1
|
Lange D, Judson-Torres R, Zangle TA, Lex A. Aardvark: Composite Visualizations of Trees, Time-Series, and Images. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:1290-1300. [PMID: 39255114 DOI: 10.1109/tvcg.2024.3456193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
How do cancer cells grow, divide, proliferate, and die? How do drugs influence these processes? These are difficult questions that we can attempt to answer with a combination of time-series microscopy experiments, classification algorithms, and data visualization. However, collecting this type of data and applying algorithms to segment and track cells and construct lineages of proliferation is error-prone; and identifying the errors can be challenging since it often requires cross-checking multiple data types. Similarly, analyzing and communicating the results necessitates synthesizing different data types into a single narrative. State-of-the-art visualization methods for such data use independent line charts, tree diagrams, and images in separate views. However, this spatial separation requires the viewer of these charts to combine the relevant pieces of data in memory. To simplify this challenging task, we describe design principles for weaving cell images, time-series data, and tree data into a cohesive visualization. Our design principles are based on choosing a primary data type that drives the layout and integrates the other data types into that layout. We then introduce Aardvark, a system that uses these principles to implement novel visualization techniques. Based on Aardvark, we demonstrate the utility of each of these approaches for discovery, communication, and data debugging in a series of case studies.
Collapse
|
2
|
Zhang Y, Lee RY, Tan CW, Guo X, Yim WWY, Lim JC, Wee FY, Yang WU, Kharbanda M, Lee JYJ, Ngo NT, Leow WQ, Loo LH, Lim TK, Sobota RM, Lau MC, Davis MJ, Yeong J. Spatial omics techniques and data analysis for cancer immunotherapy applications. Curr Opin Biotechnol 2024; 87:103111. [PMID: 38520821 DOI: 10.1016/j.copbio.2024.103111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/25/2024]
Abstract
In-depth profiling of cancer cells/tissues is expanding our understanding of the genomic, epigenomic, transcriptomic, and proteomic landscape of cancer. However, the complexity of the cancer microenvironment, particularly its immune regulation, has made it difficult to exploit the potential of cancer immunotherapy. High-throughput spatial omics technologies and analysis pipelines have emerged as powerful tools for tackling this challenge. As a result, a potential revolution in cancer diagnosis, prognosis, and treatment is on the horizon. In this review, we discuss the technological advances in spatial profiling of cancer around and beyond the central dogma to harness the full benefits of immunotherapy. We also discuss the promise and challenges of spatial data analysis and interpretation and provide an outlook for the future.
Collapse
Affiliation(s)
- Yue Zhang
- Duke-NUS Medical School, Singapore 169856, Singapore
| | - Ren Yuan Lee
- Yong Loo Lin School of Medicine, National University of Singapore, 169856 Singapore; Singapore Thong Chai Medical Institution, Singapore 169874, Singapore
| | - Chin Wee Tan
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Victoria 3052, Australia; Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria 3010, Australia; Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Xue Guo
- Institute of Molecular Cell Biology (IMCB), Agency of Science, Technology and Research (A⁎STAR), Singapore 169856, Singapore
| | - Willa W-Y Yim
- Institute of Molecular Cell Biology (IMCB), Agency of Science, Technology and Research (A⁎STAR), Singapore 169856, Singapore
| | - Jeffrey Ct Lim
- Institute of Molecular Cell Biology (IMCB), Agency of Science, Technology and Research (A⁎STAR), Singapore 169856, Singapore
| | - Felicia Yt Wee
- Institute of Molecular Cell Biology (IMCB), Agency of Science, Technology and Research (A⁎STAR), Singapore 169856, Singapore
| | - W U Yang
- Institute of Molecular Cell Biology (IMCB), Agency of Science, Technology and Research (A⁎STAR), Singapore 169856, Singapore
| | - Malvika Kharbanda
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Victoria 3052, Australia; Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria 3010, Australia; immunoGENomics Cancer Institute (SAiGENCI), Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Jia-Ying J Lee
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A⁎STAR), Singapore 138671, Singapore
| | - Nye Thane Ngo
- Department of Anatomical Pathology, Singapore General Hospital, Singapore 169856, Singapore
| | - Wei Qiang Leow
- Department of Anatomical Pathology, Singapore General Hospital, Singapore 169856, Singapore
| | - Lit-Hsin Loo
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A⁎STAR), Singapore 138671, Singapore
| | - Tony Kh Lim
- Department of Anatomical Pathology, Singapore General Hospital, Singapore 169856, Singapore
| | - Radoslaw M Sobota
- Institute of Molecular Cell Biology (IMCB), Agency of Science, Technology and Research (A⁎STAR), Singapore 169856, Singapore
| | - Mai Chan Lau
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A⁎STAR), Singapore 138671, Singapore; Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A⁎STAR), Singapore 138648, Singapore
| | - Melissa J Davis
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Victoria 3052, Australia; Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria 3010, Australia; Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4102, Australia; immunoGENomics Cancer Institute (SAiGENCI), Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia; Department of Clinical Pathology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Joe Yeong
- Institute of Molecular Cell Biology (IMCB), Agency of Science, Technology and Research (A⁎STAR), Singapore 169856, Singapore; Bioinformatics Institute (BII), Agency for Science, Technology and Research (A⁎STAR), Singapore 138671, Singapore.
