1
|
Anyimadu EA, Wang Y, Floricel C, Kamel S, Fuller CD, Zhang X, Marai GE, Canahuate GM. PRO-Based Stratification Improves Model Prediction for Toxicity and Survival of Head and Neck Cancer Patients. IEEE J Biomed Health Inform 2025; 29:807-814. [PMID: 40030567 PMCID: PMC11970995 DOI: 10.1109/jbhi.2024.3515092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Patient-Reported Outcomes (PRO) consist of information provided directly by the patients about their health status including symptom ratings. PROs are commonly used in clinical practice to support clinical decision-making and have recently been incorporated into machine learning models to improve risk prediction. In this work, we aim to evaluate whether the inclusion of a patient stratification based on 12-month post-treatment predicted Patient Reported Outcomes improves risk prediction of radiation-induced toxicity and overall survival for head and neck cancer patients. A bidirectional long-short term memory (Bi-LSTM) recurrent neural network was used to model the longitudinal PRO data and to predict symptom ratings 12 months post-treatment. Patients were stratified using hierarchical clustering over the LSTM-predicted data. A logistic regression model was trained to predict Xerostomia at 12 months and a Cox regression model to predict overall survival. Results show that the inclusion of symptom burden clusters derived from the predicted Patient Reported Outcomes improves radiation-induced toxicity and overall survival prediction for head and neck cancer patients.
Collapse
|
2
|
Wentzel A, Attia S, Zhang X, Canahuate G, Fuller CD, Marai GE. DITTO: A Visual Digital Twin for Interventions and Temporal Treatment Outcomes in Head and Neck Cancer. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:65-75. [PMID: 39255169 PMCID: PMC11879760 DOI: 10.1109/tvcg.2024.3456160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Digital twin models are of high interest to Head and Neck Cancer (HNC) oncologists, who have to navigate a series of complex treatment decisions that weigh the efficacy of tumor control against toxicity and mortality risks. Evaluating individual risk profiles necessitates a deeper understanding of the interplay between different factors such as patient health, spatial tumor location and spread, and risk of subsequent toxicities that can not be adequately captured through simple heuristics. To support clinicians in better understanding tradeoffs when deciding on treatment courses, we developed DITTO, a digital-twin and visual computing system that allows clinicians to analyze detailed risk profiles for each patient, and decide on a treatment plan. DITTO relies on a sequential Deep Reinforcement Learning digital twin (DT) to deliver personalized risk of both long-term and short-term disease outcome and toxicity risk for HNC patients. Based on a participatory collaborative design alongside oncologists, we also implement several visual explainability methods to promote clinical trust and encourage healthy skepticism when using our system. We evaluate the efficacy of DITTO through quantitative evaluation of performance and case studies with qualitative feedback. Finally, we discuss design lessons for developing clinical visual XAI applications for clinical end users.
Collapse
|
3
|
Li Z, Liu X, Tang Z, Jin N, Zhang P, Eadon MT, Song Q, Chen YV, Su J. TrajVis: a visual clinical decision support system to translate artificial intelligence trajectory models in the precision management of chronic kidney disease. J Am Med Inform Assoc 2024; 31:2474-2485. [PMID: 38916922 PMCID: PMC11491615 DOI: 10.1093/jamia/ocae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/26/2024] Open
Abstract
OBJECTIVE Our objective is to develop and validate TrajVis, an interactive tool that assists clinicians in using artificial intelligence (AI) models to leverage patients' longitudinal electronic medical records (EMRs) for personalized precision management of chronic disease progression. MATERIALS AND METHODS We first perform requirement analysis with clinicians and data scientists to determine the visual analytics tasks of the TrajVis system as well as its design and functionalities. A graph AI model for chronic kidney disease (CKD) trajectory inference named DisEase PrOgression Trajectory (DEPOT) is used for system development and demonstration. TrajVis is implemented as a full-stack web application with synthetic EMR data derived from the Atrium Health Wake Forest Baptist Translational Data Warehouse and the Indiana Network for Patient Care research database. A case study with a nephrologist and a user experience survey of clinicians and data scientists are conducted to evaluate the TrajVis system. RESULTS The TrajVis clinical information system is composed of 4 panels: the Patient View for demographic and clinical information, the Trajectory View to visualize the DEPOT-derived CKD trajectories in latent space, the Clinical Indicator View to elucidate longitudinal patterns of clinical features and interpret DEPOT predictions, and the Analysis View to demonstrate personal CKD progression trajectories. System evaluations suggest that TrajVis supports clinicians in summarizing clinical data, identifying individualized risk predictors, and visualizing patient disease progression trajectories, overcoming the barriers of AI implementation in healthcare. DISCUSSION The TrajVis system provides a novel visualization solution which is complimentary to other risk estimators such as the Kidney Failure Risk Equations. CONCLUSION TrajVis bridges the gap between the fast-growing AI/ML modeling and the clinical use of such models for personalized and precision management of chronic diseases.
