1
|
Han C, Fu S, Chen M, Gou Y, Liu D, Zhang C, Huang X, Xiao L, Zhao M, Zhang J, Xiao Q, Peng D, Xue Y. GPSD: a hybrid learning framework for the prediction of phosphatase-specific dephosphorylation sites. Brief Bioinform 2024; 26:bbae694. [PMID: 39749667 PMCID: PMC11695897 DOI: 10.1093/bib/bbae694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/30/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
Protein phosphorylation is dynamically and reversibly regulated by protein kinases and protein phosphatases, and plays an essential role in orchestrating a wide range of biological processes. Although a number of tools have been developed for predicting kinase-specific phosphorylation sites (p-sites), computational prediction of phosphatase-specific dephosphorylation sites remains to be a great challenge. In this study, we manually curated 4393 experimentally identified site-specific phosphatase-substrate relationships for 3463 dephosphorylation sites occurring on phosphoserine, phosphothreonine, and/or phosphotyrosine residues, from the literature and public databases. Then, we developed a hybrid learning framework, the group-based prediction system for the prediction of phosphatase-specific dephosphorylation sites (GPSD). For model training, we integrated 10 types of sequence features and utilized three types of machine learning methods, including penalized logistic regression, deep neural networks, and transformer neural networks. First, a pretrained model was constructed using 561 416 nonredundant p-sites and then fine-tuned to generate computational models for predicting general dephosphorylation sites. In addition, 103 individual phosphatase-specific predictors were constructed via transfer learning and meta-learning. For site prediction, one or multiple protein sequences in FASTA format could be inputted, and the prediction results will be shown together with additional annotations, such as protein-protein interactions, structural information, and disorder propensity. The online service of GPSD is freely available at https://gpsd.biocuckoo.cn/. We believe that GPSD can serve as a valuable tool for further analysis of dephosphorylation.
Collapse
Affiliation(s)
- Cheng Han
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China
| | - Shanshan Fu
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China
| | - Miaomiao Chen
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China
| | - Yujie Gou
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China
| | - Dan Liu
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China
| | - Chi Zhang
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China
| | - Xinhe Huang
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China
| | - Leming Xiao
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China
| | - Miaoying Zhao
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China
| | - Jiayi Zhang
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China
| | - Qiang Xiao
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China
| | - Di Peng
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China
| | - Yu Xue
- Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China
| |
Collapse
|
2
|
Schuppe AW, Liu Y, Gonzalez-Hurtado E, Zhao Y, Jiang X, Ibarraran S, Huang D, Wang E, Lee J, Loria JP, Dixit VD, Li X, Newhouse TR. Unified Total Synthesis of the Limonoid Alkaloids: Strategies for the De Novo Synthesis of Highly Substituted Pyridine Scaffolds. Chem 2022; 8:2856-2887. [PMID: 37396824 PMCID: PMC10311986 DOI: 10.1016/j.chempr.2022.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Highly substituted pyridine scaffolds are found in many biologically active natural products and therapeutics. Accordingly, numerous complementary de novo approaches to obtain differentially substituted pyridines have been disclosed. This article delineates the evolution of the synthetic strategies designed to assemble the demanding tetrasubstituted pyridine core present in the limonoid alkaloids isolated from Xylocarpus granatum, including xylogranatopyridine B, granatumine A and related congeners. In addition, NMR calculations suggested structural misassignment of several limonoid alkaloids, and predicted their C3-epimers as the correct structures, which was further validated unequivocally through chemical synthesis. The materials produced in this study were evaluated for cytotoxicity, anti-oxidant effects, anti-inflammatory action, PTP1B and Nlrp3 inflammasome inhibition, which led to compelling anti-inflammatory activity and anti-oxidant effects being discovered.
