1
|
Xiang R, Fernandez-Lopez L, Robles-Martín A, Ferrer M, Guallar V. EP-Pred: A Machine Learning Tool for Bioprospecting Promiscuous Ester Hydrolases. Biomolecules 2022; 12:1529. [PMID: 36291739 PMCID: PMC9599548 DOI: 10.3390/biom12101529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 11/25/2022] Open
Abstract
When bioprospecting for novel industrial enzymes, substrate promiscuity is a desirable property that increases the reusability of the enzyme. Among industrial enzymes, ester hydrolases have great relevance for which the demand has not ceased to increase. However, the search for new substrate promiscuous ester hydrolases is not trivial since the mechanism behind this property is greatly influenced by the active site's structural and physicochemical characteristics. These characteristics must be computed from the 3D structure, which is rarely available and expensive to measure, hence the need for a method that can predict promiscuity from sequence alone. Here we report such a method called EP-pred, an ensemble binary classifier, that combines three machine learning algorithms: SVM, KNN, and a Linear model. EP-pred has been evaluated against the Lipase Engineering Database together with a hidden Markov approach leading to a final set of ten sequences predicted to encode promiscuous esterases. Experimental results confirmed the validity of our method since all ten proteins were found to exhibit a broad substrate ambiguity.
Collapse
Affiliation(s)
- Ruite Xiang
- Department of Life Sciences, Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain
| | | | - Ana Robles-Martín
- Department of Life Sciences, Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain
| | - Manuel Ferrer
- Department of Applied Biocatalysis, ICP, CSIC, 28049 Madrid, Spain
| | - Victor Guallar
- Department of Life Sciences, Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
2
|
Kind L, Kursula P. Structural properties and role of the endocannabinoid lipases ABHD6 and ABHD12 in lipid signalling and disease. Amino Acids 2018; 51:151-174. [PMID: 30564946 DOI: 10.1007/s00726-018-2682-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/23/2018] [Indexed: 12/18/2022]
Abstract
The endocannabinoid (eCB) system is an important part of both the human central nervous system (CNS) and peripheral tissues. It is involved in the regulation of various physiological and neuronal processes and has been associated with various diseases. The eCB system is a complex network composed of receptor molecules, their cannabinoid ligands, and enzymes regulating the synthesis, release, uptake, and degradation of the signalling molecules. Although the eCB system and the molecular processes of eCB signalling have been studied extensively over the past decades, the involved molecules and underlying signalling mechanisms have not been described in full detail. An example pose the two poorly characterised eCB-degrading enzymes α/β-hydrolase domain protein six (ABHD6) and ABHD12, which have been shown to hydrolyse 2-arachidonoyl glycerol-the main eCB in the CNS. We review the current knowledge about the eCB system and the role of ABHD6 and ABHD12 within this important signalling system and associated diseases. Homology modelling and multiple sequence alignments highlight the structural features of the studied enzymes and their similarities, as well as the structural basis of disease-related ABHD12 mutations. However, homologies within the ABHD family are very low, and even the closest homologues have widely varying substrate preferences. Detailed experimental analyses at the molecular level will be necessary to understand these important enzymes in full detail.
Collapse
Affiliation(s)
- Laura Kind
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway. .,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
| |
Collapse
|
3
|
Single residues dictate the co-evolution of dual esterases: MCP hydrolases from the α/β hydrolase family. Biochem J 2013; 454:157-66. [PMID: 23750508 DOI: 10.1042/bj20130552] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Several members of the C-C MCP (meta-cleavage product) hydrolase family demonstrate an unusual ability to hydrolyse esters as well as the MCPs (including those from mono- and bi-cyclic aromatics). Although the molecular mechanisms responsible for such substrate promiscuity are starting to emerge, the full understanding of these complex enzymes is far from complete. In the present paper, we describe six distinct α/β hydrolases identified through genomic approaches, four of which demonstrate the unprecedented characteristic of activity towards a broad spectrum of substrates, including p-nitrophenyl, halogenated, fatty acyl, aryl, glycerol, cinnamoyl and carbohydrate esters, lactones, 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate and 2-hydroxy-6-oxohepta-2,4-dienoate. Using structural analysis and site-directed mutagenesis we have identified the three residues (Ser32, Val130 and Trp144) that determine the unusual substrate specificity of one of these proteins, CCSP0084. The results may open up new research avenues into comparative catalytic models, structural and mechanistic studies, and biotechnological applications of MCP hydrolases.
Collapse
|
4
|
Ruzzini AC, Bhowmik S, Yam KC, Ghosh S, Bolin JT, Eltis LD. The lid domain of the MCP hydrolase DxnB2 contributes to the reactivity toward recalcitrant PCB metabolites. Biochemistry 2013; 52:5685-5695. [PMID: 23879719 PMCID: PMC3903462 DOI: 10.1021/bi400774m] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DxnB2 and BphD are meta-cleavage product (MCP) hydrolases that catalyze C-C bond hydrolysis of the biphenyl metabolite 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA). BphD is a bottleneck in the bacterial degradation of polychlorinated biphenyls (PCBs) by the Bph catabolic pathway due in part to inhibition by 3-Cl HOPDAs. By contrast, DxnB2 from Sphingomonas wittichii RW1 catalyzes the hydrolysis of 3-Cl HOPDAs more efficiently. X-ray crystallographic studies of the catalytically inactive S105A variant of DxnB2 complexed with 3-Cl HOPDA revealed a binding mode in which C1 through C6 of the dienoate are coplanar. The chlorine substituent is accommodated by a hydrophobic pocket that is larger than the homologous site in BphDLB400 from Burkholderia xenovorans LB400. The planar binding mode observed in the crystalline complex was consistent with the hyper- and hypsochromically shifted absorption spectra of 3-Cl and 3,9,11-triCl HOPDA, respectively, bound to S105A in solution. Moreover, ES(red), an intermediate possessing a bathochromically shifted spectrum observed in the turnover of HOPDA, was not detected, suggesting that substrate destabilization was rate-limiting in the turnover of these PCB metabolites. Interestingly, electron density for the first α-helix of the lid domain was poorly defined in the dimeric DxnB2 structures, unlike in the tetrameric BphDLB400. Structural comparison of MCP hydrolases identified the NC-loop, connecting the lid to the α/β-hydrolase core domain, as a determinant in the oligomeric state and suggests its involvement in catalysis. Finally, an increased mobility of the DxnB2 lid may contribute to the enzyme's ability to hydrolyze PCB metabolites, highlighting how lid architecture contributes to substrate specificity in α/β-hydrolases.
