1
|
Liu H, Ding S, Lin X, Wang S, Wang Y, Feng Z, Song J. Bone Fracture Healing under the Intervention of a Stretchable Ultrasound Array. ACS NANO 2024. [PMID: 39008625 DOI: 10.1021/acsnano.4c02426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Ultrasound treatment has been recognized as an effective and noninvasive approach to promote fracture healing. However, traditional rigid ultrasound probe is bulky, requiring cumbersome manual operations and inducing unfavorable side effects when functioning, which precludes the wide application of ultrasound in bone fracture healing. Here, we report a stretchable ultrasound array for bone fracture healing, which features high-performance 1-3 piezoelectric composites as transducers, stretchable multilayered serpentine metal films in a bridge-island pattern as electrical interconnects, soft elastomeric membranes as encapsulations, and polydimethylsiloxane (PDMS) with low curing agent ratio as adhesive layers. The resulting ultrasound array offers the benefits of large stretchability for easy skin integration and effective affecting region for simple skin alignment with good electromechanical performance. Experimental investigations of the stretchable ultrasound array on the delayed union model in femoral shafts of rats show that the callus growth is more active in the second week of treatment and the fracture site is completely osseous healed in the sixth week of treatment. Various bone quality indicators (e.g., bone modulus, bone mineral density, bone tissue/total tissue volume, and trabecular bone thickness) could be enhanced with the intervention of a stretchable ultrasound array. Histological and immunohistochemical examinations indicate that ultrasound promotes osteoblast differentiation, bone formation, and remodeling by promoting the expression of osteopontin (OPN) and runt-related transcription factor 2 (RUNX2). This work provides an effective tool for bone fracture healing in a simple and convenient manner and creates engineering opportunities for applying ultrasound in medical applications.
Collapse
Affiliation(s)
- Hang Liu
- Department of Engineering Mechanics, Soft Matter Research Center, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310027, China
| | - Shuchen Ding
- Center of Orthopedics, The 903rd Hospital of People's Liberation Army, Hangzhou Zhejiang 310003, China
| | - Xinyi Lin
- Department of Engineering Mechanics, Soft Matter Research Center, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310027, China
| | - Suhao Wang
- Department of Engineering Mechanics, Soft Matter Research Center, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310027, China
| | - Yue Wang
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Zhiyun Feng
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Jizhou Song
- Department of Engineering Mechanics, Soft Matter Research Center, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310027, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
2
|
Puts R, Khaffaf A, Shaka M, Zhang H, Raum K. Focused Low-Intensity Pulsed Ultrasound (FLIPUS) Mitigates Apoptosis of MLO-Y4 Osteocyte-like Cells. Bioengineering (Basel) 2023; 10:bioengineering10030387. [PMID: 36978778 PMCID: PMC10045139 DOI: 10.3390/bioengineering10030387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Long cytoplasmic processes of osteocytes orchestrate bone activity by integration of biochemical and mechanical signals and regulate load-induced bone adaptation. Low-Intensity Pulsed Ultrasound (LIPUS) is a clinically used technique for fracture healing that delivers mechanical impulses to the damaged bone tissue in a non-invasive and non-ionizing manner. The mechanism of action of LIPUS is still controversially discussed in the scientific community. In this study, the effect of focused LIPUS (FLIPUS) on the survival of starved MLO-Y4 osteocytes was investigated in vitro. Osteocytes stimulated for 10 min with FLIPUS exhibited extended dendrites, which formed frequent connections to neighboring cells and spanned longer distances. The sonicated cells displayed thick actin bundles and experienced increase in expression of connexin 43 (Cx43) proteins, especially on their dendrites, and E11 glycoprotein, which is responsible for the elongation of cellular cytoplasmic processes. After stimulation, expression of cell growth and survival genes as well as genes related to cell-cell communication was augmented. In addition, cell viability was improved after the sonication, and a decrease in ATP release in the medium was observed. In summary, FLIPUS mitigated apoptosis of starved osteocytes, which is likely related to the formation of the extensive dendritic network that ensured cell survival.
