining the spatiotemporal distribution of temperature during heating. Compared with the temperature monitoring based on the change in radio-frequency signal backscattered energy parameter, our method provided more smooth spatial parametric maps and did not generate ripple artifacts. The proposed approach, when fully developed, might be used for US based temperature monitoring of tissues.
Collapse
Affiliation(s)
- Michal Byra
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland.
| | - Ziemowit Klimonda
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Eleonora Kruglenko
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Barbara Gambin
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
8
|
Luo C, Li T, Li Z, Zuo Y, He G, Lin J, Liu G, Dai L. Evaluation of Microwave Ablation Efficacy by Strain Elastography and Shear Wave Elastography in ex Vivo Porcine Liver. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2636-2645. [PMID: 34140168 DOI: 10.1016/j.ultrasmedbio.2021.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 05/04/2021] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
The aim of this study was to evaluate the efficacy of microwave ablation by ultrasound (US), strain elastography (SE) and shear-wave elastography (SWE). An ex vivo model of porcine liver was adopted. According to ablation power and duration, 30 samples were divided into three groups: group 1 (45 W, 30 s), group 2 (45 W, 15 s) and group 3 (30 W, 30 s). US was used to measure the largest transverse diameter (D1), vertical diameter (D2) and anteroposterior diameter (D3) of the ablated area. SE was used to measure the largest transverse diameter (SEL1), vertical diameter (SEL2) and anteroposterior diameter (SEL3). The actual size of the ablated area was measured as the largest transverse diameter (L1), vertical diameter (L2) and anteroposterior diameter (L3). SWE values and temperatures were measured in the central lesion (region a), marginal area (region b) and unablated area (region c). At 1 h post-ablation, the values measured by US (D1, D2, D3) were all significantly smaller than the ablated area (L1, L2, L3) in all three groups. Except for SEL2 in group 1, there was no significant difference in the results between SEL and L among the three groups. All SWE results were significantly higher post-ablation than pre-ablation in the central lesion (region a) and marginal area (region b, all p values <0.05). In regions a, b and c, the temperatures measured immediately and 5 min post-ablation were all higher than that measured pre-ablation. These results suggest that SE and SWE can be used to evaluate the ablation efficacy of liver tissue.
Collapse
Affiliation(s)
- Chunyue Luo
- Department of Ultrasound Imaging, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Tao Li
- Department of Ultrasound Imaging, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Zuojia Li
- Medical Apparatus and Equipment Department, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yanling Zuo
- Department of Ultrasound Imaging, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Guangmin He
- Department of Ultrasound Imaging, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Jianying Lin
- Department of Ultrasound Imaging, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Guancheng Liu
- Department of Ultrasound Imaging, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Lu Dai
- Department of Thoracic Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
9
|
Hofstetter LW, Odéen H, Bolster BD, Christensen DA, Payne A, Parker DL. Magnetic resonance shear wave elastography using transient acoustic radiation force excitations and sinusoidal displacement encoding. Phys Med Biol 2021; 66. [PMID: 33352538 DOI: 10.1088/1361-6560/abd5ce] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/22/2020] [Indexed: 12/31/2022]
Abstract
A magnetic resonance (MR) shear wave elastography technique that uses transient acoustic radiation force impulses from a focused ultrasound (FUS) transducer and a sinusoidal-shaped MR displacement encoding strategy is presented. Using this encoding strategy, an analytic expression for calculating the shear wave speed in a heterogeneous medium was derived. Green's function-based simulations were used to evaluate the feasibility of calculating shear wave speed maps using the analytic expression. Accuracy of simulation technique was confirmed experimentally in a homogeneous gelatin phantom. The elastography measurement was compared to harmonic MR elastography in a homogeneous phantom experiment and the measured shear wave speed values differed by less than 14%. This new transient elastography approach was able to map the position and shape of inclusions sized from 8.5 to 14 mm in an inclusion phantom experiment. These preliminary results demonstrate the feasibility of using a straightforward analytic expression to generate shear wave speed maps from MR images where sinusoidal-shaped motion encoding gradients are used to encode the displacement-time history of a transiently propagating wave-packet. This new measurement technique may be particularly well suited for performing elastography before, during, and after MR-guided FUS therapies since the same device used for therapy is also used as an excitation source for elastography.
Collapse
Affiliation(s)
- Lorne W Hofstetter
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Henrik Odéen
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Bradley D Bolster
- Siemens Medical Solutions USA, Inc., Salt Lake City, Utah, United States of America
| | - Douglas A Christensen
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, United States of America.,Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah, United States of America
| | - Allison Payne
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Dennis L Parker
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
10
|
Hofstetter LW, Fausett L, Mueller A, Odéen H, Payne A, Christensen DA, Parker DL. Development and characterization of a tissue mimicking psyllium husk gelatin phantom for ultrasound and magnetic resonance imaging. Int J Hyperthermia 2020; 37:283-290. [PMID: 32204632 DOI: 10.1080/02656736.2020.1739345] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Purpose: To develop and characterize a tissue-mimicking phantom that enables the direct comparison of magnetic resonance (MR) and ultrasound (US) imaging techniques useful for monitoring high-intensity focused ultrasound (HIFU) treatments. With no additions, gelatin phantoms produce little if any scattering required for US imaging. This study characterizes the MR and US image characteristics as a function of psyllium husk concentration, which was added to increase US scattering.Methods: Gelatin phantoms were constructed with varying concentrations of psyllium husk. The effects of psyllium husk concentration on US B-mode and MR imaging were evaluated at nine different concentrations. T1, T2, and T2* MR maps were acquired. Acoustic properties (attenuation and speed of sound) were measured at frequencies of 0.6, 1.0, 1.8, and 3.0 MHz using a through-transmission technique. Phantom elastic properties were evaluated for both time and temperature dependence.Results: Ultrasound image echogenicity increased with increasing psyllium husk concentration while quality of gradient-recalled echo MR images decreased with increasing concentration. For all phantoms, the measured speed of sound ranged between 1567-1569 m/s and the attenuation ranged between 0.42-0.44 dB/(cm·MHz). Measured T1 ranged from 974-1051 ms. The T2 and T2* values ranged from 97-108 ms and 48-88 ms, respectively, with both showing a decreasing trend with increased psyllium husk concentration. Phantom stiffness, measured using US shear-wave speed measurements, increased with age and decreased with increasing temperature.Conclusions: The presented dual-use tissue-mimicking phantom is easy to manufacture and can be used to compare and evaluate US-guided and MR-guided HIFU imaging protocols.
Collapse
Affiliation(s)
- Lorne W Hofstetter
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Lewis Fausett
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Alexander Mueller
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Henrik Odéen
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Allison Payne
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Douglas A Christensen
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA.,Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, USA
| | - Dennis L Parker
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
11
|
Barrere V, Melodelima D, Catheline S, Giammarinaro B. Imaging of Thermal Effects during High-Intensity Ultrasound Treatment in Liver by Passive Elastography: A Preliminary Feasibility in Vitro Study. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:1968-1977. [PMID: 32493631 DOI: 10.1016/j.ultrasmedbio.2020.03.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 03/18/2020] [Accepted: 03/21/2020] [Indexed: 06/11/2023]
Abstract
High-intensity focused ultrasound is a non-invasive modality for thermal ablation of tissues through locally increased temperature. Thermal lesions can be monitored by elastography, following the changes in the elastic properties of the tissue as reflected by the shear-wave velocity. Most studies on ultrasound elastography use shear waves created by acoustic radiation force. However, in the human body, the natural noise resulting from cardiac activity or arterial pulsatility can be used to characterize elasticity through noise-correlation techniques, in the method known as passive elastography. The objective of this study was to investigate the feasibility of monitoring high-intensity ultrasound treatments of liver tissue using passive elastography. Bovine livers were heated to 80°C using a high-intensity planar transducer and imaged with a high-frame-rate ultrasound imaging device. The dynamics of lesion formation are captured through tissue stiffening and lesion expansion.
Collapse
Affiliation(s)
- Victor Barrere
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, Lyon, France
| | - David Melodelima
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, Lyon, France
| | - Stefan Catheline
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, Lyon, France.
| | - Bruno Giammarinaro
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, Lyon, France
| |
Collapse
|
12
|
Kim K, Breton E, Gangi A, Vappou J. Simultaneous fat-referenced proton resonance frequency shift thermometry and MR elastography for the monitoring of thermal ablations. Magn Reson Med 2019; 84:339-347. [PMID: 31823418 DOI: 10.1002/mrm.28130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/21/2019] [Accepted: 11/24/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE Simultaneous fat-referenced proton resonance frequency shift (FRPRFS) thermometry combined with MR elastography (MRE) is proposed, to continuously monitor thermal ablations for all types of soft tissues, including fat-containing tissues. Fat-referenced proton resonance frequency shift thermometry makes it possible to measure temperature even in the water fraction of fat-containing tissues while enabling local field-drift correction. Magnetic resonance elastography allows measuring the mechanical properties of tissues that are related to tissue structural damage. METHODS A gradient-echo MR sequence framework was proposed that combines the need for multiple TE acquisitions for the water-fat separation of FRPRFS, and the need for multiple MRE phase offsets for elastogram reconstructions. Feasibility was first assessed in a fat-containing gelatin phantom undergoing moderate heating by a hot water circulation system. Subsequently, high intensity focused ultrasound heating was conducted in porcine muscle tissue ex vivo (N = 4; 2 samples, 2 locations/sample). RESULTS Both FRPRFS temperature maps and elastograms were updated every 4.1 seconds. In the gelatin phantom, FRPRFS was in good agreement with optical fiber thermometry (average difference 1.2 ± 1°C). In ex vivo high-intensity focused ultrasound experiments on muscle tissue, the shear modulus was found to decrease significantly by 34.3% ± 7.7% (experiment 1, sample 1), 17.9% ± 10.0% (experiment 2, sample 1), 55.1% ± 8.7% (experiment 3, sample 2), and 34.7% ± 8.4% (experiment 4, sample 2) as a result of temperature increase (ΔT = 22.5°C ± 4.2°C, 14.0°C ± 2.8°C, 14.7°C ± 3.7°C, and 14.5°C ± 3.0°C, respectively). CONCLUSION This study demonstrated the feasibility of monitoring thermal ablations with FRPRFS thermometry together with MRE, even in fat-containing tissues. The acquisition time is similar to non-FRPRFS thermometry combined with MRE.