Collapse
Affiliation(s)
- Antonio C. Ruzzini
- Department of Biochemistry and Molecular Biology, University of British Columbia, BC, Canada
| | - Shiva Bhowmik
- Purdue Cancer Research Center and Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Katherine C. Yam
- Department of Biochemistry and Molecular Biology, University of British Columbia, BC, Canada
| | - Subhangi Ghosh
- Purdue Cancer Research Center and Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Jeffrey T. Bolin
- Purdue Cancer Research Center and Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Lindsay D. Eltis
- Department of Biochemistry and Molecular Biology, University of British Columbia, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, BC, Canada
| |
Collapse
|
5
|
Baile MG, Whited K, Claypool SM. Deacylation on the matrix side of the mitochondrial inner membrane regulates cardiolipin remodeling. Mol Biol Cell 2013; 24:2008-20. [PMID: 23637464 PMCID: PMC3681703 DOI: 10.1091/mbc.e13-03-0121] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Our understanding of the clinically relevant tafazzin-mediated cardiolipin (CL) remodeling pathway is incomplete. In this study, a new trafficking step required for CL remodeling has been identified. Further, it is demonstrated that flux through this CL remodeling pathway is controlled by the strength of the mitochondrial electrochemical gradient. The mitochondrial-specific lipid cardiolipin (CL) is required for numerous processes therein. After its synthesis on the matrix-facing leaflet of the inner membrane (IM), CL undergoes acyl chain remodeling to achieve its final form. In yeast, this process is completed by the transacylase tafazzin, which associates with intermembrane space (IMS)-facing membrane leaflets. Mutations in TAZ1 result in the X-linked cardiomyopathy Barth syndrome. Amazingly, despite this clear pathophysiological association, the physiological importance of CL remodeling is unresolved. In this paper, we show that the lipase initiating CL remodeling, Cld1p, is associated with the matrix-facing leaflet of the mitochondrial IM. Thus monolysocardiolipin generated by Cld1p must be transported to IMS-facing membrane leaflets to gain access to tafazzin, identifying a previously unknown step required for CL remodeling. Additionally, we show that Cld1p is the major site of regulation in CL remodeling; and that, like CL biosynthesis, CL remodeling is augmented in growth conditions requiring mitochondrially produced energy. However, unlike CL biosynthesis, dissipation of the mitochondrial membrane potential stimulates CL remodeling, identifying a novel feedback mechanism linking CL remodeling to oxidative phosphorylation capacity.
Collapse
Affiliation(s)
- Matthew G Baile
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD 21205-2185, USA
| | | | | |
Collapse
|
6
|
Zhou H, Qu Y, Kong C, Shen E, Wang J, Zhang X, Ma Q, Zhou J. The key role of a non-active-site residue Met148 on the catalytic efficiency of meta-cleavage product hydrolase BphD. Appl Microbiol Biotechnol 2013; 97:10399-411. [PMID: 23494625 DOI: 10.1007/s00253-013-4814-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/21/2013] [Accepted: 02/26/2013] [Indexed: 11/26/2022]
Abstract
meta-Cleavage product (MCP) hydrolases (EC 3.7.1.9) can catalyze a specific C-C bond fission during the microbial aerobic degradation of aromatics. The previous studies on structure-function relationship of MCP hydrolases mainly focus on the active site residues by site-directed mutagenesis. However, the information about the role of the non-active-site residues is still unclear. In this study, a non-active-site residue Met148 of MCP hydrolase BphD was selected as the mutagenesis site according to the sequence alignments, structure superimpose and the tunnel analysis, which underwent the saturation mutagenesis resulting 19 mutants. The catalytic efficiencies of the mutants on 6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA) were all decreased compared with the wild-type one except for the M148D mutant. Especially, the M148P mutant exhibited 290-fold lower k cat/K m than that of the wild-type BphD. Transient kinetic analyses of M148P showed the reciprocal relaxation time corresponded to C-C bond cleavage and product release steps (9.6 s(-1)) was 4.08-fold lower than BphD WT (39.2 s(-1)). Tunnel cluster analysis of BphD WT, M148P and M148W demonstrated that only the bulky Trp148 could block tunnel T2 in the BphD WT, but it exhibited slight effects on the catalytic efficiency (0.94-fold of BphD WT). Therefore, product release was not the main reason for the efficiency decrease of M148P. On the other hand, molecular dynamics simulations on the BphD WT and BphD M148P in complex with HOPDA indicated that the dramatic decrease of the catalytic efficiencies of BphD M148P should be due to the unproductive binding of HOPDA. The study demonstrated the catalytic efficiency of MCP hydrolase can be engineered by modification of non-active site residue.