Collapse
Affiliation(s)
- Regina Puts
- Center for Biomedicine, Charité-Universitätsmedizin, 12203 Berlin, Germany
- Berlin Institute of Health (BIH) Center for Regenerative Therapies, Charité-Universitätsmedizin, 13353 Berlin, Germany
| | - Aseel Khaffaf
- Center for Biomedicine, Charité-Universitätsmedizin, 12203 Berlin, Germany
| | - Maria Shaka
- Center for Biomedicine, Charité-Universitätsmedizin, 12203 Berlin, Germany
| | - Hui Zhang
- Center for Biomedicine, Charité-Universitätsmedizin, 12203 Berlin, Germany
| | - Kay Raum
- Center for Biomedicine, Charité-Universitätsmedizin, 12203 Berlin, Germany
| |
Collapse
|
3
|
Kim E, Kum J, Lee SH, Kim H. Development of a wireless ultrasonic brain stimulation system for concurrent bilateral neuromodulation in freely moving rodents. Front Neurosci 2022; 16:1011699. [PMID: 36213731 PMCID: PMC9539445 DOI: 10.3389/fnins.2022.1011699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Bilateral brain stimulation is an important modality used to investigate brain circuits and treat neurological conditions. Recently, low-intensity pulsed ultrasound (LIPUS) received significant attention as a novel non-invasive neurostimulation technique with high spatial specificity. Despite the growing interest, the typical ultrasound brain stimulation study, especially for small animals, is limited to a single target of sonication. The constraint is associated with the complexity and the cost of the hardware system required to achieve multi-regional sonication. This work presented the development of a low-cost LIPUS system with a pair of single-element ultrasound transducers to address the above problem. The system was built with a multicore processor with an RF amplifier circuit. In addition, LIPUS device was incorporated with a wireless module (bluetooth low energy) and powered by a single 3.7 V battery. As a result, we achieved an ultrasound transmission with a central frequency of 380 kHz and a peak-to-peak pressure of 480 kPa from each ultrasound transducer. The developed system was further applied to anesthetized rats to investigate the difference between uni- and bilateral stimulation. A significant difference in cortical power density extracted from electroencephalogram signals was observed between uni- and bilateral LIPUS stimulation. The developed device provides an affordable solution to investigate the effects of LIPUS on functional interhemispheric connection.
Collapse
Affiliation(s)
- Evgenii Kim
- Biomedical Research Division, Bionics Research Center, Korea Institute of Science and Technology, Seoul, South Korea
| | - Jeungeun Kum
- Biomedical Research Division, Bionics Research Center, Korea Institute of Science and Technology, Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, South Korea
| | - Seung Hyun Lee
- Biomedical Research Division, Bionics Research Center, Korea Institute of Science and Technology, Seoul, South Korea
| | - Hyungmin Kim
- Biomedical Research Division, Bionics Research Center, Korea Institute of Science and Technology, Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, South Korea
- *Correspondence: Hyungmin Kim,
| |
Collapse
|
4
|
Jin M, Seo SH, Kim BS, Hwang S, Kang YG, Shin JW, Cho KH, Byeon J, Shin MC, Kim D, Yoon C, Min KA. Combined Application of Prototype Ultrasound and BSA-Loaded PLGA Particles for Protein Delivery. Pharm Res 2021; 38:1455-1466. [PMID: 34398405 DOI: 10.1007/s11095-021-03091-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/02/2021] [Indexed: 01/22/2023]
Abstract
PURPOSE To develop an in vitro culture system for tissue engineering to mimic the in vivo environment and evaluate the applicability of ultrasound and PLGA particle system. METHODS For tissue engineering, large molecules such as growth factors for cell differentiation should be supplied in a controlled manner into the culture system, and the in vivo microenvironment need to be reproduced in the system for the regulation of cellular function. In this study, portable prototype ultrasound with low intensity was devised and tested for protein release from bovine serum albumin (BSA)-loaded poly(lactic-co-glycolic acid) (PLGA) particles. RESULTS BSA-loaded PLGA particles were prepared using various types of PLGA reagents and their physicochemical properties were characterized including particle size, shape, or aqueous wetting profiles. The BSA-loaded formulation showed nano-ranged size distribution with optimal physical stability during storage period, and protein release behaviors in a controlled manner. Notably, the application of prototype ultrasound with low intensity influenced protein release patterns in the culture system containing the BSA-loaded PLGA formulation. The results revealed that the portable ultrasound set controlled by the computer could contribute for the protein delivery in the culture medium. CONCLUSIONS This study suggests that combined application with ultrasound and protein-loaded PLGA encapsulation system could be utilized to improve culture system for tissue engineering or cell regeneration therapy.