Collapse
Affiliation(s)
- Kisoo Kim
- ICube - UMR7357, Université de Strasbourg, CNRS, Strasbourg, France
| | - Elodie Breton
- ICube - UMR7357, Université de Strasbourg, CNRS, Strasbourg, France
| | - Afshin Gangi
- ICube - UMR7357, Université de Strasbourg, CNRS, Strasbourg, France.,Department of Interventional Imaging, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Jonathan Vappou
- ICube - UMR7357, Université de Strasbourg, CNRS, Strasbourg, France
| |
Collapse
|
13
|
Giurazza F, Massaroni C, Silvestri S, Zobel BB, Schena E. Preliminary analysis of ultrasound elastography imaging-based thermometry on non-perfused ex vivo swine liver. J Ultrasound 2019; 23:69-75. [PMID: 31541360 DOI: 10.1007/s40477-019-00407-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/11/2019] [Indexed: 01/20/2023] Open
Abstract
AIMS Real-time monitoring of tissue temperature during percutaneous tumor ablation improves treatment efficacy, leading clinicians in adjustment of treatment settings. This study aims at assessing feasibility of ultrasound thermometry during laser ablation of biological tissue using a specific ultrasound imaging techniques based on elastography acoustic radiation force impulse (ARFI). METHODS ARFI uses high-intensity focused ultrasound pulses to generate 'radiation force' in tissue; this provokes tissue displacements trackable using correlation-based ultrasound methods: the sensitivity of shear waves velocity is able to detect temperature changes. Experiments were carried out using a Nd:YAG laser (power: 5 W) in three non-perfused ex vivo pig livers. In each organ, a thermocouple was placed close to the applicator tip (distance range 1.5-2.5 cm) used to record a reference temperature. Positioning of laser applicator and thermocouple was eco-guided. The organ was scanned by an echography system equipped with ARFI; propagation velocity was measured in a region of interest of 1 × 0.5 cm located close to thermocouple, to investigate influence of tissue temperature on shear waves velocity. RESULTS Shear wave velocity has a very low sensitivity to temperature up to 55-60 °C, and in all cases, velocity is < 5 m s-1; for temperature > 55-60 °C, velocity shows a steep increment. The system measures a value "over limit", meaning a velocity > 5 m s-1. CONCLUSIONS Ultrasound thermometry during laser ablation of biological tissue based on elastography shows an abrupt output change at temperatures > 55-60 °C. This issue can have a relevant clinical impact, considering tumor necrosis when temperature crosses 55 °C to define the boundary of damaged volume.
Collapse
Affiliation(s)
- Francesco Giurazza
- Interventional Radiology Department, Cardarelli Hospital, Via Cardarelli 9, 80100, Naples, Italy.
| | - Carlo Massaroni
- Measurement and Biomedical Instrumentation Lab, Università Campus Bio-Medico di Roma, Via A. Del Portillo 200, 00198, Rome, Italy
| | - Sergio Silvestri
- Measurement and Biomedical Instrumentation Lab, Università Campus Bio-Medico di Roma, Via A. Del Portillo 200, 00198, Rome, Italy
| | - Bruno Beomonte Zobel
- Radiology Department, Università Campus Bio-Medico di Roma, Via A. Del Portillo 200, 00198, Rome, Italy
| | - Emiliano Schena
- Measurement and Biomedical Instrumentation Lab, Università Campus Bio-Medico di Roma, Via A. Del Portillo 200, 00198, Rome, Italy
| |
Collapse
|
14
|
Hofstetter LW, Odéen H, Bolster BD, Mueller A, Christensen DA, Payne A, Parker DL. Efficient shear wave elastography using transient acoustic radiation force excitations and MR displacement encoding. Magn Reson Med 2019; 81:3153-3167. [PMID: 30663806 PMCID: PMC6414262 DOI: 10.1002/mrm.27647] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 11/21/2018] [Accepted: 12/05/2018] [Indexed: 12/29/2022]
Abstract
PURPOSE To present a novel MR shear wave elastography (MR-SWE) method that efficiently measures the speed of propagating wave packets generated using acoustic radiation force (ARF) impulses. METHODS ARF impulses from a focused ultrasound (FUS) transducer were applied sequentially to a preselected set of positions and motion encoded MRI was used to acquire volumetric images of the propagating shear wavefront emanating from each point. The wavefront position at multiple propagation times was encoded in the MR phase image using a train of motion encoding gradient lobes. Generating a transient propagating wavefront at multiple spatial positions and sampling each at multiple time-points allowed for shear wave speed maps to be efficiently created. MR-SWE was evaluated in tissue mimicking phantoms and ex vivo bovine liver tissue before and after ablation. RESULTS MR-SWE maps, covering an in-plane area of ~5 × 5 cm, were acquired in 12 s for a single slice and 144 s for a volumetric scan. MR-SWE detected inclusions of differing stiffness in a phantom experiment. In bovine liver, mean shear wave speed significantly increased from 1.65 ± 0.18 m/s in normal to 2.52 ± 0.18 m/s in ablated region (n = 581 pixels; P-value < 0.001). CONCLUSION MR-SWE is an elastography technique that enables precise targeting and excitation of the desired tissue of interest. MR-SWE may be particularly well suited for treatment planning and endpoint assessment of MR-guided FUS procedures because the same device used for therapy can be used as an excitation source for tissue stiffness quantification.
Collapse
Affiliation(s)
- Lorne W Hofstetter
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| | - Henrik Odéen
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| | | | - Alexander Mueller
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| | - Douglas A Christensen
- Department of Bioengineering, University of Utah, Salt Lake City, Utah
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah
| | - Allison Payne
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| | - Dennis L Parker
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| |
Collapse
|
15
|
Lee D, Park S, Ang MJC, Park JG, Yoon S, Kim C, Lee SK, Cho KO, Choi J. Evaluation of liver lesions by use of shear wave elastography and computed tomography perfusion imaging after radiofrequency ablation in clinically normal dogs. Am J Vet Res 2019; 79:1140-1149. [PMID: 30372151 DOI: 10.2460/ajvr.79.11.1140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate acute changes of the liver by use of shear wave elastography (SWE) and CT perfusion after radiofrequency ablation (RFA). ANIMALS 7 healthy Beagles. PROCEDURES RFA was performed on the liver (day 0). Stiffness of the ablation lesion, transitional zone, and normal parenchyma were evaluated by use of SWE, and blood flow, blood volume, and arterial liver perfusion of those regions were evaluated by use of CT perfusion on days 0 and 4. All RFA lesions were histologically examined on day 4. RESULTS Examination of the SWE color-coded map distinctly revealed stiffness of the liver tissue, which increased from the normal parenchyma to the transitional zone and then to the ablation zone. For CT perfusion, blood flow, blood volume, and arterial liver perfusion decreased from the transitional zone to the normal parenchyma and then to the ablation zone. Tissue stiffness and CT perfusion variables did not differ significantly between days 0 and 4. Histologic examination revealed central diffuse necrosis and peripheral hyperemia with infiltration of lymphoid cells and macrophages. CONCLUSIONS AND CLINICAL RELEVANCE Coagulation necrosis induced a loss of blood perfusion and caused tissue hardening (stiffness) in the ablation zone. Hyperemic and inflammatory changes of the transitional zone resulted in increased blood perfusion. Acute changes in stiffness and perfusion of liver tissue after RFA could be determined by use of SWE and CT perfusion. These results can be used to predict the clinical efficacy of RFA and to support further studies, including those involving hepatic neoplasia.
