1
|
Merino S, Lavarello R. Spatially Weighted Fidelity and Regularization Terms for Attenuation Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2025; 72:338-350. [PMID: 40031351 DOI: 10.1109/tuffc.2025.3534660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Quantitative ultrasound (QUS) holds promise in enhancing diagnostic accuracy. For attenuation imaging, the regularized spectral log difference (RSLD) can generate accurate local attenuation maps. However, the performance of the method degrades when significant changes in backscatter amplitude occur. Variations in the technique were introduced involving a weighted approach to backscatter regularization, which, however, is not effective when changes in both attenuation and backscatter are present. This study introduces a novel approach that incorporates an L1-norm for backscatter regularization and spatially varying weights for both fidelity and regularization terms. The weights are calculated from an initial estimation of backscatter changes. Comparative analyses with simulated, phantom, and clinical data were performed. When changes in backscatter and attenuation occur, the proposed approach reduced the lowest root mean square error by up to 73%. It also improved the contrast-to-noise ratio (CNR) by a factor of 4.4 on average compared with previously available methods, considering the simulated and phantom data. In vivo results from healthy livers, thyroid nodules, and a breast tumor further confirm its effectiveness. In the liver, it is shown to be effective at reducing artifacts of attenuation images. In thyroid and breast tumors, the method demonstrated an enhanced CNR and better consistency of the attenuation measurements with the posterior acoustic enhancement. Overall, this approach offers promise for enhancing ultrasound attenuation imaging by helping differentiate tissue characteristics that may indicate pathology.
Collapse
|
2
|
Argueta-Lozano AK, Castañeda-Martinez L, Bass V, Mateos MJ, Castillo-López JP, Perez-Badillo MP, Aguilar-Cortazar LO, Porras-Reyes F, Sollozo-Dupont MI, Torres-Robles F, Márquez-Flores J, Villaseñor-Navarro Y, Esquivel-Sirvent R, Rosado-Mendez IM. Inter- and Intra-Operator Variability of Regularized Backscatter Quantitative Ultrasound for the Characterization of Breast Masses. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2023; 42:2567-2582. [PMID: 37490582 DOI: 10.1002/jum.16292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 05/27/2023] [Indexed: 07/27/2023]
Abstract
OBJECTIVES Here we report on the intra- and inter-operator variability of the backscatter coefficient (BSC) estimated with a new low-variance quantitative ultrasound (QUS) approach applied to breast lesions in vivo. METHODS Radiofrequency (RF) echo signals were acquired from 29 BIRADS 4 and 5 breast lesions in 2 sequential cohorts following 2 imaging protocols: cohort 1) radial and antiradial views, and cohort 2) short- and long-axis views. Protocol 2 was implemented after retraining and discussion on how to improve reproducibility. Each patient was scanned by at least 2 of 3 radiologists; each performed 3 acquisitions with transducer and patient repositioning in between acquisitions. BSC was estimated using a low-variance QUS approach based on regularization. Intra- and inter-operator variability of the intra-lesion median BSC was evaluated with a multifactorial ANOVA test (P-values) and the intraclass correlation coefficient (ICC). RESULTS Inter-operator variability was only significant in the first protocol (P < .007); ICCinter = .77 (95% CI .71-.82), indicating good inter-operator agreement. In the second protocol, the inter-operator variability was not significant (P > .05) and agreement was excellent (ICCinter = .92 [.89-.94]). In both protocols, the intra-operator variability was not significant. CONCLUSIONS Our findings demonstrate the need for standardizing image acquisition protocols for backscatter-based QUS to reduce inter-operator variability and ensure its successful translation to the characterization of suspicious breast masses.
Collapse
Affiliation(s)
- Ana K Argueta-Lozano
- Instituto de Física, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica s/n, Ciudad Universitaria, Mexico City, Mexico
| | | | - Vivian Bass
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Mexico City, Mexico
| | - Maria-Julieta Mateos
- Graduate Program in Computer Science and Engineering, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | | | | | | | | | | | - Fabian Torres-Robles
- Instituto de Física, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica s/n, Ciudad Universitaria, Mexico City, Mexico
| | - Jorge Márquez-Flores
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Mexico City, Mexico
| | | | - Raul Esquivel-Sirvent
- Instituto de Física, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica s/n, Ciudad Universitaria, Mexico City, Mexico
| | - Ivan M Rosado-Mendez
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
3
|
Jafarpisheh N, Castaneda-Martinez L, Whitson H, Rosado-Mendez IM, Rivaz H. Physics-Inspired Regularized Pulse-Echo Quantitative Ultrasound: Efficient Optimization With ADMM. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:1428-1441. [PMID: 37782586 DOI: 10.1109/tuffc.2023.3321250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Pulse-echo quantitative ultrasound (PEQUS), which estimates the quantitative properties of tissue microstructure, entails estimating the average attenuation and the backscatter coefficient (BSC). Growing recent research has focused on the regularized estimation of these parameters. Herein, we make two contributions to this field: first, we consider the physics of the average attenuation and backscattering to devise regularization terms accordingly. More specifically, since the average attenuation gradually alters in different parts of the tissue, while BSC can vary markedly from tissue to tissue, we apply L2 and L1 norms for the average attenuation and the BSC, respectively. Second, we multiply different frequencies and depths of the power spectra with different weights according to their noise levels. Our rationale is that the high-frequency contents of the power spectra at deep regions have a low signal-to-noise ratio (SNR). We exploit the alternating direction method of multipliers (ADMM) for optimizing the cost function. The qualitative and quantitative evaluations of bias and variance exhibit that our proposed algorithm improves the estimations of the average attenuation and the BSC up to about 100%.