Collapse
Affiliation(s)
- Hao Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Tuning the substrate selectivity of meta-cleavage product hydrolase by domain swapping. Appl Microbiol Biotechnol 2012; 97:5343-50. [DOI: 10.1007/s00253-012-4405-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 08/29/2012] [Accepted: 09/04/2012] [Indexed: 10/27/2022]
|
8
|
Li A, Qu YY, Pi WQ, Zhou JT, Gai ZH, Xu P. Metabolic characterization and genes for the conversion of biphenyl in Dyella ginsengisoli LA-4. Biotechnol Bioeng 2011; 109:609-13. [PMID: 21928338 DOI: 10.1002/bit.23333] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 09/04/2011] [Accepted: 09/07/2011] [Indexed: 11/10/2022]
Abstract
A complete bph gene cluster (bphLA-4) containing 12,186 bp was amplified from Dyella ginsengisoli LA-4. The bphLA-4 was composed of bphABCXD, and an additional gene encoding a meta-fission product hydrolase was located in the bphX region. BphLA-4 was independently transcribed by the two operons, bphA1A2orf1A3A4BCX0 and bphX1orf2X2X3D, and significantly differed from bphKF707. Both benzoate and catechol induced the expression of both operons. 2-Hydroxypenta-2,4-dienoate was identified as the intermediate of the biphenyl degradation by strain LA-4. This finding suggested that there existed a novel lower pathway of biphenyl degradation in strain LA-4.
Collapse
Affiliation(s)
- Ang Li
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, People's Republic of China
| | | | | | | | | | | |
Collapse
|
9
|
Bains J, Kaufman L, Farnell B, Boulanger MJ. A product analog bound form of 3-oxoadipate-enol-lactonase (PcaD) reveals a multifunctional role for the divergent cap domain. J Mol Biol 2011; 406:649-58. [PMID: 21237173 DOI: 10.1016/j.jmb.2011.01.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 12/24/2010] [Accepted: 01/03/2011] [Indexed: 11/15/2022]
Abstract
Lactones are a class of structurally diverse molecules that serve essential roles in biological processes ranging from quorum sensing to the aerobic catabolism of aromatic compounds. Not surprisingly, enzymes involved in the bioprocessing of lactones are often targeted for protein engineering studies with the potential, for example, of optimized bioremediation of aromatic pollutants. The enol-lactone hydrolase (ELH) represents one such class of targeted enzymes and catalyzes the conversion of 3-oxoadipate-enol-lactone into the linear β-ketoadipate. To define the structural details that govern ELH catalysis and assess the impact of divergent features predicted by sequence analysis, we report the first structural characterization of an ELH (PcaD) from Burkholderia xenovorans LB400 in complex with the product analog levulinic acid. The overall dimeric structure of PcaD reveals an α-helical cap domain positioned atop a core α/β-hydrolase domain. Despite the localization of the conserved catalytic triad to the core domain, levulinic acid is bound largely within the region of the active site defined by the cap domain, suggesting a key role for this divergent substructure in mediating product release. Furthermore, the architecture of the cap domain results in an unusually deep active-site pocket with topological features to restrict binding to small or kinked substrates. The evolutionary basis for this substrate selectivity is discussed with respect to the homologous dienelactone hydrolase. Overall, the PcaD costructure provides a detailed insight into the intimate role of the cap domain in influencing all aspects of substrate binding, turnover, and product release.
Collapse
Affiliation(s)
- Jasleen Bains
- Department of Biochemistry and Microbiology, University of Victoria, PO Box 3055 STN CSC, Victoria, BC, Canada
| | | | | | | |
Collapse
|
10
|
George KW, Kagle J, Junker L, Risen A, Hay AG. Growth of Pseudomonas putida F1 on styrene requires increased catechol-2,3-dioxygenase activity, not a new hydrolase. Microbiology (Reading) 2011; 157:89-98. [DOI: 10.1099/mic.0.042531-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas putida F1 cannot grow on styrene despite being able to degrade it through the toluene degradation (tod) pathway. Previous work had suggested that this was because TodF, the meta-fission product (MFP) hydrolase, was unable to metabolize the styrene MFP 2-hydroxy-6-vinylhexa-2,4-dienoate. Here we demonstrate via kinetic and growth analyses that the substrate specificity of TodF is not the limiting factor preventing F1 from growing on styrene. Rather, we found that the metabolite 3-vinylcatechol accumulated during styrene metabolism and that micromolar concentrations of this intermediate inactivated TodE, the catechol-2,3-dioxygenase (C23O) responsible for its cleavage. Analysis of cells growing on styrene suggested that inactivation of TodE and the subsequent accumulation of 3-vinylcatechol resulted in toxicity and cell death. We found that simply overexpressing TodE on a plasmid (pTodE) was all that was necessary to allow F1 to grow on styrene. Similar results were also obtained by expressing a related C23O, DmpB from Pseudomonas sp. CF600, in tandem with its plant-like ferredoxin, DmpQ (pDmpQB). Further analysis revealed that the ability of F1 (pDmpQB) and F1 (pTodE) to grow on styrene correlated with increased C23O activity as well as resistance of the enzyme to 3-vinylcatechol-mediated inactivation. Although TodE inactivation by 3-halocatechols has been studied before, to our knowledge, this is the first published report demonstrating inactivation by a 3-vinylcatechol. Given the ubiquity of catechol intermediates in aromatic hydrocarbon metabolism, our results further demonstrate the importance of C23O inactivation as a determinant of growth substrate specificity.