Collapse
Affiliation(s)
- Alexander W. Schuppe
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Yannan Liu
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Elsie Gonzalez-Hurtado
- Department of Pathology, Immunobiology, Comparative Medicine, Yale School of Medicine, 310 Cedar Street, New Haven, Connecticut 06520, United States
| | - Yizhou Zhao
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Xuefeng Jiang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310018, P. R. China
| | - Sebastian Ibarraran
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - David Huang
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Emma Wang
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Jaehoo Lee
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - J. Patrick Loria
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Vishwa Deep Dixit
- Department of Pathology, Immunobiology, Comparative Medicine, Yale School of Medicine, 310 Cedar Street, New Haven, Connecticut 06520, United States
| | - Xin Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310018, P. R. China
| | - Timothy R. Newhouse
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
- Lead contact
| |
Collapse
|
3
|
Szymczak LC, Sykora DJ, Mrksich M. Using Peptide Arrays to Profile Phosphatase Activity in Cell Lysates. Chemistry 2020; 26:165-170. [PMID: 31691395 DOI: 10.1002/chem.201904364] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/31/2019] [Indexed: 12/30/2022]
Abstract
Phosphorylation is an important post-translational modification on proteins involved in many cellular processes; however, understanding of the regulation and mechanisms of global phosphorylation remains limited. Herein, we utilize self-assembled monolayers on gold for matrix-assisted laser desorption/ionization mass spectrometry (SAMDI-MS) with three phosphorylated peptide arrays to profile global phosphatase activity in cell lysates derived from five mammalian cell lines. Our results reveal significant differences in the activities of protein phosphatases on phospho- serine, threonine, and tyrosine substrates and suggest that phosphatases play a much larger role in the regulation of global phosphorylation on proteins than previously understood.
Collapse
Affiliation(s)
- Lindsey C Szymczak
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Daniel J Sykora
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Milan Mrksich
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.,Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
4
|
Palma A, Tinti M, Paoluzi S, Santonico E, Brandt BW, Hooft van Huijsduijnen R, Masch A, Heringa J, Schutkowski M, Castagnoli L, Cesareni G. Both Intrinsic Substrate Preference and Network Context Contribute to Substrate Selection of Classical Tyrosine Phosphatases. J Biol Chem 2017; 292:4942-4952. [PMID: 28159843 DOI: 10.1074/jbc.m116.757518] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/31/2017] [Indexed: 01/19/2023] Open
Abstract
Reversible tyrosine phosphorylation is a widespread post-translational modification mechanism underlying cell physiology. Thus, understanding the mechanisms responsible for substrate selection by kinases and phosphatases is central to our ability to model signal transduction at a system level. Classical protein-tyrosine phosphatases can exhibit substrate specificity in vivo by combining intrinsic enzymatic specificity with the network of protein-protein interactions, which positions the enzymes in close proximity to their substrates. Here we use a high throughput approach, based on high density phosphopeptide chips, to determine the in vitro substrate preference of 16 members of the protein-tyrosine phosphatase family. This approach helped identify one residue in the substrate binding pocket of the phosphatase domain that confers specificity for phosphopeptides in a specific sequence context. We also present a Bayesian model that combines intrinsic enzymatic specificity and interaction information in the context of the human protein interaction network to infer new phosphatase substrates at the proteome level.
Collapse
Affiliation(s)
- Anita Palma
- From the Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Michele Tinti
- From the Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Serena Paoluzi
- From the Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Elena Santonico
- From the Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Bernd Willem Brandt
- the Centre for Integrative Bioinformatics, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands, and
| | | | - Antonia Masch
- the Institut für Biochemie & Biotechnologie, Martin-Luther-Universität Halle-Wittenberg, 06108 Halle, Germany
| | - Jaap Heringa
- the Centre for Integrative Bioinformatics, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands, and
| | - Mike Schutkowski
- the Institut für Biochemie & Biotechnologie, Martin-Luther-Universität Halle-Wittenberg, 06108 Halle, Germany
| | - Luisa Castagnoli
- From the Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Gianni Cesareni
- From the Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy,
| |
Collapse
|
5
|
Abstract
Phosphatases play key roles in normal physiology and diseases. Studying phosphatases has been both essential and challenging, and the application of conventional genetic and biochemical methods has led to crucial but still limited understanding of their mechanisms, substrates, and exclusive functions within highly intricate networks. With the advances in technologies such as cellular imaging and molecular and chemical biology in terms of sensitive tools and methods, the phosphatase field has thrived in the past years and has set new insights for cell signaling studies and for therapeutic development. In this review, we give an overview of the existing interdisciplinary tools for phosphatases, give examples on how they have been applied to increase our understanding of these enzymes, and suggest how they-and other tools yet barely used in the phosphatase field-might be adapted to address future questions and challenges.