Collapse
|
4
|
Timaná J, Chahuara H, Basavarajappa L, Basarab A, Hoyt K, Lavarello R. Simultaneous imaging of ultrasonic relative backscatter and attenuation coefficients for quantitative liver steatosis assessment. Sci Rep 2023; 13:8898. [PMID: 37264043 DOI: 10.1038/s41598-023-33964-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 04/21/2023] [Indexed: 06/03/2023] Open
Abstract
Prevalence of liver disease is continuously increasing and nonalcoholic fatty liver disease (NAFLD) is the most common etiology. We present an approach to detect the progression of liver steatosis based on quantitative ultrasound (QUS) imaging. This study was performed on a group of 55 rats that were subjected to a control or methionine and choline deficient (MCD) diet known to induce NAFLD. Ultrasound (US) measurements were performed at 2 and 6 weeks. Thereafter, animals were humanely euthanized and livers excised for histological analysis. Relative backscatter and attenuation coefficients were simultaneously estimated from the US data and envelope signal-to-noise ratio was calculated to train a regression model for: (1) fat fraction percentage estimation and (2) performing classification according to Brunt's criteria in grades (0 <5%; 1, 5-33%; 2, >33-66%; 3, >66%) of liver steatosis. The trained regression model achieved an [Formula: see text] of 0.97 (p-value < 0.01) and a RMSE of 3.64. Moreover, the classification task reached an accuracy of 94.55%. Our results suggest that in vivo QUS is a promising noninvasive imaging modality for the early assessment of NAFLD.
Collapse
Affiliation(s)
- José Timaná
- Laboratorio de Imágenes Médicas, Pontificia Universidad Católica del Perú, Lima, Peru
| | - Hector Chahuara
- Laboratorio de Imágenes Médicas, Pontificia Universidad Católica del Perú, Lima, Peru
| | - Lokesh Basavarajappa
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Adrian Basarab
- INSA-Lyon, UCBL, CNRS, Inserm, CREATIS UMR 5220 U1294, Université de Lyon, Villeurbanne, France
| | - Kenneth Hoyt
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Roberto Lavarello
- Laboratorio de Imágenes Médicas, Pontificia Universidad Católica del Perú, Lima, Peru.
| |
Collapse
|
5
|
Khairalseed M, Hoyt K. High-Resolution Ultrasound Characterization of Local Scattering in Cancer Tissue. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:951-960. [PMID: 36681609 PMCID: PMC9974749 DOI: 10.1016/j.ultrasmedbio.2022.11.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Ultrasound (US) has afforded an approach to tissue characterization for more than a decade. The challenge is to reveal hidden patterns in the US data that describe tissue function and pathology that cannot be seen in conventional US images. Our group has developed a high-resolution analysis technique for tissue characterization termed H-scan US, an imaging method used to interpret the relative size of acoustic scatterers. In the present study, the objective was to compare local H-scan US image intensity with registered histologic measurements made directly at the cellular level. Human breast cancer cells (MDA-MB 231, American Type Culture Collection, Manassas, VA, USA) were orthotopically implanted into female mice (N = 5). Tumors were allowed to grow for approximately 4 wk before the study started. In vivo imaging of tumor tissue was performed using a US system (Vantage 256, Verasonics Inc., Kirkland, WA, USA) equipped with a broadband capacitive micromachined ultrasonic linear array transducer (Kolo Medical, San Jose, CA, USA). A 15-MHz center frequency was used for plane wave imaging with five angles for spatial compounding. H-scan US image reconstruction involved use of parallel convolution filters to measure the relative strength of backscattered US signals. Color codes were applied to filter outputs to form the final H-scan US image display. For histologic processing, US imaging cross-sections were carefully marked on the tumor surface, and tumors were excised and sliced along the same plane. By use of optical microscopy, whole tumor tissue sections were scanned and digitized after nuclear staining. US images were interpolated to have the same number of pixels as the histology images and then spatially aligned. Each nucleus from the histologic sections was automatically segmented using custom MATLAB software (The MathWorks Inc., Natick, MA, USA). Nuclear size and spacing from the histology images were then compared with local H-scan US image features. Overall, local H-scan US image intensity exhibited a significant correlation with both cancer cell nuclear size (R2 > 0.27, p < 0.001) and the inverse relationship with nuclear spacing (R2 > 0.17, p < 0.001).
Collapse
Affiliation(s)
- Mawia Khairalseed
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas, USA
| | - Kenneth Hoyt
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas, USA.
| |
Collapse
|
6
|
Rosado-Mendez IM. Recent Advances in Attenuation Estimation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1403:85-104. [PMID: 37495916 DOI: 10.1007/978-3-031-21987-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
This chapter reviews some of the recent advances in the estimation of the local and the total attenuation, with an emphasis on reducing the bias and variance of the estimates. A special focus is put on describing the effect of power spectrum estimation on bias and variance, the introduction of regularization strategies, as well as on eliminating the need to use reference phantoms for compensating for system dependent effects.
Collapse
|
7
|
Tehrani AKZ, Rosado-Mendez IM, Rivaz H. Deep Estimation of Speckle Statistics Parametric Images. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:3907-3910. [PMID: 36086035 DOI: 10.1109/embc48229.2022.9871883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Quantitative Ultrasound (QUS) provides important information about the tissue properties. QUS parametric image can be formed by dividing the envelope data into small overlapping patches and computing different speckle statistics such as parameters of the Nakagami and Homodyned K-distributions (HK-distribution). The calculated QUS parametric images can be erroneous since only a few independent samples are available inside the patches. Another challenge is that the envelope samples inside the patch are assumed to come from the same distribution, an assumption that is often violated given that the tissue is usually not homogenous. In this paper, we propose a method based on Convolutional Neural Networks (CNN) to estimate QUS parametric images without patching. We construct a large dataset sampled from the HK-distribution, having regions with random shapes and QUS parameter values. We then use a well-known network to estimate QUS parameters in a multi-task learning fashion. Our results confirm that the proposed method is able to reduce errors and improve border definition in QUS parametric images.