Collapse
Affiliation(s)
- Kevin W. George
- Department of Microbiology, Cornell University Ithaca, NY 14850, USA
- Field of Environmental Toxicology, Cornell University Ithaca, NY 14850, USA
| | - Jeanne Kagle
- Department of Microbiology, Cornell University Ithaca, NY 14850, USA
| | - Lauren Junker
- Department of Microbiology, Cornell University Ithaca, NY 14850, USA
| | - Amy Risen
- Department of Microbiology, Cornell University Ithaca, NY 14850, USA
- Field of Environmental Toxicology, Cornell University Ithaca, NY 14850, USA
| | - Anthony G. Hay
- Department of Microbiology, Cornell University Ithaca, NY 14850, USA
- Field of Environmental Toxicology, Cornell University Ithaca, NY 14850, USA
| |
Collapse
|
11
|
Li A, Qu Y, Zhou J, Ma F, Zhou H, Shi S. Characterization of a novel meta-fission product hydrolase from Dyella ginsengisoli LA-4. Process Biochem 2010. [DOI: 10.1016/j.procbio.2009.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
de Eugenio L, García J, García P, Prieto M, Sanz J. Comparative Analysis of the Physiological and Structural Properties of a Medium Chain Length Polyhydroxyalkanoate Depolymerase from Pseudomonas putida KT2442. Eng Life Sci 2008. [DOI: 10.1002/elsc.200700057] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
13
|
Khajamohiddin S, Repalle ER, Pinjari AB, Merrick M, Siddavattam D. Biodegradation of aromatic compounds: an overview of meta-fission product hydrolases. Crit Rev Microbiol 2008; 34:13-31. [PMID: 18259978 DOI: 10.1080/10408410701683656] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Meta fission product (MFP) hydrolases catalyze hydrolysis of a low reactive carbon-carbon bond found in meta-fission products, generated during biodegradation of various aromatic compounds. These enzymes belong to the alpha/beta hydrolase super family and show structural conservation despite having poor sequence similarity. MFP-hydrolases are substrate specific and studies have indicated that this substrate specificity plays a key role in the determination of the organism's ability to degrade a particular substrate. In this concise review of MFP-hydrolases we discuss their classification, biochemical properties, the molecular basis of their substrate specificity, their catalytic mechanism, and evolutionary significance.
Collapse
Affiliation(s)
- Syed Khajamohiddin
- Department of Animal Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | | | | | | | | |
Collapse
|
14
|
Fullone MR, Paiardini A, Gross DC, Lu SE, Fiore A, Grgurina I. Mutational analysis and homology modelling of SyrC, the aminoacyltransferase in the biosynthesis of syringomycin. Biochem Biophys Res Commun 2007; 364:201-7. [DOI: 10.1016/j.bbrc.2007.09.116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Accepted: 09/23/2007] [Indexed: 11/27/2022]
|
15
|
Horsman GP, Bhowmik S, Seah SYK, Kumar P, Bolin JT, Eltis LD. The Tautomeric Half-reaction of BphD, a C-C Bond Hydrolase. J Biol Chem 2007; 282:19894-904. [PMID: 17442675 DOI: 10.1074/jbc.m702237200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BphD of Burkholderia xenovorans LB400 catalyzes an unusual C-C bond hydrolysis of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA) to afford benzoic acid and 2-hydroxy-2,4-pentadienoic acid (HPD). An enol-keto tautomerization has been proposed to precede hydrolysis via a gem-diol intermediate. The role of the canonical catalytic triad (Ser-112, His-265, Asp-237) in mediating these two half-reactions remains unclear. We previously reported that the BphD-catalyzed hydrolysis of HOPDA (lambda(max) is 434 nm for the free enolate) proceeds via an unidentified intermediate with a red-shifted absorption spectrum (lambda(max) is 492 nm) (Horsman, G. P., Ke, J., Dai, S., Seah, S. Y. K., Bolin, J. T., and Eltis, L. D. (2006) Biochemistry 45, 11071-11086). Here we demonstrate that the S112A variant generates and traps a similar intermediate (lambda(max) is 506 nm) with a similar rate, 1/tau approximately 500 s(-1). The crystal structure of the S112A:HOPDA complex at 1.8-A resolution identified this intermediate as the keto tautomer, (E)-2,6-dioxo-6-phenyl-hex-3-enoate. This keto tautomer did not accumulate in either the H265A or the S112A/H265A double variants, indicating that His-265 catalyzes tautomerization. Consistent with this role, the wild type and S112A enzymes catalyzed tautomerization of the product HPD, whereas H265A variants did not. This study thus identifies a keto intermediate, and demonstrates that the catalytic triad histidine catalyzes the tautomerization half-reaction, expanding the role of this residue from its purely hydrolytic function in other serine hydrolases. Finally, the S112A:HOPDA crystal structure is more consistent with hydrolysis occurring via an acyl-enzyme intermediate than a gem-diol intermediate as solvent molecules have poor access to C6, and the closest ordered water is 7 A away.
Collapse
Affiliation(s)
- Geoff P Horsman
- Department of Biochemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Seah SYK, Ke J, Denis G, Horsman GP, Fortin PD, Whiting CJ, Eltis LD. Characterization of a C-C bond hydrolase from Sphingomonas wittichii RW1 with novel specificities towards polychlorinated biphenyl metabolites. J Bacteriol 2007; 189:4038-45. [PMID: 17416660 PMCID: PMC1913379 DOI: 10.1128/jb.01950-06] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sphingomonas wittichii RW1 degrades chlorinated dibenzofurans and dibenzo-p-dioxins via meta cleavage. We used inverse PCR to amplify dxnB2, a gene encoding one of three meta-cleavage product (MCP) hydrolases identified in the organism that are homologues of BphD involved in biphenyl catabolism. Purified DxnB2 catalyzed the hydrolysis of 8-OH 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate (HOPDA) approximately six times faster than for HOPDA at saturating substrate concentrations. Moreover, the specificity of DxnB2 for HOPDA (k(cat)/K(m) = 1.2 x 10(7) M(-1) s(-1)) was about half that of the BphDs of Burkholderia xenovorans LB400 and Rhodococcus globerulus P6, two potent polychlorinated biphenyl (PCB)-degrading strains. Interestingly, DxnB2 transformed 3-Cl and 4-OH HOPDAs, compounds that inhibit the BphDs and limit PCB degradation. DxnB2 had a higher specificity for 9-Cl HOPDA than for HOPDA but a lower specificity for 8-Cl HOPDA (k(cat)/K(m) = 1.7 x 10(6) M(-1) s(-1)), the chlorinated analog of 8-OH HOPDA produced during dibenzofuran catabolism. Phylogenetic analyses based on structure-guided sequence alignment revealed that DxnB2 belongs to a previously unrecognized class of MCP hydrolases, evolutionarily divergent from the BphDs although the physiological substrates of both enzyme types are HOPDAs. However, both classes of enzymes have mainly small hydrophobic residues lining the subsite that binds the C-6 phenyl of HOPDA, in contrast to the bulky hydrophobic residues (Phe106, Phe135, Trp150, and Phe197) found in the class II enzymes that prefer substrates possessing a C-6 alkyl. Thr196 and/or Asn203 appears to be an important determinant of specificity for DxnB2, potentially forming hydrogen bonds with the 8-OH substituent. This study demonstrates that the substrate specificities of evolutionarily divergent hydrolases may be useful for degrading mixtures of pollutants, such as PCBs.
