1
|
Nordenfur T, Caidahl K, Lindberg L, Urban MW, Larsson M. Safety of Shear Wave Elastography as Evidenced From Carotid Artery Strain and Strain Rate Induced by Acoustic Radiation Force Impulse and Arterial Pulsations. ULTRASOUND IN MEDICINE & BIOLOGY 2025; 51:742-750. [PMID: 39920002 DOI: 10.1016/j.ultrasmedbio.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 02/09/2025]
Abstract
OBJECTIVE The aim of this study was to investigate the mechanical effects of carotid shear wave elastography (SWE) in vivo as its effects on the arterial wall have not been thoroughly examined. METHODS We evaluated the mechanical effects of carotid SWE in vivo in terms of the radial strain and strain rate to which acoustic radiation force impulses (ARFIs) expose the arterial wall, and compared them with the strain and strain rate induced by arterial pulsation in 13 healthy study subjects (seven individuals 20-35 y of age and six individuals 50-65 y of age). Additionally, we explored whether mechanical effects vary with timing of ARFI and subject age. RESULTS The young cohort was found to have, compared with the old cohort, a higher diastolic ARFI-induced peak strain (p = 0.002) and peak strain rate (p = 0.001), and a lower diastolic ARFI-induced peak negative strain rate (p = 0.013). When comparing cardiac phases, diastolic ARFIs were found to induce a lower peak negative strain rate than systolic ARFIs (p = 0.006). Importantly, ARFI-induced peak strain was lower than that caused by arterial pulsation in both age cohorts (p < 0.0001). The ARFI-induced peak strain rate was slightly higher than that caused by arterial pulsation at rest but lower than published exercise data. The ARFI-induced peak negative strain rate was similar to that caused by arterial pulsation. CONCLUSION Our results indicate that arterial SWE does not expose the arterial wall to any higher strain or strain rate than is experienced during normal arterial pulsation. Further research is required to validate the results in arteries containing vulnerable plaques.
Collapse
Affiliation(s)
- Tim Nordenfur
- Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Stockholm, Sweden; Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Kenneth Caidahl
- Department of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Linnea Lindberg
- Department of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | | | - Matilda Larsson
- Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Stockholm, Sweden; Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
2
|
Chang C, Gan L, Liao X, Peng Y, Yang F, Liu W, Wang M, Song J, Zhang J. Quantitative Analysis on Vessel Stiffness and Vector Flow Imaging in the Assessment of Carotid Artery Structural and Functional Changes in Patients With Type 2 Diabetes. ULTRASOUND IN MEDICINE & BIOLOGY 2025; 51:85-93. [PMID: 39379234 DOI: 10.1016/j.ultrasmedbio.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/26/2024] [Accepted: 09/15/2024] [Indexed: 10/10/2024]
Abstract
OBJECTIVE To explore the value of RF-data-based quantitative analysis on vessel stiffness (R-QVS) combined with dynamic vector flow imaging (VFI) in evaluating structural and functional changes in the carotid arteries of patients with type 2 diabetes mellitus (T2DM). METHODS A prospective study was conducted between October 2022 and April 2024, including 275 consecutive subjects (50 volunteers as controls, 108 patients with T2DM and normal carotid intima-media thickness (CIMT), and 117 patients with T2DM and thickened CIMT). Carotid intima-media thickness (IMT) was measured using real-time intima-media thickness (RIMT) technology, while R-QVS was employed to measure the systolic diameter (Diam), displacement (Dist), hardness coefficient (HC), and pulse wave velocity (PWV) of the distal segment of the carotid artery. VFI was used to measure the maximum wall shear stress (WSSmax), mean wall shear stress (WSSmean), and maximum instantaneous velocity (Vmax) of the vessel wall. Differences in ultrasound parameters among the three groups were compared, and receiver operating characteristic (ROC) curves were plotted to calculate the area under the curve (AUC), evaluating the efficacy of these parameters in assessing structural and functional changes in the carotid arteries of patients with T2DM. RESULTS There were statistically significant differences in carotid IMT, Diam, Dist, HC, PWV, WSSmax, and Vmax among the three groups (all p < 0.01). The AUCs for evaluating structural and functional changes in the carotid arteries of patients with T2DM using carotid ultrasound parameters Diam, Dist, HC, PWV, WSSmax, and Vmax were 0.64, 0.68, 0.83, 0.88, 0.86, and 0.82, respectively. Multiple linear regression analysis identified Dist., HC, PWV, WSSmax, and WSSmean as influencing factors for CIMT in T2DM patients (with β values of -0.406, 0.515, 0.564, -0.472, and -0.438, respectively; all p < 0.05). CONCLUSION R-QVS and VFI techniques contribute to the early assessment of structural and functional changes in the carotid arteries of patients with type 2 diabetes mellitus. Compared with controls, T2DM patients exhibit more advanced functional changes than morphological changes despite normal CIMT. The enhanced sensitivity, reproducibility, and detailed assessment capabilities of these methods make them valuable tools in the early detection and intervention of cardiovascular risk in T2DM.
Collapse
Affiliation(s)
- Caihong Chang
- Department of Ultrasound imaging, Postgraduate Union training base of Xiangyang No.1 People's Hospital, School of Medicine, Wuhan University of Science and Technology, Xiangyang, Hubei, China
| | - Ling Gan
- Department of Ultrasound imaging, Postgraduate Union training base of Xiangyang No.1 People's Hospital, School of Medicine, Wuhan University of Science and Technology, Xiangyang, Hubei, China
| | - Xue Liao
- Department of Ultrasound imaging, Postgraduate Union training base of Xiangyang No.1 People's Hospital, School of Medicine, Wuhan University of Science and Technology, Xiangyang, Hubei, China
| | - Yao Peng
- Department of Ultrasound imaging, Postgraduate Union training base of Xiangyang No.1 People's Hospital, School of Medicine, Wuhan University of Science and Technology, Xiangyang, Hubei, China
| | - Fuqi Yang
- Department of Endocrinology, Postgraduate Union training base of Xiangyang No.1 People's Hospital, School of Medicine, Wuhan University of Science andTechnology, Xiangyang, Hubei, China
| | - Weichao Liu
- Hubei Provincial Clinical Medical Research Center for Precise Diagnosis of Fetal Complex Deformities, Department of Ultrasound, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Mofeng Wang
- Hubei Provincial Clinical Medical Research Center for Precise Diagnosis of Fetal Complex Deformities, Department of Ultrasound, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Juan Song
- Hubei Provincial Clinical Medical Research Center for Precise Diagnosis of Fetal Complex Deformities, Department of Ultrasound, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Jiaqi Zhang
- Department of Ultrasound imaging, Postgraduate Union training base of Xiangyang No.1 People's Hospital, School of Medicine, Wuhan University of Science and Technology, Xiangyang, Hubei, China; Hubei Provincial Clinical Medical Research Center for Precise Diagnosis of Fetal Complex Deformities, Department of Ultrasound, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China.
| |
Collapse
|
3
|
Chang Z, Zhou Y, Dong L, Qiao LR, Yang H, Xu GK. Deciphering the complex mechanics of atherosclerotic plaques: A hybrid hierarchical theory-microrheology approach. Acta Biomater 2024; 189:399-412. [PMID: 39307259 DOI: 10.1016/j.actbio.2024.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 10/07/2024]
Abstract
Understanding the viscoelastic properties of atherosclerotic plaques at rupture-prone scales is crucial for assessing their vulnerability. Here, we develop a Hybrid Hierarchical theory-Microrheology (HHM) approach, enabling the analysis of multiscale mechanical variations and distribution changes in regional tissue viscoelasticity within plaques across different spatial scales. We disclose a universal two-stage power-law rheology in plaques, characterized by distinct power-law exponents (αshort and αlong), which serve as mechanical indexes for plaque components and assessing mechanical gradients. We further propose a self-similar hierarchical theory that effectively delineates plaque heterogeneity from the cytoplasm, cell, to tissue levels. Moreover, our proposed multi-layer perceptron model addresses the viscoelastic heterogeneity and gradients within plaques, offering a promising diagnostic strategy for identifying unstable plaques. These findings not only advance our understanding of plaque mechanics but also pave the way for innovative diagnostic approaches in cardiovascular disease management. STATEMENT OF SIGNIFICANCE: Our study pioneers a Hybrid Hierarchical theory-Microrheology (HHM) approach to dissect the intricate viscoelasticity of atherosclerotic plaques, focusing on distinct components including cap fibrosis, lipid pools, and intimal fibrosis. We unveil a universal two-stage power-law rheology capturing mechanical variations across plaque structures. The proposed hierarchical model adeptly captures viscoelasticity changes from cytoplasm, cell to tissue levels. Based on the newly proposed markers, we further develop a machine learning (ML) diagnostic model that sets precise criteria for evaluating plaque components and heterogeneity. This work not only reveals the comprehensive mechanical heterogeneity within plaques but also introduces a mechanical marker-based ML strategy for assessing plaque conditions, offering a significant leap towards understanding and diagnosing atherosclerotic risks.