Collapse
|
8
|
Lok UW, Gong P, Huang C, Tang S, Zhou C, Yang L, Watt KD, Callstrom M, Trzasko JD, Chen S. Reverberation clutter signal suppression in ultrasound attenuation estimation using wavelet-based robust principal component analysis. Phys Med Biol 2022; 67. [PMID: 35358950 PMCID: PMC9297384 DOI: 10.1088/1361-6560/ac62fd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/31/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. Ultrasound attenuation coefficient estimation (ACE) has diagnostic potential for clinical applications such as quantifying fat content in the liver. Previously, we have proposed a system-independent ACE technique based on spectral normalization of different frequencies, called the reference frequency method (RFM). This technique does not require a well-calibrated reference phantom for normalization. However, this method may be vulnerable to severe reverberation clutter introduced by the body wall. The clutter superimposed on liver echoes may bias the estimation. Approach. We proposed to use robust principal component analysis, combined with wavelet-based sparsity promotion, to suppress the severe reverberation clutters. The capability to mitigate the reverberation clutters was validated through phantom and in vivo studies. Main Results. In the phantom studies with added reverberation clutters, higher normalized cross-correlation and smaller mean absolute errors were attained as compared to RFM results without the proposed method, demonstrating the capability to reconstruct tissue signals from reverberations. In a pilot patient study, the correlation between ACE and proton density fat fraction (PDFF), a measurement of liver fat by MRI as a reference standard, was investigated. The proposed method showed an improvement of the correlation (coefficient of determination, R = 0.82) as compared with the counterpart without the proposed method (R = 0.69). Significance: The proposed method showed the feasibility of suppressing the reverberation clutters, providing an important basis for the development of a robust ACE with large reverberation clutters.
Collapse
|
9
|
Birdi J, D'hooge J, Bertrand A. Spatially Variant Ultrasound Attenuation Mapping Using a Regularized Linear Least-Squares Approach. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1596-1609. [PMID: 35263252 DOI: 10.1109/tuffc.2022.3157949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Quantitative ultrasound methods aim to estimate the acoustic properties of the underlying medium, such as the attenuation and backscatter coefficients, and have applications in various areas including tissue characterization. In practice, tissue heterogeneity makes the coefficient estimation challenging. In this work, we propose a computationally efficient algorithm to map spatial variations of the attenuation coefficient. Our proposed approach adopts a fast, linear least-squares strategy to fit the signal model to data from pulse-echo measurements. As opposed to existing approaches, we directly estimate the attenuation map, that is, the local attenuation coefficient at each axial location by solving a joint estimation problem. In particular, we impose a physical model that couples all these local estimates and combine it with a smooth regularization to obtain a smooth map. Compared to the conventional spectral log difference method and the more recent ALGEBRA approach, we demonstrate that the attenuation estimates obtained by our method are more accurate and better correlate with the ground-truth attenuation profiles over a wide range of spatial and contrast resolutions.
Collapse
|
10
|
Tehrani AKZ, Rosado-Mendez IM, Rivaz H. Robust Scatterer Number Density Segmentation of Ultrasound Images. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1169-1180. [PMID: 35044911 PMCID: PMC11500800 DOI: 10.1109/tuffc.2022.3144685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Quantitative ultrasound (QUS) aims to reveal information about the tissue microstructure using backscattered echo signals from clinical scanners. Among different QUS parameters, scatterer number density is an important property that can affect the estimation of other QUS parameters. Scatterer number density can be classified into high or low scatterer densities. If there are more than ten scatterers inside the resolution cell, the envelope data are considered as fully developed speckle (FDS) and, otherwise, as underdeveloped speckle (UDS). In conventional methods, the envelope data are divided into small overlapping windows (a strategy here we refer to as patching), and statistical parameters, such as SNR and skewness, are employed to classify each patch of envelope data. However, these parameters are system-dependent, meaning that their distribution can change by the imaging settings and patch size. Therefore, reference phantoms that have known scatterer number density are imaged with the same imaging settings to mitigate system dependency. In this article, we aim to segment regions of ultrasound data without any patching. A large dataset is generated, which has different shapes of scatterer number density and mean scatterer amplitude using a fast simulation method. We employ a convolutional neural network (CNN) for the segmentation task and investigate the effect of domain shift when the network is tested on different datasets with different imaging settings. Nakagami parametric image is employed for multitask learning to improve performance. Furthermore, inspired by the reference phantom methods in QUS, a domain adaptation stage is proposed, which requires only two frames of data from FDS and UDS classes. We evaluate our method for different experimental phantoms and in vivo data.
Collapse
|
11
|
Cario J, Coila A, Zhao Y, Miller RJ, L Oelze M. Identifying and overcoming limitations with in situ calibration beads for quantitative ultrasound. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:2701. [PMID: 35461481 PMCID: PMC9023090 DOI: 10.1121/10.0010286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Ensuring the consistency of spectral-based quantitative ultrasound estimates in vivo necessitates accounting for diffraction, system effects, and propagation losses encountered in the tissue. Accounting for diffraction and system effects is typically achieved through planar reflector or reference phantom methods; however, neither of these is able to account for the tissue losses present in vivo between the ultrasound probe and the region of interest. In previous work, the feasibility of small titanium beads as in situ calibration targets (0.5-2 mm in diameter) was investigated. In this study, the importance of bead size for the calibration signal, the role of multiple echoes coming from the calibration bead, and sampling of the bead signal laterally through beam translation were examined. This work demonstrates that although the titanium beads naturally produce multiple reverberant echoes, time-windowing of the first echo provides the smoothest calibration spectrum for backscatter coefficient calculation. When translating the beam across the bead, the amplitude of the echo decreases rapidly as the beam moves across and past the bead. Therefore, to obtain consistent calibration signals from the bead, lateral interpolation is needed to approximate signals coming from the center of the bead with respect to the beam.