Collapse
|
17
|
Awaya JD, Walton C, Borthakur D. The pydA-pydB fusion gene produces an active dioxygenase-hydrolase that degrades 3-hydroxy-4-pyridone, an intermediate of mimosine metabolism. Appl Microbiol Biotechnol 2007; 75:583-8. [PMID: 17390132 DOI: 10.1007/s00253-007-0858-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Revised: 01/21/2007] [Accepted: 01/22/2007] [Indexed: 10/23/2022]
Abstract
The objective of this research was to construct a pydA-pydB hybrid gene that encodes a functional dioxygenase-hydrolase (PydA-PydB) fusion protein for degradation of 3-hydroxy-4-pyridone (HP). HP is an intermediate in both synthesis and degradation of mimosine, a toxic amino acid produced by the tree legume Leucaena leucocephala. Computer-generated models of the fusion proteins suggested that joining of PydA and PydB with 0, 3, or 7 glycine residues as a linker should produce a functional PydA-PydB fusion protein. Accordingly, three hybrid genes, G0, G3, and G7, were constructed in which pydA and pydB were connected with 0, 9, and 21 nucleotides, respectively, encoding the glycine residues of the linker region. When these hybrid genes were expressed in Rhizobium and Escherichia coli, only one of them, G3, produced a functional PydA-PydB fusion protein, having both the dioxygenase and hydrolase activities. The G3 hybrid gene could complement both pydA and pydB mutants of Rhizobium, and E. coli lysate containing the overexpressed G3 protein was able to degrade HP. This hybrid gene may be useful for developing mimosine-free L. leucocephala plants in the future.
Collapse
Affiliation(s)
- Jonathan D Awaya
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | | | | |
Collapse
|
18
|
de Eugenio LI, Garci A P, Luengo JM, Sanz JSM, Roma N JS, Garci A JL, Prieto MAA. Biochemical Evidence That phaZ Gene Encodes a Specific Intracellular Medium Chain Length Polyhydroxyalkanoate Depolymerase in Pseudomonas putida KT2442. J Biol Chem 2007; 282:4951-4962. [PMID: 17170116 DOI: 10.1074/jbc.m608119200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) can be catabolized by many microorganisms using intra- or extracellular PHA depolymerases. Most of our current knowledge of these intracellular enzyme-coding genes comes from the analysis of short chain length PHA depolymerases, whereas medium chain length PHA (mcl-PHA) intracellular depolymerization systems still remained to be characterized. The phaZ gene of some Pseudomonas putida strains has been identified only by mutagenesis and complementation techniques as putative intracellular mcl-PHA depolymerase. However, none of their corresponding encoded PhaZ enzymes have been characterized in depth. In this study the PhaZ depolymerase from P. putida KT2442 has been purified and biochemically characterized after its overexpression in Escherichia coli. To facilitate these studies we have developed a new and very sensitive radioactive method for detecting PHA hydrolysis in vitro. We have demonstrated that PhaZ is an intracellular depolymerase that is located in PHA granules and that hydrolyzes specifically mcl-PHAs containing aliphatic and aromatic monomers. The enzyme behaves as a serine hydrolase that is inhibited by phenylmethylsulfonyl fluoride. We have modeled the three-dimensional structure of PhaZ complexed with a 3-hydroxyoctanoate dimer. Using this model, we found that the enzyme appears to be built up from a corealpha/beta hydrolase-type domain capped with a lid structure with an active site containing a catalytic triad buried near the connection between domains. All these data constitute the first biochemical characterization of PhaZ and allow us to propose this enzyme as the paradigmatic representative of intracellular endo/exo-mcl-PHA depolymerases.
Collapse
Affiliation(s)
- Laura I de Eugenio
- Departamento de Microbiologi´a Molecular, Centro de Investigaciones Biolo´gicas, Consejo Superior de Investigaciones Cienti´ficas (CSIC), C. Ramiro de Maeztu, 9, 28040 Madrid
| | - Pedro Garci A
- Departamento de Microbiologi´a Molecular, Centro de Investigaciones Biolo´gicas, Consejo Superior de Investigaciones Cienti´ficas (CSIC), C. Ramiro de Maeztu, 9, 28040 Madrid
| | - José M Luengo
- Departamento de Bioqui´mica y Biologi´a Molecular, Universidad de Leo´n, 24007 Leo´n
| | - Jesu S M Sanz
- Instituto de Biologi´a Molecular y Celular, Universidad Miguel Herna´ndez, Av. Universidad, s/n. 03202 Elche (Alicante), and the
| | - Julio San Roma N
- Instituto de Ciencia y Tecnologi´a de Poli´meros, CSIC, C. Juan de la Cierva 3, 28006 Madrid, Spain
| | - José Luis Garci A
- Departamento de Microbiologi´a Molecular, Centro de Investigaciones Biolo´gicas, Consejo Superior de Investigaciones Cienti´ficas (CSIC), C. Ramiro de Maeztu, 9, 28040 Madrid
| | - Mari A A Prieto
- Departamento de Microbiologi´a Molecular, Centro de Investigaciones Biolo´gicas, Consejo Superior de Investigaciones Cienti´ficas (CSIC), C. Ramiro de Maeztu, 9, 28040 Madrid.