Collapse
Affiliation(s)
- Zuotian Li
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Department of Computer Graphics Technology, Purdue University, West Lafayette, IN 47907, United States
| | - Xiang Liu
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Ziyang Tang
- Department of Computer and Information Technology, Purdue University, West Lafayette, IN 47907, United States
| | - Nanxin Jin
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Department of Computer and Information Technology, Purdue University, West Lafayette, IN 47907, United States
| | - Pengyue Zhang
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Michael T Eadon
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Qianqian Song
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL 32610, United States
| | - Yingjie V Chen
- Department of Computer Graphics Technology, Purdue University, West Lafayette, IN 47907, United States
| | - Jing Su
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, United States
| |
Collapse
|
4
|
Floricel C, Wentzel A, Mohamed A, Fuller CD, Canahuate G, Marai GE. Roses Have Thorns: Understanding the Downside of Oncological Care Delivery Through Visual Analytics and Sequential Rule Mining. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:1227-1237. [PMID: 38015695 PMCID: PMC10842255 DOI: 10.1109/tvcg.2023.3326939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Personalized head and neck cancer therapeutics have greatly improved survival rates for patients, but are often leading to understudied long-lasting symptoms which affect quality of life. Sequential rule mining (SRM) is a promising unsupervised machine learning method for predicting longitudinal patterns in temporal data which, however, can output many repetitive patterns that are difficult to interpret without the assistance of visual analytics. We present a data-driven, human-machine analysis visual system developed in collaboration with SRM model builders in cancer symptom research, which facilitates mechanistic knowledge discovery in large scale, multivariate cohort symptom data. Our system supports multivariate predictive modeling of post-treatment symptoms based on during-treatment symptoms. It supports this goal through an SRM, clustering, and aggregation back end, and a custom front end to help develop and tune the predictive models. The system also explains the resulting predictions in the context of therapeutic decisions typical in personalized care delivery. We evaluate the resulting models and system with an interdisciplinary group of modelers and head and neck oncology researchers. The results demonstrate that our system effectively supports clinical and symptom research.
Collapse
|
5
|
Canahuate G, Wentzel A, Mohamed ASR, van Dijk LV, Vock DM, Elgohari B, Elhalawani H, Fuller CD, Marai GE. Spatially-aware clustering improves AJCC-8 risk stratification performance in oropharyngeal carcinomas. Oral Oncol 2023; 144:106460. [PMID: 37390759 PMCID: PMC10561377 DOI: 10.1016/j.oraloncology.2023.106460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 07/02/2023]
Abstract
OBJECTIVE Evaluate the effectiveness of machine learning tools that incorporate spatial information such as disease location and lymph node metastatic patterns-of-spread, for prediction of survival and toxicity in HPV+ oropharyngeal cancer (OPC). MATERIALS & METHODS 675 HPV+ OPC patients that were treated at MD Anderson Cancer Center between 2005 and 2013 with curative intent IMRT were retrospectively collected under IRB approval. Risk stratifications incorporating patient radiometric data and lymph node metastasis patterns via an anatomically-adjacent representation with hierarchical clustering were identified. These clusterings were combined into a 3-level patient stratification and included along with other known clinical features in a Cox model for predicting survival outcomes, and logistic regression for toxicity, using independent subsets for training and validation. RESULTS Four groups were identified and combined into a 3-level stratification. The inclusion of patient stratifications in predictive models for 5-yr Overall survival (OS), 5-year recurrence free survival, (RFS) and Radiation-associated dysphagia (RAD) consistently improved model performance measured using the area under the curve (AUC). Test set AUC improvements over models with clinical covariates, was 9 % for predicting OS, and 18 % for predicting RFS, and 7 % for predicting RAD. For models with both clinical and AJCC covariates, AUC improvement was 7 %, 9 %, and 2 % for OS, RFS, and RAD, respectively. CONCLUSION Including data-driven patient stratifications considerably improve prognosis for survival and toxicity outcomes over the performance achieved by clinical staging and clinical covariates alone. These stratifications generalize well to across cohorts, and sufficient information for reproducing these clusters is included.