Collapse
|
16
|
Monitoring of Thermal-Induced Changes in Liver Stiffness During Controlled Hyperthermia and Microwave Ablation in an Ex Vivo Bovine Model Using Point Shear Wave Elastography. Cardiovasc Intervent Radiol 2019; 42:744-750. [DOI: 10.1007/s00270-018-02152-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/20/2018] [Indexed: 12/17/2022]
|
17
|
Odéen H, de Bever J, Hofstetter LW, Parker DL. Multiple-point magnetic resonance acoustic radiation force imaging. Magn Reson Med 2018; 81:1104-1117. [PMID: 30257059 PMCID: PMC6642829 DOI: 10.1002/mrm.27477] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 12/13/2022]
Abstract
PURPOSE To implement and evaluate an efficient multiple-point MR acoustic radiation force imaging pulse sequence that can volumetrically measure tissue displacement and evaluate tissue stiffness using focused ultrasound (FUS) radiation force. METHODS Bipolar motion-encoding gradients were added to a gradient-recalled echo segmented EPI pulse sequence with both 2D and 3D acquisition modes. Multiple FUS-ON images (FUS power > 0 W) were interleaved with a single FUS-OFF image (FUS power = 0 W) on the TR level, enabling simultaneous measurements of volumetric tissue displacement (by complex subtraction of the FUS-OFF image from the FUS-ON images) and proton resonance frequency shift MR thermometry (from the OFF image). Efficiency improvements included partial Fourier acquisition, parallel imaging, and encoding up to 4 different displacement positions into a single image. Experiments were performed in homogenous and dual-stiffness phantoms, and in ex vivo porcine brain. RESULTS In phantoms, 16-point multiple-point magnetic resonance acoustic radiation force imaging maps could be acquired in 5 s to 10 s for a 2D slice, and 60 s for a 3D volume, using parallel imaging and encoding 2 displacement positions/image. In ex vivo porcine brain, 16-point multiple-point magnetic resonance acoustic radiation force imaging maps could be acquired in 20 s for a 3D volume, using partial Fourier and parallel imaging and encoding 4 displacement positions/image. In 1 experiment it was observed that tissue displacement in ex vivo brain decreased by approximately 22% following FUS ablation. CONCLUSION With the described efficiency improvements it is possible to acquire volumetric multiple-point magnetic resonance acoustic radiation force imaging maps, with simultaneous proton resonance frequency shift MR thermometry maps, in clinically acceptable times.
Collapse
Affiliation(s)
- Henrik Odéen
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| | - Joshua de Bever
- Department of Radiology, Stanford University, Palo Alto, California
| | - Lorne W Hofstetter
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| | - Dennis L Parker
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| |
Collapse
|
18
|
Liu C, Zhou Y. Detection of gaps between high-intensity focused ultrasound (HIFU)-induced lesions using transient axial shear strain elastograms. Med Phys 2018; 45:3831-3847. [PMID: 29963699 DOI: 10.1002/mp.13075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/03/2018] [Accepted: 06/25/2018] [Indexed: 01/01/2023] Open
Abstract
PURPOSE High-intensity focused ultrasound (HIFU) is becoming an effective and noninvasive treatment modality for cancer and solid tumors. In order to avoid the cancer relapse and guarantee the success of ablation, there should be no gaps left among all HIFU-generated lesions. However, there are few imaging approaches available for detecting the HIFU lesion gaps in real time during ablation. METHODS Transient axial shear strain elastograms (ASSEs) were proposed and evaluated both numerically and experimentally to detect the lesion gaps immediately after the cessation of therapeutic HIFU exposure. Acoustic intensity and subsequent acoustic radiation force were first calculated by solving the nonlinear Khokhlov-Zabolotskaya-Kuznetzov (KZK) equation. Motion of being- and already-treated lesions during and after HIFU exposure was simulated using the transient dynamic analysis module of finite element method (FEM). The corresponding B-mode sonography of tissue-mimicking phantom with two HIFU lesions inside was simulated by FIELD II, and then axial strain elastograms (ASEs) under static compression and transient ASSEs were reconstructed. An ultrasound imaging probe was integrated with the HIFU transducer and used to obtain radio frequency (RF) echo signals at high frame rate using plane wave imaging (PWI). The resulting strains were mapped using the correlation-based method and block search strategy. RESULTS Acoustic radiation force from the therapeutic HIFU burst is sufficiently strong to produce significant displacement. As a result, large and highly localized axial shear strain appears in the gap zone between two HIFU-generated lesions and then disappears after sufficient HIFU ablation (no gap between them). Such capability of detecting the lesion gap is validated at the varied acoustic radiation force density, gap width, and the size of the lesion. In contrast, conventional ASEs using the static compression cannot distinguish whether a gap exists between lesions. Static ASEs and transient ASSEs reconstructed using both high-speed photography and sonography in the gel phantom show the same conclusion as that in the simulation. Ex vivo tissue experiments further confirmed that the presence of large axial shear strain in the gap zone. The ratios of axial shear strain in the porcine kidney and liver samples had statistical differences for two HIFU-generated lesions without and with a gap (P < 0.05). CONCLUSIONS Large axial shear strain induced by the acoustic radiation force from therapeutic HIFU burst only appears between two HIFU-generated lesions with a gap between them. Transient ASSEs reconstructed immediately after the cession of HIFU exposure can easily, reliably, and sensitively detect the gap between produced lesions, which would provide real-time feedback to enhance the success of HIFU ablation.
Collapse
Affiliation(s)
- Chenhui Liu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| | - Yufeng Zhou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
19
|
Vappou J, Bour P, Marquet F, Ozenne V, Quesson B. MR-ARFI-based method for the quantitative measurement of tissue elasticity: application for monitoring HIFU therapy. ACTA ACUST UNITED AC 2018; 63:095018. [DOI: 10.1088/1361-6560/aabd0d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
FEM-based elasticity reconstruction using ultrasound for imaging tissue ablation. Int J Comput Assist Radiol Surg 2018; 13:885-894. [PMID: 29666974 DOI: 10.1007/s11548-018-1714-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 02/16/2018] [Indexed: 12/17/2022]
Abstract
PURPOSE Success of ablation treatment depends on the accurate placement of the target ablation focus and the complete destruction of the pathological tissue. Thus, monitoring the formation, location, and size of the ablated lesion is essential. As ablated tissue gets stiffer, an option for ablation monitoring is ultrasound elastography, for imaging the tissue mechanical properties. Reconstruction of elasticity distribution can be achieved by solving an inverse problem from observed displacements, based on a deformable tissue model, commonly discretized by the finite element method (FEM). However, available reconstruction techniques are prone to noise and may achieve suboptimal accuracy. METHODS We propose a novel inverse problem formulation and elasticity reconstruction method, in which both the elasticity parameters and the model displacements are estimated as independent parameters of an unconstrained optimization problem. Total variation regularization of spatial elasticity distribution is introduced in this formulation, providing robustness to noise. RESULTS Our approach was compared to state of the art direct and iterative harmonic elastography techniques. We employed numerical simulation studies using various noise and inclusion contrasts, given multiple excitation frequencies. Compared to alternatives, our method leads to a decrease in RMSE of up to 50% and an increase in CNR of up to 11 dB in numerical simulations. The methods were also compared on an ex vivo bovine liver sample that was locally subjected to ablation, for which improved lesion delineation was obtained with our proposed method. Our method takes [Formula: see text] for [Formula: see text] reconstruction grid. CONCLUSIONS We present a novel FEM problem formulation that improves reconstruction accuracy and inclusion delineation compared to currently available techniques.
Collapse
|
21
|
de Bever JT, Odéen H, Hofstetter LW, Parker DL. Simultaneous MR thermometry and acoustic radiation force imaging using interleaved acquisition. Magn Reson Med 2017; 79:1515-1524. [PMID: 28795419 DOI: 10.1002/mrm.26827] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/15/2017] [Accepted: 06/15/2017] [Indexed: 12/25/2022]
Abstract
PURPOSE A novel and practical method for simultaneously performing MR acoustic radiation force imaging (ARFI) and proton resonance frequency (PRF)-shift thermometry has been developed and tested. This could be an important tool for evaluating the success of MR-guided focused ultrasound procedures for which MR-thermometry measures temperature and thermal dose and MR-ARFI detects changes in tissue mechanical properties. METHODS MR imaging was performed using a gradient recalled echo segmented echo-planar imaging pulse sequence with bipolar motion encoding gradients (MEG). Images with ultrasound pulses (ON) and without ultrasound pulses (OFF) during the MEG were interleaved at the repetition time (TR) level. ARFI displacements were calculated by complex subtraction of ON-OFF images, and PRF temperature maps were calculated by baseline subtraction. Evaluations in tissue-mimicking phantoms and ex vivo porcine brain tissue were performed. Constrained reconstruction improved the temporal resolution of dynamic measurements. RESULTS Simultaneous maps of displacement and temperature were acquired in 2D and 3D while keeping tissue heating < 1°C. Accuracy of the temperature maps was comparable to the standard PRF sequence. Using constrained reconstruction and subsampled k-space (R = 4.33), 3D simultaneous temperature and displacement maps can be acquired every 4.7 s. CONCLUSION This new sequence acquires simultaneous temperature and displacement maps with minimal tissue heating, and can be applied dynamically for monitoring tissue mechanical properties during ablation procedures. Magn Reson Med 79:1515-1524, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Joshua T de Bever
- School of Computing, Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA.,Department of Radiology, Stanford University, Stanford, California, USA
| | - Henrik Odéen
- Department of Radiology and Imaging Sciences, Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA
| | - Lorne W Hofstetter
- Department of Radiology and Imaging Sciences, Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA
| | - Dennis L Parker
- Department of Radiology and Imaging Sciences, Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
22
|
Pasternak M, Samset E, D'hooge J, Haugen GU. Temperature monitoring by channel data delays: Feasibility based on estimated delays magnitude for cardiac ablation. ULTRASONICS 2017; 77:32-37. [PMID: 28167318 DOI: 10.1016/j.ultras.2017.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 01/05/2017] [Accepted: 01/12/2017] [Indexed: 06/06/2023]
Abstract
Ultrasound thermometry is based on measuring tissue temperature by its impact on ultrasound wave propagation. This study focuses on the use of transducer array channel data (not beamformed) and examines how a layer of increased velocity (heat induced) affects the travel-times of the ultrasound backscatter signal. Based on geometric considerations, a new equation was derived for the change in time delay as a function of temperature change. The resulting expression provides insight into the key factors that link change in temperature to change in travel time. It shows that velocity enters in combination with heating geometry: complementary information is needed to compute velocity from the changes in travel time. Using the bio-heat equation as a second source of information in the derived expressions, the feasibility of monitoring the temperature increase during cardiac ablation therapy using channel data was investigated. For an intra-cardiac (ICE) probe, using this "time delay error approach" would not be feasible, while for a trans-esophageal array transducer (TEE) transducer it might be feasible.