Collapse
Affiliation(s)
- Zhuo Chang
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yidan Zhou
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710000, China
| | - Le Dong
- School of Artificial Intelligence, Xidian University, Xi'an 710071, China
| | - Lin-Ru Qiao
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hui Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710000, China.
| | - Guang-Kui Xu
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
4
|
Kiernan MJ, Al Mukaddim R, Mitchell CC, Maybock J, Wilbrand SM, Dempsey RJ, Varghese T. Lumen segmentation using a Mask R-CNN in carotid arteries with stenotic atherosclerotic plaque. ULTRASONICS 2024; 137:107193. [PMID: 37952384 PMCID: PMC10841729 DOI: 10.1016/j.ultras.2023.107193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/19/2023] [Accepted: 10/29/2023] [Indexed: 11/14/2023]
Abstract
In patients at high risk for ischemic stroke, clinical carotid ultrasound is often used to grade stenosis, determine plaque burden and assess stroke risk. Analysis currently requires a trained sonographer to manually identify vessel and plaque regions, which is time and labor intensive. We present a method for automatically determining bounding boxes and lumen segmentation using a Mask R-CNN network trained on sonographer assisted ground-truth carotid lumen segmentations. Automatic lumen segmentation also lays the groundwork for developing methods for accurate plaque segmentation, and wall thickness measurements in cases with no plaque. Different training schemes are used to identify the Mask R-CNN model with the highest accuracy. Utilizing a single-channel B-mode training input, our model produces a mean bounding box intersection over union (IoU) of 0.81 and a mean lumen segmentation IoU of 0.75. However, we encountered errors in prediction when the jugular vein is the most prominently visualized vessel in the B-mode image. This was due to the fact that our dataset has limited instances of B-mode images with both the jugular vein and carotid artery where the vein is dominantly visualized. Additional training datasets are anticipated to mitigate this issue.
Collapse
Affiliation(s)
- Maxwell J Kiernan
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health (UW-SMPH), United States.
| | - Rashid Al Mukaddim
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health (UW-SMPH), United States
| | | | - Jenna Maybock
- Department of Neurological Surgery, UW-SMPH. Madison, WI, United States
| | | | - Robert J Dempsey
- Department of Neurological Surgery, UW-SMPH. Madison, WI, United States
| | - Tomy Varghese
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health (UW-SMPH), United States.
| |
Collapse
|
5
|
Schoenborn S, Pirola S, Woodruff MA, Allenby MC. Fluid-Structure Interaction Within Models of Patient-Specific Arteries: Computational Simulations and Experimental Validations. IEEE Rev Biomed Eng 2024; 17:280-296. [PMID: 36260570 DOI: 10.1109/rbme.2022.3215678] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality worldwide and its incidence is rising due to an aging population. The development and progression of CVD is directly linked to adverse vascular hemodynamics and biomechanics, whose in-vivo measurement remains challenging but can be simulated numerically and experimentally. The ability to evaluate these parameters in patient-specific CVD cases is crucial to better predict future disease progression, risk of adverse events, and treatment efficacy. While significant progress has been made toward patient-specific hemodynamic simulations, blood vessels are often assumed to be rigid, which does not consider the compliant mechanical properties of vessels whose malfunction is implicated in disease. In an effort to simulate the biomechanics of flexible vessels, fluid-structure interaction (FSI) simulations have emerged as promising tools for the characterization of hemodynamics within patient-specific cardiovascular anatomies. Since FSI simulations combine the blood's fluid domain with the arterial structural domain, they pose novel challenges for their experimental validation. This paper reviews the scientific work related to FSI simulations for patient-specific arterial geometries and the current standard of FSI model validation including the use of compliant arterial phantoms, which offer novel potential for the experimental validation of FSI results.
Collapse
|
6
|
Bianchini E, Guala A, Golemati S, Alastruey J, Climie RE, Dalakleidi K, Francesconi M, Fuchs D, Hartman Y, Malik AEF, Makūnaitė M, Nikita KS, Park C, Pugh CJA, Šatrauskienė A, Terentes-Printizios D, Teynor A, Thijssen D, Schmidt-Trucksäss A, Zupkauskienė J, Boutouyrie P, Bruno RM, Reesink KD. The Ultrasound Window Into Vascular Ageing: A Technology Review by the VascAgeNet COST Action. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2023; 42:2183-2213. [PMID: 37148467 DOI: 10.1002/jum.16243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/24/2023] [Accepted: 04/14/2023] [Indexed: 05/08/2023]
Abstract
Non-invasive ultrasound (US) imaging enables the assessment of the properties of superficial blood vessels. Various modes can be used for vascular characteristics analysis, ranging from radiofrequency (RF) data, Doppler- and standard B/M-mode imaging, to more recent ultra-high frequency and ultrafast techniques. The aim of the present work was to provide an overview of the current state-of-the-art non-invasive US technologies and corresponding vascular ageing characteristics from a technological perspective. Following an introduction about the basic concepts of the US technique, the characteristics considered in this review are clustered into: 1) vessel wall structure; 2) dynamic elastic properties, and 3) reactive vessel properties. The overview shows that ultrasound is a versatile, non-invasive, and safe imaging technique that can be adopted for obtaining information about function, structure, and reactivity in superficial arteries. The most suitable setting for a specific application must be selected according to spatial and temporal resolution requirements. The usefulness of standardization in the validation process and performance metric adoption emerges. Computer-based techniques should always be preferred to manual measures, as long as the algorithms and learning procedures are transparent and well described, and the performance leads to better results. Identification of a minimal clinically important difference is a crucial point for drawing conclusions regarding robustness of the techniques and for the translation into practice of any biomarker.
Collapse
Affiliation(s)
| | - Andrea Guala
- Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Spyretta Golemati
- Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Jordi Alastruey
- Department of Biomedical Engineering, King's College London, London, UK
| | - Rachel E Climie
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
- INSERM, U970, Paris Cardiovascular Research Center (PARCC), Université de Paris, Hopital Europeen Georges Pompidou - APHP, Paris, France
| | - Kalliopi Dalakleidi
- Biomedical Simulations and Imaging (BIOSIM) Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
| | - Martina Francesconi
- Institute of Clinical Physiology, CNR, Pisa, Italy
- University of Pisa, Pisa, Italy
| | - Dieter Fuchs
- Fujifilm VisualSonics, Amsterdam, The Netherlands
| | - Yvonne Hartman
- Department of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Afrah E F Malik
- CARIM School for Cardiovascular Diseases and Heart and Vascular Center, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Monika Makūnaitė
- Biomedical Engineering Institute, Kaunas University of Technology, Kaunas, Lithuania
| | - Konstantina S Nikita
- Biomedical Simulations and Imaging (BIOSIM) Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
| | - Chloe Park
- MRC Unit for Lifelong Health and Ageing, University College London, London, UK
| | - Christopher J A Pugh
- Cardiff School of Sport & Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Agnė Šatrauskienė
- Clinic of Cardiac and Vascular Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- Centre of Cardiology and Angiology, Vilnius University Hospital Santaros klinikos, Vilnius, Lithuania
| | - Dimitrios Terentes-Printizios
- First Department of Cardiology, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandra Teynor
- Faculty of Computer Science, Augsburg University of Applied Sciences, Augsburg, Germany
| | - Dick Thijssen
- Department of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arno Schmidt-Trucksäss
- Department of Sport, Exercise and Health, Division Sport and Exercise Medicine, University of Basel, Basel, Switzerland
| | - Jūratė Zupkauskienė
- Clinic of Cardiac and Vascular Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Pierre Boutouyrie
- INSERM, U970, Paris Cardiovascular Research Center (PARCC), Université de Paris, Hopital Europeen Georges Pompidou - APHP, Paris, France
| | - Rosa Maria Bruno
- INSERM, U970, Paris Cardiovascular Research Center (PARCC), Université de Paris, Hopital Europeen Georges Pompidou - APHP, Paris, France
| | - Koen D Reesink
- CARIM School for Cardiovascular Diseases and Heart and Vascular Center, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
7
|
Mukaddim RA, Liu Y, Graham M, Eickhoff JC, Weichmann AM, Tattersall MC, Korcarz CE, Stein JH, Varghese T, Eliceiri KW, Mitchell C. In Vivo Adaptive Bayesian Regularized Lagrangian Carotid Strain Imaging for Murine Carotid Arteries and Its Associations With Histological Findings. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:2103-2112. [PMID: 37400303 PMCID: PMC10527160 DOI: 10.1016/j.ultrasmedbio.2023.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 07/05/2023]
Abstract
OBJECTIVES Non-invasive methods for monitoring arterial health and identifying early injury to optimize treatment for patients are desirable. The objective of this study was to demonstrate the use of an adaptive Bayesian regularized Lagrangian carotid strain imaging (ABR-LCSI) algorithm for monitoring of atherogenesis in a murine model and examine associations between the ultrasound strain measures and histology. METHODS Ultrasound radiofrequency (RF) data were acquired from both the right and left common carotid artery (CCA) of 10 (5 male and 5 female) ApoE tm1Unc/J mice at 6, 16 and 24 wk. Lagrangian accumulated axial, lateral and shear strain images and three strain indices-maximum accumulated strain index (MASI), peak mean strain of full region of interest (ROI) index (PMSRI) and strain at peak axial displacement index (SPADI)-were estimated using the ABR-LCSI algorithm. Mice were euthanized (n = 2 at 6 and 16 wk, n = 6 at 24 wk) for histology examination. RESULTS Sex-specific differences in strain indices of mice at 6, 16 and 24 wk were observed. For male mice, axial PMSRI and SPADI changed significantly from 6 to 24 wk (mean axial PMSRI at 6 wk = 14.10 ± 5.33% and that at 24 wk = -3.03 ± 5.61%, p < 0.001). For female mice, lateral MASI increased significantly from 6 to 24 wk (mean lateral MASI at 6 wk = 10.26 ± 3.13% and that at 24 wk = 16.42 ± 7.15%, p = 0.048). Both cohorts exhibited strong associations with ex vivo histological findings (male mice: correlation between number of elastin fibers and axial PMSRI: rs = 0.83, p = 0.01; female mice: correlation between shear MASI and plaque score: rs = 0.77, p = 0.009). CONCLUSION The results indicate that ABR-LCSI can be used to measure arterial wall strain in a murine model and that changes in strain are associated with changes in arterial wall structure and plaque formation.