Collapse
Affiliation(s)
- Sara Fahs
- European Molecular Biology Laboratory, Genome Biology
Unit, Meyerhofstrasse
1, 69117 Heidelberg, Germany
| | - Pablo Lujan
- European Molecular Biology Laboratory, Genome Biology
Unit, Meyerhofstrasse
1, 69117 Heidelberg, Germany
| | - Maja Köhn
- European Molecular Biology Laboratory, Genome Biology
Unit, Meyerhofstrasse
1, 69117 Heidelberg, Germany
| |
Collapse
|
6
|
Perrin D, Frémaux C, Besson D, Sauer WHB, Scheer A. A Microfluidics-Based Mobility Shift Assay to Discover New Tyrosine Phosphatase Inhibitors. ACTA ACUST UNITED AC 2016; 11:996-1004. [PMID: 17092920 DOI: 10.1177/1087057106294094] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Protein tyrosine phosphatases (PTPs) play key roles in regulating tyrosine phosphorylation levels in cells. Since the discovery of PTP1B as a major drug target for diabetes and obesity, PTPs have emerged as a new and promising class of signaling targets for drug development in a variety of therapeutic areas. The routine use of generic substrate 6,8-difluoro-4-methylumbelliferyl phosphate (DiFMUP) in our hands led to the discovery of very similar and often not very selective molecules. Therefore, to increase the chances to discover novel chemical scaffolds, a side-by-side comparison between the DiFMUP assay and a chip-based mobility shift assay with a specific phosphopeptide was performed, on 1 PTP, using a focused set of compounds. Assay robustness and sensitivity were comparable for both the DiFMUP and mobility shift assays. The off-chip mobility shift assay required a longer development time because of identification, synthesis, and characterization of a specific peptide, and its cost per point was higher. However, although most potent scaffolds found with the DiFMUP assay were confirmed in the mobility shift format, the off-chip mobility shift assay led to the identification of previously unidentified chemical scaffolds with improved druglike properties.
Collapse
Affiliation(s)
- Dominique Perrin
- Molecular Screening and Cellular Pharmacology Department, Serono Pharmaceutical Research Institute, Geneva, Switzerland.
| | | | | | | | | |
Collapse
|
7
|
Ozek C, Kanoski SE, Zhang ZY, Grill HJ, Bence KK. Protein-tyrosine phosphatase 1B (PTP1B) is a novel regulator of central brain-derived neurotrophic factor and tropomyosin receptor kinase B (TrkB) signaling. J Biol Chem 2014; 289:31682-31692. [PMID: 25288805 DOI: 10.1074/jbc.m114.603621] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Neuronal protein-tyrosine phosphatase 1B (PTP1B) deficiency in mice results in enhanced leptin signaling and protection from diet-induced obesity; however, whether additional signaling pathways in the brain contribute to the metabolic effects of PTP1B deficiency remains unclear. Here, we show that the tropomyosin receptor kinase B (TrkB) receptor is a direct PTP1B substrate and implicate PTP1B in the regulation of the central brain-derived neurotrophic factor (BDNF) signaling. PTP1B interacts with activated TrkB receptor in mouse brain and human SH-SY5Y neuroblastoma cells. PTP1B overexpression reduces TrkB phosphorylation and activation of downstream signaling pathways, whereas PTP1B inhibition augments TrkB signaling. Notably, brains of Ptpn1(-/-) mice exhibit enhanced TrkB phosphorylation, and Ptpn1(-/-) mice are hypersensitive to central BDNF-induced increase in core temperature. Taken together, our findings demonstrate that PTP1B is a novel physiological regulator of TrkB and that enhanced BDNF/TrkB signaling may contribute to the beneficial metabolic effects of PTP1B deficiency.
Collapse
Affiliation(s)
- Ceren Ozek
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Scott E Kanoski
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, California 90089, and
| | - Zhong-Yin Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University, Indianapolis, Indiana 46202
| | - Harvey J Grill
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Kendra K Bence
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104,.
| |
Collapse
|
8
|
Konieczna I, Zarnowiec P, Kwinkowski M, Kolesinska B, Fraczyk J, Kaminski Z, Kaca W. Bacterial urease and its role in long-lasting human diseases. Curr Protein Pept Sci 2013; 13:789-806. [PMID: 23305365 PMCID: PMC3816311 DOI: 10.2174/138920312804871094] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 07/15/2012] [Accepted: 09/03/2012] [Indexed: 02/07/2023]
Abstract
Urease is a virulence factor found in various pathogenic bacteria. It is essential in colonization of a host organism and in maintenance of bacterial cells in tissues. Due to its enzymatic activity, urease has a toxic effect on human cells. The presence of ureolytic activity is an important marker of a number of bacterial infections. Urease is also an immunogenic protein and is recognized by antibodies present in human sera. The presence of such antibodies is connected with progress of several long-lasting diseases, like rheumatoid arthritis, atherosclerosis or urinary tract infections. In bacterial ureases, motives with a sequence and/or structure similar to human proteins may occur. This phenomenon, known as molecular mimicry, leads to the appearance of autoantibodies, which take part in host molecules destruction. Detection of antibodies-binding motives (epitopes) in bacterial proteins is a complex process. However, organic chemistry tools, such as synthetic peptide libraries, are helpful in both, epitope mapping as well as in serologic investigations. In this review, we present a synthetic report on a molecular organization of bacterial ureases - genetic as well as structural. We characterize methods used in detecting urease and ureolytic activity, including techniques applied in disease diagnostic processes and in chemical synthesis of urease epitopes. The review also provides a summary of knowledge about a toxic effect of bacterial ureases on human body and about occurrence of anti-urease antibodies in long-lasting diseases.