| |
Collapse
|
3
|
Afzal S, Ghani S, Hittawe MM, Rashid SF, Knio OM, Hadwiger M, Hoteit I. Visualization and Visual Analytics Approaches for Image and Video Datasets: A Survey. ACM T INTERACT INTEL 2023. [DOI: 10.1145/3576935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Image and video data analysis has become an increasingly important research area with applications in different domains such as security surveillance, healthcare, augmented and virtual reality, video and image editing, activity analysis and recognition, synthetic content generation, distance education, telepresence, remote sensing, sports analytics, art, non-photorealistic rendering, search engines, and social media. Recent advances in Artificial Intelligence (AI) and particularly deep learning have sparked new research challenges and led to significant advancements, especially in image and video analysis. These advancements have also resulted in significant research and development in other areas such as visualization and visual analytics, and have created new opportunities for future lines of research. In this survey paper, we present the current state of the art at the intersection of visualization and visual analytics, and image and video data analysis. We categorize the visualization papers included in our survey based on different taxonomies used in visualization and visual analytics research. We review these papers in terms of task requirements, tools, datasets, and application areas. We also discuss insights based on our survey results, trends and patterns, the current focus of visualization research, and opportunities for future research.
Collapse
Affiliation(s)
- Shehzad Afzal
- King Abdullah University of Science & Technology, Saudi Arabia
| | - Sohaib Ghani
- King Abdullah University of Science & Technology, Saudi Arabia
| | | | | | - Omar M Knio
- King Abdullah University of Science & Technology, Saudi Arabia
| | - Markus Hadwiger
- King Abdullah University of Science & Technology, Saudi Arabia
| | - Ibrahim Hoteit
- King Abdullah University of Science & Technology, Saudi Arabia
| |
Collapse
|
4
|
Cheng F, Keller MS, Qu H, Gehlenborg N, Wang Q. Polyphony: an Interactive Transfer Learning Framework for Single-Cell Data Analysis. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:591-601. [PMID: 36155452 PMCID: PMC10039961 DOI: 10.1109/tvcg.2022.3209408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Reference-based cell-type annotation can significantly reduce time and effort in single-cell analysis by transferring labels from a previously-annotated dataset to a new dataset. However, label transfer by end-to-end computational methods is challenging due to the entanglement of technical (e.g., from different sequencing batches or techniques) and biological (e.g., from different cellular microenvironments) variations, only the first of which must be removed. To address this issue, we propose Polyphony, an interactive transfer learning (ITL) framework, to complement biologists' knowledge with advanced computational methods. Polyphony is motivated and guided by domain experts' needs for a controllable, interactive, and algorithm-assisted annotation process, identified through interviews with seven biologists. We introduce anchors, i.e., analogous cell populations across datasets, as a paradigm to explain the computational process and collect user feedback for model improvement. We further design a set of visualizations and interactions to empower users to add, delete, or modify anchors, resulting in refined cell type annotations. The effectiveness of this approach is demonstrated through quantitative experiments, two hypothetical use cases, and interviews with two biologists. The results show that our anchor-based ITL method takes advantage of both human and machine intelligence in annotating massive single-cell datasets.
Collapse
|
5
|
Warchol S, Krueger R, Nirmal AJ, Gaglia G, Jessup J, Ritch CC, Hoffer J, Muhlich J, Burger ML, Jacks T, Santagata S, Sorger PK, Pfister H. Visinity: Visual Spatial Neighborhood Analysis for Multiplexed Tissue Imaging Data. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:106-116. [PMID: 36170403 PMCID: PMC10043053 DOI: 10.1109/tvcg.2022.3209378] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
New highly-multiplexed imaging technologies have enabled the study of tissues in unprecedented detail. These methods are increasingly being applied to understand how cancer cells and immune response change during tumor development, progression, and metastasis, as well as following treatment. Yet, existing analysis approaches focus on investigating small tissue samples on a per-cell basis, not taking into account the spatial proximity of cells, which indicates cell-cell interaction and specific biological processes in the larger cancer microenvironment. We present Visinity, a scalable visual analytics system to analyze cell interaction patterns across cohorts of whole-slide multiplexed tissue images. Our approach is based on a fast regional neighborhood computation, leveraging unsupervised learning to quantify, compare, and group cells by their surrounding cellular neighborhood. These neighborhoods can be visually analyzed in an exploratory and confirmatory workflow. Users can explore spatial patterns present across tissues through a scalable image viewer and coordinated views highlighting the neighborhood composition and spatial arrangements of cells. To verify or refine existing hypotheses, users can query for specific patterns to determine their presence and statistical significance. Findings can be interactively annotated, ranked, and compared in the form of small multiples. In two case studies with biomedical experts, we demonstrate that Visinity can identify common biological processes within a human tonsil and uncover novel white-blood cell networks and immune-tumor interactions.