Collapse
Affiliation(s)
- Rashid Al Mukaddim
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Yuming Liu
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA
| | - Melissa Graham
- Research Animal Resources and Compliance, Comparative Pathology Laboratory, University of Wisconsin-Madison, Madison, WI, USA
| | - Jens C Eickhoff
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Ashley M Weichmann
- Small Animal Imaging and Radiotherapy Facility, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Claudia E Korcarz
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - James H Stein
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Tomy Varghese
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Kevin W Eliceiri
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA; Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA; Small Animal Imaging and Radiotherapy Facility, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Morgridge Institute for Research, Madison, WI, USA
| | - Carol Mitchell
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
8
|
Karageorgos GM, Liang P, Mobadersany N, Gami P, Konofagou EE. Unsupervised deep learning-based displacement estimation for vascular elasticity imaging applications. Phys Med Biol 2023; 68:10.1088/1361-6560/ace0f0. [PMID: 37348487 PMCID: PMC10528442 DOI: 10.1088/1361-6560/ace0f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 06/22/2023] [Indexed: 06/24/2023]
Abstract
Objective. Arterial wall stiffness can provide valuable information on the proper function of the cardiovascular system. Ultrasound elasticity imaging techniques have shown great promise as a low-cost and non-invasive tool to enable localized maps of arterial wall stiffness. Such techniques rely upon motion detection algorithms that provide arterial wall displacement estimation.Approach. In this study, we propose an unsupervised deep learning-based approach, originally proposed for image registration, in order to enable improved quality arterial wall displacement estimation at high temporal and spatial resolutions. The performance of the proposed network was assessed through phantom experiments, where various models were trained by using ultrasound RF signals, or B-mode images, as well as different loss functions.Main results. Using the mean square error (MSE) for the training process provided the highest signal-to-noise ratio when training on the B-modes images (30.36 ± 1.14 dB) and highest contrast-to-noise ratio when training on the RF signals (32.84 ± 1.89 dB). In addition, training the model on RF signals demonstrated the capability of providing accurate localized pulse wave velocity (PWV) maps, with a mean relative error (MREPWV) of 3.32 ± 1.80% and anR2 of 0.97 ± 0.03. Finally, the developed model was tested in human common carotid arteriesin vivo, providing accurate tracking of the distension pulse wave propagation, with an MREPWV= 3.86 ± 2.69% andR2 = 0.95 ± 0.03.Significance. In conclusion, a novel displacement estimation approach was presented, showing promise in improving vascular elasticity imaging techniques.
Collapse
Affiliation(s)
- Grigorios M Karageorgos
- Biomedical Engineering Department, Columbia University, New York, NY, United States of America
| | - Pengcheng Liang
- Biomedical Engineering Department, Columbia University, New York, NY, United States of America
| | - Nima Mobadersany
- Department of Radiology, Columbia University, New York, NY, United States of America
| | - Parth Gami
- Biomedical Engineering Department, Columbia University, New York, NY, United States of America
| | - Elisa E Konofagou
- Biomedical Engineering Department, Columbia University, New York, NY, United States of America
- Department of Radiology, Columbia University, New York, NY, United States of America
| |
Collapse
|
9
|
Anand KS, Torres G, Homeister JW, Caughey MC, Gallippi CM. Comparing Focused-Tracked and Plane Wave-Tracked ARFI Log(VoA) In Silico and in Application to Human Carotid Atherosclerotic Plaque, Ex Vivo. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:636-652. [PMID: 37216241 PMCID: PMC10330788 DOI: 10.1109/tuffc.2023.3278495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A significant risk factor for ischemic stroke is carotid atherosclerotic plaque that is susceptible to rupture, with rupture potential conveyed by plaque morphology. Human carotid plaque composition and structure have been delineated noninvasively and in vivo by evaluating log(VoA), a parameter derived as the decadic log of the second time derivative of displacement induced by an acoustic radiation force impulse (ARFI). In prior work, ARFI-induced displacement was measured using conventional focused tracking; however, this requires a long data acquisition period, thereby reducing framerate. We herein evaluate if ARFI log(VoA) framerate can be increased without a reduction in plaque imaging performance using plane wave tracking instead. In silico, both focused- and plane wave-tracked log(VoA) decreased with increasing echobrightness, quantified as signal-to-noise ratio (SNR), but did not vary with material elasticity for SNRs below 40 dB. For SNRs of 40-60 dB, both focused- and plane wave-tracked log(VoA) varied with SNR and material elasticity. Above 60 dB SNR, both focused- and plane wave-tracked log(VoA) varied with material elasticity alone. This suggests that log(VoA) discriminates features according to a combination of their echobrightness and mechanical property. Further, while both focused- and plane-wave tracked log(VoA) values were artifactually inflated by mechanical reflections at inclusion boundaries, plane wave-tracked log(VoA) was more strongly impacted by off-axis scattering. Applied to three excised human cadaveric carotid plaques with spatially aligned histological validation, both log(VoA) methods detected regions of lipid, collagen, and calcium (CAL) deposits. These findings support that plane wave tracking performs comparably to focused tracking for log(VoA) imaging and that plane wave-tracked log(VoA) is a viable approach to discriminating clinically relevant atherosclerotic plaque features at a 30-fold higher framerate than by focused tracking.
Collapse
|
10
|
Ma T, Shi X, Yuan C, Yang Y, Guan L, Li Y, Zhang W, Mu Y, Cheng X. Contrast-Enhanced Ultrasound Combined With 2D Strain Imaging and Histopathological Multimodal Assessment of Carotid Plaque Vulnerability. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1595-1601. [PMID: 37088605 DOI: 10.1016/j.ultrasmedbio.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/25/2023] [Accepted: 03/06/2023] [Indexed: 05/03/2023]
Abstract
OBJECTIVE The aim of this study was to explore the value of contrast-enhanced ultrasound (CEUS) combined with 2-D strain imaging in evaluating carotid plaque vulnerability and the correlations among CEUS perfusion parameters, strain parameters and histopathological findings in different plaque segments. METHODS Patients with carotid artery stenosis who underwent carotid endarterectomy (CEA) at the First Affiliated Hospital of Xinjiang Medical University from September 2020 to June 2021 underwent preoperative carotid artery 2-D ultrasonography and CEUS. The plaques were divided into three segments: the proximal end of the shoulder, central cap and distal end of the shoulder. The peak intensity (PI) value and strain rate parameters of the regions of interest were analyzed. Plaques were divided into a stable group (8 cases) and an unstable group (19 cases). The microvascular density (MVD) and vascular endothelial growth factor (VEGF) expression of each patch in the unstable group were analyzed. RESULTS The peak strain during the systolic period in each plaque segment in both groups showed the following pattern: proximal end shoulder > distal end shoulder > top (p < 0.05). The PI value for CEUS is also represented. In the unstable group, the PI values of each segment of the plaque were positively correlated with the MVD, near-center PI value and VEGF average optical density value. The average optical density of each segment was positively correlated with the MVD (p < 0.05). There were positive correlations between the PI values of the proximal and distal shoulder and the strain values (p < 0.05), and the MVD value of each segment, VEGF value and strain value were positively correlated (p < 0.05). CONCLUSION PI and the pathological tissue components represented by CEUS were positively correlated with the mechanical parameters of the plaque along the long axis. There may be overlap between the high shear stress area of the plaque and the neovascular aggregation area, and the combination of the two has certain significance for assessing the vulnerability of the plaque.
Collapse
Affiliation(s)
- Ting Ma
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China; Key Laboratory of Ultrasound Medicine of Xinjiang, Urumqi, China
| | - Xuan Shi
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China; Key Laboratory of Ultrasound Medicine of Xinjiang, Urumqi, China
| | - Chen Yuan
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China; Key Laboratory of Ultrasound Medicine of Xinjiang, Urumqi, China
| | - Yuanyuan Yang
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China; Key Laboratory of Ultrasound Medicine of Xinjiang, Urumqi, China
| | - Lina Guan
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China; Key Laboratory of Ultrasound Medicine of Xinjiang, Urumqi, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yanhong Li
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China; Key Laboratory of Ultrasound Medicine of Xinjiang, Urumqi, China
| | - Wei Zhang
- Department of Pathology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yuming Mu
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China; Key Laboratory of Ultrasound Medicine of Xinjiang, Urumqi, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.
| | - Xiaojiang Cheng
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
11
|
Identification Markers of Carotid Vulnerable Plaques: An Update. Biomolecules 2022; 12:biom12091192. [PMID: 36139031 PMCID: PMC9496377 DOI: 10.3390/biom12091192] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
Vulnerable plaques have been a hot topic in the field of stroke and carotid atherosclerosis. Currently, risk stratification and intervention of carotid plaques are guided by the degree of luminal stenosis. Recently, it has been recognized that the vulnerability of plaques may contribute to the risk of stroke. Some classical interventions, such as carotid endarterectomy, significantly reduce the risk of stroke in symptomatic patients with severe carotid stenosis, while for asymptomatic patients, clinically silent plaques with rupture tendency may expose them to the risk of cerebrovascular events. Early identification of vulnerable plaques contributes to lowering the risk of cerebrovascular events. Previously, the identification of vulnerable plaques was commonly based on imaging technologies at the macroscopic level. Recently, some microscopic molecules pertaining to vulnerable plaques have emerged, and could be potential biomarkers or therapeutic targets. This review aimed to update the previous summarization of vulnerable plaques and identify vulnerable plaques at the microscopic and macroscopic levels.