Collapse
Affiliation(s)
- Jenna Cario
- Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, Univerity of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Andres Coila
- Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, Univerity of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Yuning Zhao
- Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, Univerity of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Rita J Miller
- Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, Univerity of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Michael L Oelze
- Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, Univerity of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
12
|
Deeba F, Schneider C, Mohammed S, Honarvar M, Lobo J, Tam E, Salcudean S, Rohling R. A multiparametric volumetric quantitative ultrasound imaging technique for soft tissue characterization. Med Image Anal 2021; 74:102245. [PMID: 34614475 DOI: 10.1016/j.media.2021.102245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/21/2021] [Accepted: 09/14/2021] [Indexed: 12/19/2022]
Abstract
Quantitative ultrasound (QUS) offers a non-invasive and objective way to quantify tissue health. We recently presented a spatially adaptive regularization method for reconstruction of a single QUS parameter, limited to a two dimensional region. That proof-of-concept study showed that regularization using homogeneity prior improves the fundamental precision-resolution trade-off in QUS estimation. Based on the weighted regularization scheme, we now present a multiparametric 3D weighted QUS (3D QUS) method, involving the reconstruction of three QUS parameters: attenuation coefficient estimate (ACE), integrated backscatter coefficient (IBC) and effective scatterer diameter (ESD). With the phantom studies, we demonstrate that our proposed method accurately reconstructs QUS parameters, resulting in high reconstruction contrast and therefore improved diagnostic utility. Additionally, the proposed method offers the ability to analyze the spatial distribution of QUS parameters in 3D, which allows for superior tissue characterization. We apply a three-dimensional total variation regularization method for the volumetric QUS reconstruction. The 3D regularization involving N planes results in a high QUS estimation precision, with an improvement of standard deviation over the theoretical 1/N rate achievable by compounding N independent realizations. In the in vivo liver study, we demonstrate the advantage of adopting a multiparametric approach over the single parametric counterpart, where a simple quadratic discriminant classifier using feature combination of three QUS parameters was able to attain a perfect classification performance to distinguish between normal and fatty liver cases.
Collapse
Affiliation(s)
- Farah Deeba
- Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, Canada.
| | - Caitlin Schneider
- Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, Canada
| | - Shahed Mohammed
- Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, Canada
| | | | | | | | - Septimiu Salcudean
- Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, Canada
| | - Robert Rohling
- Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, Canada; Department of Mechanical Engineering, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
13
|
Cloutier G, Destrempes F, Yu F, Tang A. Quantitative ultrasound imaging of soft biological tissues: a primer for radiologists and medical physicists. Insights Imaging 2021; 12:127. [PMID: 34499249 PMCID: PMC8429541 DOI: 10.1186/s13244-021-01071-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/07/2021] [Indexed: 12/26/2022] Open
Abstract
Quantitative ultrasound (QUS) aims at quantifying interactions between ultrasound and biological tissues. QUS techniques extract fundamental physical properties of tissues based on interactions between ultrasound waves and tissue microstructure. These techniques provide quantitative information on sub-resolution properties that are not visible on grayscale (B-mode) imaging. Quantitative data may be represented either as a global measurement or as parametric maps overlaid on B-mode images. Recently, major ultrasound manufacturers have released speed of sound, attenuation, and backscatter packages for tissue characterization and imaging. Established and emerging clinical applications are currently limited and include liver fibrosis staging, liver steatosis grading, and breast cancer characterization. On the other hand, most biological tissues have been studied using experimental QUS methods, and quantitative datasets are available in the literature. This educational review addresses the general topic of biological soft tissue characterization using QUS, with a focus on disseminating technical concepts for clinicians and specialized QUS materials for medical physicists. Advanced but simplified technical descriptions are also provided in separate subsections identified as such. To understand QUS methods, this article reviews types of ultrasound waves, basic concepts of ultrasound wave propagation, ultrasound image formation, point spread function, constructive and destructive wave interferences, radiofrequency data processing, and a summary of different imaging modes. For each major QUS technique, topics include: concept, illustrations, clinical examples, pitfalls, and future directions.
Collapse
Affiliation(s)
- Guy Cloutier
- Laboratory of Biorheology and Medical Ultrasonics, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 St-Denis, Montréal, Québec, H2X 0A9, Canada.
- Department of Radiology, Radio-oncology, and Nuclear Medicine, Université de Montréal, Montréal, Québec, Canada.
- Institute of Biomedical Engineering, Université de Montréal, Montréal, Québec, Canada.
| | - François Destrempes
- Laboratory of Biorheology and Medical Ultrasonics, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 St-Denis, Montréal, Québec, H2X 0A9, Canada
| | - François Yu
- Department of Radiology, Radio-oncology, and Nuclear Medicine, Université de Montréal, Montréal, Québec, Canada
- Institute of Biomedical Engineering, Université de Montréal, Montréal, Québec, Canada
- Microbubble Theranostics Laboratory, CRCHUM, Montréal, Québec, Canada
| | - An Tang
- Department of Radiology, Radio-oncology, and Nuclear Medicine, Université de Montréal, Montréal, Québec, Canada
- Department of Radiology, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
- Laboratory of Medical Image Analysis, Montréal, CRCHUM, Canada
| |
Collapse
|
14
|
Birdi J, Muraleedharan A, D'hooge J, Bertrand A. Fast linear least-squares method for ultrasound attenuation and backscatter estimation. ULTRASONICS 2021; 116:106503. [PMID: 34171752 DOI: 10.1016/j.ultras.2021.106503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/13/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
The ultrasonic attenuation and backscatter coefficients of tissues are relevant acoustic parameters due to their wide range of clinical applications. In this paper, a linear least-squares method for the estimation of these coefficients in a homogeneous region of interest based on pulse-echo measurements is proposed. The method efficiently fits an ultrasound backscattered signal model to the measurements in both the frequency and depth dimension simultaneously at a low computational cost. It is demonstrated that the inclusion of depth information has a positive effect particularly on the accuracy of the estimated attenuation. The sensitivity of the attenuation and backscatter coefficients' estimates to several predefined parameters such as the window length, window overlap and usable bandwidth of the spectrum is also studied. Comparison of the proposed method with a benchmark approach based on dynamic programming highlights better performance of our method in estimating these coefficients, both in terms of accuracy and computation time. Further analysis of the computation time as a function of the predefined parameters indicates our method's potential to be used in real-time clinical settings.