Collapse
Affiliation(s)
- Iwona Konieczna
- Department of Microbiology, Institute of Biology, The Jan Kochanowski University, ul. Swietokrzyska 15, 25-406 Kielce, Poland.
| | | | | | | | | | | | | |
Collapse
|
9
|
Tsou RC, Bence KK. Central regulation of metabolism by protein tyrosine phosphatases. Front Neurosci 2013; 6:192. [PMID: 23308070 PMCID: PMC3538333 DOI: 10.3389/fnins.2012.00192] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 12/17/2012] [Indexed: 11/13/2022] Open
Abstract
Protein tyrosine phosphatases (PTPs) are important regulators of intracellular signaling pathways via the dephosphorylation of phosphotyrosyl residues on various receptor and non-receptor substrates. The phosphorylation state of central nervous system (CNS) signaling components underlies the molecular mechanisms of a variety of physiological functions including the control of energy balance and glucose homeostasis. In this review, we summarize the current evidence implicating PTPs as central regulators of metabolism, specifically highlighting their interactions with the neuronal leptin and insulin signaling pathways. We discuss the role of a number of PTPs (PTP1B, SHP2, TCPTP, RPTPe, and PTEN), reviewing the findings from genetic mouse models and in vitro studies which highlight these phosphatases as key central regulators of energy homeostasis.
Collapse
Affiliation(s)
- Ryan C Tsou
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania Philadelphia, PA, USA
| | | |
Collapse
|
10
|
Abstract
Enzymes are key molecules in signal-transduction pathways. However, only a small fraction of more than 500 human kinases, 300 human proteases and 200 human phosphatases is characterised so far. Peptide microarray based technologies for extremely efficient profiling of enzyme substrate specificity emerged in the last years. This technology reduces set-up time for HTS assays and allows the identification of downstream targets. Moreover, peptide microarrays enable optimisation of enzyme substrates. Focus of this review is on assay principles for measuring activities of kinases, phosphatases or proteases and on substrate identification/optimisation for kinases. Additionally, several examples for reliable identification of substrates for lysine methyl-transferases, histone deacetylases and SUMO-transferases are given. Finally, use of high-density peptide microarrays for the simultaneous profiling of kinase activities in complex biological samples like cell lysates or lysates of complete organisms is described. All published examples of peptide arrays used for enzyme profiling are summarised comprehensively.
Collapse
|
11
|
Ferrari E, Tinti M, Costa S, Corallino S, Nardozza AP, Chatraryamontri A, Ceol A, Cesareni G, Castagnoli L. Identification of new substrates of the protein-tyrosine phosphatase PTP1B by Bayesian integration of proteome evidence. J Biol Chem 2010; 286:4173-85. [PMID: 21123182 PMCID: PMC3039405 DOI: 10.1074/jbc.m110.157420] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
There is growing evidence that tyrosine phosphatases display an intrinsic enzymatic preference for the sequence context flanking the target phosphotyrosines. On the other hand, substrate selection in vivo is decisively guided by the enzyme-substrate connectivity in the protein interaction network. We describe here a system wide strategy to infer physiological substrates of protein-tyrosine phosphatases. Here we integrate, by a Bayesian model, proteome wide evidence about in vitro substrate preference, as determined by a novel high-density peptide chip technology, and “closeness” in the protein interaction network. This allows to rank candidate substrates of the human PTP1B phosphatase. Ultimately a variety of in vitro and in vivo approaches were used to verify the prediction that the tyrosine phosphorylation levels of five high-ranking substrates, PLC-γ1, Gab1, SHP2, EGFR, and SHP1, are indeed specifically modulated by PTP1B. In addition, we demonstrate that the PTP1B-mediated dephosphorylation of Gab1 negatively affects its EGF-induced association with the phosphatase SHP2. The dissociation of this signaling complex is accompanied by a decrease of ERK MAP kinase phosphorylation and activation.