Collapse
Affiliation(s)
- Margot Pasternak
- GE Vingmed Ultrasound, Horten, Norway; KU Leuven, Leuven, Belgium.
| | | | | | | |
Collapse
|
23
|
Bour P, Marquet F, Ozenne V, Toupin S, Dumont E, Aubry JF, Lepetit-Coiffe M, Quesson B. Real-time monitoring of tissue displacement and temperature changes during MR-guided high intensity focused ultrasound. Magn Reson Med 2017; 78:1911-1921. [DOI: 10.1002/mrm.26588] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 10/26/2016] [Accepted: 11/28/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Pierre Bour
- IHU Liryc, Electrophysiology and Heart Modeling Institute; Fondation Bordeaux Université; Pessac- Bordeaux France
- Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux; U1045 Bordeaux France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux; U1045 Bordeaux France
- Image Guided Therapy SA; Pessac France
| | - Fabrice Marquet
- IHU Liryc, Electrophysiology and Heart Modeling Institute; Fondation Bordeaux Université; Pessac- Bordeaux France
- Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux; U1045 Bordeaux France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux; U1045 Bordeaux France
| | - Valéry Ozenne
- IHU Liryc, Electrophysiology and Heart Modeling Institute; Fondation Bordeaux Université; Pessac- Bordeaux France
- Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux; U1045 Bordeaux France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux; U1045 Bordeaux France
| | - Solenn Toupin
- IHU Liryc, Electrophysiology and Heart Modeling Institute; Fondation Bordeaux Université; Pessac- Bordeaux France
- Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux; U1045 Bordeaux France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux; U1045 Bordeaux France
- Siemens Healthineers France; Saint-Denis France
| | | | - Jean-François Aubry
- Institut Langevin, CNRS UMR 7587, INSERM U979, ESPCI ParisTech; Paris France
| | | | - Bruno Quesson
- IHU Liryc, Electrophysiology and Heart Modeling Institute; Fondation Bordeaux Université; Pessac- Bordeaux France
- Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux; U1045 Bordeaux France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux; U1045 Bordeaux France
| |
Collapse
|
24
|
Guan Y, Lu M, Li Y, Liu F, Gao Y, Dong T, Wan M. Histotripsy Produced by Hundred-Microsecond-Long Focused Ultrasonic Pulses: A Preliminary Study. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:2232-2244. [PMID: 27318864 DOI: 10.1016/j.ultrasmedbio.2016.01.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 01/09/2016] [Accepted: 01/27/2016] [Indexed: 06/06/2023]
Abstract
A new strategy is proposed in this study to rapidly generate mechanical homogenized lesions using hundred-microsecond-long pulses. The pulsing scheme was divided into two stages: generating sufficient bubble seed nuclei via acceleration by boiling bubbles and efficiently forming a mechanically homogenized and regularly shaped lesion with a homogenate inside via inertial cavitation. The duty cycle was set at 4.9%/3.9% in stage 1 and 1%/0.88% in stage 2 by changing the pulse duration (PD) and off-time independently. The pulse sequence was 500-μs/400-μs PD with a 100-Hz pulse repetition frequency (PRF) in stage 1, followed by 500-μs/400-μs PD with a 100-Hz PRF and 200-μs PD with a 200-Hz PRF in stage 2. Experiments were conducted on polyacrylamide phantoms with bovine serum albumin and on ex vivo porcine kidney tissues using a single-element 1.06-MHz transducer at an 8-MPa peak negative pressure with shock waves. The lesion evolution and dynamic elastic modulus variation in the phantoms and the histology in the tissue samples were investigated. The results indicate that the two-stage treatment using hundred-microsecond-long pulses can efficiently produce mechanically homogenized lesions with smooth borders, long tear shapes and the total homogenate inside. The time to generate a single mechanically homogenized lesion is shortened from >50 s to 17.1 s.
Collapse
Affiliation(s)
- Yubo Guan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Mingzhu Lu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| | - Yujiao Li
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Fenfen Liu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Ya Gao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Tengju Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Mingxi Wan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
25
|
Huang PC, Pande P, Ahmad A, Marjanovic M, Spillman DR, Odintsov B, Boppart SA. Magnetomotive Optical Coherence Elastography for Magnetic Hyperthermia Dosimetry Based on Dynamic Tissue Biomechanics. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2016; 22:6802816. [PMID: 28163565 PMCID: PMC5289667 DOI: 10.1109/jstqe.2015.2505147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Magnetic nanoparticles (MNPs) have been used in many diagnostic and therapeutic biomedical applications over the past few decades to enhance imaging contrast, steer drugs to targets, and treat tumors via hyperthermia. Optical coherence tomography (OCT) is an optical biomedical imaging modality that relies on the detection of backscattered light to generate high-resolution cross-sectional images of biological tissue. MNPs have been utilized as imaging contrast and perturbative mechanical agents in OCT in techniques called magnetomotive OCT (MM-OCT) and magnetomotive elastography (MM-OCE), respectively. MNPs have also been independently used for magnetic hyperthermia treatments, enabling therapeutic functions such as killing tumor cells. It is well known that the localized tissue heating during hyperthermia treatments result in a change in the biomechanical properties of the tissue. Therefore, we propose a novel dosimetric technique for hyperthermia treatment based on the viscoelasticity change detected by MM-OCE, further enabling the theranostic function of MNPs. In this paper, we first review the basic principles and applications of MM-OCT, MM-OCE, and magnetic hyperthermia, and present new preliminary results supporting the concept of MM-OCE-based hyperthermia dosimetry.
Collapse
Affiliation(s)
- Pin-Chieh Huang
- Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, and the Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA ( )
| | - Paritosh Pande
- Biophotonics Imaging Laboratory and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA ( )
| | - Adeel Ahmad
- Biophotonics Imaging Laboratory and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA ( )
| | - Marina Marjanovic
- Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, and the Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA ( )
| | - Darold R Spillman
- Biophotonics Imaging Laboratory and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA ( )
| | - Boris Odintsov
- Biophotonics Imaging Laboratory and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA ( )
| | - Stephen A Boppart
- Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, and the Departments of Electrical and Computer Engineering, Bioengineering, and Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA (phone: 217-333-8598; fax: 217-333-5833; )
| |
Collapse
|
26
|
Kwiecinski W, Provost J, Dubois R, Sacher F, Haïssaguerre M, Legros M, Nguyen-Dinh A, Dufait R, Tanter M, Pernot M. Validation of an intracardiac ultrasonic therapy–imaging dual mode transducer. Ing Rech Biomed 2015. [DOI: 10.1016/j.irbm.2015.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
27
|
Kwiecinski W, Bessière F, Colas EC, N'Djin WA, Tanter M, Lafon C, Pernot M. Cardiac shear-wave elastography using a transesophageal transducer: application to the mapping of thermal lesions in ultrasound transesophageal cardiac ablation. Phys Med Biol 2015; 60:7829-46. [PMID: 26406354 DOI: 10.1088/0031-9155/60/20/7829] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Heart rhythm disorders, such as atrial fibrillation or ventricular tachycardia can be treated by catheter-based thermal ablation. However, clinically available systems based on radio-frequency or cryothermal ablation suffer from limited energy penetration and the lack of lesion's extent monitoring. An ultrasound-guided transesophageal device has recently successfully been used to perform High-Intensity Focused Ultrasound (HIFU) ablation in targeted regions of the heart in vivo. In this study we investigate the feasibility of a dual therapy and imaging approach on the same transesophageal device. We demonstrate in vivo that quantitative cardiac shear-wave elastography (SWE) can be performed with the device and we show on ex vivo samples that transesophageal SWE can map the extent of the HIFU lesions. First, SWE was validated with the transesophageal endoscope in one sheep in vivo. The stiffness of normal atrial and ventricular tissues has been assessed during the cardiac cycle (n = 11) and mapped (n = 7). Second, HIFU ablation has been performed with the therapy-imaging transesophageal device in ex vivo chicken breast samples (n = 3), then atrial (left, n = 2) and ventricular (left n = 1, right n = 1) porcine heart tissues. SWE provided stiffness maps of the tissues before and after ablation. Areas of the lesions were obtained by tissue color change with gross pathology and compared to SWE. During the cardiac cycle stiffness varied from 0.5 ± 0.1 kPa to 6.0 ± 0.3 kPa in the atrium and from 1.3 ± 0.3 kPa to 13.5 ± 9.1 kPa in the ventricles. The thermal lesions were visible on all SWE maps performed after ablation. Shear modulus of the ablated zones increased to 16.3 ± 5.5 kPa (versus 4.4 ± 1.6 kPa before ablation) in the chicken breast, to 30.3 ± 10.3 kPa (versus 12.2 ± 4.3 kPa) in the atria and to 73.8 ± 13.9 kPa (versus 21.2 ± 3.3 kPa) in the ventricles. On gross pathology, the size of the lesions ranged from 0.1 to 1.5 cm(2) in the imaging plane area. Elasticity-estimated depths and widths of the lesions differed respectively with a median of 0.2 mm (first quartile Q1: -0.8 mm; third quartile Q3: 2.6 mm) for a mean squared error (MSE) of 5.1 mm(2) and a median of 0.2 mm (Q1: -2.7 mm; Q3: 2.7 mm) for a MSE of 11.1 mm(2) from gross pathology. We have demonstrated the feasibility of the HIFU thermal ablation monitoring using a dual therapy and imaging transesophageal device. The combination of HIFU, ultrasound imaging and SWE on the same transesophageal system could lead to a new clinical device for a safer and controlled treatment of a wide variety of cardiac arrhythmias.