Collapse
Affiliation(s)
- Jasleen Birdi
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium.
| | - Arun Muraleedharan
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium
| | - Jan D'hooge
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
15
|
Tehrani AKZ, Amiri M, Rosado-Mendez IM, Hall TJ, Rivaz H. Ultrasound Scatterer Density Classification Using Convolutional Neural Networks and Patch Statistics. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2697-2706. [PMID: 33900913 DOI: 10.1109/tuffc.2021.3075912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Quantitative ultrasound (QUS) can reveal crucial information on tissue properties, such as scatterer density. If the scatterer density per resolution cell is above or below 10, the tissue is considered as fully developed speckle (FDS) or underdeveloped speckle (UDS), respectively. Conventionally, the scatterer density has been classified using estimated statistical parameters of the amplitude of backscattered echoes. However, if the patch size is small, the estimation is not accurate. These parameters are also highly dependent on imaging settings. In this article, we adapt convolutional neural network (CNN) architectures for QUS and train them using simulation data. We further improve the network's performance by utilizing patch statistics as additional input channels. Inspired by deep supervision and multitask learning, we propose a second method to exploit patch statistics. We evaluate the networks using simulation data and experimental phantoms. We also compare our proposed methods with different classic and deep learning models and demonstrate their superior performance in the classification of tissues with different scatterer density values. The results also show that we are able to classify scatterer density in different imaging parameters with no need for a reference phantom. This work demonstrates the potential of CNNs in classifying scatterer density in ultrasound images.
Collapse
|
16
|
Coila A, Rouyer J, Zenteno O, Luchies A, Oelze ML, Lavarello R. Total attenuation compensation for backscatter coefficient estimation using full angular spatial compounding. ULTRASONICS 2021; 114:106376. [PMID: 33578199 PMCID: PMC8985702 DOI: 10.1016/j.ultras.2021.106376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 06/03/2023]
Abstract
The backscatter coefficient (BSC) quantifies the frequency-dependent reflectivity of tissues. Accurate estimation of the BSC is only possible with the knowledge of the attenuation coefficient slope (ACS) of the tissues under examination. In this study, the use of attenuation maps constructed using full angular spatial compounding (FASC) is proposed for attenuation compensation when imaging integrated BSCs. Experimental validation of the proposed approach was obtained using two cylindrical physical phantoms with off-centered inclusions having different ACS and BSC values than the background, and in a phantom containing an ex vivo chicken breast sample embedded in an agar matrix. With the phantom data, three different ACS maps were employed for attenuation compensation: (1) a ground truth ACS map constructed using insertion loss techniques, (2) the estimated ACS map using FASC attenuation imaging, and (3) a uniform ACS map with a value of 0.5 dBcm\protect \relax \special {t4ht=-}1MHz\protect \relax \special {t4ht=-}1, which is commonly used to represent attenuation in soft tissues. Comparable results were obtained when using the ground truth and FASC-estimated ACS maps in term of inclusion detectability and estimation accuracy, with averaged fractional error below 2.8 dB in both phantoms. Conversely, the use of the homogeneous ACS map resulted in higher levels of fractional error (>10 dB), which demonstrates the importance of an accurate attenuation compensation. The results with the ex vivo tissue sample were consistent with the observations using the physical phantoms, with the FASC-derived ACS map providing comparable BSC images to those formed using the ground truth ACS map and more accurate than those BSC images formed using a uniform ACS. These results suggest that BSCs can be reliably estimated using FASC when a self-consistent attenuation compensation stemming from prior estimation of an accurate ACS map is used.
Collapse
Affiliation(s)
- Andres Coila
- Beckman Institute for Advanced Science and Technology, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Julien Rouyer
- Laboratorio de Imágenes Médicas, Departmento de Ingeniería, Pontificia Universidad Católica del Perú, San Miguel, Lima, Peru
| | - Omar Zenteno
- Laboratorio de Imágenes Médicas, Departmento de Ingeniería, Pontificia Universidad Católica del Perú, San Miguel, Lima, Peru
| | - Adam Luchies
- Beckman Institute for Advanced Science and Technology, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Michael L Oelze
- Beckman Institute for Advanced Science and Technology, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Roberto Lavarello
- Laboratorio de Imágenes Médicas, Departmento de Ingeniería, Pontificia Universidad Católica del Perú, San Miguel, Lima, Peru.
| |
Collapse
|
17
|
Jafarpisheh N, Hall TJ, Rivaz H, Rosado-Mendez IM. Analytic Global Regularized Backscatter Quantitative Ultrasound. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:1605-1617. [PMID: 33284753 PMCID: PMC8214362 DOI: 10.1109/tuffc.2020.3042942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Although a variety of techniques have been developed to reduce the appearance of B-mode speckle, quantitative ultrasound (QUS) aims at extracting the hidden properties of the tissue. Herein, we propose two novel techniques to accurately and precisely estimate two important QUS parameters, namely, the average attenuation coefficient and the backscatter coefficient. Both the techniques optimize a cost function that incorporates data and continuity constraint terms, which we call AnaLytical Global rEgularized BackscatteR quAntitative ultrasound (ALGEBRA). We propose two versions of ALGEBRA, namely, 1-D- and 2-D-ALGEBRA. In 1-D-ALGEBRA, the regularized cost function is formulated in the axial direction, and the QUS parameters are calculated for one line of radio frequency (RF) echo data. In 2-D-ALGEBRA, the regularized cost function is formulated for the entire image, and the QUS parameters throughout the image are estimated simultaneously. This simultaneous optimization allows 2-D-ALGEBRA to "see" all the data before estimating the QUS parameters. In both the methods, we efficiently optimize the cost functions by casting it as a sparse linear system of equations. As a result of this efficient optimization, 1-D-ALGEBRA and 2-D-ALGEBRA are, respectively, 600 and 300 times faster than optimization using the dynamic programming (DP) method previously proposed by our group. In addition, the proposed technique has fewer input parameters that require manual tuning. Our results demonstrate that the proposed ALGEBRA methods substantially outperform least-square and DP methods in estimating the QUS parameters in phantom experiments.