Collapse
|
6
|
Zhao J, Liu Y, Wang M, Ma J, Yang P, Wang S, Wu Q, Gao J, Chen M, Qu G, Wang J, Jiang G. Insights into highly multiplexed tissue images: A primer for Mass Cytometry Imaging data analysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Jessup J, Krueger R, Warchol S, Hoffer J, Muhlich J, Ritch CC, Gaglia G, Coy S, Chen YA, Lin JR, Santagata S, Sorger PK, Pfister H. Scope2Screen: Focus+Context Techniques for Pathology Tumor Assessment in Multivariate Image Data. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:259-269. [PMID: 34606456 PMCID: PMC8805697 DOI: 10.1109/tvcg.2021.3114786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Inspection of tissues using a light microscope is the primary method of diagnosing many diseases, notably cancer. Highly multiplexed tissue imaging builds on this foundation, enabling the collection of up to 60 channels of molecular information plus cell and tissue morphology using antibody staining. This provides unique insight into disease biology and promises to help with the design of patient-specific therapies. However, a substantial gap remains with respect to visualizing the resulting multivariate image data and effectively supporting pathology workflows in digital environments on screen. We, therefore, developed Scope2Screen, a scalable software system for focus+context exploration and annotation of whole-slide, high-plex, tissue images. Our approach scales to analyzing 100GB images of 109 or more pixels per channel, containing millions of individual cells. A multidisciplinary team of visualization experts, microscopists, and pathologists identified key image exploration and annotation tasks involving finding, magnifying, quantifying, and organizing regions of interest (ROIs) in an intuitive and cohesive manner. Building on a scope-to-screen metaphor, we present interactive lensing techniques that operate at single-cell and tissue levels. Lenses are equipped with task-specific functionality and descriptive statistics, making it possible to analyze image features, cell types, and spatial arrangements (neighborhoods) across image channels and scales. A fast sliding-window search guides users to regions similar to those under the lens; these regions can be analyzed and considered either separately or as part of a larger image collection. A novel snapshot method enables linked lens configurations and image statistics to be saved, restored, and shared with these regions. We validate our designs with domain experts and apply Scope2Screen in two case studies involving lung and colorectal cancers to discover cancer-relevant image features.
Collapse
|
8
|
Kenkhuis B, Somarakis A, de Haan L, Dzyubachyk O, IJsselsteijn ME, de Miranda NFCC, Lelieveldt BPF, Dijkstra J, van Roon-Mom WMC, Höllt T, van der Weerd L. Iron loading is a prominent feature of activated microglia in Alzheimer's disease patients. Acta Neuropathol Commun 2021; 9:27. [PMID: 33597025 PMCID: PMC7887813 DOI: 10.1186/s40478-021-01126-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/30/2021] [Indexed: 12/19/2022] Open
Abstract
Brain iron accumulation has been found to accelerate disease progression in amyloid-β(Aβ) positive Alzheimer patients, though the mechanism is still unknown. Microglia have been identified as key players in the disease pathogenesis, and are highly reactive cells responding to aberrations such as increased iron levels. Therefore, using histological methods, multispectral immunofluorescence and an automated in-house developed microglia segmentation and analysis pipeline, we studied the occurrence of iron-accumulating microglia and the effect on its activation state in human Alzheimer brains. We identified a subset of microglia with increased expression of the iron storage protein ferritin light chain (FTL), together with increased Iba1 expression, decreased TMEM119 and P2RY12 expression. This activated microglia subset represented iron-accumulating microglia and appeared morphologically dystrophic. Multispectral immunofluorescence allowed for spatial analysis of FTL+Iba1+-microglia, which were found to be the predominant Aβ-plaque infiltrating microglia. Finally, an increase of FTL+Iba1+-microglia was seen in patients with high Aβ load and Tau load. These findings suggest iron to be taken up by microglia and to influence the functional phenotype of these cells, especially in conjunction with Aβ.
Collapse
Affiliation(s)
- Boyd Kenkhuis
- Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Antonios Somarakis
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lorraine de Haan
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Oleh Dzyubachyk
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | - Jouke Dijkstra
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Willeke M C van Roon-Mom
- Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Thomas Höllt
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Intelligent Systems, Delft University of Technology, Delft, The Netherlands
| | - Louise van der Weerd
- Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|