Collapse
Affiliation(s)
- Emanuela Ferrari
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00144 Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Wu HY, Tseng VS, Chen LC, Chang HY, Chuang IC, Tsay YG, Liao PC. Identification of Tyrosine-Phosphorylated Proteins Associated with Lung Cancer Metastasis using Label-Free Quantitative Analyses. J Proteome Res 2010; 9:4102-12. [DOI: 10.1021/pr1006153] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hsin-Yi Wu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan, Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan, Institute of Information Science, Academia Sinica, Taipei, Taiwan, Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan, and Institute of Medical Informatics, National Cheng Kung
| | - Vincent S. Tseng
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan, Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan, Institute of Information Science, Academia Sinica, Taipei, Taiwan, Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan, and Institute of Medical Informatics, National Cheng Kung
| | - Lien-Chin Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan, Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan, Institute of Information Science, Academia Sinica, Taipei, Taiwan, Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan, and Institute of Medical Informatics, National Cheng Kung
| | - Hui-Yin Chang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan, Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan, Institute of Information Science, Academia Sinica, Taipei, Taiwan, Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan, and Institute of Medical Informatics, National Cheng Kung
| | - I-Chi Chuang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan, Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan, Institute of Information Science, Academia Sinica, Taipei, Taiwan, Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan, and Institute of Medical Informatics, National Cheng Kung
| | - Yeou-Guang Tsay
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan, Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan, Institute of Information Science, Academia Sinica, Taipei, Taiwan, Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan, and Institute of Medical Informatics, National Cheng Kung
| | - Pao-Chi Liao
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan, Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan, Institute of Information Science, Academia Sinica, Taipei, Taiwan, Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan, and Institute of Medical Informatics, National Cheng Kung
| |
Collapse
|
13
|
Volkmer R. Synthesis and application of peptide arrays: quo vadis SPOT technology. Chembiochem 2009; 10:1431-42. [PMID: 19437530 DOI: 10.1002/cbic.200900078] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Rudolf Volkmer
- Institut für Medizinische Immunologie, AG Molekulare Bibliotheken, Charité-Universitätsmedizin Berlin, Hessische Strasse 3-4, 10115 Berlin, Germany.
| |
Collapse
|
14
|
Abstract
Enzymes are key molecules in signal transduction pathways. However, only a small fraction of more than 500 predicted human kinases, 250 proteases and 250 phosphatases is characterized so far. Peptide microarray-based technologies for extremely efficient profiling of enzyme substrate specificity emerged in the last years. Additionally, patterns of enzymatic activities could be used to fingerprint the status of cells or organisms. This technology reduces set-up time for HTS assays and allows the identification of downstream targets. Moreover, peptide microarrays enable optimization of enzyme substrates. A comprehensive overview regarding enzyme profiling using peptide microarrays is presented with special focus on assay principles.
Collapse
Affiliation(s)
- Alexandra Thiele
- Max Planck Research Unit for Enzymology of Protein Folding, Halle, Germany
| | | | | |
Collapse
|
15
|
Li SSC, Wu C. Using peptide array to identify binding motifs and interaction networks for modular domains. Methods Mol Biol 2009; 570:67-76. [PMID: 19649589 DOI: 10.1007/978-1-60327-394-7_3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Specific protein-protein interactions underlie all essential biological processes and form the basis of cellular signal transduction. The recognition of a short, linear peptide sequence in one protein by a modular domain in another represents a common theme of macromolecular recognition in cells, and the importance of this mode of protein-protein interaction is highlighted by the large number of peptide-binding domains encoded by the human genome. This phenomenon also provides a unique opportunity to identify protein-protein binding events using peptide arrays and complementary biochemical assays. Accordingly, high-density peptide array has emerged as a useful tool by which to map domain-mediated protein-protein interaction networks at the proteome level. Using the Src-homology 2 (SH2) and 3 (SH3) domains as examples, we describe the application of oriented peptide array libraries in uncovering specific motifs recognized by an SH2 domain and the use of high-density peptide arrays in identifying interaction networks mediated by the SH3 domain. Methods reviewed here could also be applied to other modular domains, including catalytic domains, that recognize linear peptide sequences.