| |
Collapse
|
19
|
Schleberger C, Sachelaru P, Brandsch R, Schulz GE. Structure and action of a C-C bond cleaving alpha/beta-hydrolase involved in nicotine degradation. J Mol Biol 2006; 367:409-18. [PMID: 17275835 DOI: 10.1016/j.jmb.2006.12.068] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 12/21/2006] [Accepted: 12/27/2006] [Indexed: 11/29/2022]
Abstract
The enzyme 2,6-dihydroxy-pseudo-oxynicotine hydrolase from the nicotine-degradation pathway of Arthrobacter nicotinovorans was crystallized and the structure was determined by an X-ray diffraction analysis at 2.1 A resolution. The enzyme belongs to the alpha/beta-hydrolase family as derived from the chain-fold and from the presence of a catalytic triad with its oxyanion hole at the common position. This relationship assigns a pocket lined by the catalytic triad as the active center. The asymmetric unit contains two C(2)-symmetric dimer molecules, each adopting a specific conformation. One dimer forms a more spacious active center pocket and the other a smaller one, suggesting an induced-fit. All of the currently established C-C bond cleaving alpha/beta-hydrolases are from bacterial meta-cleavage pathways for the degradation of aromatic compounds and cover their active center with a 40 residue lid placed between two adjacent strands of the beta-sheet. In contrast, the reported enzyme shields its active center with a 110 residue N-terminal domain, which is absent in the meta-cleavage hydrolases. Since neither the substrate nor an analogue could be bound in the crystals, the substrate was modeled into the active center using the oxyanion hole as a geometric constraint. The model was supported by enzymatic activity data of 11 point mutants and by the two dimer conformations suggesting an induced-fit. Moreover, the model assigned a major role for the large N-terminal domain that is specific to the reported enzyme. The proposal is consistent with the known data for the meta-cleavage hydrolases although it differs in that the reaction does not release alkenes but a hetero-aromatic compound in a retro-Friedel-Crafts acylation. Because the hydrolytic water molecule can be assigned to a geometrically suitable site that can be occupied in the presence of the substrate, the catalytic triad may not form a covalent acyl-enzyme intermediate but merely support a direct hydrolysis.
Collapse
Affiliation(s)
- Christian Schleberger
- Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität, Albertstr. 21, D-79104 Freiburg im Breisgau, Germany
| | | | | | | |
Collapse
|
20
|
Khajamohiddin S, Babu PS, Chakka D, Merrick M, Bhaduri A, Sowdhamini R, Siddavattam D. A novel meta-cleavage product hydrolase from Flavobacterium sp. ATCC27551. Biochem Biophys Res Commun 2006; 351:675-81. [PMID: 17078928 DOI: 10.1016/j.bbrc.2006.10.080] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2006] [Accepted: 10/17/2006] [Indexed: 11/25/2022]
Abstract
The organophosphate degrading (opd) gene cluster of plasmid pPDL2 of Flavobacterium sp. ATCC27551 contains a novel open-reading frame, orf243. This was predicted to encode an alpha/beta hydrolase distantly related to the meta-fission product (MFP) hydrolases such as XylF, PhnD, and CumD. By homology modeling Orf243 has most of the structural features of MFP hydrolases including the characteristic active site catalytic triad. The purified protein (designated MfhA) is a homotetramer and shows similar affinity for 2-hydroxy-6-oxohepta-2,4-dienoate (HOHD), 2-hydroxymuconic semialdehyde (HMSA), and 2-hydroxy-5-methylmuconic semialdehyde (HMMSA), the meta-fission products of 3-methyl catechol, catechol, and 4-methyl catechol. The unique catalytic properties of MfhA and the presence near its structural gene of cis-elements required for transposition suggest that mfhA has evolved towards encoding a common hydrolase that can act on meta-fission products containing either aldehyde or ketone groups.
Collapse
Affiliation(s)
- Syed Khajamohiddin
- Department of Animal Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | | | | | | | | | | | | |
Collapse
|
21
|
Horsman GP, Ke J, Dai S, Seah SYK, Bolin JT, Eltis LD. Kinetic and structural insight into the mechanism of BphD, a C-C bond hydrolase from the biphenyl degradation pathway. Biochemistry 2006; 45:11071-86. [PMID: 16964968 PMCID: PMC2519953 DOI: 10.1021/bi0611098] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Kinetic and structural analyses of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA) hydrolase from Burkholderia xenovorans LB400 (BphD(LB400)) provide insight into the catalytic mechanism of this unusual serine hydrolase. Single turnover stopped-flow analysis at 25 degrees C showed that the enzyme rapidly (1/tau(1) approximately 500 s(-1)) transforms HOPDA (lambda(max) = 434 nm) into a species with electronic absorption maxima at 473 and 492 nm. The absorbance of this enzyme-bound species (E:S) decayed in a biphasic manner (1/tau(2) = 54 s(-1), 1/tau(3) = 6 s(-1) approximately k(cat)) with simultaneous biphasic appearance (48 and 8 s(-1)) of an absorbance band at 270 nm characteristic of one of the products, 2-hydroxypenta-2,4-dienoic acid (HPD). Increasing solution viscosity with glycerol slowed 1/tau(1) and 1/tau(2) but affected neither 1/tau(3) nor k(cat), suggesting that 1/tau(2) may reflect diffusive HPD dissociation, and 1/tau(3) represents an intramolecular event. Product inhibition studies suggested that the other product, benzoate, is released after HPD. Contrary to studies in a related hydrolase, we found no evidence that ketonized HOPDA is partially released prior to hydrolysis, and, therefore, postulate that the biphasic kinetics reflect one of two mechanisms, pending assignment of E:S (lambda(max) = 492 nm). The crystal structures of the wild type, the S112C variant, and S112C incubated with HOPDA were each determined to 1.6 A resolution. The latter reveals interactions between conserved active site residues and the dienoate moiety of the substrate. Most notably, the catalytic residue His265 is hydrogen-bonded to the 2-hydroxy/oxo substituent of HOPDA, consistent with a role in catalyzing ketonization. The data are more consistent with an acyl-enzyme mechanism than with the formation of a gem-diol intermediate.