Collapse
Affiliation(s)
- Guadalupe Canahuate
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA 52242, USA.
| | - Andrew Wentzel
- Department of Computer Science, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Abdallah S R Mohamed
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lisanne V van Dijk
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David M Vock
- Division of Biostatistics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Baher Elgohari
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hesham Elhalawani
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Clifton D Fuller
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - G Elisabeta Marai
- Department of Computer Science, The University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
6
|
Wentzel A, Floricel C, Canahuate G, Naser MA, Mohamed AS, Fuller CD, van Dijk L, Marai GE. DASS Good: Explainable Data Mining of Spatial Cohort Data. COMPUTER GRAPHICS FORUM : JOURNAL OF THE EUROPEAN ASSOCIATION FOR COMPUTER GRAPHICS 2023; 42:283-295. [PMID: 37854026 PMCID: PMC10583718 DOI: 10.1111/cgf.14830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Developing applicable clinical machine learning models is a difficult task when the data includes spatial information, for example, radiation dose distributions across adjacent organs at risk. We describe the co-design of a modeling system, DASS, to support the hybrid human-machine development and validation of predictive models for estimating long-term toxicities related to radiotherapy doses in head and neck cancer patients. Developed in collaboration with domain experts in oncology and data mining, DASS incorporates human-in-the-loop visual steering, spatial data, and explainable AI to augment domain knowledge with automatic data mining. We demonstrate DASS with the development of two practical clinical stratification models and report feedback from domain experts. Finally, we describe the design lessons learned from this collaborative experience.
Collapse
Affiliation(s)
- A Wentzel
- University of Illinois Chicago, Electronic Visualization Lab
| | - C Floricel
- University of Illinois Chicago, Electronic Visualization Lab
| | | | - M A Naser
- University of Texas MD Anderson Cancer Center
| | - A S Mohamed
- University of Texas MD Anderson Cancer Center
| | - C D Fuller
- University of Texas MD Anderson Cancer Center
| | - L van Dijk
- University of Texas MD Anderson Cancer Center
| | - G E Marai
- University of Illinois Chicago, Electronic Visualization Lab
| |
Collapse
|
7
|
Nipu N, Floricel C, Naghashzadeh N, Paoli R, Marai GE. Visual Analysis and Detection of Contrails in Aircraft Engine Simulations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:798-808. [PMID: 36166562 PMCID: PMC10621327 DOI: 10.1109/tvcg.2022.3209356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Contrails are condensation trails generated from emitted particles by aircraft engines, which perturb Earth's radiation budget. Simulation modeling is used to interpret the formation and development of contrails. These simulations are computationally intensive and rely on high-performance computing solutions, and the contrail structures are not well defined. We propose a visual computing system to assist in defining contrails and their characteristics, as well as in the analysis of parameters for computer-generated aircraft engine simulations. The back-end of our system leverages a contrail-formation criterion and clustering methods to detect contrails' shape and evolution and identify similar simulation runs. The front-end system helps analyze contrails and their parameters across multiple simulation runs. The evaluation with domain experts shows this approach successfully aids in contrail data investigation.
Collapse
|
8
|
Politowicz AL, Burks AT, Dong Y, Htwe YM, Dudek SM, Elisabeta Marai G, Belvitch P. Alveolus analysis: a web browser-based tool to analyze lung intravital microscopy. BMC Pulm Med 2022; 22:480. [PMID: 36528564 PMCID: PMC9759058 DOI: 10.1186/s12890-022-02274-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/03/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Acute lung injury and the acute respiratory distress syndrome are characterized by pulmonary inflammation, reduced endothelial barrier integrity and filling of the alveolar space with protein rich edema fluid and infiltrating leukocytes. Animal models are critical to uncovering the pathologic mechanisms of this devastating syndrome. Intravital imaging of the intact lung via two-photon intravital microscopy has proven a valuable method to investigate lung injury in small rodent models through characterization of inflammatory cells and vascular changes in real time. However, respiratory motion complicates the analysis of these time series images and requires selective data extraction to stabilize the image. Consequently, analysis of individual alveoli may not provide a complete picture of the integrated mechanical, vascular and inflammatory processes occurring simultaneously in the intact lung. To address these challenges, we developed a web browser-based visualization application named Alveolus Analysis to process, analyze and graphically display intravital lung microscopy data. RESULTS The designed tool takes raw temporal image data as input, performs image preprocessing and feature extraction offline, and visualizes the extracted information in a web browser-based interface. The interface allows users to explore multiple experiments in three panels corresponding to different levels of detail: summary statistics of alveolar/neutrophil behavior, characterization of alveolar dynamics including lung edema and inflammatory cells at specific time points, and cross-experiment analysis. We performed a case study on the utility of the visualization with two members or our research team and they found the tool useful because of its ability to preprocess data consistently and visualize information in a digestible and informative format. CONCLUSIONS Application of our software tool, Alveolus Analysis, to intravital lung microscopy data has the potential to enhance the information gained from these experiments and provide new insights into the pathologic mechanisms of inflammatory lung injury.