Collapse
|
12
|
Wang B, Zhou Y, Wang Y, Li X, He L, Wen Z, Cao T, Sun L, Wu D. Three-Dimensional Intravascular Ultrasound Imaging Using a Miniature Helical Ultrasonic Motor. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:681-690. [PMID: 34860650 DOI: 10.1109/tuffc.2021.3132607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Existing 3-D intravascular ultrasound (IVUS) systems that combine two electromagnetic (EM) motors to drive catheters are bulky and require considerable efforts to eliminate EM interference (EMI). Here, we propose a new scanning method to realize 3-D IVUS imaging using a helical ultrasonic motor to overcome the aforementioned issues. The ultrasonic motor with compact dimensions (7-mm outer diameter and 30-mm longitudinal length), lightweight (20.5 g), and free of EMI exhibits a great application potential in mobile imaging devices. In particular, it can simultaneously perform rotary and linear motions, facilitating precise 3-D scanning of an imaging catheter. Experimental results show that the signal-to-noise ratio (SNR) of raw images obtained using the ultrasonic motor is 5.3 dB better than that of an EM motor. Moreover, the proposed imaging device exhibits the maximum rotary speed of 12.3 r/s and the positioning accuracy of 2.6 [Formula: see text] at a driving voltage of 240 Vp-p. The 3-D wire phantom imaging and 3-D tube phantom imaging are performed to evaluate the performance of the imaging device. Finally, the in vitro imaging of a porcine coronary artery demonstrates that the layered architecture of the vessel can be precisely identified while significantly increasing the SNR of the raw images.
Collapse
|
13
|
Matera R, Ricci S. Automatic Measurement of the Carotid Blood Flow for Wearable Sensors: A Pilot Study. SENSORS 2021; 21:s21175877. [PMID: 34502768 PMCID: PMC8434437 DOI: 10.3390/s21175877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 01/09/2023]
Abstract
The assessment of the velocity of blood flowing in the carotid, in modern clinical practice, represents an important exam performed both in emergency situations and as part of scheduled screenings. It is typically performed by an expert sonographer who operates a complex and costly clinical echograph. Unfortunately, in developing countries, in rural areas, and even in crowded modern cities, the access to this exam can be limited by the lack of suitable personnel and ultrasound equipment. The recent availability of low-cost, handheld devices has contributed to solving part of the problem, but a wide access to the exam is still hampered by the lack of expert sonographers. In this work, an automated procedure is presented with the hope that, in the near future, it can be integrated into a low-cost, handheld instrument that is also suitable for self-measurement, for example, as can be done today with the finger oximeter. The operator should only place the probe on the neck, transversally with respect to the common tract of the carotid. The system, in real-time, automatically locates the vessel lumen, places the sample volume, and performs an angle-corrected velocity measurement of the common carotid artery peak velocity. In this study, the method was implemented for testing on the ULA-OP 256 scanner. Experiments on flow phantoms and volunteers show a performance in sample volume placement similar to that achieved by expert operators, and an accuracy and repeatability of 3.2% and 4.5%, respectively.
Collapse
|
14
|
Troy AM, Cheng HM. Human microvascular reactivity: a review of vasomodulating stimuli and non-invasive imaging assessment. Physiol Meas 2021; 42. [PMID: 34325417 DOI: 10.1088/1361-6579/ac18fd] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/29/2021] [Indexed: 11/11/2022]
Abstract
The microvasculature serves an imperative function in regulating perfusion and nutrient exchange throughout the body, adaptively altering blood flow to preserve hemodynamic and metabolic homeostasis. Its normal functioning is vital to tissue health, whereas its dysfunction is present in many chronic conditions, including diabetes, heart disease, and cognitive decline. As microvascular dysfunction often appears early in disease progression, its detection can offer early diagnostic information. To detect microvascular dysfunction, one uses imaging to probe the microvasculature's ability to react to a stimulus, also known as microvascular reactivity (MVR). An assessment of MVR requires an integrated understanding of vascular physiology, techniques for stimulating reactivity, and available imaging methods to capture the dynamic response. Practical considerations, including compatibility between the selected stimulus and imaging approach, likewise require attention. In this review, we provide a comprehensive foundation necessary for informed imaging of MVR, with a particular focus on the challenging endeavor of assessing microvascular function in deep tissues.
Collapse
Affiliation(s)
- Aaron M Troy
- Institute of Biomedical Engineering, University of Toronto, Toronto, CANADA
| | | |
Collapse
|
15
|
Ohtani R, Nirengi S, Sakane N. Association Between Serum Apolipoprotein A1 Levels, Ischemic Stroke Subtypes and Plaque Properties of the Carotid Artery. J Clin Med Res 2020; 12:598-603. [PMID: 32849948 PMCID: PMC7430921 DOI: 10.14740/jocmr4284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 07/22/2020] [Indexed: 11/23/2022] Open
Abstract
Background This study aimed to investigate the association between serum apolipoprotein A1 (ApoA1) levels, ischemic stroke subtypes and plaque properties. Methods We enrolled 92 patients with ischemic stroke and 21 age-matched controls (CONT). The stroke patients were divided into three subtypes: cardioembolic (CE, n = 15), atherothrombotic infraction (ATBI, n = 52), and lacunar infarction (LI, n = 25). Carotid plaques were classified as low, intermediate, or high intensity, and either simple or mixed type. Serum lipids (total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglyceride (TG)), ApoA1, and ApoB were analyzed using commercially available kits. Results There was no difference in TC, LDL-C, HDL-C, and ApoB levels among the four groups. Serum ApoA1 levels in the ATBI group were significantly lower compared with the CONT group. Among the ATBI group, the serum ApoA1 levels in the low-intensity plaque-type were significantly lower than those in the intermediate or hard-intensity plaque-type. Furthermore, serum ApoA1 levels in the mixed plaque-type were significantly lower than those in the simple type. Conclusions These findings suggest that serum ApoA1 levels might be associated with the development of ATBI and plaque properties of the carotid artery.
Collapse
Affiliation(s)
- Ryo Ohtani
- Department of Neurology, National Hospital Organization Kyoto Medical Center, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto 612-8555, Japan
| | - Shinsuke Nirengi
- Division of Preventive Medicine, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto 612-8555, Japan
| | - Naoki Sakane
- Division of Preventive Medicine, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto 612-8555, Japan
| |
Collapse
|
16
|
Meshram NH, Mitchell CC, Wilbrand S, Dempsey RJ, Varghese T. Deep Learning for Carotid Plaque Segmentation using a Dilated U-Net Architecture. ULTRASONIC IMAGING 2020; 42:221-230. [PMID: 32885739 PMCID: PMC8045553 DOI: 10.1177/0161734620951216] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Carotid plaque segmentation in ultrasound longitudinal B-mode images using deep learning is presented in this work. We report on 101 severely stenotic carotid plaque patients. A standard U-Net is compared with a dilated U-Net architecture in which the dilated convolution layers were used in the bottleneck. Both a fully automatic and a semi-automatic approach with a bounding box was implemented. The performance degradation in plaque segmentation due to errors in the bounding box is quantified. We found that the bounding box significantly improved the performance of the networks with U-Net Dice coefficients of 0.48 for automatic and 0.83 for semi-automatic segmentation of plaque. Similar results were also obtained for the dilated U-Net with Dice coefficients of 0.55 for automatic and 0.84 for semi-automatic when compared to manual segmentations of the same plaque by an experienced sonographer. A 5% error in the bounding box in both dimensions reduced the Dice coefficient to 0.79 and 0.80 for U-Net and dilated U-Net respectively.
Collapse
Affiliation(s)
- Nirvedh H Meshram
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Department of Electrical and Computer Engineering, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Carol C Mitchell
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Stephanie Wilbrand
- Department of Neurological Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Robert J Dempsey
- Department of Neurological Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Tomy Varghese
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Department of Electrical and Computer Engineering, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
17
|
Thomas LC, Chan K, Durbridge G. Changes in internal carotid and vertebral arterial wall stiffness with head movement can be detected with shear wave elastography. J Man Manip Ther 2020; 28:103-110. [PMID: 31663837 PMCID: PMC7170308 DOI: 10.1080/10669817.2019.1686210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Background: Safe practice is important for patients with neck pain, with the potential for injury to cervical arteries. Cervical manipulation or end range techniques/positions may place considerable strain on the arteries. Altered integrity of the arterial wall may render them more susceptible to minor trauma, particularly in the upper cervical region. Screening of blood flow velocity is limited for predicting those at risk. Examining properties of the cervical arterial wall (stiffness characteristics) and their response to head movement may provide an alternate measure of arterial susceptibility.Objectives: To investigate whether shear wave ultrasound elastography can detect any changes in internal carotid (ICA) and vertebral (VA) arterial wall stiffness in neutral compared with contralateral head rotation.Design: Observational studyMethods: Shear wave ultrasound elastography was used to measure the stiffness of the ICA and VA. Shear wave velocity (m/s), indicative of arterial stiffness, was measured in both arteries proximally (C3-4) and distally (C1-2) in neutral and contralateral head rotation as were intimal thickness (mm) and flow velocity (cm/s).Results: Thirty participants (20-62 years) were successfully imaged. The VA was stiffer than ICA and it became significantly stiffer in contralateral rotation (p = 0.05). The ICA became significantly less stiff (p = 0.01). Effects were more apparent at C1-2 but significant in the ICA only (p = 0.03). Flow velocity and intimal thickness were unchanged in rotation.Conclusions: Changes in VA and ICA arterial wall stiffness can be measured with shear wave ultrasound elastography. This measure may ultimately help identify arteries with greater vulnerability to rotational stresses.