Collapse
Affiliation(s)
- Geoff P. Horsman
- Departments of Biochemistry and Molecular Biology, and Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Jiyuan Ke
- Purdue Cancer Center and Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, IN 47907−2054
| | - Shaodong Dai
- Purdue Cancer Center and Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, IN 47907−2054
| | - Stephen Y. K. Seah
- Departments of Biochemistry and Molecular Biology, and Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Jeffrey T. Bolin
- Purdue Cancer Center and Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, IN 47907−2054
| | - Lindsay D. Eltis
- Departments of Biochemistry and Molecular Biology, and Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- To whom correspondence should be addressed: Lindsay D. Eltis, , Phone: (604)822−0042, Fax: (604)822−6041
| |
Collapse
|
22
|
Jun SY, Fushinobu S, Nojiri H, Omori T, Shoun H, Wakagi T. Improving the catalytic efficiency of a meta-cleavage product hydrolase (CumD) from Pseudomonas fluorescens IP01. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:1159-66. [PMID: 16844437 DOI: 10.1016/j.bbapap.2006.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Revised: 05/24/2006] [Accepted: 05/24/2006] [Indexed: 11/21/2022]
Abstract
The meta-cleavage product hydrolase from Pseudomonas fluorescens IP01 (CumD) hydrolyzes 2-hydroxy-6-oxo-7-methylocta-2,4-dienoate (6-isopropyl HODA) in the cumene (isopropylbenzene) degradation pathway. To modulate the substrate specificity and catalytic efficiency of CumD toward substrates derived from monocyclic aromatic compounds, we constructed the CumD mutants, A129V, I199V, and V227I, as well as four types of double and triple mutants. Toward substrates with smaller side chains (e.g. 2-hydroxy-6-oxohepta-2,4-dienoate; 6-ethyl-HODA), the k(cat)/K(m) values of the single mutants were 4.2-11 fold higher than that of the wild type enzyme and 1.8-4.7 fold higher than that of the meta-cleavage product hydrolase from Pseudomonas putida F1 (TodF). The A129V mutant showed the highest k(cat)/K(m) value for 2-hydroxy-6-oxohepta-2,4-dienoate (6-ethyl-HODA). The crystal structure of the A129V mutant was determined at 1.65 A resolution, enabling location of the Ogamma atom of the Ser103 side chain. A chloride ion was bound to the oxyanion hole of the active site, and mutant enzymes at the residues forming this site were also examined. The k(cat) values of Ser34 mutants were decreased 2.9-65 fold, suggesting that the side chain of Ser34 supports catalysis by stabilizing the anionic oxygen of the proposed intermediate state (gem-diolate). This is the first crystal structure determination of CumD in an active form, with the Ser103 residue, one of the catalytically essential "triad", being intact.
Collapse
Affiliation(s)
- So-Young Jun
- Laboratory of Enzymology, Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Dong X, Fushinobu S, Fukuda E, Terada T, Nakamura S, Shimizu K, Nojiri H, Omori T, Shoun H, Wakagi T. Crystal structure of the terminal oxygenase component of cumene dioxygenase from Pseudomonas fluorescens IP01. J Bacteriol 2005; 187:2483-90. [PMID: 15774891 PMCID: PMC1065230 DOI: 10.1128/jb.187.7.2483-2490.2005] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The crystal structure of the terminal component of the cumene dioxygenase multicomponent enzyme system of Pseudomonas fluorescens IP01 (CumDO) was determined at a resolution of 2.2 A by means of molecular replacement by using the crystal structure of the terminal oxygenase component of naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4 (NphDO). The ligation of the two catalytic centers of CumDO (i.e., the nonheme iron and Rieske [2Fe-2S] centers) and the bridging between them in neighboring catalytic subunits by hydrogen bonds through a single amino acid residue, Asp231, are similar to those of NphDO. An unidentified external ligand, possibly dioxygen, was bound at the active site nonheme iron. The entrance to the active site of CumDO is different from the entrance to the active site of NphDO, as the two loops forming the lid exhibit great deviation. On the basis of the complex structure of NphDO, a biphenyl substrate was modeled in the substrate-binding pocket of CumDO. The residues surrounding the modeled biphenyl molecule include residues that have already been shown to be important for its substrate specificity by a number of engineering studies of biphenyl dioxygenases.