Collapse
Affiliation(s)
| | | | - Bo Seok Kim
- Department of Nanoscience and Engineering, School of Biomedical Engineering, Inje University, Gimhae, 50834, Republic of Korea
| | - Seungmi Hwang
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Injero, Gimhae, Gyeongnam, 50834, Republic of Korea
| | - Yun Gyeong Kang
- Department of Biomedical Engineering, Inje University, Gimhae, 50834, Republic of Korea
| | - Jung-Woog Shin
- Department of Biomedical Engineering, Inje University, Gimhae, 50834, Republic of Korea
| | - Kwan Hyung Cho
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Injero, Gimhae, Gyeongnam, 50834, Republic of Korea
| | - Jimi Byeon
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Injero, Gimhae, Gyeongnam, 50834, Republic of Korea
| | - Meong Cheol Shin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Doyeon Kim
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Injero, Gimhae, Gyeongnam, 50834, Republic of Korea
| | - Changhan Yoon
- Department of Nanoscience and Engineering, School of Biomedical Engineering, Inje University, Gimhae, 50834, Republic of Korea. .,Department of Biomedical Engineering, Inje University, Gimhae, 50834, Republic of Korea.
| | - Kyoung Ah Min
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Injero, Gimhae, Gyeongnam, 50834, Republic of Korea.
| |
Collapse
|
5
|
Horne DA, Jones PD, Adams MS, Lotz JC, Diederich CJ. LIPUS far-field exposimetry system for uniform stimulation of tissues in-vitro: development and validation with bovine intervertebral disc cells. Biomed Phys Eng Express 2020; 6:035033. [PMID: 33438678 DOI: 10.1088/2057-1976/ab8b26] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Therapeutic Low-intensity Pulsed Ultrasound (LIPUS) has been applied clinically for bone fracture healing and has been shown to stimulate extracellular matrix (ECM) metabolism in numerous soft tissues including intervertebral disc (IVD). In-vitro LIPUS testing systems have been developed and typically include polystyrene cell culture plates (CCP) placed directly on top of the ultrasound transducer in the acoustic near-field (NF). This configuration introduces several undesirable acoustic artifacts, making the establishment of dose-response relationships difficult, and is not relevant for targeting deep tissues such as the IVD, which may require far-field (FF) exposure from low frequency sources. The objective of this study was to design and validate an in-vitro LIPUS system for stimulating ECM synthesis in IVD-cells while mimicking attributes of a deep delivery system by delivering uniform, FF acoustic energy while minimizing reflections and standing waves within target wells, and unwanted temperature elevation within target samples. Acoustic field simulations and hydrophone measurements demonstrated that by directing LIPUS energy at 0.5, 1.0, or 1.5 MHz operating frequency, with an acoustic standoff in the FF (125-350 mm), at 6-well CCP targets including an alginate ring spacer, uniform intensity distributions can be delivered. A custom FF LIPUS system was fabricated and demonstrated reduced acoustic intensity field heterogeneity within CCP-wells by up to 93% compared to common NF configurations. When bovine IVD cells were exposed to LIPUS (1.5 MHz, 200 μs pulse, 1 kHz pulse frequency, and ISPTA = 120 mW cm-2) using the FF system, sample heating was minimal (+0.81 °C) and collagen content was increased by 2.6-fold compared to the control and was equivalent to BMP-7 growth factor treatment. The results of this study demonstrate that FF LIPUS exposure increases collagen content in IVD cells and suggest that LIPUS is a potential noninvasive therapeutic for stimulating repair of tissues deep within the body such as the IVD.
Collapse
Affiliation(s)
- Devante A Horne
- Department of Orthopaedic Surgery, University of California, San Francisco, United States of America. The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, and University of California, San Francisco, United States of America. Thermal Therapy Research Group, Radiation Oncology Department, University of California, San Francisco, United States of America
| | | | | | | | | |
Collapse
|
6
|
Urban MW. Production of acoustic radiation force using ultrasound: methods and applications. Expert Rev Med Devices 2018; 15:819-834. [PMID: 30350736 DOI: 10.1080/17434440.2018.1538782] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Acoustic radiation force (ARF) is used in many biomedical applications. The transfer of momentum in acoustic waves can be used in a multitude of ways to perturb tissue and manipulate cells. AREAS COVERED This review will briefly cover the acoustic theory related to ARF, particularly that related to application in tissues. The use of ARF in measurement of mechanical properties will be treated in detail with emphasis on the spatial and temporal modulation of the ARF. Additional topics covered will be the manipulation of particles with ARF, correction of phase aberration with ARF, modulation of cellular behavior with ARF, and bioeffects related to ARF use. EXPERT COMMENTARY The use of ARF can be tailored to specific applications for measurements of mechanical properties or correction of focusing for ultrasound beams. Additionally, noncontact manipulation of particles and cells with ARF enables a wide array of applications for tissue engineering and biosensing.
