1
|
Zhang Q, Li Y, Xue C, Wang H, Li X. GlandSAM: Injecting Morphology Knowledge Into Segment Anything Model for Label-Free Gland Segmentation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2025; 44:1070-1082. [PMID: 39378253 DOI: 10.1109/tmi.2024.3476176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
This paper presents a label-free gland segmentation, GlandSAM, which achieves comparable performance with supervised methods while no label is required during its training or inference phase. We observe that the Segment Anything model produces sub-optimal results on gland dataset: It either over-segments a gland into many fractions or under-segments the gland regions by confusing many of them with the background, due to the complex morphology of glands and lack of sufficient labels. To address this challenge, our GlandSAM innovatively injects two clues about gland morphology into SAM to guide the segmentation process: (1) Heterogeneity within glands and (2) Similarity with the background. Initially, we leverage the clues to decompose the intricate glands by selectively extracting a proposal for each gland sub-region of heterogeneous appearances. Then, we inject the morphology clues into SAM in a fine-tuning manner with a novel morphology-aware semantic grouping module that explicitly groups the high-level semantics of gland sub-regions. In this way, our GlandSAM could capture comprehensive knowledge about gland morphology, and produce well-delineated and complete segmentation results. Extensive experiments conducted on the GlaS dataset and the CRAG dataset reveal that GlandSAM outperforms state-of-the-art label-free methods by a significant margin. Notably, our GlandSAM even surpasses several fully-supervised methods that require pixel-wise labels for training, which highlights the remarkable performance and potential of GlandSAM in the realm of gland segmentation.
Collapse
|
2
|
Qian Z, Wang Z, Zhang X, Wei B, Lai M, Shou J, Fan Y, Xu Y. MSNSegNet: attention-based multi-shape nuclei instance segmentation in histopathology images. Med Biol Eng Comput 2024; 62:1821-1836. [PMID: 38401007 DOI: 10.1007/s11517-024-03050-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/13/2024] [Indexed: 02/26/2024]
Abstract
In clinical research, the segmentation of irregularly shaped nuclei, particularly in mesenchymal areas like fibroblasts, is crucial yet often neglected. These irregular nuclei are significant for assessing tissue repair in immunotherapy, a process involving neovascularization and fibroblast proliferation. Proper segmentation of these nuclei is vital for evaluating immunotherapy's efficacy, as it provides insights into pathological features. However, the challenge lies in the pronounced curvature variations of these non-convex nuclei, making their segmentation more difficult than that of regular nuclei. In this work, we introduce an undefined task to segment nuclei with both regular and irregular morphology, namely multi-shape nuclei segmentation. We propose a proposal-based method to perform multi-shape nuclei segmentation. By leveraging the two-stage structure of the proposal-based method, a powerful refinement module with high computational costs can be selectively deployed only in local regions, improving segmentation accuracy without compromising computational efficiency. We introduce a novel self-attention module to refine features in proposals for the sake of effectiveness and efficiency in the second stage. The self-attention module improves segmentation performance by capturing long-range dependencies to assist in distinguishing the foreground from the background. In this process, similar features get high attention weights while dissimilar ones get low attention weights. In the first stage, we introduce a residual attention module and a semantic-aware module to accurately predict candidate proposals. The two modules capture more interpretable features and introduce additional supervision through semantic-aware loss. In addition, we construct a dataset with a proportion of non-convex nuclei compared with existing nuclei datasets, namely the multi-shape nuclei (MsN) dataset. Our MSNSegNet method demonstrates notable improvements across various metrics compared to the second-highest-scoring methods. For all nuclei, the D i c e score improved by approximately 1.66 % , A J I by about 2.15 % , and D i c e obj by roughly 0.65 % . For non-convex nuclei, which are crucial in clinical applications, our method's A J I improved significantly by approximately 3.86 % and D i c e obj by around 2.54 % . These enhancements underscore the effectiveness of our approach on multi-shape nuclei segmentation, particularly in challenging scenarios involving irregularly shaped nuclei.