Collapse
Affiliation(s)
- Wojciech Kwiecinski
- Institut Langevin, ESPCI ParisTech, CNRS UMR7587, INSERM U979, 1 rue Jussieu, 75005 Paris, France
| | | | | | | | | | | | | |
Collapse
|
28
|
Chen H, Hou GY, Han Y, Payen T, Palermo CF, Olive KP, Konofagou EE. Harmonic motion imaging for abdominal tumor detection and high-intensity focused ultrasound ablation monitoring: an in vivo feasibility study in a transgenic mouse model of pancreatic cancer. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2015; 62:1662-73. [PMID: 26415128 PMCID: PMC4755287 DOI: 10.1109/tuffc.2015.007113] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Harmonic motion imaging (HMI) is a radiationforce- based elasticity imaging technique that tracks oscillatory tissue displacements induced by sinusoidal ultrasonic radiation force to assess the resulting oscillatory displacement denoting the underlying tissue stiffness. The objective of this study was to evaluate the feasibility of HMI in pancreatic tumor detection and high-intensity focused ultrasound (HIFU) treatment monitoring. The HMI system consisted of a focused ultrasound transducer, which generated sinusoidal radiation force to induce oscillatory tissue motion at 50 Hz, and a diagnostic ultrasound transducer, which detected the axial tissue displacements based on acquired radio-frequency signals using a 1-D cross-correlation algorithm. For pancreatic tumor detection, HMI images were generated for pancreatic tumors in transgenic mice and normal pancreases in wild-type mice. The obtained HMI images showed a high contrast between normal and malignant pancreases with an average peak-to-peak HMI displacement ratio of 3.2. Histological analysis showed that no tissue damage was associated with HMI when it was used for the sole purpose of elasticity imaging. For pancreatic tumor ablation monitoring, the focused ultrasound transducer was operated at a higher acoustic power and longer pulse length than that used in tumor detection to simultaneously induce HIFU thermal ablation and oscillatory tissue displacements, allowing HMI monitoring without interrupting tumor ablation. HMI monitoring of HIFU ablation found significant decreases in the peak-to-peak HMI displacements before and after HIFU ablation with a reduction rate ranging from 15.8% to 57.0%. The formation of thermal lesions after HIFU exposure was confirmed by histological analysis. This study demonstrated the feasibility of HMI in abdominal tumor detection and HIFU ablation monitoring.
Collapse
|
29
|
Hollender P, Bottenus N, Trahey G. A multiresolution approach to shear wave image reconstruction. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2015; 62:1429-39. [PMID: 26276953 PMCID: PMC4553950 DOI: 10.1109/tuffc.2014.006400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Shear wave imaging techniques build maps of local elasticity estimating the local group velocity of induced mechanical waves. Velocity estimates are formed using the time delay in the motion profile of the medium at two or more points offset from the shear wave source. Because the absolute time-of-flight between any pair of locations scales with the distance between them, there is an inherent trade-off between robustness to time-of-flight errors and lateral spatial resolution based on the number and spacing of the receive points used for each estimate. This work proposes a method of using the time delays measured between all combinations of locations to estimate a noise-robust, high-resolution image. The time-of-flight problem is presented as an overdetermined system of linear equations that can be directly solved with and without spatial regularization terms. Finite element method simulations of acoustic radiation force-induced shear waves are used to illustrate the method, demonstrating superior contrast-to-noise ratio and lateral edge resolution characteristics compared with linear regression of arrival times. This technique may improve shear wave imaging in situations where time-of-flight noise is a limiting factor.
Collapse
|
30
|
Kwiecinski W, Provost J, Dubois R, Sacher F, Haïssaguerre M, Legros M, Nguyen-Dinh A, Dufait R, Tanter M, Pernot M. Quantitative evaluation of atrial radio frequency ablation using intracardiac shear-wave elastography. Med Phys 2015; 41:112901. [PMID: 25370668 DOI: 10.1118/1.4896820] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
PURPOSE Radio frequency catheter ablation (RFCA) is a well-established clinical procedure for the treatment of atrial fibrillation (AF) but suffers from a low single-procedure success rate. Recurrence of AF is most likely attributable to discontinuous or nontransmural ablation lesions. Yet, despite this urgent clinical need, there is no clinically available imaging modality that can reliably map the lesion transmural extent in real time. In this study, the authors demonstrated the feasibility of shear-wave elastography (SWE) to map quantitatively the stiffness of RFCA-induced thermal lesions in cardiac tissues in vitro and in vivo using an intracardiac transducer array. METHODS SWE was first validated in ex vivo porcine ventricular samples (N = 5). Both B-mode imaging and SWE were performed on normal cardiac tissue before and after RFCA. Areas of the lesions were determined by tissue color change with gross pathology and compared against the SWE stiffness maps. SWE was then performed in vivo in three sheep (N = 3). First, the stiffness of normal atrial tissues was assessed quantitatively as well as its variation during the cardiac cycle. SWE was then performed in atrial tissue after RFCA. RESULTS A large increase in stiffness was observed in ablated ex vivo regions (average shear modulus across samples in normal tissue: 22 ± 5 kPa, average shear-wave speed (ct): 4.5 ± 0.4 m s(-1) and in determined ablated zones: 99 ± 17 kPa, average ct: 9.0 ± 0.5 m s(-1) for a mean shear modulus increase ratio of 4.5 ± 0.9). In vivo, a threefold increase of the shear modulus was measured in the ablated regions, and the lesion extension was clearly visible on the stiffness maps. CONCLUSIONS By its quantitative and real-time capabilities, Intracardiac SWE is a promising intraoperative imaging technique for the evaluation of thermal ablation during RFCA.
Collapse
Affiliation(s)
- Wojciech Kwiecinski
- Institut Langevin ESPCI ParisTech, CNRS UMR7587, INSERM U797, Paris 75005, France
| | - Jean Provost
- Institut Langevin ESPCI ParisTech, CNRS UMR7587, INSERM U797, Paris 75005, France
| | - Rémi Dubois
- LIRYC Institute, INSERM 1045, Université de Bordeaux, Bordeaux 33400, France
| | - Frédéric Sacher
- LIRYC Institute, INSERM 1045, Université de Bordeaux, Bordeaux 33400, France
| | - Michel Haïssaguerre
- LIRYC Institute, INSERM 1045, Université de Bordeaux, Bordeaux 33400, France
| | | | | | | | - Mickaël Tanter
- Institut Langevin ESPCI ParisTech, CNRS UMR7587, INSERM U797, Paris 75005, France
| | - Mathieu Pernot
- Institut Langevin ESPCI ParisTech, CNRS UMR7587, INSERM U797, Paris 75005, France
| |
Collapse
|
31
|
Hou GY, Marquet F, Wang S, Apostolakis IZ, Konofagou EE. High-intensity focused ultrasound monitoring using harmonic motion imaging for focused ultrasound (HMIFU) under boiling or slow denaturation conditions. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2015; 62:1308-19. [PMID: 26168177 PMCID: PMC4556239 DOI: 10.1109/tuffc.2014.006969] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Harmonic motion imaging for focused ultrasound (HMIFU) is a recently developed high-intensity focused ultrasound (HIFU) treatment monitoring method that utilizes an amplitude-modulated therapeutic ultrasound beam to induce an oscillatory radiation force at the HIFU focus and estimates the focal tissue displacement to monitor the HIFU thermal treatment. In this study, the performance of HMIFU under acoustic, thermal, and mechanical effects was investigated. The performance of HMIFU was assessed in ex vivo canine liver specimens (n = 13) under slow denaturation or boiling regimes. A passive cavitation detector (PCD) was used to assess the acoustic cavitation activity, and a bare-wire thermocouple was used to monitor the focal temperature change. During lesioning with slow denaturation, high quality displacements (correlation coefficient above 0.97) were observed under minimum cavitation noise, indicating the tissue initial-softening-then- stiffening property change. During HIFU with boiling, HMIFU monitored a consistent change in lesion-to-background displacement contrast (0.46 ± 0.37) despite the presence of strong cavitation noise due to boiling during lesion formation. Therefore, HMIFU effectively monitored softening-then-stiffening during lesioning under slow denaturation, and detected lesioning under boiling with a distinct change in displacement contrast under boiling in the presence of cavitation. In conclusion, HMIFU was shown under both boiling and slow denaturation regimes to be effective in HIFU monitoring and lesioning identification without being significantly affected by cavitation noise.