Collapse
Affiliation(s)
- Alexander L Politowicz
- Department of Computer Science, College of Engineering, University of Illinois Chicago, Chicago, IL, USA
| | - Andrew T Burks
- Department of Computer Science, College of Engineering, University of Illinois Chicago, Chicago, IL, USA
| | - Yushen Dong
- Department of Mathematics, Statistics, and Computer Science, University of Illinois Chicago, Chicago, IL, USA
| | - Yu Maw Htwe
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois Chicago, CSB 915, 840 S. Wood St., Chicago, IL, 60612, USA
| | - Steven M Dudek
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois Chicago, CSB 915, 840 S. Wood St., Chicago, IL, 60612, USA
| | - G Elisabeta Marai
- Department of Computer Science, College of Engineering, University of Illinois Chicago, Chicago, IL, USA
| | - Patrick Belvitch
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois Chicago, CSB 915, 840 S. Wood St., Chicago, IL, 60612, USA.
| |
Collapse
|
9
|
Tardini E, Zhang X, Canahuate G, Wentzel A, Mohamed ASR, Van Dijk L, Fuller CD, Marai GE. Optimal Treatment Selection in Sequential Systemic and Locoregional Therapy of Oropharyngeal Squamous Carcinomas: Deep Q-Learning With a Patient-Physician Digital Twin Dyad. J Med Internet Res 2022; 24:e29455. [PMID: 35442211 PMCID: PMC9069283 DOI: 10.2196/29455] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/03/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Currently, selection of patients for sequential versus concurrent chemotherapy and radiation regimens lacks evidentiary support and it is based on locally optimal decisions for each step. OBJECTIVE We aim to optimize the multistep treatment of patients with head and neck cancer and predict multiple patient survival and toxicity outcomes, and we develop, apply, and evaluate a first application of deep Q-learning (DQL) and simulation to this problem. METHODS The treatment decision DQL digital twin and the patient's digital twin were created, trained, and evaluated on a data set of 536 patients with oropharyngeal squamous cell carcinoma with the goal of, respectively, determining the optimal treatment decisions with respect to survival and toxicity metrics and predicting the outcomes of the optimal treatment on the patient. Of the data set of 536 patients, the models were trained on a subset of 402 (75%) patients (split randomly) and evaluated on a separate set of 134 (25%) patients. Training and evaluation of the digital twin dyad was completed in August 2020. The data set includes 3-step sequential treatment decisions and complete relevant history of the patient cohort treated at MD Anderson Cancer Center between 2005 and 2013, with radiomics analysis performed for the segmented primary tumor volumes. RESULTS On the test set, we found mean 87.35% (SD 11.15%) and median 90.85% (IQR 13.56%) accuracies in treatment outcome prediction, matching the clinicians' outcomes and improving the (predicted) survival rate by +3.73% (95% CI -0.75% to 8.96%) and the dysphagia rate by +0.75% (95% CI -4.48% to 6.72%) when following DQL treatment decisions. CONCLUSIONS Given the prediction accuracy and predicted improvement regarding the medically relevant outcomes yielded by this approach, this digital twin dyad of the patient-physician dynamic treatment problem has the potential of aiding physicians in determining the optimal course of treatment and in assessing its outcomes.
Collapse
Affiliation(s)
- Elisa Tardini
- Department of Computer Science, University of Illinois at Chicago, Chicago, IL, United States
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Xinhua Zhang
- Department of Computer Science, University of Illinois at Chicago, Chicago, IL, United States
| | - Guadalupe Canahuate
- Department of Electrical and Computer Engineering, University Of Iowa, Iowa City, IA, United States
| | - Andrew Wentzel
- Department of Computer Science, University of Illinois at Chicago, Chicago, IL, United States
| | - Abdallah S R Mohamed
- MD Anderson Cancer Center, Houston, TX, United States
- Department of Radiation Oncology, The University of Texas, Austin, TX, United States
| | | | - Clifton D Fuller
- MD Anderson Cancer Center, Houston, TX, United States
- Department of Radiation Oncology, The University of Texas, Austin, TX, United States
| | - G Elisabeta Marai
- Department of Computer Science, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
10
|
Srabanti S, Tran M, Achim V, Fuller D, Canahuate G, Miranda F, Marai G. A Tale of Two Centers: Visual Exploration of Health Disparities in Cancer Care. IEEE PACIFIC VISUALIZATION SYMPOSIUM : [PROCEEDINGS]. IEEE PACIFIC VISUALISATION SYMPOSIUM 2022; 2022:101-110. [PMID: 35928055 PMCID: PMC9344952 DOI: 10.1109/pacificvis53943.2022.00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The annual incidence of head and neck cancers (HNC) worldwide is more than 550,000 cases, with around 300,000 deaths each year. However, the incidence rates and disease-characteristics of HNC differ between treatment centers and different populations, due to undetermined reasons, which may or not include socioeconomic factors. The multi-faceted and multi-variate nature of the data in the context of the emerging field of health disparities research makes automated analysis impractical. Hence, we present a visual analysis approach to explore the health disparities in the data of HNC patients from two different cohorts at two cancer care centers. Our approach integrates data from multiple sources, including census data and city data, with custom visual encodings and with a nearest neighbor approach. Our design, created in collaboration with oncology experts, makes it possible to analyze the patients' demographic, disease characteristics, treatments and outcomes, and to make significant comparisons of these two cohorts and of individual patients. We evaluate this approach through two case studies performed with domain experts. The results demonstrate that this visual analysis approach successfully accomplishes the goal of comparing two cohorts in terms of different significant factors, and can provide insights into the main source of health disparities between the two centers.