Collapse
Affiliation(s)
- Shawn S-C Li
- Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | | |
Collapse
|
16
|
Mitra S, Barrios AM. Identifying selective protein tyrosine phosphatase substrates and inhibitors from a fluorogenic, combinatorial peptide library. Chembiochem 2008; 9:1216-9. [PMID: 18412190 DOI: 10.1002/cbic.200800046] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sayantan Mitra
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | | |
Collapse
|
17
|
Picinato MC, Hirata AE, Cipolla-Neto J, Curi R, Carvalho CRO, Anhê GF, Carpinelli AR. Activation of insulin and IGF-1 signaling pathways by melatonin through MT1 receptor in isolated rat pancreatic islets. J Pineal Res 2008; 44:88-94. [PMID: 18078453 DOI: 10.1111/j.1600-079x.2007.00493.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Melatonin diminishes insulin release through the activation of MT1 receptors and a reduction in cAMP production in isolated pancreatic islets of neonate and adult rats and in INS-1 cells (an insulin-secreting cell line). The pancreas of pinealectomized rats exhibits degenerative pathological changes with low islet density, indicating that melatonin plays a role to ensure the functioning of pancreatic beta cells. By using immunoprecipitation and immunoblotting analysis we demonstrated, in isolated rat pancreatic islets, that melatonin induces insulin growth factor receptor (IGF-R) and insulin receptor (IR) tyrosine phosphorylation and mediates the activities of the PI3K/AKT and MEK/ERKs pathways, which are involved in cell survival and growth, respectively. Thus, the effects of melatonin on pancreatic islets do not involve a reduction in cAMP levels only. This indoleamine may regulate growth and differentiation of pancreatic islets by activating IGF-I and insulin receptor signaling pathways.
Collapse
Affiliation(s)
- M C Picinato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
18
|
Köhn M, Gutierrez-Rodriguez M, Jonkheijm P, Wetzel S, Wacker R, Schroeder H, Prinz H, Niemeyer CM, Breinbauer R, Szedlacsek SE, Waldmann H. A microarray strategy for mapping the substrate specificity of protein tyrosine phosphatase. Angew Chem Int Ed Engl 2007; 46:7700-3. [PMID: 17726672 DOI: 10.1002/anie.200701601] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Maja Köhn
- Department of Chemical Biology, Max-Planck Institute für molekulare Physiologie, Otto Hahn Strasse 11, 44227 Dortmund, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Pilecka I, Patrignani C, Pescini R, Curchod ML, Perrin D, Xue Y, Yasenchak J, Clark A, Magnone MC, Zaratin P, Valenzuela D, Rommel C, van Huijsduijnen RH. Protein-tyrosine Phosphatase H1 Controls Growth Hormone Receptor Signaling and Systemic Growth. J Biol Chem 2007; 282:35405-15. [DOI: 10.1074/jbc.m705814200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
20
|
Köhn M, Gutierrez-Rodriguez M, Jonkheijm P, Wetzel S, Wacker R, Schroeder H, Prinz H, Niemeyer C, Breinbauer R, Szedlacsek S, Waldmann H. Eine Mikroarray-Strategie zur Untersuchung der Substratspezifitäten von Protein-Tyrosin-Phosphatasen. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200701601] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Teichmann K, Winkler R, Hampel K, Trümpler A, Böhmer FD, Imhof D. Monitoring phosphatase reactions of multiple phosphorylated substrates by reversed-phase HPLC. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 853:204-13. [PMID: 17416557 DOI: 10.1016/j.jchromb.2007.03.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Revised: 01/26/2007] [Accepted: 03/12/2007] [Indexed: 10/23/2022]
Abstract
In an approach to gain insight into the sequence-dependent dephosphorylation of multiple phosphotyrosyl-containing peptides by the phosphatases SHP-1 and PTP1B, we applied a chromatographic technique for the analysis of the dephosphorylation products. Mono-, bi- and triphosphorylated reference peptides corresponding to positions 1999-2014 in the activation loop of the receptor tyrosine kinase Ros were first analyzed by reversed-phase HPLC and MALDI-TOF/TOF mass spectrometry. Then, the respective products from enzymatic treatment were investigated by HPLC and compared to the standard peptides. The results obtained in this study emphasize the advantage of monitoring phosphatase reactions for mono- and biphosphorylated peptides using the described procedure rather than spectrophotometric and fluorimetric methods that do not allow for a clear identification of the products formed.
Collapse
Affiliation(s)
- Kathleen Teichmann
- Institute of Biochemistry and Biophysics, Biological-Pharmaceutical Faculty, Friedrich-Schiller-University, Philosophenweg 12, D-07743 Jena, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Hilpert K, Winkler DFH, Hancock REW. Cellulose-bound Peptide Arrays: Preparation and Applications. Biotechnol Genet Eng Rev 2007; 24:31-106. [DOI: 10.1080/02648725.2007.10648093] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Zanzoni A, Ausiello G, Via A, Gherardini PF, Helmer-Citterich M. Phospho3D: a database of three-dimensional structures of protein phosphorylation sites. Nucleic Acids Res 2006; 35:D229-31. [PMID: 17142231 PMCID: PMC1669737 DOI: 10.1093/nar/gkl922] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Phosphorylation is the most common protein post-translational modification. Phosphorylated residues (serine, threonine and tyrosine) play critical roles in the regulation of many cellular processes. Since the amount of data produced by screening assays is growing continuously, the development of computational tools for collecting and analysing experimental data has become a pivotal task for unravelling the complex network of interactions regulating eukaryotic cell life. Here we present Phospho3D, , a database of 3D structures of phosphorylation sites, which stores information retrieved from the phospho.ELM database and is enriched with structural information and annotations at the residue level. The database also collects the results of a large-scale structural comparison procedure providing clues for the identification of new putative phosphorylation sites.