Collapse
Affiliation(s)
- Ziniu Qian
- School of Biological Science and Medical Engineering, Beihang University, Haidian District, Beijing, 100191, Beijing, China
| | - Zihua Wang
- School of Biological Science and Medical Engineering, Beihang University, Haidian District, Beijing, 100191, Beijing, China
| | - Xin Zhang
- School of Biological Science and Medical Engineering, Beihang University, Haidian District, Beijing, 100191, Beijing, China
| | - Bingzheng Wei
- Xiaomi Corporation, Haidian District, Beijing, 100085, Beijing, China
| | - Maode Lai
- Department of Pathology, School of Medicine, Zhejiang Provincial Key Laboratory of Disease Proteomics and Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Jianzhong Shou
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Changyang District, Beijing, 100021, Beijing, China
| | - Yubo Fan
- School of Biological Science and Medical Engineering, Beihang University, Haidian District, Beijing, 100191, Beijing, China
| | - Yan Xu
- School of Biological Science and Medical Engineering, Beihang University, Haidian District, Beijing, 100191, Beijing, China.
| |
Collapse
|
3
|
Chen S, Fan J, Ding Y, Geng H, Ai D, Xiao D, Song H, Wang Y, Yang J. PEA-Net: A progressive edge information aggregation network for vessel segmentation. Comput Biol Med 2024; 169:107766. [PMID: 38150885 DOI: 10.1016/j.compbiomed.2023.107766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/18/2023] [Accepted: 11/21/2023] [Indexed: 12/29/2023]
Abstract
Automatic vessel segmentation is a critical area of research in medical image analysis, as it can greatly assist doctors in accurately and efficiently diagnosing vascular diseases. However, accurately extracting the complete vessel structure from images remains a challenge due to issues such as uneven contrast and background noise. Existing methods primarily focus on segmenting individual pixels and often fail to consider vessel features and morphology. As a result, these methods often produce fragmented results and misidentify vessel-like background noise, leading to missing and outlier points in the overall segmentation. To address these issues, this paper proposes a novel approach called the progressive edge information aggregation network for vessel segmentation (PEA-Net). The proposed method consists of several key components. First, a dual-stream receptive field encoder (DRE) is introduced to preserve fine structural features and mitigate false positive predictions caused by background noise. This is achieved by combining vessel morphological features obtained from different receptive field sizes. Second, a progressive complementary fusion (PCF) module is designed to enhance fine vessel detection and improve connectivity. This module complements the decoding path by combining features from previous iterations and the DRE, incorporating nonsalient information. Additionally, segmentation-edge decoupling enhancement (SDE) modules are employed as decoders to integrate upsampling features with nonsalient information provided by the PCF. This integration enhances both edge and segmentation information. The features in the skip connection and decoding path are iteratively updated to progressively aggregate fine structure information, thereby optimizing segmentation results and reducing topological disconnections. Experimental results on multiple datasets demonstrate that the proposed PEA-Net model and strategy achieve optimal performance in both pixel-level and topology-level metrics.
Collapse
Affiliation(s)
- Sigeng Chen
- Laboratory of Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
| | - Jingfan Fan
- Laboratory of Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China.
| | - Yang Ding
- Laboratory of Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
| | - Haixiao Geng
- Laboratory of Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
| | - Danni Ai
- Laboratory of Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
| | - Deqiang Xiao
- Laboratory of Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
| | - Hong Song
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yining Wang
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Jian Yang
- Laboratory of Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
4
|
Wang H, Xu F, Cai L, Salvato D, Di Lemma FG, Capriotti L, Yao T, Xian M. A fine pore-preserved deep neural network for porosity analytics of a high burnup U-10Zr metallic fuel. Sci Rep 2023; 13:22274. [PMID: 38097710 PMCID: PMC10721912 DOI: 10.1038/s41598-023-48800-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
U-10 wt.% Zr (U-10Zr) metallic fuel is the leading candidate for next-generation sodium-cooled fast reactors. Porosity is one of the most important factors that impacts the performance of U-10Zr metallic fuel. The pores generated by the fission gas accumulation can lead to changes in thermal conductivity, fuel swelling, Fuel-Cladding Chemical Interaction (FCCI) and Fuel-Cladding Mechanical Interaction (FCMI). Therefore, it is crucial to accurately segment and analyze porosity to understand the U-10Zr fuel system to design future fast reactors. To address the above issues, we introduce a workflow to process and analyze multi-source Scanning Electron Microscope (SEM) image data. Moreover, an encoder-decoder-based, deep fully convolutional network is proposed to segment pores accurately by integrating the residual unit and the densely-connected units. Two SEM 250 × field of view image datasets with different formats are utilized to evaluate the new proposed model's performance. Sufficient comparison results demonstrate that our method quantitatively outperforms two popular deep fully convolutional networks. Furthermore, we conducted experiments on the third SEM 2500 × field of view image dataset, and the transfer learning results show the potential capability to transfer the knowledge from low-magnification images to high-magnification images. Finally, we use a pre-trained network to predict the pores of SEM images in the whole cross-sectional image and obtain quantitative porosity analysis. Our findings will guide the SEM microscopy data collection efficiently, provide a mechanistic understanding of the U-10Zr fuel system and bridge the gap between advanced characterization to fuel system design.