Collapse
|
11
|
Floricel C, Nipu N, Biggs M, Wentzel A, Canahuate G, Van Dijk L, Mohamed A, Fuller CD, Marai GE. THALIS: Human-Machine Analysis of Longitudinal Symptoms in Cancer Therapy. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:151-161. [PMID: 34591766 PMCID: PMC8785360 DOI: 10.1109/tvcg.2021.3114810] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Although cancer patients survive years after oncologic therapy, they are plagued with long-lasting or permanent residual symptoms, whose severity, rate of development, and resolution after treatment vary largely between survivors. The analysis and interpretation of symptoms is complicated by their partial co-occurrence, variability across populations and across time, and, in the case of cancers that use radiotherapy, by further symptom dependency on the tumor location and prescribed treatment. We describe THALIS, an environment for visual analysis and knowledge discovery from cancer therapy symptom data, developed in close collaboration with oncology experts. Our approach leverages unsupervised machine learning methodology over cohorts of patients, and, in conjunction with custom visual encodings and interactions, provides context for new patients based on patients with similar diagnostic features and symptom evolution. We evaluate this approach on data collected from a cohort of head and neck cancer patients. Feedback from our clinician collaborators indicates that THALIS supports knowledge discovery beyond the limits of machines or humans alone, and that it serves as a valuable tool in both the clinic and symptom research.
Collapse
|
12
|
Identifying Symptom Clusters Through Association Rule Mining. ARTIFICIAL INTELLIGENCE IN MEDICINE. CONFERENCE ON ARTIFICIAL INTELLIGENCE IN MEDICINE (2005- ) 2021. [PMID: 34541584 DOI: 10.1007/978-3-030-77211-6_58] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Cancer patients experience many symptoms throughout their cancer treatment and sometimes suffer from lasting effects post-treatment. Patient-Reported Outcome (PRO) surveys provide a means for monitoring the patient's symptoms during and after treatment. Symptom cluster (SC) research seeks to understand these symptoms and their relationships to define new treatment and disease management methods to improve patient's quality of life. This paper introduces association rule mining (ARM) as a novel alternative for identifying symptom clusters. We compare the results to prior research and find that while some of the SCs are similar, ARM uncovers more nuanced relationships between symptoms such as anchor symptoms that serve as connections between interference and cancer-specific symptoms.
Collapse
|
13
|
Kwon BC, Anand V, Severson KA, Ghosh S, Sun Z, Frohnert BI, Lundgren M, Ng K. DPVis: Visual Analytics With Hidden Markov Models for Disease Progression Pathways. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:3685-3700. [PMID: 32275600 DOI: 10.1109/tvcg.2020.2985689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Clinical researchers use disease progression models to understand patient status and characterize progression patterns from longitudinal health records. One approach for disease progression modeling is to describe patient status using a small number of states that represent distinctive distributions over a set of observed measures. Hidden Markov models (HMMs) and its variants are a class of models that both discover these states and make inferences of health states for patients. Despite the advantages of using the algorithms for discovering interesting patterns, it still remains challenging for medical experts to interpret model outputs, understand complex modeling parameters, and clinically make sense of the patterns. To tackle these problems, we conducted a design study with clinical scientists, statisticians, and visualization experts, with the goal to investigate disease progression pathways of chronic diseases, namely type 1 diabetes (T1D), Huntington's disease, Parkinson's disease, and chronic obstructive pulmonary disease (COPD). As a result, we introduce DPVis which seamlessly integrates model parameters and outcomes of HMMs into interpretable and interactive visualizations. In this article, we demonstrate that DPVis is successful in evaluating disease progression models, visually summarizing disease states, interactively exploring disease progression patterns, and building, analyzing, and comparing clinically relevant patient subgroups.