Collapse
Affiliation(s)
- Andreas Zanzoni
- Centre for Molecular Bioinformatics, Department of Biology University of Rome Tor Vergata, Rome 00133, Italy.
| | | | | | | | | |
Collapse
|
24
|
Cromlish WA, Tang M, Kyskan R, Tran L, Kennedy BP. PTP1B-dependent insulin receptor phosphorylation/residency in the endocytic recycling compartment of CHO-IR cells. Biochem Pharmacol 2006; 72:1279-92. [PMID: 16956584 DOI: 10.1016/j.bcp.2006.07.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 07/31/2006] [Accepted: 07/31/2006] [Indexed: 12/22/2022]
Abstract
Insulin binds to the alpha subunit of the insulin receptor (IR) on the cell surface. The insulin-IR complex is subsequently internalized and trafficked within the cell. Endocytosed receptors, devoid of insulin, recycle back to the plasma membrane through the endocytic recycling compartment (ERC). Using a high content screening system, we investigate the intracellular trafficking of the IR and its phosphorylation state, within the ERC, in response to protein tyrosine phosphatase-1B (PTP1B) inhibition. Insulin stimulates, in a time- and dose-dependent manner, the accumulation of phosphorylated IR (pY(1158,1162,1163 IR) in the ERC of CHO-IR cells. Treatment of CHO-IR cells with PTP1B-specific inhibitors or siRNA leads to dose-dependent increases in IR residency and phosphorylation within the ERC. The results also demonstrate that PTP1B redistributes within CHO-IR cells upon insulin challenge. The established system will allow for efficient screening of candidate inhibitors for the modulation of PTP1B activity.
Collapse
Affiliation(s)
- Wanda A Cromlish
- Department of Biochemistry & Molecular Biology, Merck Frosst Centre for Therapeutic Research, Pointe-Claire-Dorval, Pointe-Claire-Dorval, Quebec, Canada.
| | | | | | | | | |
Collapse
|
25
|
Affiliation(s)
- Mike Schutkowski
- JPT Peptide Technologies GmbH, Invalidenstrasse 130, 10115 Berlin, Germany.
| | | | | |
Collapse
|
26
|
Reyes O, Torrens I, Ojalvo AG, Seralena A, Garay HE. Profiling the immune responses of human patients treated with recombinant streptokinase after myocardial infarct. Mol Divers 2004; 8:251-6. [PMID: 15384418 DOI: 10.1023/b:modi.0000036235.45565.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The SPOT synthesis of peptide arrays on continuous cellulose membranes should be generally applicable in the analysis of sequential antibody binding sites using the enzyme-substrate or other standard detection protocols. The use of total serum is limited by the occurrence of high background levels. This may be overcome if affinity purified antibodies or sera with high antibody titers are used, which allows work at high dilutions and a consequent reduction of background level. Here we demonstrate the mapping of antigenic regions located on recombinant streptokinase SK-2 (Heberkinase) using cellulose-bound peptide scans and human total sera from patients treated with SK-2 (Heberkinase). Streptokinase (SK) is a 47 kDa protein produced by various strains of hemolytic streptococci and is a potent activator of the fibrinolytic enzyme system in humans. SK is in widespread clinical use to treat acute infarction because of its function as an activator of vascular fibrinolysis. Since streptococcal infections are common, normal individuals are immunized with SK and antibodies (Abs) to SK can be detected in most of them. This therapy generates significant T-cell responses to SK and the neutralizing capacity of the Abs rises significantly. Neutralizing Abs reduces the efficiency of thrombolytic therapy and may cause allergic reactions. The widespread use of SK in humans makes its antigenicity an important clinical problem. In this regard the study of the immunodominant regions of SK becomes an important aspect for the improvement of this thrombolytic agent.