Collapse
|
18
|
Rau R, Unal O, Schweizer D, Vishnevskiy V, Goksel O. Frequency-dependent attenuation reconstruction with an acoustic reflector. Med Image Anal 2020; 67:101875. [PMID: 33197864 DOI: 10.1016/j.media.2020.101875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 01/27/2023]
Abstract
Attenuation of ultrasound waves varies with tissue composition, hence its estimation offers great potential for tissue characterization and diagnosis and staging of pathology. We recently proposed a method that allows to spatially reconstruct the distribution of the overall ultrasound attenuation in tissue based on computed tomography, using reflections from a passive acoustic reflector. This requires a standard ultrasound transducer operating in pulse-echo mode and a calibration protocol using water measurements, thus it can be implemented on conventional ultrasound systems with minor adaptations. Herein, we extend this method by additionally estimating and imaging the frequency-dependent nature of local ultrasound attenuation for the first time. Spatial distributions of attenuation coefficient and exponent are reconstructed, enabling an elaborate and expressive tissue-specific characterization. With simulations, we demonstrate that our proposed method yields a low reconstruction error of 0.04 dB/cm at 1 MHz for attenuation coefficient and 0.08 for the frequency exponent. With tissue-mimicking phantoms and ex-vivo bovine muscle samples, a high reconstruction contrast as well as reproducibility are demonstrated. Attenuation exponents of a gelatin-cellulose mixture and an ex-vivo bovine muscle sample were found to be, respectively, 1.4 and 0.5 on average, consistently from different images of their heterogeneous compositions. Such frequency-dependent parametrization could enable novel imaging and diagnostic techniques, as well as facilitate attenuation compensation of other ultrasound-based imaging techniques.
Collapse
Affiliation(s)
- Richard Rau
- Computer-assisted Applications in Medicine, ETH Zurich, Zurich, Switzerland.
| | - Ozan Unal
- Computer-assisted Applications in Medicine, ETH Zurich, Zurich, Switzerland
| | - Dieter Schweizer
- Computer-assisted Applications in Medicine, ETH Zurich, Zurich, Switzerland
| | - Valery Vishnevskiy
- Computer-assisted Applications in Medicine, ETH Zurich, Zurich, Switzerland
| | - Orcun Goksel
- Computer-assisted Applications in Medicine, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Amiri M, Tehrani AKZ, Rivaz H. Segmentation of Ultrasound Images based on Scatterer Density using U-Net. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:2063-2066. [PMID: 33018411 DOI: 10.1109/embc44109.2020.9175353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Quantitative ultrasound can provide an objective estimation of different tissue properties, which may be used for tissue characterization and detection of abnormal tissue. The effective number of scatterers in different parts of a tissue is one of the important tissue properties that can be estimated by quantitative ultrasound techniques. The envelope echo is the signal which is usually used to estimate the scatterer density. In this study, we proposed using deep learning to estimate the effective number of scatterers. We generated 2000 simulated phantom data containing randomly distributed inclusions with three different values for number of scatterers per resolution cell. We used U-Net to segment the envelope data and to distinguish three different values of scatterer densities. We show that U-Net can discriminate different scattering regimes, particularly, when the difference between the number of scatterers is substantial. The overall accuracy of the network is 83.9%, and the average sensitivity and specificity among the three classes are 83.1% and 92.3% respectively. This study confirms the potential of deep learning framework in quantitative ultrasound and estimation of tissue properties using ultrasound images.
Collapse
|
20
|
Tehrani AKZ, Amiri M, Rosado-Mendez IM, Hall TJ, Rivaz H. A Pilot Study on Scatterer Density Classification of Ultrasound Images Using Deep Neural Networks. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:2059-2062. [PMID: 33018410 DOI: 10.1109/embc44109.2020.9175806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Quantitative ultrasound estimates different intrinsic tissue properties, which can be used for tissue characterization. Among different tissue properties, the effective number of scatterers per resolution cell is an important parameter, which can be estimated by the echo envelope. Assuming the signal is stationary and coherent, if the number of scatterers per resolution cell is above approximately 10, envelope signal is considered to be fully developed speckle (FDS) and otherwise they are from low scatterer number density (LSND). Two statistical parameters named R and S are often calculated from envelope intensity to classify FDS from LSND. The main problem is that limited data from small patches often renders this classification inaccurate. Herein, we propose two techniques based on neural networks to estimate the effective number of scatterers. The first network is a multi-layer perceptron (MLP) that uses the hand-crafted features of R and S for classification. The second network is a convolutional neural network (CNN) that does not need hand-crafted features and instead utilizes spectrum and the envelope intensity directly. We show that the proposed MLP works very well for large patches wherein a reliable estimation of R and S can be made. However, its classification becomes inaccurate for small patches, where the proposed CNN provides accurate classifications.