Collapse
|
14
|
Wentzel A, Luciani T, van Dijk LV, Taku N, Elgohari B, Mohamed ASR, Canahuate G, Fuller CD, Vock DM, Elisabeta Marai G. Precision association of lymphatic disease spread with radiation-associated toxicity in oropharyngeal squamous carcinomas. Radiother Oncol 2021; 161:152-158. [PMID: 34126138 PMCID: PMC8479634 DOI: 10.1016/j.radonc.2021.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 05/18/2021] [Accepted: 06/05/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE To determine whether patient similarity in terms of head and neck cancer spread through lymph nodes correlates significantly with radiation-associated toxicity. MATERIALS AND METHODS 582 head and neck cancer patients received radiotherapy for oropharyngeal cancer (OPC) and had non-metastatic affected lymph nodes in the head and neck. Affected lymph nodes were segmented from pretreatment contrast-enhanced tomography scans and categorized according to consensus guidelines. Similar patients were clustered into 4 groups according to a graph-based representation of disease spread through affected lymph nodes. Correlation between dysphagia-associated symptoms and patient groups was calculated. RESULTS Out of 582 patients, 26% (152) experienced toxicity during a follow up evaluation 6 months after completion of radiotherapy treatment. Patient groups identified by our approach were significantly correlated with dysphagia, feeding tube, and aspiration toxicity (p < .0005). DISCUSSION Our results suggest that structural geometry-aware characterization of affected lymph nodes can be used to better predict radiation-associated dysphagia at time of diagnosis, and better inform treatment guidelines. CONCLUSION Our work successfully stratified a patient cohort into similar groups using a structural geometry, graph-encoding of affected lymph nodes in oropharyngeal cancer patients, that were predictive of late radiation-associated dysphagia and toxicity.
Collapse
Affiliation(s)
- Andrew Wentzel
- Department of Computer Science, The University of Illinois at Chicago, Chicago, USA.
| | - Timothy Luciani
- Department of Computer Science, The University of Illinois at Chicago, Chicago, USA
| | - Lisanne V van Dijk
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Nicolette Taku
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Baher Elgohari
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA; Department of Clinical Oncology and Nuclear Medicine, Mansoura University, Mansoura, Egypt
| | - Abdallah S R Mohamed
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Guadalupe Canahuate
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, USA
| | - Clifton D Fuller
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - David M Vock
- Division of Biostatistics, University of Minnesota, Minneapolis, USA
| | - G Elisabeta Marai
- Department of Computer Science, The University of Illinois at Chicago, Chicago, USA.
| |
Collapse
|
15
|
Patel H, Vock DM, Marai GE, Fuller CD, Mohamed ASR, Canahuate G. Oropharyngeal cancer patient stratification using random forest based-learning over high-dimensional radiomic features. Sci Rep 2021; 11:14057. [PMID: 34234160 PMCID: PMC8263609 DOI: 10.1038/s41598-021-92072-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/10/2021] [Indexed: 11/27/2022] Open
Abstract
To improve risk prediction for oropharyngeal cancer (OPC) patients using cluster analysis on the radiomic features extracted from pre-treatment Computed Tomography (CT) scans. 553 OPC Patients randomly split into training (80%) and validation (20%), were classified into 2 or 3 risk groups by applying hierarchical clustering over the co-occurrence matrix obtained from a random survival forest (RSF) trained over 301 radiomic features. The cluster label was included together with other clinical data to train an ensemble model using five predictive models (Cox, random forest, RSF, logistic regression, and logistic-elastic net). Ensemble performance was evaluated over the independent test set for both recurrence free survival (RFS) and overall survival (OS). The Kaplan-Meier curves for OS stratified by cluster label show significant differences for both training and testing (p val < 0.0001). When compared to the models trained using clinical data only, the inclusion of the cluster label improves AUC test performance from .62 to .79 and from .66 to .80 for OS and RFS, respectively. The extraction of a single feature, namely a cluster label, to represent the high-dimensional radiomic feature space reduces the dimensionality and sparsity of the data. Moreover, inclusion of the cluster label improves model performance compared to clinical data only and offers comparable performance to the models including raw radiomic features.
Collapse
Affiliation(s)
- Harsh Patel
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, 52242, USA
| | - David M Vock
- Division of Biostatistics, University of Minnesota, Minneapolis, 55455, USA
| | - G Elisabeta Marai
- Department of Department of Computer Science, University of Illinois at Chicago, Chicago, 60607, USA
| | - Clifton D Fuller
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, 77030, USA
| | - Abdallah S R Mohamed
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, 77030, USA
| | - Guadalupe Canahuate
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, 52242, USA.
| |
Collapse
|
16
|
Wang Y, Van Dijk L, Mohamed ASR, Fuller CD, Zhang X, Marai GE, Canahuate G. Predicting late symptoms of head and neck cancer treatment using LSTM and patient reported outcomes. PROCEEDINGS. INTERNATIONAL DATABASE ENGINEERING AND APPLICATIONS SYMPOSIUM 2021; 2021:273-279. [PMID: 35392138 PMCID: PMC8982996 DOI: 10.1145/3472163.3472177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Patient-Reported Outcome (PRO) surveys are used to monitor patients' symptoms during and after cancer treatment. Acute symptoms refer to those experienced during treatment and late symptoms refer to those experienced after treatment. While most patients experience severe symptoms during treatment, these usually subside in the late stage. However, for some patients, late toxicities persist negatively affecting the patient's quality of life (QoL). In the case of head and neck cancer patients, PRO surveys are recorded every week during the patient's visit to the clinic and at different follow-up times after the treatment has concluded. In this paper, we model the PRO data as a time-series and apply Long-Short Term Memory (LSTM) neural networks for predicting symptom severity in the late stage. The PRO data used in this project corresponds to MD Anderson Symptom Inventory (MDASI) questionnaires collected from head and neck cancer patients treated at the MD Anderson Cancer Center. We show that the LSTM model is effective in predicting symptom ratings under the RMSE and NRMSE metrics. Our experiments show that the LSTM model also outperforms other machine learning models and time-series prediction models for these data.