Collapse
Affiliation(s)
- Matthew W Urban
- a Department of Radiology , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
7
|
Puts R, Rikeit P, Ruschke K, Knaus P, Schreivogel S, Raum K. Functional regulation of YAP mechanosensitive transcriptional coactivator by Focused Low-Intensity Pulsed Ultrasound (FLIPUS) enhances proliferation of murine mesenchymal precursors. PLoS One 2018; 13:e0206041. [PMID: 30365513 PMCID: PMC6203358 DOI: 10.1371/journal.pone.0206041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 10/05/2018] [Indexed: 12/02/2022] Open
Abstract
Yes-associated protein (YAP) acts as a mechanotransducer in determining the cell fate of murine C2C12 mesenchymal precursors as investigated after stimulation with ultrasound. We applied Focused Low-Intensity Pulsed Ultrasound (FLIPUS) at a sound frequency of 3.6 MHz, 100 Hz pulse repetition frequency (PRF), 27.8% duty cycle (DC), and 44.5 mW/cm2 acoustic intensity ISATA for 5 minutes and evaluated early cellular responses. FLIPUS decreased the level of phosphorylated YAP on Serine 127, leading to higher levels of active YAP in the nucleus. This in turn enhanced the expression of YAP-target genes associated with actin nucleation and stabilization, cytokinesis, and cell cycle progression. FLIPUS enhanced proliferation of C2C12 cells, whereas silencing of YAP expression abolished the beneficial effects of ultrasound. The expression of the transcription factor MyoD, defining cellular myogenic differentiation, was inhibited by mechanical stimulation. This study shows that ultrasound exposure regulates YAP functioning, which in turn improves the cell proliferative potential, critical for tissue regeneration process.
Collapse
Affiliation(s)
- Regina Puts
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité–Berlin University of Medicine, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité–Berlin University of Medicine, Berlin, Germany
- * E-mail:
| | - Paul Rikeit
- Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité–Berlin University of Medicine, Berlin, Germany
- Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
| | - Karen Ruschke
- Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
| | - Petra Knaus
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité–Berlin University of Medicine, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité–Berlin University of Medicine, Berlin, Germany
- Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
| | - Sophie Schreivogel
- Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité–Berlin University of Medicine, Berlin, Germany
- Julius Wolff Institute, Charité–Berlin University of Medicine, Berlin, Germany
| | - Kay Raum
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité–Berlin University of Medicine, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité–Berlin University of Medicine, Berlin, Germany
| |
Collapse
|
8
|
All-in-one low-intensity pulsed ultrasound stimulation system using piezoelectric micromachined ultrasonic transducer (pMUT) arrays for targeted cell stimulation. Biomed Microdevices 2017; 19:86. [PMID: 28929363 DOI: 10.1007/s10544-017-0228-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A novel cell-stimulation system was fabricated using 10 × 29 piezoelectric micromachined ultrasonic transducer (pMUT) arrays for targeted ultrasonic cell stimulation. Both the diameter of a single pMUT element and the edge-to-edge gap were 120 μm, and the size of a pMUT array was 2.27 × 6.84 mm, to be placed at the bottom of a Transwell. The measured resonance frequency of a single pMUT element was 1.48 ± 0.13 MHz and the measured acoustic intensity of the pMUT array was 0.15 ± 0.03 MPa at 1 mm away from the transducer. A pMUT array was mounted on a print circuit board (PCB), which was designed in accordance with the size of a 12-well Transwell. The Transwell was placed on the PCB and wire bonding was performed to electrically connect the PCB and pMUT arrays. After wiring, the PCB and pMUT arrays were coated with 2.6-μm thick parylene-C to ensure biocompatibility and waterproofing. PC12 cells were used for ultrasonic cell stimulation tests to examine the proposed all-in-one low-intensity pulsed ultrasound stimulation system. Various stimulation times and duty cycles were used simultaneously for cell proliferation in a confined cell culture environment. All stimulation groups showed increased cell proliferation rates, in the range 138-166%, versus the proliferation rate of the control group.