Collapse
Affiliation(s)
- Lucy Caroline Thomas
- School of Health and Rehabilitation Sciences, University of Queensland, St Lucia, Australia
| | - Kalos Chan
- School of Health and Rehabilitation Sciences, University of Queensland, St Lucia, Australia
| | - Gail Durbridge
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
| |
Collapse
|
18
|
Latha S, Samiappan D, Kumar R. Carotid artery ultrasound image analysis: A review of the literature. Proc Inst Mech Eng H 2020; 234:417-443. [PMID: 31960771 DOI: 10.1177/0954411919900720] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Stroke is one of the prominent causes of death in the recent days. The existence of susceptible plaque in the carotid artery can be used in ascertaining the possibilities of cardiovascular diseases and long-term disabilities. The imaging modality used for early screening of the disease is B-mode ultrasound image of the person in the artery area. The objective of this article is to give a widespread review of the imaging modes and methods used for studying the carotid artery for identifying stroke, atherosclerosis and related cardiovascular diseases. We encompass the review in methods used for artery wall tracking, intima-media, and lumen segmentation which will help in finding the extent of the disease. Due to the characteristics of the imaging modality used, the images have speckle noise which worsens the image quality. Adaptive homomorphic filtering with wavelet and contourlet transforms, Levy Shrink, gamma distribution were used for image denoising. Learning-based neural network approaches for denoising give better edge preservation. Domain knowledge-based segmentation approaches have proved to provide more accurate intima-media thickness measurements. There is a requirement of useful fully automatic segmentation approaches, 3D, 4D systems, and plaque motion analysis. Taking into consideration the image priors like geometry, imaging physics, intensity and temporal data, image analysis has to be performed. Encouragingly more research has focused on content-specific segmentation and classification techniques. With the evaluation of machine learning algorithms, classifying the image as with or without a fat deposit has gained better accuracy and sensitivity. Machine learning-based approaches like self-organizing map, k-nearest neighborhood and support vector machine achieve promising accuracy and sensitivity in classification. The literature reveals that there is more scope in identifying a patient-specific model in a fully automatic manner.
Collapse
Affiliation(s)
- S Latha
- Department of Electronics and Communication Engineering, SRM Institute of Science and Technology, Chennai, India
| | - Dhanalakshmi Samiappan
- Department of Electronics and Communication Engineering, SRM Institute of Science and Technology, Chennai, India
| | - R Kumar
- Department of Electronics and Communication Engineering, SRM Institute of Science and Technology, Chennai, India
| |
Collapse
|
19
|
Karageorgos GM, Apostolakis IZ, Nauleau P, Gatti V, Weber R, Konofagou EE. Atherosclerotic plaque mechanical characterization coupled with vector Doppler imaging in atherosclerotic carotid arteries in-vivo. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:6200-6203. [PMID: 31947259 DOI: 10.1109/embc.2019.8857609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Methods used in clinical practice to diagnose and monitor atherosclerosis present limitations. Imaging the mechanical properties of the arterial wall has demonstrated the potential evaluate plaque vulnerability and assess the risk for stroke. Adaptive Pulse Wave Imaging (PWI) is a non-invasive ultrasound imaging technique, which automatically detects points of spatial mechanical inhomogeneity along the imaged artery and provides piecewise stiffness characterization. The aims of the present study are to: 1) demonstrate the initial feasibility of adaptive PWI to image the mechanical properties of an atherosclerotic plaque 2) demonstrate the feasibility to combine adaptive PWI with vector Doppler in a single imaging modality in order to simultaneously obtain information plaque mechanical properties and plaque hemodynamics. The common carotid arteries of 1 healthy subject and 2 carotid artery disease patients were scanned in vivo. One of the patients underwent carotid endarterectomy and a plaque sample was retrieved. In this patient, a higher compliance value of the stenotic segment was estimated by Adaptive PWI as compared with the adjacent arterial wall, and the healthy carotid artery. This was corroborated by histological staining of the plaque sample, which revealed the presence of a large necrotic core and a thrombus, characteristics associated with reduced stiffness. Moreover, the same sequence demonstrated the feasibility to obtain both stiffness maps and vector flow information, showing promise in atherosclerosis diagnosis and patient care.
Collapse
|
20
|
Karageorgos GM, Apostolakis IZ, Nauleau P, Gatti V, Weber R, Connolly ES, Miller EC, Konofagou EE. Arterial wall mechanical inhomogeneity detection and atherosclerotic plaque characterization using high frame rate pulse wave imaging in carotid artery disease patients in vivo. Phys Med Biol 2020; 65:025010. [PMID: 31746784 DOI: 10.1088/1361-6560/ab58fa] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pulse wave imaging (PWI) is a non-invasive, ultrasound-based technique, which provides information on arterial wall stiffness by estimating the pulse wave velocity (PWV) along an imaged arterial wall segment. The aims of the present study were to: (1) utilize the PWI information to automatically and optimally divide the artery into the segments with most homogeneous properties and (2) assess the feasibility of this method to provide arterial wall mechanical characterization in normal and atherosclerotic carotid arteries in vivo. A silicone phantom consisting of a soft and stiff segment along its longitudinal axis was scanned at the stiffness transition, and the PWV in each segment was estimated through static testing. The proposed algorithm detected the stiffness interface with an average error of 0.98 ± 0.49 mm and 1.04 ± 0.27 mm in the soft-to-stiff and stiff-to-soft pulse wave transmission direction, respectively. Mean PWVs estimated in the case of the soft-to-stiff pulse wave transmission direction were 2.47 [Formula: see text] 0.04 m s-1 and 3.43 [Formula: see text] 0.08 m s-1 for the soft and stiff phantom segments, respectively, while in the case of stiff-to-soft transmission direction PWVs were 2.60 [Formula: see text] 0.18 m s-1 and 3.72 [Formula: see text] 0.08 m s-1 for the soft and stiff phantom segments, respectively, which were in good agreement with the PWVs obtained through static testing (soft segment: 2.41 m s-1, stiff segment: 3.52 m s-1). Furthermore, the carotid arteries of N = 9 young subjects (22-32 y.o.) and N = 9 elderly subjects (60-73 y.o.) with no prior history of carotid artery disease were scanned, in vivo, as well as the atherosclerotic carotid arteries of N = 12 (59-85 y.o.) carotid artery disease patients. One-way ANOVA with Holm-Sidak correction showed that the number of most homogeneous segments in which the artery was divided was significantly higher in the case of carotid artery disease patients compared to young (3.25 [Formula: see text] 0.86 segments versus 1.00 [Formula: see text] 0.00 segments, p -value < 0.0001) and elderly non-atherosclerotic subjects (3.25 [Formula: see text] 0.86 segments versus 1.44 [Formula: see text] 0.51 segments p -value < 0.0001), indicating increased wall inhomogeneity in atherosclerotic arteries. The compliance provided by the proposed algorithm was significantly higher in non-calcified/high-lipid plaques as compared with calcified plaques (3.35 [Formula: see text] 2.45 *[Formula: see text] versus 0.22 [Formula: see text] 0.18 * [Formula: see text], p -value < 0.01) and the compliance estimated in elderly subjects (3.35 [Formula: see text] 2.45 * [Formula: see text] versus 0.79 [Formula: see text] 0.30 * [Formula: see text], p -value < 0.01). Moreover, lower compliance was estimated in cases where vulnerable plaque characteristics were present (i.e. necrotic lipid core, thrombus), compared to stable plaque components (calcification), as evaluated through plaque histological examination. The proposed algorithm was thus capable of evaluating arterial wall inhomogeneity and characterize wall mechanical properties, showing promise in vascular disease diagnosis and monitoring.