Collapse
Affiliation(s)
- O Reyes
- Centro de Ingeniería Genética y Biotecnología, P.O. Box 6162, Havana, Cuba.
| | | | | | | | | |
Collapse
|
27
|
Wälchli S, Espanel X, Harrenga A, Rossi M, Cesareni G, Hooft van Huijsduijnen R. Probing protein-tyrosine phosphatase substrate specificity using a phosphotyrosine-containing phage library. J Biol Chem 2003; 279:311-8. [PMID: 14578355 DOI: 10.1074/jbc.m307617200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein tyrosine phosphatases (PTPs) play important, highly dynamic roles in signaling. Currently about 90 different PTP genes have been described. The enzymes are highly regulated at all levels of expression, and it is becoming increasingly clear that substrate specificity of the PTP catalytic domains proper contributes considerably to PTP functionality. To investigate PTP substrate selectivity, we have set up a procedure to generate phage libraries that presents randomized, phosphotyrosine-containing peptides. Phages that expressed suitable substrates were selected by immobilized, substrate-trapping GST-PTP fusion proteins. After multiple rounds of selection, positive clones were confirmed by SPOT analysis, dephosphorylation by wild-type enzyme, and Km determinations. We have identified distinct consensus substrate motifs for PTP1B, Sap-1, PTP-beta, SHP1, and SHP2. Our results confirm substrate specificity for individual PTPs at the peptide level. Such consensus sequences may be useful both for identifying potential PTP substrates and for the development of peptidomimetic inhibitors.
Collapse
Affiliation(s)
- Sébastien Wälchli
- Serono Pharmaceutical Research Institute, CH-1228 Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
28
|
Larsen M, Tremblay ML, Yamada KM. Phosphatases in cell–matrix adhesion and migration. Nat Rev Mol Cell Biol 2003; 4:700-11. [PMID: 14506473 DOI: 10.1038/nrm1199] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Many proteins that have been implicated in cell-matrix adhesion and cell migration are phosphorylated, which regulates their folding, enzymatic activities and protein-protein interactions. Although modulation of cell motility by kinases is well known, increasing evidence confirms that phosphatases are essential at each stage of the migration process. Phosphatases can control the formation and maintenance of the actin cytoskeleton, regulate small GTPase molecular switches, and modulate the dynamics of matrix-adhesion interaction, actin contraction, rear release and migratory directionality.
Collapse
Affiliation(s)
- Melinda Larsen
- Craniofacial Developmental Biology and Regeneration Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Building 30/Room 421, 30 Convent Drive, MSC 4370, Bethesda, Maryland 20892-4370, USA.
| | | | | |
Collapse
|
29
|
Espanel X, Wälchli S, Rückle T, Harrenga A, Huguenin-Reggiani M, Hooft van Huijsduijnen R. Mapping of synergistic components of weakly interacting protein-protein motifs using arrays of paired peptides. J Biol Chem 2003; 278:15162-7. [PMID: 12551909 DOI: 10.1074/jbc.m211887200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein-protein recognition usually involves multiple interactions among different motifs that are scattered over protein surfaces. To identify such weak interactions, we have developed a novel double peptide synthesis (DS) method. This method allows us to map protein-protein interactions that involve two linear dis- continuous components from a polypeptide by the use of spatially addressable synergistic pairs of synthetic peptides. The DS procedure is based on the "SPOT" membrane-bound peptide synthesis technique, but to synthesize a mixture of two peptides, it uses both Fmoc (N-(9-fluorenyl)methoxycarbonyl))-alanine and Alloc-alanine at the first cycle. This allows their selective deprotection by either piperidine or tributyltin/palladium treatment, respectively. Using SPOT DS, we confirmed as a proof of principle that Elk-1 Ser(383) phosphorylation by ERK-2 kinase is stimulated by the presence of the Elk-1-docking domain. SPOT DS can also be used to dissect protein-protein motifs that define phosphatase substrate affinity. Using this technique, we identified three new regions in the insulin receptor that stimulate the dephosphorylation of the receptor by protein-tyrosine phosphatase (PTP) 1B and presumably increase the selectivity of PTP for this substrate. These data demonstrate that the SPOT DS technique allows the identification of non-linear weakly interacting protein motifs, which are an important determinant of protein kinase and phosphatase substrate specificity and of protein-protein interactions in general.
Collapse
Affiliation(s)
- Xavier Espanel
- Serono Pharmaceutical Research Institute, Geneva 1228, Switzerland
| | | | | | | | | | | |
Collapse
|
30
|
Vetter SW, Zhang ZY. Combinatorial Chemistry and Peptide Library Methods to Characterize Protein Phosphatases. Methods Enzymol 2003; 366:260-82. [PMID: 14674254 DOI: 10.1016/s0076-6879(03)66020-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Stefan W Vetter
- Department of Molecular Biology, Scripps Research Institute, 10550 North Torrey Pines Blvd, La Jolla, California 92037, USA
| | | |
Collapse
|