Collapse
|
9
|
Puts R, Albers J, Kadow-Romacker A, Geissler S, Raum K. Influence of Donor Age and Stimulation Intensity on Osteogenic Differentiation of Rat Mesenchymal Stromal Cells in Response to Focused Low-Intensity Pulsed Ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:2965-2974. [PMID: 27680572 DOI: 10.1016/j.ultrasmedbio.2016.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 06/06/2023]
Abstract
A focused low-intensity pulsed ultrasound (FLIPUS) was used to investigate the effects of stimulation period, acoustic intensity and donor age on the osteogenic differentiation potential of rat mesenchymal stromal cells (rMSCs). rMSCs from 3- and 12-mo-old female Sprague Drawly rats were isolated from bone marrow and stimulated 20 min/d with either 11.7 or 44.5 mW/cm2 (spatial average temporal average intensity) for 7 or 14 d. Osteogenic differentiation markers, i.e., Runt-related transcription factor 2 (RUNX2), osteocalcin (OCN) and degree of matrix calcification were analyzed. On day 7 of stimulation, OCN gene expression was enhanced 1.9-fold in cells from young rats when stimulated with low intensity. The low intensity also led to a 40% decrease in RUNX2 expression on day 7 in aged cells, whereas high intensity enhanced expression of RUNX2 on day 14. FLIPUS treatment with low intensity resulted in a 15% increase in extracellular matrix mineralization in young but not old rMSCs. These differences suggest the necessity of a donor-age related optimization of stimulation parameters.
Collapse
Affiliation(s)
- Regina Puts
- Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin, Berlin, Germany
| | - Josefine Albers
- Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin, Berlin, Germany
| | - Anke Kadow-Romacker
- Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin, Berlin, Germany
| | - Sven Geissler
- Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin, Berlin, Germany; Julius Wolff Institute, Charité-Universitätsmedizin, Berlin, Germany
| | - Kay Raum
- Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin, Berlin, Germany.
| |
Collapse
|
10
|
Puts R, Rikeit P, Ruschke K, Kadow-Romacker A, Hwang S, Jenderka KV, Knaus P, Raum K. Activation of Mechanosensitive Transcription Factors in Murine C2C12 Mesenchymal Precursors by Focused Low-Intensity Pulsed Ultrasound (FLIPUS). IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2016; 63:1505-1513. [PMID: 27392348 DOI: 10.1109/tuffc.2016.2586972] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this paper, we investigated the mechanoresponse of C2C12 mesenchymal precursor cells to focused low-intensity pulsed ultrasound (FLIPUS). The setup has been developed for in vitro stimulation of adherent cells in the defocused far field of the ultrasound propagating through the bottom of the well plate. Twenty-four-well tissue culture plates, carrying the cell monolayers, were incubated in a temperature-controlled water tank. The ultrasound was applied at 3.6-MHz frequency, pulsed at 100-Hz repetition frequency with a 27.8% duty cycle, and calibrated at an output intensity of ISATA = 44.5 ±7.1 mW/cm2. Numerical sound propagation simulations showed no generation of standing waves in the well plate. The response of murine C2C12 cells to FLIPUS was evaluated by measuring activation of mechanosensitive transcription factors, i.e., activator protein-1 (AP-1), specificity protein 1 (Sp1), and transcriptional enhancer factor (TEAD), and expression of mechanosensitive genes, i.e., c-fos, c-jun, heparin binding growth associated molecule (HB-GAM), and Cyr-61. FLIPUS induced 50% ( p ≤ 0.05 ) and 70% ( p ≤ 0.05 ) increases in AP-1 and TEAD promoter activities, respectively, when stimulated for 5 min. The Sp1 activity was enhanced by about 20% ( p ≤ 0.05 ) after 5-min FLIPUS exposure and the trend persisted for 30-min ( p ≤ 0.05 ) and 1-h ( p ≤ 0.05 ) stimulation times. Expressions of mechanosensitive genes c-fos ( p ≤ 0.05 ), c-jun ( p ≤ 0.05 ), HB-GAM ( p ≤ 0.05 ), and cystein-rich protein 61 ( p ≤ 0.05 ) were enhanced in response to 5-min FLIPUS stimulation. The increase in proliferation of C2C12s occurred after the FLIPUS stimulation ( p ≤ 0.05 ), with AP-1, Sp1, and TEAD possibly regulating the observed cellular activities.
Collapse
|