Collapse
Affiliation(s)
- Grigorios M Karageorgos
- Department of Biomedical Engineering, Columbia University, New York, NY, United States of America. Grigorios M Karageorgos and Iason Z Apostolakis contributed equally to this work
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Apostolakis LZ, Karageorgos GM, Nauleau P, Nandlall SD, Konofagou EE. Adaptive Pulse Wave Imaging: Automated Spatial Vessel Wall Inhomogeneity Detection in Phantoms and in-Vivo. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:259-269. [PMID: 31265387 PMCID: PMC6938555 DOI: 10.1109/tmi.2019.2926141] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Imaging arterial mechanical properties may improve vascular disease diagnosis. Pulse wave velocity (PWV) is a marker of arterial stiffness linked to cardio-vascular mortality. Pulse wave imaging (PWI) is a technique for imaging the pulse wave propagation at high spatial and temporal resolution. In this paper, we introduce adaptive PWI, a technique for the automated partition of heterogeneous arteries into individual segments characterized by most homogeneous pulse wave propagation, allowing for more robust PWV estimation. This technique was validated in a silicone phantom with a soft-stiff interface. The mean detection error of the interface was 4.67 ± 0.73 mm and 3.64 ± 0.14 mm in the stiff-to-soft and soft-to-stiff pulse wave transmission direction, respectively. This technique was tested in monitoring the progression of atherosclerosis in mouse aortas in vivo ( n = 11 ). The PWV was found to already increase at the early stage of 10 weeks of high-fat diet (3.17 ± 0.67 m/sec compared to baseline 2.55 ± 0.47 m/sec, ) and further increase after 20 weeks of high-fat diet (3.76±1.20 m/sec). The number of detected segments of the imaged aortas monotonically increased with the duration of high-fat diet indicating an increase in arterial wall property inhomogeneity. The performance of adaptive PWI was also tested in aneurysmal mouse aortas in vivo. Aneurysmal boundaries were detected with a mean error of 0.68±0.44 mm. Finally, initial feasibility was shown in the carotid arteries of healthy and atherosclerotic human subjects in vivo ( n = 3 each). Consequently, adaptive PWI was successful in detecting stiffness inhomogeneity at its early onset and monitoring atherosclerosis progression in vivo.
Collapse
Affiliation(s)
| | | | - Pierre Nauleau
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Sacha D. Nandlall
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Elisa E. Konofagou
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Radiology, Columbia University, New York, NY, USA
| |
Collapse
|
22
|
Li M, Li L, Wu W, Jiang Y, Zhang P. Biomechanical characteristics of isolated carotid atherosclerotic plaques assessed by ultrasonography. INT ANGIOL 2019; 38:443-450. [PMID: 31782278 DOI: 10.23736/s0392-9590.19.04174-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND The aim of this study was to assess the biomechanical characteristics of carotid atherosclerotic plaques using intima-media thickness (IMT) automatic tracking combined with acoustic densitometry (AD) imaging, and to elucidate the relationship between biomechanical characteristics and inflammatory activity of corresponding plaques evaluated by 18F-Fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT). METHODS Sixty-one patients with isolated carotid atherosclerotic plaques underwent conventional carotid ultrasonography, IMT automatic tracking, and acoustic densitometry (AD) imaging. Following these assessments, patients received an 18F-FDG PET/CT scan within 24 hours. We quantified biomechanical and AD parameters including IMT strain rate (SR), IMT time strain rate (TR), and corrected average image intensity value (AIIc%) on the upstream, fibrous cap top, and downstream regions of the plaque and compared them to the reference area(normal intima adjacent to the upstream of the assessed plaque). Target background ratio (TBR) was acquired by 18F-FDG PET/CT for evaluating the inflammatory activity of corresponding plaques. We further divided all participants into an inflammatory group (TBR≥1.25) and non-inflammatory group (TBR<1.25) measures of SR/TR and AIIc% in the two groups were compared and analyzed. RESULTS SR/TR were significantly lower in the plaque group when compared to reference area. SR/TR at the cap top area (CTA) and downstream area (DA) of the plaques were lower than those in the reference area (P<0.05) while there was no statistically significant difference in SR or TR of the upstream area (UA) between the plaque and reference area. SR/TR were significantly greater for UA than CTA and DA (P<0.05 for both). AIIc% was significantly lower for UA and CTA than that for DA (P<0.05). The SR/TR of plaque regions were negatively correlated with corresponding AIIc% (r=-0.74, r=-0.75, P<0.05). TR in the inflammatory group was significantly lower than in the non-inflammatory group (P<0.05), while SR and AIIc% showed no statistically significant difference. TR demonstrated a significant negative correlation with TBR (r=-0.83, P<0.05). Receiver operating characteristic curve (ROC) analysis showed that the area under the curve (AUC) of TR was 0.87. Furthermore, TR less than 75.06‰ demonstrated a sensitivity of 88.0% and a specificity of 80.6% for the identification of inflammatory plaques. CONCLUSIONS IMT automatic tracking, combined with AD imaging, can be applied to identify the anisotropic biomechanical features of carotid plaques. This novel imaging modality may be used to provide an early assessment of the biomechanical characteristics of carotid plaques. Additionally, the TR parameter was associated with plaque inflammation reaction, possibly providing a new indicator for the early identification of plaque vulnerability.
Collapse
Affiliation(s)
- Miao Li
- Department of Cardiovascular Ultrasound, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Lin Li
- Department of Cardiovascular Ultrasound, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wenfang Wu
- Department of Cardiovascular Ultrasound, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yehui Jiang
- Department of Cardiovascular Ultrasound, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Pingyang Zhang
- Department of Cardiovascular Ultrasound, Nanjing First Hospital, Nanjing Medical University, Nanjing, China -
| |
Collapse
|
23
|
Jaminon A, Reesink K, Kroon A, Schurgers L. The Role of Vascular Smooth Muscle Cells in Arterial Remodeling: Focus on Calcification-Related Processes. Int J Mol Sci 2019; 20:E5694. [PMID: 31739395 PMCID: PMC6888164 DOI: 10.3390/ijms20225694] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/31/2019] [Accepted: 11/08/2019] [Indexed: 12/22/2022] Open
Abstract
Arterial remodeling refers to the structural and functional changes of the vessel wall that occur in response to disease, injury, or aging. Vascular smooth muscle cells (VSMC) play a pivotal role in regulating the remodeling processes of the vessel wall. Phenotypic switching of VSMC involves oxidative stress-induced extracellular vesicle release, driving calcification processes. The VSMC phenotype is relevant to plaque initiation, development and stability, whereas, in the media, the VSMC phenotype is important in maintaining tissue elasticity, wall stress homeostasis and vessel stiffness. Clinically, assessment of arterial remodeling is a challenge; particularly distinguishing intimal and medial involvement, and their contributions to vessel wall remodeling. The limitations pertain to imaging resolution and sensitivity, so methodological development is focused on improving those. Moreover, the integration of data across the microscopic (i.e., cell-tissue) and macroscopic (i.e., vessel-system) scale for correct interpretation is innately challenging, because of the multiple biophysical and biochemical factors involved. In the present review, we describe the arterial remodeling processes that govern arterial stiffening, atherosclerosis and calcification, with a particular focus on VSMC phenotypic switching. Additionally, we review clinically applicable methodologies to assess arterial remodeling and the latest developments in these, seeking to unravel the ubiquitous corroborator of vascular pathology that calcification appears to be.
Collapse
Affiliation(s)
- Armand Jaminon
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
| | - Koen Reesink
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
| | - Abraham Kroon
- Department of Internal Medicine, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands;
| | - Leon Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
| |
Collapse
|
24
|
Varghese T, Meshram NH, Mitchell CC, Wilbrand SM, Hermann BP, Dempsey RJ. Lagrangian carotid strain imaging indices normalized to blood pressure for vulnerable plaque. JOURNAL OF CLINICAL ULTRASOUND : JCU 2019; 47:477-485. [PMID: 31168787 PMCID: PMC6760247 DOI: 10.1002/jcu.22739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/10/2019] [Accepted: 05/22/2019] [Indexed: 05/14/2023]
Abstract
OBJECTIVE Ultrasound Lagrangian carotid strain imaging (LCSI) utilizes physiological deformation caused by arterial pressure variations to generate strain tensor maps of the vessel walls and plaques. LCSI has been criticized for the lack of normalization of magnitude-based strain indices to physiological stimuli, namely blood pressure. We evaluated the impact of normalization of magnitude-based strain indices to blood pressure measured immediately after the acquisition of radiofrequency (RF) data loops for LCSI. MATERIALS AND METHODS A complete clinical ultrasound examination along with RF data loops for LCSI was performed on 50 patients (30 males and 20 females) who presented with >60% carotid stenosis and were scheduled for carotid endarterectomy. Cognition was assessed using the 60-minute neuropsychological test protocol. RESULTS For axial strains correlation of maximum accumulated strain indices (MASI), cognition scores were -0.46 for non-normalized and -0.45, -0.49, -0.37, and -0.48 for systolic, diastolic, pulse pressure, and mean arterial pressure normalized data, respectively. The corresponding area under the curve (AUC) values for classifiers designed using maximum likelihood estimation of a binormal distribution with a median-split of the executive function cognition scores were 0.73, 0.70, 0.71, 0.70, and 0.71, respectively. CONCLUSIONS No significant differences in the AUC estimates were obtained between normalized and non-normalized magnitude-based strain indices.