Collapse
Affiliation(s)
| | - Fei Xu
- Idaho National Laboratory, Idaho Falls, ID, USA
| | - Lu Cai
- Idaho National Laboratory, Idaho Falls, ID, USA
| | | | | | | | - Tiankai Yao
- Idaho National Laboratory, Idaho Falls, ID, USA.
| | - Min Xian
- University of Idaho, Idaho Falls, ID, USA.
| |
Collapse
|
5
|
Li S, Shi S, Fan Z, He X, Zhang N. Deep information-guided feature refinement network for colorectal gland segmentation. Int J Comput Assist Radiol Surg 2023; 18:2319-2328. [PMID: 36934367 DOI: 10.1007/s11548-023-02857-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/22/2023] [Indexed: 03/20/2023]
Abstract
PURPOSE Reliable quantification of colorectal histopathological images is based on the precise segmentation of glands but precise segmentation of glands is challenging as glandular morphology varies widely across histological grades, such as malignant glands and non-gland tissues are too similar to be identified, and tightly connected glands are even highly possibly to be incorrectly segmented as one gland. METHODS A deep information-guided feature refinement network is proposed to improve gland segmentation. Specifically, the backbone deepens the network structure to obtain effective features while maximizing the retained information, and a Multi-Scale Fusion module is proposed to increase the receptive field. In addition, to segment dense glands individually, a Multi-Scale Edge-Refined module is designed to strengthen the boundaries of glands. RESULTS The comparative experiments on the eight recently proposed deep learning methods demonstrated that our proposed network has better overall performance and is more competitive on Test B. The F1 score of Test A and Test B is 0.917 and 0.876, respectively; the object-level Dice is 0.921 and 0.884; and the object-level Hausdorff is 43.428 and 87.132, respectively. CONCLUSION The proposed colorectal gland segmentation network can effectively extract features with high representational ability and enhance edge features while retaining details to the maximum, dramatically improving the segmentation performance on malignant glands, and better segmentation results of multi-scale and closed glands can also be obtained.
Collapse
Affiliation(s)
- Sheng Li
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Shuling Shi
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Zhenbang Fan
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Xiongxiong He
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Ni Zhang
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
6
|
Kataria T, Rajamani S, Ayubi AB, Bronner M, Jedrzkiewicz J, Knudsen BS, Elhabian SY. Automating Ground Truth Annotations for Gland Segmentation Through Immunohistochemistry. Mod Pathol 2023; 36:100331. [PMID: 37716506 DOI: 10.1016/j.modpat.2023.100331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/14/2023] [Accepted: 09/08/2023] [Indexed: 09/18/2023]
Abstract
Microscopic evaluation of glands in the colon is of utmost importance in the diagnosis of inflammatory bowel disease and cancer. When properly trained, deep learning pipelines can provide a systematic, reproducible, and quantitative assessment of disease-related changes in glandular tissue architecture. The training and testing of deep learning models require large amounts of manual annotations, which are difficult, time-consuming, and expensive to obtain. Here, we propose a method for automated generation of ground truth in digital hematoxylin and eosin (H&E)-stained slides using immunohistochemistry (IHC) labels. The image processing pipeline generates annotations of glands in H&E histopathology images from colon biopsy specimens by transfer of gland masks from KRT8/18, CDX2, or EPCAM IHC. The IHC gland outlines are transferred to coregistered H&E images for training of deep learning models. We compared the performance of the deep learning models to that of manual annotations using an internal held-out set of biopsy specimens as well as 2 public data sets. Our results show that EPCAM IHC provides gland outlines that closely match manual gland annotations (Dice = 0.89) and are resilient to damage by inflammation. In addition, we propose a simple data sampling technique that allows models trained on data from several sources to be adapted to a new data source using just a few newly annotated samples. The best performing models achieved average Dice scores of 0.902 and 0.89 on Gland Segmentation and Colorectal Adenocarcinoma Gland colon cancer public data sets, respectively, when trained with only 10% of annotated cases from either public cohort. Altogether, the performances of our models indicate that automated annotations using cell type-specific IHC markers can safely replace manual annotations. Automated IHC labels from single-institution cohorts can be combined with small numbers of hand-annotated cases from multi-institutional cohorts to train models that generalize well to diverse data sources.