Collapse
Affiliation(s)
- Xuesong Dong
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Dunn G, Montgomery MG, Mohammed F, Coker A, Cooper JB, Robertson T, Garcia JL, Bugg TDH, Wood SP. The structure of the C-C bond hydrolase MhpC provides insights into its catalytic mechanism. J Mol Biol 2004; 346:253-65. [PMID: 15663942 DOI: 10.1016/j.jmb.2004.11.033] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Revised: 11/12/2004] [Accepted: 11/15/2004] [Indexed: 11/26/2022]
Abstract
2-Hydroxy-6-ketonona-2,4-diene-1,9-dioic acid 5,6-hydrolase (MhpC) is a 62 kDa homodimeric enzyme of the phenylpropionate degradation pathway of Escherichia coli. The 2.1 A resolution X-ray structure of the native enzyme determined from orthorhombic crystals confirms that it is a member of the alpha/beta hydrolase fold family, comprising eight beta-strands interconnected by loops and helices. The 2.8 A resolution structure of the enzyme co-crystallised with the non-hydrolysable substrate analogue 2,6-diketo-nona-1,9-dioic acid (DKNDA) confirms the location of the active site in a buried channel including Ser110, His263 and Asp235, postulated contributors to a serine protease-like catalytic triad in homologous enzymes. It appears that the ligand binds in two separate orientations. In the first, the C6 keto group of the inhibitor forms a hemi-ketal adduct with the Ser110 side-chain, the C9 carboxylate group interacts, via the intermediacy of a water molecule, with Arg188 at one end of the active site, while the C1 carboxylate group of the inhibitor comes close to His114 at the other end. In the second orientation, the C1 carboxylate group binds at the Arg188 end of the active site and the C9 carboxylate group at the His114 end. These arrangements implicated His114 or His263 as plausible contributors to catalysis of the initial enol/keto tautomerisation of the substrate but lack of conservation of His114 amongst related enzymes and mutagenesis results suggest that His263 is the residue involved. Variability in the quality of the electron density for the inhibitor amongst the eight molecules of the crystal asymmetric unit appears to correlate with alternative positions for the side-chain of His114. This might arise from half-site occupation of the dimeric enzyme and reflect the apparent dissociation of approximately 50% of the keto intermediate from the enzyme during the catalytic cycle.
Collapse
Affiliation(s)
- G Dunn
- Department of Biomolecular Science, University of Southampton, Bassett Crescent East, Southampton, SO16 7PX, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ogino H, Hiroshima S, Hirose S, Yasuda M, Ishimi K, Ishikawa H. Cloning, expression and characterization of a lipase gene (lip3) from Pseudomonas aeruginosa LST-03. Mol Genet Genomics 2004; 271:189-96. [PMID: 14740297 DOI: 10.1007/s00438-003-0970-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2003] [Accepted: 12/16/2003] [Indexed: 10/26/2022]
Abstract
A lipase gene (lip3) was cloned from the Pseudomonas aeruginosa strain LST-03 (which tolerates organic solvents) and expressed in Escherichia coli. The cloned sequence includes an ORF consisting of 945 nucleotides, encoding a protein of 315 amino acids (Lip3 lipase, 34.8 kDa). The predicted Lip3 lipase belongs to the class of serine hydrolases; the catalytic triad consists of the residues Ser-137, Asp-258, and His-286. The gene cloned in the present study does not encode the LST-03 lipase, a previously isolated solvent-stable lipase secreted by P. aeruginosa LST-03, because the N-terminal amino acid sequence of the Lip3 lipase differs from that of the LST-03 lipase. Although the effects of pH on the activity and stability of the Lip3 lipase, and the temperature optimum of the enzyme, were similar to those of the LST-03 lipase, the relative activity of the Lip3 lipase at lower temperatures (0-35 degrees C) was higher than that of the LST-03 lipase. In the absence of organic solvents, the half-life of the Lip3 lipase was similar to that of the LST-03 lipase. However, in the presence of most of the organic solvents tested in this study (the exceptions were ethylene glycol and glycerol), the stability of the Lip3 lipase was lower than that of the LST-03 lipase.
Collapse
Affiliation(s)
- H Ogino
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, 599-8531 Sakai, Osaka, Japan.
| | | | | | | | | | | |
Collapse
|
26
|
Habe H, Morii K, Fushinobu S, Nam JW, Ayabe Y, Yoshida T, Wakagi T, Yamane H, Nojiri H, Omori T. Crystal structure of a histidine-tagged serine hydrolase involved in the carbazole degradation (CarC enzyme). Biochem Biophys Res Commun 2003; 303:631-9. [PMID: 12659866 DOI: 10.1016/s0006-291x(03)00375-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
2-Hydroxy-6-oxo-6-(2(')-aminophenyl)-hexa-2,4-dienoate hydrolases (CarC enzymes) from two carbazole-degrading bacteria were purified using recombinant Escherichia coli strains with the histidine (His)-tagged purification system. The His-tagged CarC (ht-CarC) enzymes from Pseudomonas resinovorans strain CA10 (ht-CarC(CA10)) and Janthinobacterium sp. strain J3 (ht-CarC(J3)) exhibited hydrolase activity toward 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate as the purified native CarC(CA10) did. ht-CarC(J3) was crystallized in the space group I422 with cell dimensions of a=b=130.3A, c=84.5A in the hexagonal setting, and the crystal structure of ht-CarC(J3) was determined at 1.86A resolution. The final refined model of ht-CarC(J3) yields an R-factor of 21.6%, although the electron-density corresponding to Ile146 to Asn155 was ambiguous in the final model. We compared the known structures of BphD from Rhodococcus sp. strain RHA1 and CumD from Pseudomonas fluorescens strain IP01. The backbone conformation of ht-CarC(J3) was better superimposed with CumD than with BphD(RHA1). The side-chain directions of Arg185 and Trp262 residues in the substrate binding pockets of these enzymes were different among these proteins, suggesting that these residues may take a conformational change during the catalytic cycles.
Collapse
Affiliation(s)
- Hiroshi Habe
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|