Collapse
Affiliation(s)
- Tomy Varghese
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Nirvedh H Meshram
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Carol C Mitchell
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Stephanie M Wilbrand
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Bruce P Hermann
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Robert J Dempsey
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
25
|
Zhang H, Song M, Ruan L, Zhang F, Zhang A, Siedlecki AM, Wan M. Von Mises Strain as a Risk Marker for Vulnerability of Carotid Plaque: Preliminary Clinical Evaluation of Cerebral Infarction. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:1221-1233. [PMID: 30824309 DOI: 10.1016/j.ultrasmedbio.2019.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/21/2018] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
Non-invasive assessment of carotid artery plaque vulnerability is a key issue for cerebrovascular disease. This study investigates Von Mises strain imaging in patients by relating Von Mises strain to cerebral infarction presentation. Ultrasonography was performed in patients evaluated for carotid artery stenosis. Strains were estimated by a flow-driven diffusion method and least-squares regression applying Kalman filtering. Von Mises strains ɛVMsys and ɛVMdia were calculated by averaging four or five cardiac cycles in systole and diastole, respectively. Von Mises strain (peak, coefficient of variance, skewness and kurtosis) in patients with cerebral infarction was compared with that in the control group. Higher Von Mises peak strain localized to echolucent areas on B-mode imaging. Higher peak strain was found in patients with cerebral infarction compared with the control group (p = 0.02 for ɛVMdia and p = 0.001 for ɛVMsys). The area under the receiver operating characteristic curve for peak ɛVMsys was 0.761 (p = 0.001) with high sensitivity and specificity. Peak strain also correlated with homocysteine (r = 0.345, p = 0.007, for ɛVMdia; r = 0.287, p = 0.036, for ɛVMsys) and hypersensitive C-reactive protein (r = 0.399, p = 0.043, for ɛVMdia; r = 0.195, p = 0.034, for ɛVMsys) levels. The coefficient of variance, skewness and kurtosis of ɛVMdia or ɛVMsys were also associated with homocysteine levels. In conclusion, this study indicates that peak Von Mises strain is a potential clinical risk marker for carotid plaque vulnerability and cerebral infarction.
Collapse
Affiliation(s)
- Hongmei Zhang
- Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, China.
| | - Manman Song
- Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, China
| | - Litao Ruan
- Department of Ultrasound, First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Furong Zhang
- Department of Ultrasound, First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Aifeng Zhang
- Divisions of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew M Siedlecki
- Division of Nephrology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | - Mingxi Wan
- Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, China.
| |
Collapse
|
26
|
Thomas L, Low J, Chan K, Durbridge G. Shear wave elastography of the cervical arteries: A novel approach to the assessment of cervical arterial wall stiffness. An investigation of psychometric properties and intra-rater reliability. Musculoskelet Sci Pract 2019; 40:96-100. [PMID: 30262424 DOI: 10.1016/j.msksp.2018.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 09/08/2018] [Accepted: 09/12/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Cervical arterial dissection, can occur spontaneously and is a rare but catastrophic adverse event associated with neck manipulation. Pathophysiology involves altered integrity of the arterial wall increasing its vulnerability to minor trauma. Those at risk are difficult to detect. Previous screening investigated blood flow but altered mechanical properties as stiffness of cervical arterial wall could provide a more valid indication of arterial integrity or even early dissection. OBJECTIVES To investigate suitability and intra-rater reliability of shear wave ultrasound elastography to measure mechanical properties of the cervical arterial wall. Suitability was assessed by ability to track arteries along their length and measurement accuracy. DESIGN Observational and intra-rater reliability study. METHODS Internal carotid (ICA) and vertebral arteries (VA) of healthy participants were examined with shear wave elastography. Shear wave velocity (m/s) indicative of wall stiffness was measured with the head in the neutral position: proximally (C3-4) and distally (C1-2) where injuries have been more commonly reported. Proximal measures were repeated to assess intra-rater reliability. RESULTS Thirty healthy participants (13 female), mean age of 29 (±12.8) years were imaged. Mean VA wall stiffness (3.4 m/s) was greater than ICA (2.3 m/s) (p < 0.000). Intra-rater reliability for ICA was ICC 0.81 (CI 0.52 to 0.92) and for VA ICC 0.76 (CI 0.38 to 0.9). Standard error of measurement was 0.16 for ICA and 0.34 for VA. CONCLUSIONS Shear wave ultrasound elastography appears a suitable and reliable method to measure cervical arterial wall stiffness, justifying further research into its use for screening arterial integrity.
Collapse
Affiliation(s)
- Lucy Thomas
- School of Health and Rehabilitation Sciences, University of Queensland, Australia.
| | - Juanita Low
- School of Health and Rehabilitation Sciences, University of Queensland, Australia
| | - Kalos Chan
- School of Health and Rehabilitation Sciences, University of Queensland, Australia
| | - Gail Durbridge
- Centre for Advanced Imaging, University of Queensland, Australia
| |
Collapse
|
27
|
Liao W, Zheng Y, Bi S, Zhang B, Xiong Y, Li Y, Fang W, Xiao S, Yang L, Thea A, Liu J. Carotid stenosis prevalence after radiotherapy in nasopharyngeal carcinoma: A meta-analysis. Radiother Oncol 2019; 133:167-175. [PMID: 30935575 DOI: 10.1016/j.radonc.2018.11.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/11/2018] [Accepted: 11/20/2018] [Indexed: 01/31/2023]
Abstract
PURPOSE Radiotherapy (RT) is the most effective treatment for nasopharyngeal carcinoma (NPC) but may cause stenosis of the carotid arteries. This meta-analysis evaluates the prevalence of carotid stenosis after radiation therapy. MATERIALS AND METHODS Online search for studies reporting carotid stenosis in patients with NPC who received radiation therapy (RT) compared to NPC patients who did not receive RT and compared to healthy controls. RESULTS Twelve studies were included for a total analysis of 1928 patients (837 received RT and 1091 were controls). RT patients showed a statistically significant higher incidence of overall stenosis (pooled risk ratio = 4.17 [2.44, 7.10], p < 0.00001) and an even greater incidence of significant stenosis (50% or more) (pooled risk ratio = 8.72 [3.53, 21.55], p < 0.00001). Analyzing by individual blood vessels showed that the RT patients had significantly higher incidence of stenosis in common carotid artery (CCA), external carotid artery (ECA), carotid bulb, CCA and internal carotid artery (ICA), and CCA/ICA/carotid bulb. CONCLUSIONS NPC patients who receive RT have increased risk of developing carotid stenosis, and should be screened after treatment.
Collapse
Affiliation(s)
- Wang Liao
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, USA
| | - Yuqiu Zheng
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Shangqing Bi
- Department of Geratology, Bao'an TCM Hospital Group, Shenzhen, China
| | - Bei Zhang
- Department of Neurology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Ying Xiong
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yi Li
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenli Fang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Songhua Xiao
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lianhong Yang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Anderson Thea
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, USA
| | - Jun Liu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Laboratory of RNA and Major Diseases of Brain and Heart, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, China.
| |
Collapse
|
28
|
Effects of Cervical Rotatory Manipulation (CRM) on Carotid Atherosclerosis Plaque in Vulnerability: A Histological and Immunohistochemical Study Using Animal Model. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3793840. [PMID: 30863777 PMCID: PMC6378770 DOI: 10.1155/2019/3793840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/22/2018] [Accepted: 01/10/2019] [Indexed: 11/17/2022]
Abstract
Background The safety of cervical rotatory manipulation (CRM) is still controversial, especially in patients with carotid artery atherosclerosis (CAS). The study aimed to investigate the effects of CRM on carotid plaques in vulnerability. Methods 50 rabbits were randomly divided into four groups: model rabbits with CRM [CAS-CRM (n=15)]; model rabbits without CRM [CAS (n=15)]; normal rabbits with CRM [Normal-CRM (n=10)]; and Blank-control group (n=10). CAS disease models were induced by carotid artery balloon injury combined with a high-fat diet for 12 weeks. Then, CRM technique was performed in CAS-CRM and Normal-CRM groups for 3 weeks. In the end, determination of serum level of hs-CRP and Lp-PLA2, histological analysis under HE and Masson trichromic staining, and immunohistochemical analysis with CD34 and CD68 antibody were completed in order. Results Carotid stenosis rates on successful model rabbits ranged from 70% to 98%. The CAS-CRM group had an increased level of hs-CRP (P<0.05), in comparison with the CAS group, whereas effects were not significant between the Normal-CRM group and Blank-control group. In comparison with the CAS group, the positive expression of CD34 and CD68 in the CAS-CRM group increased significantly (P<0.05). Conclusion CRM therapy may increase the vulnerability of carotid plaque in rabbits with severe CAS.
Collapse
|
29
|
Huang Y, Wang L, Mao Y, Nan G. Long Noncoding RNA-H19 Contributes to Atherosclerosis and Induces Ischemic Stroke via the Upregulation of Acid Phosphatase 5. Front Neurol 2019; 10:32. [PMID: 30778327 PMCID: PMC6369351 DOI: 10.3389/fneur.2019.00032] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/10/2019] [Indexed: 12/20/2022] Open
Abstract
Objective: Atherosclerosis is closely associated with ischemic stroke, and long noncoding RNA-H19 (lncRNA-H19) might be a potential target for treating atherosclerosis. The present study aimed to investigate the function of lncRNA-H19 in atherosclerosis and to explore a novel therapeutic strategy for ischemic stroke. Methods: Differentially expressed genes (DEGs) in atherosclerosis were screened by searching public database. In combination with the lncRNA-H19-knockout database, potential lncRNA-H19-mediated gene was retrieved and their relationship was identified. In order to assess the detailed regulatory mechanism of lncRNA-H19, we used a lentivirus packaging system to upregulate Acp5 (Acid phosphatase 5) expression in vascular smooth muscle cells (VSMC) and human umbilical vein endothelial cells (HUVECs). The expression of ACP5 was determined by Western Blot, and evaluations of cell proliferation and apoptosis were detected. An ischemic stroke mouse model was established. Atherosclerosis was measured by using plaque area size. The effects H19 on the expression of ACP5 were explored by the overexpression or silence of H19. Results: H19 and ACP5 were associated with Acute Stroke Treatment (TOAST) subtypes of atherosclerotic patients. The target prediction program and dual-luciferase reporter confirmed ACP5 as a direct target of H19. Lentivirus-mediated H19-forced expression upregulated ACP5 protein levels, promoted cell proliferation and suppressed the apoptosis. The plaque area size was larger in ischemic models than controls. The overexpression or silence of H19 increased or reduced the plaque size. The overexpression or silence of H19 resulted in the expression or inhibition of ACP5. Conclusion: IncRNA-H19 promoting ACP5 protein expression contributed to atherosclerosis and increased the risk of ischemic stroke.