Collapse
Affiliation(s)
- Tushar Kataria
- Kahlert School of Computing, University of Utah, Salt Lake City, Utah; Kahlert School of Computing, Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah
| | - Saradha Rajamani
- Kahlert School of Computing, University of Utah, Salt Lake City, Utah; Kahlert School of Computing, Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah
| | - Abdul Bari Ayubi
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Mary Bronner
- Department of Pathology, University of Utah, Salt Lake City, Utah; Department of Pathology, ARUP Laboratories, Salt Lake City, Utah
| | - Jolanta Jedrzkiewicz
- Department of Pathology, University of Utah, Salt Lake City, Utah; Department of Pathology, ARUP Laboratories, Salt Lake City, Utah
| | - Beatrice S Knudsen
- Kahlert School of Computing, Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah; Department of Pathology, University of Utah, Salt Lake City, Utah.
| | - Shireen Y Elhabian
- Kahlert School of Computing, University of Utah, Salt Lake City, Utah; Kahlert School of Computing, Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah.
| |
Collapse
|
7
|
Sun S, Wang Y, Yang J, Feng Y, Tang L, Liu S, Ning H. Topology-sensitive weighting model for myocardial segmentation. Comput Biol Med 2023; 165:107286. [PMID: 37633088 DOI: 10.1016/j.compbiomed.2023.107286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/12/2023] [Accepted: 07/28/2023] [Indexed: 08/28/2023]
Abstract
Accurate myocardial segmentation is crucial for the diagnosis of various heart diseases. However, segmentation results often suffer from topology structural errors, such as broken connections and holes, especially in cases of poor image quality. These errors are unacceptable in clinical diagnosis. We proposed a Topology-Sensitive Weight (TSW) model to keep both pixel-wise accuracy and topological correctness. Specifically, the Position Weighting Update (PWU) strategy with the Boundary-Sensitive Topology (BST) module can guide the model to focus on positions where topological features are sensitive to pixel values. The Myocardial Integrity Topology (MIT) module can serve as a guide for maintaining myocardial integrity. We evaluate the TSW model on the CAMUS dataset and a private echocardiography myocardial segmentation dataset. The qualitative and quantitative experimental results show that the TSW model significantly enhances topological accuracy while maintaining pixel-wise precision.
Collapse
Affiliation(s)
- Song Sun
- Computer Science and Engineering, Northeastern University, Shenyang, China; Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Shenyang, China
| | - Yonghuai Wang
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China
| | - Jinzhu Yang
- Computer Science and Engineering, Northeastern University, Shenyang, China; Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China.
| | - Yong Feng
- Computer Science and Engineering, Northeastern University, Shenyang, China; Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China
| | - Lingzhi Tang
- Computer Science and Engineering, Northeastern University, Shenyang, China; Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China
| | - Shuo Liu
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China
| | - Hongxia Ning
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
8
|
Wang H, Xian M, Vakanski A, Shareef B. SIAN: STYLE-GUIDED INSTANCE-ADAPTIVE NORMALIZATION FOR MULTI-ORGAN HISTOPATHOLOGY IMAGE SYNTHESIS. PROCEEDINGS. IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING 2023; 2023:10.1109/isbi53787.2023.10230507. [PMID: 38572450 PMCID: PMC10989245 DOI: 10.1109/isbi53787.2023.10230507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Existing deep neural networks for histopathology image synthesis cannot generate image styles that align with different organs, and cannot produce accurate boundaries of clustered nuclei. To address these issues, we propose a style-guided instance-adaptive normalization (SIAN) approach to synthesize realistic color distributions and textures for histopathology images from different organs. SIAN contains four phases, semantization, stylization, instantiation, and modulation. The first two phases synthesize image semantics and styles by using semantic maps and learned image style vectors. The instantiation module integrates geometrical and topological information and generates accurate nuclei boundaries. We validate the proposed approach on a multiple-organ dataset, Extensive experimental results demonstrate that the proposed method generates more realistic histopathology images than four state-of-the-art approaches for five organs. By incorporating synthetic images from the proposed approach to model training, an instance segmentation network can achieve state-of-the-art performance.
Collapse
Affiliation(s)
- Haotian Wang
- Department of Computer Science, University of Idaho, USA
| | - Min Xian
- Department of Computer Science, University of Idaho, USA
| | | | - Bryar Shareef
- Department of Computer Science, University of Idaho, USA
| |
Collapse
|