Collapse
Affiliation(s)
- Gary Y. Hou
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Fabrice Marquet
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Shutao Wang
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | | | - Elisa E. Konofagou
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Radiology, Columbia University, New York, NY, USA
| |
Collapse
|
32
|
Haynes M, Stang J, Moghaddam M. Real-time microwave imaging of differential temperature for thermal therapy monitoring. IEEE Trans Biomed Eng 2015; 61:1787-97. [PMID: 24845289 DOI: 10.1109/tbme.2014.2307072] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A microwave imaging system for real-time 3-D imaging of differential temperature has been developed for the monitoring and feedback of thermal therapy systems. Design parameters are constrained by features of a prototype-focused microwave thermal therapy system for the breast, operating at 915 MHz. Real-time imaging is accomplished with a precomputed linear inverse scattering solution combined with continuous vector network analyzer (VNA) measurements of a 36-antenna, HFSS-modeled, cylindrical cavity. Volumetric images of differential change of dielectric constant due to temperature are formed with a refresh rate as fast as 1 frame/s and 1 (°)C resolution. Procedures for data segmentation and postprocessed S-parameter error-correction are developed. Antenna pair VNA calibration is accelerated by using the cavity as the unknown thru standard. The device is tested on water targets and a simple breast phantom. Differentially heated targets are successfully imaged in cluttered environments. The rate of change of scattering contrast magnitude correlates 1:1 with target temperature.
Collapse
|
33
|
Hou GY, Provost J, Grondin J, Wang S, Marquet F, Bunting E, Konofagou EE. Sparse matrix beamforming and image reconstruction for 2-D HIFU monitoring using harmonic motion imaging for focused ultrasound (HMIFU) with in vitro validation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2014; 33:2107-17. [PMID: 24960528 PMCID: PMC4327913 DOI: 10.1109/tmi.2014.2332184] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Harmonic motion imaging for focused ultrasound (HMIFU) utilizes an amplitude-modulated HIFU beam to induce a localized focal oscillatory motion simultaneously estimated. The objective of this study is to develop and show the feasibility of a novel fast beamforming algorithm for image reconstruction using GPU-based sparse-matrix operation with real-time feedback. In this study, the algorithm was implemented onto a fully integrated, clinically relevant HMIFU system. A single divergent transmit beam was used while fast beamforming was implemented using a GPU-based delay-and-sum method and a sparse-matrix operation. Axial HMI displacements were then estimated from the RF signals using a 1-D normalized cross-correlation method and streamed to a graphic user interface with frame rates up to 15 Hz, a 100-fold increase compared to conventional CPU-based processing. The real-time feedback rate does not require interrupting the HIFU treatment. Results in phantom experiments showed reproducible HMI images and monitoring of 22 in vitro HIFU treatments using the new 2-D system demonstrated reproducible displacement imaging, and monitoring of 22 in vitro HIFU treatments using the new 2-D system showed a consistent average focal displacement decrease of 46.7 ±14.6% during lesion formation. Complementary focal temperature monitoring also indicated an average rate of displacement increase and decrease with focal temperature at 0.84±1.15%/(°)C, and 2.03±0.93%/(°)C , respectively. These results reinforce the HMIFU capability of estimating and monitoring stiffness related changes in real time. Current ongoing studies include clinical translation of the presented system for monitoring of HIFU treatment for breast and pancreatic tumor applications.
Collapse
Affiliation(s)
- Gary Y. Hou
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jean Provost
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Julien Grondin
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Shutao Wang
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Fabrice Marquet
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Ethan Bunting
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Elisa E. Konofagou
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Radiology, Columbia University, New York, NY, USA
| |
Collapse
|
34
|
Zhou Z, Wu W, Wu S, Xia J, Wang CY, Yang C, Lin CC, Tsui PH. A survey of ultrasound elastography approaches to percutaneous ablation monitoring. Proc Inst Mech Eng H 2014; 228:1069-82. [DOI: 10.1177/0954411914554438] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Percutaneous thermal ablation has been widely used as a minimally invasive treatment for tumors. Treatment monitoring is essential for preventing complications while ensuring treatment efficacy. Mechanical testing measurements on tissue reveal that tissue stiffness increases with temperature and ablation duration. Different types of imaging methods can be used to monitor ablation procedures, including temperature or thermal strain imaging, strain imaging, modulus imaging, and shear modulus imaging. Ultrasound elastography demonstrates the potential to become the primary imaging modality for monitoring percutaneous ablation. This review briefly presented the state-of-the-art ultrasound elastography approaches for monitoring radiofrequency ablation and microwave ablation. These techniques were divided into four groups: quasi-static elastography, acoustic radiation force elastography, sonoelastography, and applicator motion elastography. Their advantages and limitations were compared and discussed. Future developments were proposed with respect to heat-induced bubbles, tissue inhomogeneities, respiratory motion, three-dimensional monitoring, multi-parametric monitoring, real-time monitoring, experimental data center for percutaneous ablation, and microwave ablation monitoring.
Collapse
Affiliation(s)
- Zhuhuang Zhou
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Weiwei Wu
- College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing, China
| | - Shuicai Wu
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Jingjing Xia
- School of Electronic Information Engineering, Tianjin University, Tianjin, China
| | - Chiao-Yin Wang
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chunlan Yang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Chung-Chih Lin
- Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Po-Hsiang Tsui
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Medical Image Research Center, Institute for Radiological Research, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
35
|
Hou GY, Marquet F, Wang S, Konofagou EE. Multi-parametric monitoring and assessment of high-intensity focused ultrasound (HIFU) boiling by harmonic motion imaging for focused ultrasound (HMIFU): an ex vivo feasibility study. Phys Med Biol 2014; 59:1121-45. [PMID: 24556974 DOI: 10.1088/0031-9155/59/5/1121] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Harmonic motion imaging for focused ultrasound (HMIFU) is a recently developed high-intensity focused ultrasound (HIFU) treatment monitoring method with feasibilities demonstrated in vitro and in vivo. Here, a multi-parametric study is performed to investigate both elastic and acoustics-independent viscoelastic tissue changes using the Harmonic Motion Imaging (HMI) displacement, axial compressive strain and change in relative phase shift during high energy HIFU treatment with tissue boiling. Forty three (n = 43) thermal lesions were formed in ex vivo canine liver specimens (n = 28). Two-dimensional (2D) transverse HMI displacement maps were also obtained before and after lesion formation. The same method was repeated in 10 s, 20 s and 30 s HIFU durations at three different acoustic powers of 8, 10, and 11 W, which were selected and verified as treatment parameters capable of inducing boiling using both thermocouple and passive cavitation detection (PCD) measurements. Although a steady decrease in the displacement, compressive strain, and relative change in the focal phase shift (Δϕ) were obtained in numerous cases, indicating an overall increase in relative stiffness, the study outcomes also showed that during boiling, a reverse lesion-to-background displacement contrast was detected, indicating potential change in tissue absorption, geometrical change and/or, mechanical gelatification or pulverization. Following treatment, corresponding 2D HMI displacement images of the thermal lesions also mapped consistent discrepancy in the lesion-to-background displacement contrast. Despite the expectedly chaotic changes in acoustic properties with boiling, the relative change in phase shift showed a consistent decrease, indicating its robustness to monitor biomechanical properties independent of the acoustic property changes throughout the HIFU treatment. In addition, the 2D HMI displacement images confirmed and indicated the increase in the thermal lesion size with treatment duration, which was validated against pathology. In conclusion, multi-parametric HMIFU was shown capable of monitoring and mapping tissue viscoelastic response changes during and after HIFU boiling, some of which were independent of the acoustic parameter changes.
Collapse
Affiliation(s)
- Gary Y Hou
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | | | | | | |
Collapse
|
36
|
Shahmirzadi D, Hou GY, Chen J, Konofagou EE. Ex Vivo characterization of canine liver tissue viscoelasticity after high-intensity focused ultrasound ablation. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:341-50. [PMID: 24315395 PMCID: PMC4005882 DOI: 10.1016/j.ultrasmedbio.2013.09.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 08/24/2013] [Accepted: 09/12/2013] [Indexed: 05/12/2023]
Abstract
The potential of elasticity imaging to detect high-intensity focused ultrasound (HIFU) lesions on the basis of their distinct biomechanical properties is promising. However, information on the quantitative mechanical properties of the tissue and the optimal intensity at which to determine the best contrast parameters is scarce. In this study, fresh canine livers were ablated using combinations of ISPTA intensities of 5.55, 7.16 and 9.07 kW/cm(2) and durations of 10 and 30 s ex vivo, resulting in six groups of ablated tissues. Biopsy samples were then interrogated using dynamic shear mechanical testing within the range of 0.1-10 Hz to characterize the tissue's post-ablation viscoelastic properties. All mechanical parameters were found to be frequency dependent. Compared with unablated cases, all six groups of ablated tissues had statistically significant higher complex shear modulus and shear viscosity. However, among the ablated groups, both complex shear modulus and shear viscosity were found to monotonically increase in groups 1-4 (5.55 kW/cm(2) for 10 s, 7.16 kW/cm(2) for 10 s, 9.07 kW/cm(2) for 10 s, and 5.55 kW/cm(2) for 30 s, respectively), but to decrease in groups 5 and 6 (7.16 kW/cm(2) for 30 s, and 9.07 kW/cm(2) for 30 s, respectively). For groups 5 and 6, the temperature was expected to exceed the boiling point, and therefore, the decreased stiffening could be due to the compromised integrity of the tissue microstructure. Future studies will entail estimation tissue mechanical properties in vivo and perform real-time monitoring of tissue alterations during ablation.