Collapse
|
21
|
Castañeda-Martinez L, Noguchi KK, Ikonomidou C, Zagzebski JA, Hall TJ, Rosado-Mendez IM. Optimization of Ultrasound Backscatter Spectroscopy to Assess Neurotoxic Effects of Anesthesia in the Newborn Non-human Primate Brain. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2044-2056. [PMID: 32475715 PMCID: PMC8142938 DOI: 10.1016/j.ultrasmedbio.2020.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Studies in animal models have revealed that long exposures to anesthetics can induce apoptosis in the newborn and young developing brain. These effects have not been confirmed in humans because of the lack of a non-invasive, practical in vivo imaging tool with the ability to detect these changes. Following the successful use of ultrasound backscatter spectroscopy (UBS) to monitor in vivo cell death in breast tumors, we aimed to use UBS to assess the neurotoxicity of the anesthetic sevoflurane (SEVO) in a non-human primate (NHP) model. Sixteen 2- to 7-day-old rhesus macaques were exposed for 5 h to SEVO. Ultrasound scanning was done with a phased array transducer on a clinical ultrasound scanner operated at 10 MHz. Data consisting of 10-15 frames of radiofrequency (RF) echo signals from coronal views of the thalamus were obtained 0.5 and 6.0 h after initiating exposure. The UBS parameter "effective scatterer size" (ESS) was estimated by fitting a scattering form factor (FF) model to the FF measured from RF echo signals. The approach involved analyzing the frequency dependence of the measured FF to characterize scattering sources and selecting the FF model based on a χ2 goodness-of-fit criterion. To assess data quality, a rigorous acceptance criterion based on the analysis of prevalence of diffuse scattering (an assumption in the estimation of ESS) was established. ESS changes after exposure to SEVO were compared with changes in a control group of five primates for which ultrasound data were acquired at 0 and 10 min (no apoptosis expected). Over the entire data set, the average measured FF at 0.5 and 6.0 h monotonically decreased with frequency, justifying fitting a single FF over the analysis bandwidth. χ2 values of a (inhomogeneous continuum) Gaussian FF model were one-fifth those of the discrete fluid sphere model, suggesting that a continuum scatterer model better represents ultrasound scattering in the young rhesus brain. After application of the data quality criterion, only 5 of 16 subjects from the apoptotic group and 5 of 5 subjects from the control group fulfilled the acceptance criteria. All subjects in the apoptotic group that passed the acceptance criterion exhibited a significant ESS reduction at 6.0 h. These changes (-6.4%, 95% Interquartile Range: -14.3% to -3.3%) were larger than those in the control group (-0.8%, 95% Interquartile Range: -2.0% to 1.5%]). Data with a low prevalence of diffuse scattering corresponded to possibly biased results. Thus, ESS has the potential to detect changes in brain microstructure related to anesthesia-induced apoptosis.
Collapse
Affiliation(s)
| | - Kevin K Noguchi
- Department of Psychiatry, School of Medicine, Washington University, St. Louis, Missouri, USA
| | | | - James A Zagzebski
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Timothy J Hall
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ivan M Rosado-Mendez
- Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico; Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
22
|
Jafarpisheh N, Rosado-Mendez IM, Hall TJ, Rivaz H. Regularized Estimation of Effective Scatterer Size and Acoustic Concentration Quantitative Ultrasound Parameters Using Dynamic Programming .. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:13-16. [PMID: 33017919 PMCID: PMC7545313 DOI: 10.1109/embc44109.2020.9176714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The objective of quantitative ultrasound (QUS) is to characterize tissue microstructure by parametrizing backscattered radiofrequency (RF) signals from clinical ultrasound scanners. Herein, we develop a novel technique based on dynamic programming (DP) to simultaneously estimate the acoustic attenuation, the effective scatterer size (ESS), and the acoustic concentration (AC) from ultrasound backscattered power spectra. This is achieved through two different approaches: (1) using a Gaussian form factor (GFF) and (2) using a general form factor (gFF) that is more flexible than the Gaussian form factor but involves estimating more parameters. Both DP methods are compared to an adaptation of a previously proposed least-squares (LSQ) method. Simulation results show that in the GFF approach, the variance of DP is on average 88%, 75% and 32% lower than that of LSQ for the three estimated QUS parameters. The gFF approach also yields similar improvements.
Collapse
|
23
|
Gesnik M, Bhatt M, Roy Cardinal MH, Destrempes F, Allard L, Nguyen BN, Alquier T, Giroux JF, Tang A, Cloutier G. In vivo Ultrafast Quantitative Ultrasound and Shear Wave Elastography Imaging on Farm-Raised Duck Livers during Force Feeding. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:1715-1726. [PMID: 32381381 DOI: 10.1016/j.ultrasmedbio.2020.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/05/2020] [Accepted: 03/10/2020] [Indexed: 06/11/2023]
Abstract
Shear wave elastography (speed and dispersion), local attenuation coefficient slope and homodyned-K parametric imaging were used for liver steatosis grading. These ultrasound biomarkers rely on physical interactions between shear and compression waves with tissues at both macroscopic and microscopic scales. These techniques were applied in a context not yet studied with ultrasound imaging, that is, monitoring steatosis of force-fed duck livers from pre-force-fed to foie gras stages. Each estimated feature presented a statistically significant trend along the feeding process (p values <10-3). However, whereas a monotonic increase in the shear wave speed was observed along the process, most quantitative ultrasound features exhibited an absolute maximum value halfway through the process. As the liver fat fraction in foie gras is much higher than that seen clinically, we hypothesized that a change in the ultrasound scattering regime is encountered for high-fat fractions, and consequently, care has to be taken when applying ultrasound biomarkers to grading of severe states of steatosis.
Collapse
Affiliation(s)
- Marc Gesnik
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, QC, Canada
| | - Manish Bhatt
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, QC, Canada
| | - Marie-Hélène Roy Cardinal
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, QC, Canada
| | - François Destrempes
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, QC, Canada
| | - Louise Allard
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, QC, Canada
| | - Bich N Nguyen
- Service of Pathology, University of Montreal Hospital (CHUM), Montréal, QC, Canada
| | - Thierry Alquier
- CRCHUM and Montreal Diabetes Research Center, Montréal, QC, Canada; Department of Medicine, University of Montreal, Montréal, QC, Canada
| | - Jean-François Giroux
- Department of Biological Sciences, University of Quebec in Montreal, Montréal, QC, Canada
| | - An Tang
- Service of Radiology, University of Montreal Hospital (CHUM), Montréal, QC, Canada; Department of Radiology, Radio-Oncology and Nuclear Medicine, University of Montreal, Montréal, QC, Canada; Laboratory of Medical Image Analysis, University of Montreal Hospital Research Center (CRCHUM), Montréal, QC, Canada; Institute of Biomedical Engineering, University of Montreal, Montréal, QC, Canada
| | - Guy Cloutier
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, QC, Canada; Department of Radiology, Radio-Oncology and Nuclear Medicine, University of Montreal, Montréal, QC, Canada; Institute of Biomedical Engineering, University of Montreal, Montréal, QC, Canada.