Collapse
Affiliation(s)
- Yujing Huang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Liping Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ying Mao
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Guangxian Nan
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
30
|
Liao W, Zhou H, Fan S, Zheng Y, Zhang B, Zhao Z, Xiao S, Bai S, Liu J. Comparison of Significant Carotid Stenosis for Nasopharyngeal Carcinoma between Intensity-Modulated Radiotherapy and Conventional Two-Dimensional Radiotherapy. Sci Rep 2018; 8:13899. [PMID: 30224668 PMCID: PMC6141472 DOI: 10.1038/s41598-018-32398-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 08/31/2018] [Indexed: 12/24/2022] Open
Abstract
Radiotherapy (RT) serves as the most efficient treatment for nasopharyngeal carcinoma (NPC) and can cause carotid stenosis. This work compared the incidence of significant carotid stenosis between intensity-modulated radiotherapy (IMRT) and two-dimensional conventional radiotherapy (2D-RT) for NPC and explored the risk factors. We retrospectively reviewed 233 cases with NPC who underwent carotid ultrasound post IMRT or 2D-RT from 2006 to 2015. The incidence of significant stenosis after RT was 19.3%. Significant stenosis was identified in 20 (14.6%) of 137 patients treated with IMRT and 25 (26.0%) of 96 patients with 2D-RT, respectively (p = 0.035). Multivariate logistic analysis indicated age (odds ratio = 1.054, 95% CI = 1.011-1.099, p = 0.014), radiation technique (IMRT) (odds ratio = 0.471, 95%CI = 0.241-0.919, p = 0.027) and time interval (odds ratio = 1.068, 95%CI = 1.033-1.105, p = 0.001) as independent predictors for significant carotid stenosis. Our study suggests that IMRT was associated with decreased incidence of significant carotid stenosis versus 2D-RT for NPC. Prevention and carotid ultrasound should be considered for older NPC survivors with longer interval from RT, especially those treated with 2D-RT.
Collapse
Affiliation(s)
- Wang Liao
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
| | - Haihong Zhou
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, China
| | - Shengnuo Fan
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yuqiu Zheng
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Bei Zhang
- Department of Neurology, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Zhongyan Zhao
- Department of Neurology, People's Hospital of Hainan Province, Haikou, 570311, China
| | - Songhua Xiao
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Shoumin Bai
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Jun Liu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China.
- Laboratory of RNA and Major Diseases of Brain and Heart, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
31
|
Nayak R, Schifitto G, Doyley MM. Visualizing Angle-Independent Principal Strains in the Longitudinal View of the Carotid Artery: Phantom and In Vivo Evaluation. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:1379-1391. [PMID: 29685590 PMCID: PMC5960628 DOI: 10.1016/j.ultrasmedbio.2018.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 02/08/2018] [Accepted: 03/16/2018] [Indexed: 05/03/2023]
Abstract
Non-invasive vascular elastography can evaluate the stiffness of the carotid artery by visualizing the vascular strain distribution. Axial strain estimates of the longitudinal cross section of the carotid artery are sensitive to the angle between the artery and the transducer. Anatomical variations in branching and arching of the carotid artery can affect the assessment of arterial stiffness. In this study, we hypothesized that principal strain elastograms computed using compounded plane wave imaging can reliably visualize the strain distribution in the carotid artery, independent of the transducer angle. We corroborated this hypothesis by conducting phantom and in vivo studies using a commercial ultrasound scanner (Sonix RP, Ultrasonix Medical Corp., Richmond, BC, Canada). The phantom studies were conducted using a homogeneous cryogel vessel phantom. The goal of the phantom study was to assess the feasibility of visualizing the radial deformation in the longitudinal plane of the vessel phantom, independent of the transducer angle (±30°, ±20°, ±10° and 0°). The in vivo studies were conducted on 20 healthy human volunteers in the age group 50-60 y. All echo imaging was performed at a transmit frequency of 5 MHz and sampling frequency of 40 MHz. The elastograms obtained from the phantom study revealed that for straight vessels, which had their lumen parallel to the transducer, principal strains were similar to axial strains. At non-parallel configurations (angles ±30°, ±20° and ±10°), the magnitudes of the mean principal strains were within 2.5% of the parallel configuration (0° angle) estimates and, thus, were observed to be relatively unaffected by change in angle. However, in comparison, the magnitude of the axial strain decreased with increase in angle because of coordinate dependency. Further, the pilot in vivo study indicated that the principal and axial strain elastograms were similar for subjects with relatively straight arteries. However, for arteries with arched geometry, axial strains were significantly lower (p <0.01) than the corresponding principal vascular strains, which was consistent with the results obtained from the phantom study. In conclusion, the results of the phantom and in vivo studies revealed that principal strain elastograms computed using CPW imaging could reliably visualize angle-independent vascular strains in the longitudinal plane of the carotid artery.
Collapse
Affiliation(s)
- Rohit Nayak
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York, USA.
| | - Giovanni Schifitto
- Department of Neurology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, USA
| | - Marvin M Doyley
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York, USA; Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA
| |
Collapse
|
32
|
Schwartz L, Lafitte O, da Veiga Moreira J. Toward a Reasoned Classification of Diseases Using Physico-Chemical Based Phenotypes. Front Physiol 2018. [PMID: 29541031 PMCID: PMC5835834 DOI: 10.3389/fphys.2018.00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Diseases and health conditions have been classified according to anatomical site, etiological, and clinical criteria. Physico-chemical mechanisms underlying the biology of diseases, such as the flow of energy through cells and tissues, have been often overlooked in classification systems. Objective: We propose a conceptual framework toward the development of an energy-oriented classification of diseases, based on the principles of physical chemistry. Methods: A review of literature on the physical chemistry of biological interactions in a number of diseases is traced from the point of view of the fluid and solid mechanics, electricity, and chemistry. Results: We found consistent evidence in literature of decreased and/or increased physical and chemical forces intertwined with biological processes of numerous diseases, which allowed the identification of mechanical, electric and chemical phenotypes of diseases. Discussion: Biological mechanisms of diseases need to be evaluated and integrated into more comprehensive theories that should account with principles of physics and chemistry. A hypothetical model is proposed relating the natural history of diseases to mechanical stress, electric field, and chemical equilibria (ATP) changes. The present perspective toward an innovative disease classification may improve drug-repurposing strategies in the future.
Collapse
Affiliation(s)
| | - Olivier Lafitte
- LAGA, UMR 7539, Paris 13 University, Sorbonne Paris Cité, Villetaneuse, France
| | | |
Collapse
|
33
|
Carotid artery plaque and arterial stiffness. J Hypertens 2017; 35:1569-1572. [DOI: 10.1097/hjh.0000000000001394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Bruno RM, Reesink KD, Ghiadoni L. Advances in the non-invasive assessment of vascular dysfunction in metabolic syndrome and diabetes: Focus on endothelium, carotid mechanics and renal vessels. Nutr Metab Cardiovasc Dis 2017; 27:121-128. [PMID: 27773467 DOI: 10.1016/j.numecd.2016.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/28/2016] [Accepted: 09/04/2016] [Indexed: 12/29/2022]
Abstract
AIM The present paper is a selective review on the methodology and clinical significance of techniques to assess specifically endothelial function, carotid mechanics and renal vascular function, particularly in the light of vascular dysfunction in metabolic syndrome and type 2 diabetes. DATA SYNTHESIS Endothelial dysfunction appears to be earlier detectable in the microcirculation of patients with altered glucose metabolism, while it attains significance in the macrocirculation at more advanced disease stages. Smooth muscle cell dysfunction is now increasingly recognized to play a role both in the development of endothelial dysfunction and abnormal arterial distensibility. Furthermore, impaired glucose metabolism affects carotid mechanics through medial calcification, structural changes in extracellular matrix due to advanced glycation and modification of the collagen/elastin material stiffness. The assessment of renal vascular function by dynamic ultrasound or magnetic resonance imaging has recently emerged as an appealing target for identifying subtle vascular alterations responsible for the development of diabetic nephropathy. CONCLUSIONS Vascular dysfunction represents a major mechanism for the development of cardiovascular disease in patients with abnormal glucose metabolism. Hence, the currently available non-invasive techniques to assess early structural and vascular abnormalities merit recommendation in this population, although their predictive value and sensitivity to monitor treatment-induced changes have not yet been established and are still under investigation.
Collapse
Affiliation(s)
- R M Bruno
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - K D Reesink
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Netherlands; Department of Biomedical Engineering, Cardiovascular Center, Maastricht University Medical Center, Netherlands
| | - L Ghiadoni
- Department of Clinical and Experimental Medicine, University of Pisa, Italy.
| |
Collapse
|