Collapse
Affiliation(s)
- Danial Shahmirzadi
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Gary Y Hou
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Jiangang Chen
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Elisa E Konofagou
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York, USA; Department of Radiology, Columbia University, New York, New York, USA.
| |
Collapse
|
37
|
Mariani A, Kwiecinski W, Pernot M, Balvay D, Tanter M, Clement O, Cuenod CA, Zinzindohoue F. Real time shear waves elastography monitoring of thermal ablation: in vivo evaluation in pig livers. J Surg Res 2014; 188:37-43. [PMID: 24485877 DOI: 10.1016/j.jss.2013.12.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 10/30/2013] [Accepted: 12/30/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND Thermal ablation is a widely used minimally invasive treatment modality for different cancers. However, lack of a real-time imaging system for accurate evaluation of the procedure is one of the reasons of local recurrences. Shear waves elastography (SWE) is a new ultrasound (US) imaging modality to quantify tissue stiffness. The aim of the study was to assess the feasibility and accuracy of US elastography for quantitative monitoring of thermal ablation and to determine the elasticity threshold predictive of coagulation necrosis. METHODS A total of 29 in vivo thermal lesions were performed in pig livers with radiofrequency system. SWE and B-mode images were acquired simultaneously. Liver elasticity was quantified by using SWE data and expressed in kilopascal. After the procedure, pathologic analysis of treated tissues was compared with US images. The sensitivity and positive predictive value of the SWE maps of tissue elasticity were calculated and compared with the boundaries of the pale coagulation necrosis areas found at pathology. RESULTS The liver mean elasticity values before and after thermal therapy were 6.4 ± 0.3 and 38.1 ± 2.5 kPa, respectively (P < 0.0001). For a threshold of 20 kPa, sensitivity (i.e., the rate of pixels correctly detected as necrosed tissue) was 0.8, and the positive predictive value (i.e., the rate of pixels in the elastographic map >20 kPa that actually developed coagulation necrosis) was 0.83. CONCLUSIONS Tissue areas with coagulation necrosis are significantly stiffer than the surrounding tissue. SWE permits the real-time detection of coagulation necrosis produced by radiofrequency and could potentially be used to monitor US-guided thermal ablation.
Collapse
Affiliation(s)
- A Mariani
- Laboratoire de recherche en imagerie, INSERM, UMR 970, Paris Cardiovascular Research Center, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Department of Digestive and General Surgery, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France.
| | - W Kwiecinski
- Laboratoire de recherche en imagerie, Institut Langevin, Ecole Superieure de Physique et de Chimie, Industrielles de Paris (ESPCI) ParisTech, CNRS UMR 7587, INSERM U979, Paris, France
| | - M Pernot
- Laboratoire de recherche en imagerie, Institut Langevin, Ecole Superieure de Physique et de Chimie, Industrielles de Paris (ESPCI) ParisTech, CNRS UMR 7587, INSERM U979, Paris, France
| | - D Balvay
- Laboratoire de recherche en imagerie, INSERM, UMR 970, Paris Cardiovascular Research Center, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - M Tanter
- Laboratoire de recherche en imagerie, Institut Langevin, Ecole Superieure de Physique et de Chimie, Industrielles de Paris (ESPCI) ParisTech, CNRS UMR 7587, INSERM U979, Paris, France
| | - O Clement
- Laboratoire de recherche en imagerie, INSERM, UMR 970, Paris Cardiovascular Research Center, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Department of Radiology, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - C A Cuenod
- Laboratoire de recherche en imagerie, INSERM, UMR 970, Paris Cardiovascular Research Center, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Department of Radiology, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - F Zinzindohoue
- Laboratoire de recherche en imagerie, INSERM, UMR 970, Paris Cardiovascular Research Center, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Department of Digestive and General Surgery, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| |
Collapse
|
38
|
Tanter M, Fink M. Ultrafast imaging in biomedical ultrasound. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2014. [PMID: 24402899 DOI: 10.1109/tuffc.2014.2882] [Citation(s) in RCA: 358] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Although the use of ultrasonic plane-wave transmissions rather than line-per-line focused beam transmissions has been long studied in research, clinical application of this technology was only recently made possible through developments in graphical processing unit (GPU)-based platforms. Far beyond a technological breakthrough, the use of plane or diverging wave transmissions enables attainment of ultrafast frame rates (typically faster than 1000 frames per second) over a large field of view. This concept has also inspired the emergence of completely novel imaging modes which are valuable for ultrasound-based screening, diagnosis, and therapeutic monitoring. In this review article, we present the basic principles and implementation of ultrafast imaging. In particular, present and future applications of ultrafast imaging in biomedical ultrasound are illustrated and discussed.
Collapse
|
39
|
Shahmirzadi D, Chen J, Hou GY, Konofagou EE. A viscoelastic property study in canine liver before and after HIFU ablation in vitro. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2013:6269-72. [PMID: 24111173 DOI: 10.1109/embc.2013.6610986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Elasticity imaging techniques have shown great potential in detecting High Intensity Focused Ultrasound (HIFU) lesions based on their distinct biomechanical properties. However, quantitative tissue viscoelastic properties and the optimal power to obtain the best contrast parameters remain scarce. In the present study, fresh canine livers were ablated ex vivo using six different acoustic powers and time durations, covering an energy range of 80-330 J. Biopsy samples were then extracted and examined, using rheometry, to obtain the viscoelastic properties post-ablation in vitro. All mechanical parameters were found to be frequency dependent. Both the shear complex modulus and viscosity exhibited monotonic increase for the first 4 groups (80-240 J), relatively lower HIFU powers. Similar parameters from groups 5-6 (300-330 J) showed relative decrease, still higher than unablated group 0. The tangent of the stress-strain phase shift was found to vary from unablated group 0 to ablated groups 1-6. However, no measurable difference amongst the ablated groups was found. Decreased stiffening at high powers compared to the baseline could likely be due to compromised structural integrity in the pulverized tissue well beyond the boiling point. The findings here can be used to optimize the efficient monitoring and treatment of tumors using any thermally-based methods where strong tissue damage is expected and/or warranted, respectively.
Collapse
|
40
|
Arnal B, Pinton G, Garapon P, Pernot M, Fink M, Tanter M. Global approach for transient shear wave inversion based on the adjoint method: a comprehensive 2D simulation study. Phys Med Biol 2013; 58:6765-78. [PMID: 24018867 DOI: 10.1088/0031-9155/58/19/6765] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Shear wave imaging (SWI) maps soft tissue elasticity by measuring shear wave propagation with ultrafast ultrasound acquisitions (10 000 frames s(-1)). This spatiotemporal data can be used as an input for an inverse problem that determines a shear modulus map. Common inversion methods are local: the shear modulus at each point is calculated based on the values of its neighbour (e.g. time-of-flight, wave equation inversion). However, these approaches are sensitive to the information loss such as noise or the lack of the backscattered signal. In this paper, we evaluate the benefits of a global approach for elasticity inversion using a least-squares formulation, which is derived from full waveform inversion in geophysics known as the adjoint method. We simulate an acoustic waveform in a medium with a soft and a hard lesion. For this initial application, full elastic propagation and viscosity are ignored. We demonstrate that the reconstruction of the shear modulus map is robust with a non-uniform background or in the presence of noise with regularization. Compared to regular local inversions, the global approach leads to an increase of contrast (∼+3 dB) and a decrease of the quantification error (∼+2%). We demonstrate that the inversion is reliable in the case when there is no signal measured within the inclusions like hypoechoic lesions which could have an impact on medical diagnosis.