| |
Collapse
|
24
|
Nguyen TN, Tam AJ, Do MN, Oelze ML. Estimation of Backscatter Coefficients Using an In Situ Calibration Source. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:308-317. [PMID: 31567079 PMCID: PMC7075368 DOI: 10.1109/tuffc.2019.2944305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The objective of this article is to demonstrate the feasibility of estimating the backscatter coefficient (BSC) using an in situ calibration source. Traditional methods of estimating the BSC in vivo using a reference phantom technique do not account for transmission losses due to intervening layers between the ultrasonic source and the tissue region to be interrogated, leading to increases in bias and variance of BSC-based estimates. To account for transmission losses, an in situ calibration approach is proposed. The in situ calibration technique employs a titanium sphere that is well-characterized ultrasonically, biocompatible, and embedded inside the sample. A set of experiments was conducted to evaluate the embedded titanium spheres as in situ calibration targets for BSC estimation. The first experiment quantified the backscattered signal strength from titanium spheres of three sizes: 0.5, 1, and 2 mm in diameter. The second set of experiments assessed the repeatability of BSC estimates from the titanium spheres and compared these BSCs to theory. The third set of experiments quantified the ability of the titanium bead to provide an in situ reference spectrum in the presence of a lossy layer on top of the sample. The final set of experiments quantified the ability of the bead to provide a calibration spectrum over multiple depths in the sample. All experiments were conducted using an L9-4/38 linear array connected to a SonixOne system. The strongest signal was observed from the 2-mm titanium bead with the signal-to-noise ratio (SNR) of 11.6 dB with respect to the background speckle. Using an analysis bandwidth of 2.5-5.5 MHz, the mean differences between the experimentally derived BSCs and BSCs derived from the Faran theory were 0.54 and 0.76 dB using the array and a single-element transducer, respectively. The BSCs estimated using the in situ calibration approach without the layer and with the layer and using the reference phantom approach with the layer were compared to the reference phantom approach without the layer present. The mean differences in BSCs were 0.15, 0.73, and -9.69 dB, respectively. The mean differences of the BSCs calculated from data blocks located at depths that were either 30 pulse lengths above or below the actual bead depth compared to the BSC calculated at bead depth were -1.55 and -1.48 dB, respectively. The results indicate that an in situ calibration target can account for overlaying tissue losses, thereby improving the robustness of BSC-based estimates.
Collapse
|
25
|
Validation of differences in backscatter coefficients among four ultrasound scanners with different beamforming methods. J Med Ultrason (2001) 2019; 47:35-46. [PMID: 31679096 DOI: 10.1007/s10396-019-00984-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE The backscatter coefficient (BSC) indicates the absolute scatterer property of a material, independently of clinicians and system settings. Our study verified that the BSC differed among the scanners, transducers, and beamforming methods used for quantitative ultrasound analyses of biological tissues. METHODS Measurements were performed on four tissue-mimicking homogeneous phantoms containing spherical scatterers with mean diameters of 20 and 30 µm prepared at concentrations of 0.5 and 2.0 wt%, respectively. The BSCs in the different systems were compared using ultrasound scanners with two single-element transducers and five linear high- or low-frequency probes. The beamforming methods were line-by-line formation using focused imaging (FI) and parallel beam formation using plane wave imaging (PWI). The BSC of each system was calculated by the reference phantom method. The mean deviation from the theoretical BSC computed by the Faran model was analyzed as the benchmark validation of the calculated BSC. RESULTS The BSCs calculated in systems with different properties and beamforming methods well concurred with the theoretical BSC. The mean deviation was below ± 2.8 dB on average, and within the approximate standard deviation (± 2.2 dB at most) in all cases. These variations agreed with a previous study in which the largest error among four different scanners with FI beamforming was 3.5 dB. CONCLUSION The BSC in PWI was equivalent to those in the other systems and to those of FI beamforming. This result indicates the possibility of ultra-high frame-rate BSC analysis using PWI.
Collapse
|
26
|
Frequency dependence of attenuation and backscatter coefficient of ex vivo human lymphedema dermis. J Med Ultrason (2001) 2019; 47:25-34. [DOI: 10.1007/s10396-019-00973-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/26/2019] [Indexed: 11/25/2022]
|
27
|
Gong P, Song P, Huang C, Trzasko J, Chen S. System-Independent Ultrasound Attenuation Coefficient Estimation Using Spectra Normalization. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:867-875. [PMID: 30843826 PMCID: PMC6508689 DOI: 10.1109/tuffc.2019.2903010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Ultrasound attenuation coefficient estimation (ACE) has diagnostic potential for clinical applications such as differentiating tumors and quantifying fat content in the liver. The two commonly used ACE methods in the ultrasound array imaging system are the spectral shift method and the reference-phantom-based methods. The spectra shift method estimates the central frequency downshift along depth, whereas the reference-phantom-based methods use a well-calibrated phantom to cancel system dependent effects in attenuation estimation. In this study, we propose a novel system-independent ACE technique based on spectra normalization of different frequencies. This technique does not require a reference phantom for normalization. The power of each frequency component is normalized by the power of an adjacent frequency component in the spectrum to cancel system-dependent effects, such as focusing and time gain compensation (TGC). This method is referred to as the reference frequency method (RFM), and its performance has been evaluated in phantoms and in vivo liver studies. The RFM technique can be applied to various transducer geometries (e.g., linear or curved arrays) with different beam patterns (e.g., focused or unfocused).
Collapse
|