Collapse
Affiliation(s)
- Yaohua Wang
- Electrical and Computer Engineering University of Iowa
| | | | | | | | - Xinhua Zhang
- Computer Science University of Illinois at Chicago
| | | | | |
Collapse
|
17
|
Luciani T, Wentzel A, Elgohari B, Elhalawani H, Mohamed A, Canahuate G, Vock DM, Fuller CD, Marai GE. A spatial neighborhood methodology for computing and analyzing lymph node carcinoma similarity in precision medicine. J Biomed Inform 2020; 112S:100067. [PMID: 34417010 PMCID: PMC10695270 DOI: 10.1016/j.yjbinx.2020.100067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/29/2019] [Accepted: 01/09/2020] [Indexed: 10/25/2022]
Abstract
Precision medicine seeks to tailor therapy to the individual patient, based on statistical correlates from patients who are similar to the one under consideration. These correlates can and should go beyond genetics, and in general, beyond tabular or array data that can be easily represented computationally and compared. For example, in many types of cancer, cancer treatment and toxicity depend in large measure on the spatial disease spread-e.g., metastasizes to regional lymph nodes in head and neck cancer. However, there is currently a lack of methodology for integrating spatial information when considering patient similarity. We present a novel modeling methodology for the comparison of cancer patients within a cohort, based on the spatial spread of the lymph nodes affected in each patient. The method uses a topological map, bigrams, and hierarchical clustering to group patients based on their similarity. We compare this approach against a nonspatial (categorical) similarity approach where patients are binned solely by their affected nodes. We present similarity results on a 582 head and neck cancer patient cohort, along with two visual abstractions for analysis of the results, and we present clinician feedback. Our novel methodology partitions a patient cohort into clinically meaningful groups more susceptible to treatment side-effects. Such spatially-aware similarity approaches can help maximize the effectiveness of each patient's treatment.
Collapse
Affiliation(s)
- T Luciani
- Department of Computer Science, University of Illinois at Chicago, United States
| | - A Wentzel
- Department of Computer Science, University of Illinois at Chicago, United States
| | - B Elgohari
- MD Anderson Cancer Center, United States
| | | | - A Mohamed
- MD Anderson Cancer Center, United States
| | - G Canahuate
- Department of Computer Science, University of Iowa, United States
| | - D M Vock
- Department of Biostatistics, University of Minnesota, United States
| | - C D Fuller
- MD Anderson Cancer Center, United States
| | - G E Marai
- Department of Computer Science, University of Illinois at Chicago, United States.
| |
Collapse
|
18
|
Wentzel A, Hanula P, Luciani T, Elgohari B, Elhalawani H, Canahuate G, Vock D, Fuller CD, Marai GE. Cohort-based T-SSIM Visual Computing for Radiation Therapy Prediction and Exploration. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2020; 26:949-959. [PMID: 31442988 PMCID: PMC7253296 DOI: 10.1109/tvcg.2019.2934546] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We describe a visual computing approach to radiation therapy (RT) planning, based on spatial similarity within a patient cohort. In radiotherapy for head and neck cancer treatment, dosage to organs at risk surrounding a tumor is a large cause of treatment toxicity. Along with the availability of patient repositories, this situation has lead to clinician interest in understanding and predicting RT outcomes based on previously treated similar patients. To enable this type of analysis, we introduce a novel topology-based spatial similarity measure, T-SSIM, and a predictive algorithm based on this similarity measure. We couple the algorithm with a visual steering interface that intertwines visual encodings for the spatial data and statistical results, including a novel parallel-marker encoding that is spatially aware. We report quantitative results on a cohort of 165 patients, as well as a qualitative evaluation with domain experts in radiation oncology, data management, biostatistics, and medical imaging, who are collaborating remotely.