Collapse
Affiliation(s)
- B Arnal
- Institut Langevin, ESPCI ParisTech, CNRS UMR 7587, INSERM U979, Université Paris Diderot, France
| | | | | | | | | | | |
Collapse
|
41
|
Zhou Z, Sheng L, Wu S, Yang C, Zeng Y. Ultrasonic evaluation of microwave-induced thermal lesions based on wavelet analysis of mean scatterer spacing. ULTRASONICS 2013; 53:1325-1331. [PMID: 23648210 DOI: 10.1016/j.ultras.2013.03.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/30/2013] [Accepted: 03/31/2013] [Indexed: 06/02/2023]
Abstract
The microwave ablation has become an important manner for tumor treatment. In this paper, we proposed a new method for evaluation of microwave-induced thermal lesions using the wavelet analysis of the mean scatterer spacing (MSS). First, the ultrasonic radiofrequency (RF) data of normal and coagulated porcine liver tissues was collected through the temperature-controlled water bath heating experiments. The convex array ultrasound probe with a center frequency of 3.5 MHz was used. Second, the wavelet analysis was used to compute the MSS of normal and coagulated porcine liver tissues, respectively. Finally, the microwave-induced thermal lesions were detected based on the differences in the MSS between normal tissues and thermal lesions. Eighteen cases of microwave ablation experiments and 20 cases of water bath heating experiments were conducted on fresh porcine liver samples. The MSS of normal porcine liver tissues was 1.15±0.12 mm, and the MSS of coagulated porcine liver tissues was 0.93±0.07 mm. Six cases of thermal lesions were compared between the MSS-detected area and the caliper-measured area, and the MSS-detected area had an error of (13.55±5.29) %. The experimental results indicated that the proposed method could be used in preliminary detection and evaluation of microwave-induced thermal lesions.
Collapse
Affiliation(s)
- Zhuhuang Zhou
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | | | | | | | | |
Collapse
|
42
|
Huang CW, Lien DH, Chen BT, Shieh J, Tsui PH, Chen CS, Chen WS. Ultrasound thermal mapping based on a hybrid method combining cross-correlation and zero-crossing tracking. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 134:1530-1540. [PMID: 23927193 DOI: 10.1121/1.4812874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A hybrid method for estimating temperature with spatial mapping using diagnostic ultrasound, based on detection of echo shifts from tissue undergoing thermal treatment, is proposed. Cross-correlation and zero-crossing tracking are two conventional algorithms used for detecting echo shifts, but their practical applications are limited. The proposed hybrid method combines the advantages of both algorithms with improved accuracy in temperature estimation. In vitro experiments were performed on porcine muscle for preliminary validation and temperature calibration. In addition, thermal mapping of rabbit thigh muscle in vivo during high-intensity focused ultrasound heating was conducted. Results from the in vitro experiments indicated that the difference between the estimated temperature change by the proposed hybrid method and the actual temperature change measured by the thermocouple was generally less than 1 °C when the increase in temperature due to heating was less than 10 °C. For the in vivo study, the area predicted to experience the highest temperature coincided well with the focal point of the high-intensity focused ultrasound transducer. The computational efficiency of the hybrid algorithm was similar to that of the fast cross-correlation algorithm, but with an improved accuracy. The proposed hybrid method could provide an alternative means for non-invasive monitoring of limited temperature changes during hyperthermia therapy.
Collapse
Affiliation(s)
- Chang-Wei Huang
- Department of Civil Engineering, Chung Yuan Christian University, 200 Chung Pei Road, Chung Li City, 32023, Taiwan
| | | | | | | | | | | | | |
Collapse
|
43
|
Benech N, Brum J, Catheline S, Gallot T, Negreira C. Near-field effects in Green's function retrieval from cross-correlation of elastic fields: experimental study with application to elastography. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 133:2755-2766. [PMID: 23654383 DOI: 10.1121/1.4795771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In a lossless system, the causal and acausal Green's function for elastic waves can be retrieved by cross-correlating the elastic field at two positions. This field, composed of converging and diverging waves, is interpreted in the frame of a time-reversal process. In this work, the near-field effects on the spatio-temporal focusing of elastic waves are analyzed through the elastodynamic Green's function. Contrary to the scalar field case, the spatial focusing is not symmetric preserving the directivity pattern of a simple source. One important feature of the spatial asymmetry is its dependency on the Poisson ratio of the solid. Additionally, it is shown that the retrieval of the bulk wave speed values is affected by diffraction. The correction factor depends on the relative direction between the source and the observed field. Experimental verification of the analysis is carried out on the volume of a soft-solid. A low-frequency diffuse-like field is generated by random impacts at the sample's free surface. The displacement field is imaged using ultrasound by a standard speckle tracking technique. One important application of this work is in the estimation of the shear elastic modulus in soft biological tissues, whose quantification can be useful in non-invasive diagnosis of various diseases.
Collapse
Affiliation(s)
- N Benech
- Laboratorio de Acústica Ultrasonora, Instituto de Física, Facultad de Ciencias, Montevideo, Uruguay.
| | | | | | | | | |
Collapse
|
44
|
Borasi G, Russo G, Alongi F, Nahum A, Candiano GC, Stefano A, Gilardi MC, Messa C. High-intensity focused ultrasound plus concomitant radiotherapy: a new weapon in oncology? J Ther Ultrasound 2013; 1:6. [PMID: 24761227 PMCID: PMC3988614 DOI: 10.1186/2050-5736-1-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 02/14/2013] [Indexed: 12/25/2022] Open
Abstract
The potential impact of high-intensity focused ultrasound (HIFU) to general medicine and oncology seems very high. However, while in the research area, the development of this technique is very rapid and unchallenged. The direct application of HIFU to human tumour therapy is hampered by various technical difficulties, which may confine its role to a marginal device in the surgery armamentarium. To deploy the full potential of focused ultrasound in oncology, it seems necessary to review the basic relationship between HIFU and external beam radiotherapy. This is the aim of the present work.
Collapse
Affiliation(s)
| | | | | | - Alan Nahum
- Clatterbridge Cancer Centre, Bebington, CH63 4JY, UK
| | | | | | | | | |
Collapse
|
45
|
Dewall RJ, Varghese T, Brace CL. Visualizing ex vivo radiofrequency and microwave ablation zones using electrode vibration elastography. Med Phys 2013; 39:6692-700. [PMID: 23127063 DOI: 10.1118/1.4758061] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Electrode vibration elastography is a new shear wave imaging technique that can be used to visualize thermal ablation zones. Prior work has shown the ability of electrode vibration elastography to delineate radiofrequency ablations; however, there has been no previous study of delineation of microwave ablations or radiological-pathological correlations using multiple observers. METHODS Radiofrequency and microwave ablations were formed in ex vivo bovine liver tissue. Their visualization was compared on shear wave velocity and maximum displacement images. Ablation dimensions were compared to gross pathology. Elastographic imaging and gross pathology overlap and interobserver variability were quantified using similarity measures. RESULTS Elastographic imaging correlated with gross pathology. Correlation of area estimates was better in radiofrequency than in microwave ablations, with Pearson coefficients of 0.79 and 0.54 on shear wave velocity images and 0.90 and 0.70 on maximum displacement images for radiofrequency and microwave ablations, respectively. The absolute relative difference in area between elastographic imaging and gross pathology was 18.9% and 22.9% on shear wave velocity images and 16.0% and 23.1% on maximum displacement images for radiofrequency and microwave ablations, respectively. CONCLUSIONS Statistically significant radiological-pathological correlation was observed in this study, but correlation coefficients were lower than other modulus imaging techniques, most notably in microwave ablations. Observers provided similar delineations for most thermal ablations. These results suggest that electrode vibration elastography is capable of imaging thermal ablations, but refinement of the technique may be necessary before it can be used to monitor thermal ablation procedures clinically.
Collapse
Affiliation(s)
- Ryan J Dewall
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | | | | |
Collapse
|
46
|
Ultrasonic strategies to monitor drug delivery. J Drug Deliv Sci Technol 2013. [DOI: 10.1016/s1773-2247(13)50006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
Tsui PH, Shu YC, Chen WS, Liu HL, Hsiao IT, Chien YT. Ultrasound temperature estimation based on probability variation of backscatter data. Med Phys 2012; 39:2369-2385. [DOI: 10.1118/1.3700235] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
48
|
Brosses ESD, Pernot M, Tanter M. The link between tissue elasticity and thermal dose in vivo. Phys Med Biol 2011; 56:7755-65. [PMID: 22094357 DOI: 10.1088/0031-9155/56/24/005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The objective of this study was to investigate in vivo the relationship between stiffness and thermal dose. For this purpose, shear wave elastography (SWE)--a novel ultrasound-based technique for real-time mapping of the stiffness of biological soft tissues--is performed in temperature-controlled experiments. Experiments were conducted on nine anesthetized rats. Their right leg was put in a thermo-regulated waterbath. The right leg of each animal was heated at one particular temperature between 38 °C and 48.5 °C for 15 min to 3 h. Shear waves were generated in the muscle using the acoustic radiation force induced by a linear ultrasonic probe. The shear wave propagation was imaged in real time by the probe using an ultrafast scanner prototype (10,000 frames s⁻¹). The local tissue stiffness was derived from the shear wave speed. Two optical fiber sensors were inserted into the muscle to measure in situ the temperature. Stiffness was found to increase strongly during the experiments. When expressed as a function of the thermal dose, the stiffness curves were found to be the same for all experiments. A thermal dose threshold was found at 202 min for an eightfold stiffness increase. Finally, the time-temperature relationship was established for different stiffness ratios. The slope of the time-temperature relationship based on stiffness measurements was found identical to the one obtained for cell death in the seminal paper on the thermal dose by Sapareto and Dewey in 1984 (Int. J. Radiat. Oncol. Biol. Phys. 10 787-800). The present results highlight the stiffness increase as a good indicator of thermal necrosis. SWE imaging can be used in vivo for necrosis threshold determination in thermal therapy.
Collapse
|