Collapse
|
19
|
Vapiwala N, Thomas CR, Grover S, Yap ML, Mitin T, Shulman LN, Gospodarowicz MK, Longo J, Petereit DG, Ennis RD, Hayman JA, Rodin D, Buchsbaum JC, Vikram B, Abdel-Wahab M, Epstein AH, Okunieff P, Goldwein J, Kupelian P, Weidhaas JB, Tucker MA, Boice JD, Fuller CD, Thompson RF, Trister AD, Formenti SC, Barcellos-Hoff MH, Jones J, Dharmarajan KV, Zietman AL, Coleman CN. Enhancing Career Paths for Tomorrow's Radiation Oncologists. Int J Radiat Oncol Biol Phys 2019; 105:52-63. [PMID: 31128144 PMCID: PMC7084166 DOI: 10.1016/j.ijrobp.2019.05.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 05/03/2019] [Accepted: 05/08/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Neha Vapiwala
- Department of Radiation Oncology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Charles R Thomas
- Department of Radiation Medicine, Oregon Health and Science University, Portland, Oregon
| | - Surbhi Grover
- Department of Radiation Oncology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania; University of Botswana, Gaborone, Botswana
| | - Mei Ling Yap
- Collaboration for Cancer Outcomes Research and Evaluation, Ingham Institute, University of New South Wales, Sydney, Australia; Liverpool and Macarthur Cancer Therapy Centre, Western Sydney University, Campbelltown, Australia; School of Public Health, University of Sydney, Camperdown, Australia
| | - Timur Mitin
- Department of Radiation Medicine Director, Program in Global Radiation Medicine, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Lawrence N Shulman
- Department of Radiation Oncology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mary K Gospodarowicz
- Department of Radiation Oncology, University of Toronto, Cancer Clinical Research Unit, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - John Longo
- Department of Radiation Oncology Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Daniel G Petereit
- Department of Radiation Oncology, Rapid City Regional Cancer Care Institute, Rapid City, South Dakota
| | - Ronald D Ennis
- Clinical Network for Radiation Oncology, Rutgers and Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - James A Hayman
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Danielle Rodin
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada; Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jeffrey C Buchsbaum
- Radiation Research Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Bhadrasain Vikram
- Clinical Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - May Abdel-Wahab
- Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Alan H Epstein
- Uniformed Service University of the Health Sciences, Bethesda, Maryland
| | - Paul Okunieff
- Department of Radiation Oncology, University of Florida Health Cancer Center, Gainesville, Florida
| | - Joel Goldwein
- Department of Radiation Oncology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania; Elekta AB, Stockholm, Sweden
| | - Patrick Kupelian
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California; Varian Medical Systems, Palo Alto, California
| | - Joanne B Weidhaas
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California; MiraDx, Los Angeles, California
| | - Margaret A Tucker
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - John D Boice
- National Council on Radiation Protection and Measurements, Bethesda, Maryland; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Clifton David Fuller
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Reid F Thompson
- Department of Radiation Medicine, Oregon Health and Science University, Portland, Oregon; VA Portland Health Care System, Portland, Oregon
| | - Andrew D Trister
- Department of Radiation Medicine, Oregon Health and Science University, Portland, Oregon
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, New York City, New York
| | | | - Joshua Jones
- Department of Radiation Oncology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kavita V Dharmarajan
- Department of Radiation Oncology, Mount Sinai Hospital, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Anthony L Zietman
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - C Norman Coleman
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
20
|
Luciani T, Burks A, Sugiyama C, Komperda J, Marai GE. Details-First, Show Context, Overview Last: Supporting Exploration of Viscous Fingers in Large-Scale Ensemble Simulations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 25:10.1109/TVCG.2018.2864849. [PMID: 30136949 PMCID: PMC6382591 DOI: 10.1109/tvcg.2018.2864849] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Visualization research often seeks designs that first establish an overview of the data, in accordance to the information seeking mantra: "Overview first, zoom and filter, then details on demand". However, in computational fluid dynamics (CFD), as well as in other domains, there are many situations where such a spatial overview is not relevant or practical for users, for example when the experts already have a good mental overview of the data, or when an analysis of a large overall structure may not be related to the specific, information-driven tasks of users. Using scientific workflow theory and, as a vehicle, the problem of viscous finger evolution, we advocate an alternative model that allows domain experts to explore features of interest first, then explore the context around those features, and finally move to a potentially unfamiliar summarization overview. In a model instantiation, we show how a computational back-end can identify and track over time low-level, small features, then be used to filter the context of those features while controlling the complexity of the visualization, and finally to summarize and compare simulations. We demonstrate the effectiveness of this approach with an online web-based exploration of a total volume of data approaching half a billion seven-dimensional data points, and report supportive feedback provided by domain experts with respect to both the instantiation and the theoretical model.
Collapse
Affiliation(s)
- Timothy Luciani
- Electronic Visualization Laboratory, University of Illinois at Chicago.
| | - Andrew Burks
- Electronic Visualization Laboratory, University of Illinois at Chicago.
| | | | - Jonathan Komperda
- Department of Mechanical & Industrial Engineering, University of Illinois at Chicago
| | | |
Collapse
|