1
|
Maharana SR, Mahapatra K, Mir SA, Mukherjee V, Nayak B. Malyngamide C a potential inhibitor of protein synthesis Machinery targeting peptide deformylase enzyme. Biochem Biophys Res Commun 2025; 767:151910. [PMID: 40319818 DOI: 10.1016/j.bbrc.2025.151910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/05/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
Due to the rising incidence of antibiotic-resistant and bacterial illnesses, new therapeutic drugs are essential to target vital bacterial enzymes. Peptide deformylase is an attractive antibacterial target because it plays a pivotal role in protein synthesis. The present study was guided to identify the potential inhibitors of peptide deformylase (PDF), viz., computational methods such as molecular docking, molecular dynamics (MD) simulations, thermodynamic stability, free energy calculations, and ADMET analysis. Here we observed the toxicity profile and drug-likeness of the in-house cyanopeptides database. The malyngamide C showed good oral bioavailability. Molecular docking experiments revealed that malyngamide C showed a better binding affinity of -8.81 kcal/mol than reference actinonin -7.08 kcal/mol. Next, MD simulations revealed that malyngamide C, tumonoic acid A, borophycin, and actinonin were found stable in the binding pocket of PDF observed for 300 ns. The binding posture was well-retained, with negligible RMSD, and found within permissible limits observed throughout the simulations. From the MM/PBSA calculations, the free binding energy of malyngamide C was found to be -145.281 kJ/mol, significantly exceeding other selected molecules, including actinonin. The malyngamide C could be a lead antibacterial candidate with a good safety profile. These computational findings strongly support its experimental validation and further clinical investigations as a novel antibacterial agent to combat drug-resistant bacterial infections.
Collapse
Affiliation(s)
| | - Kiran Mahapatra
- School of Life Sciences, Sambalpur University, Jyotivihar, 768019, Odisha, India.
| | - Showkat Ahmad Mir
- School of Life Sciences, Sambalpur University, Jyotivihar, 768019, Odisha, India.
| | - Vishwajeet Mukherjee
- Sambalpur University Institute of Information Technology, Jyotivihar, 768019, Odisha, India.
| | - Binata Nayak
- School of Life Sciences, Sambalpur University, Jyotivihar, 768019, Odisha, India.
| |
Collapse
|
2
|
Chouhan M, Tiwari PK, Mishra R, Gupta S, Kumar M, Almuqri EA, Ibrahim NA, Basher NS, Chaudhary AA, Dwivedi VD, Verma D, Kumar S. Unearthing phytochemicals as natural inhibitors for pantothenate synthetase in Mycobacterium tuberculosis: A computational approach. Front Pharmacol 2024; 15:1403900. [PMID: 39135797 PMCID: PMC11317409 DOI: 10.3389/fphar.2024.1403900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/18/2024] [Indexed: 08/15/2024] Open
Abstract
Pantothenate synthetase protein plays a pivotal role in the biosynthesis of coenzyme A (CoA), which is a crucial molecule involved in a number of cellular processes including the metabolism of fatty acid, energy production, and the synthesis of various biomolecules, which is necessary for the survival of Mycobacterium tuberculosis (Mtb). Therefore, inhibiting this protein could disrupt CoA synthesis, leading to the impairment of vital metabolic processes within the bacterium, ultimately inhibiting its growth and survival. This study employed molecular docking, structure-based virtual screening, and molecular dynamics (MD) simulation to identify promising phytochemical compounds targeting pantothenate synthetase for tuberculosis (TB) treatment. Among 239 compounds, the top three (rutin, sesamin, and catechin gallate) were selected, with binding energy values ranging from -11 to -10.3 kcal/mol, and the selected complexes showed RMSD (<3 Å) for 100 ns MD simulation time. Furthermore, molecular mechanics generalized Born surface area (MM/GBSA) binding free energy calculations affirmed the stability of these three selected phytochemicals with binding energy ranges from -82.24 ± 9.35 to -66.83 ± 4.5 kcal/mol. Hence, these identified natural plant-derived compounds as potential inhibitors of pantothenate synthetase could be used to inhibit TB infection in humans.
Collapse
Affiliation(s)
- Mandeep Chouhan
- Biological and Bio-computational Lab, Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Prashant Kumar Tiwari
- Biological and Bio-computational Lab, Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Richa Mishra
- Department of Computer Engineering, Parul University, Vadodara, Gujarat, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Mukesh Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Eman Abdullah Almuqri
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Nasir A. Ibrahim
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Nosiba Suliman Basher
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Vivek Dhar Dwivedi
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Bioinformatics Research Division, Quanta Calculus, Greater Noida, India
| | - Devvret Verma
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| | - Sanjay Kumar
- Biological and Bio-computational Lab, Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| |
Collapse
|
3
|
Zhao K, Tang H, Zhang B, Zou S, Liu Z, Zheng Y. Microbial production of vitamin B5: current status and prospects. Crit Rev Biotechnol 2023; 43:1172-1192. [PMID: 36210178 DOI: 10.1080/07388551.2022.2104690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 07/01/2022] [Indexed: 11/03/2022]
Abstract
Vitamin B5, also called D-pantothenic acid (D-PA), is a necessary micronutrient that plays an essential role in maintaining the physiological function of an organism. It is widely used in: food, medicine, feed, cosmetics, and other fields. Currently, the production of D-PA in industry heavily relies on chemical processes and enzymatic catalysis. With an increasing demand on the market, replacing chemical-based production of D-PA with microbial fermentation utilizing renewable resources is necessary. In this review, the physiological role and applications of D-PA were firstly introduced, after which the biosynthesis pathways and enzymes will be summarized. Subsequently, a series of cell factory development strategies for excessive D-PA production are analyzed and discussed. Finally, the prospect of microbial production of D-PA production has been prospected.
Collapse
Affiliation(s)
- Kuo Zhao
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
- College of Biotechnology and Bioengineering, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, PR China
| | - Heng Tang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
- College of Biotechnology and Bioengineering, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, PR China
| | - Bo Zhang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
- College of Biotechnology and Bioengineering, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, PR China
| | - Shuping Zou
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
- College of Biotechnology and Bioengineering, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, PR China
| | - Zhiqiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
- College of Biotechnology and Bioengineering, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, PR China
| | - Yuguo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
- College of Biotechnology and Bioengineering, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, PR China
| |
Collapse
|
4
|
Howieson VM, Zeng J, Kloehn J, Spry C, Marchetti C, Lunghi M, Varesio E, Soper A, Coyne AG, Abell C, van Dooren GG, Saliba KJ. Pantothenate biosynthesis in Toxoplasma gondii tachyzoites is not a drug target. INTERNATIONAL JOURNAL FOR PARASITOLOGY: DRUGS AND DRUG RESISTANCE 2023; 22:1-8. [PMID: 37004488 PMCID: PMC10102396 DOI: 10.1016/j.ijpddr.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023]
Abstract
Toxoplasma gondii is a pervasive apicomplexan parasite that can cause severe disease and death in immunocompromised individuals and the developing foetus. The treatment of toxoplasmosis often leads to serious side effects and novel drugs and drug targets are therefore actively sought. In 2014, Mageed and colleagues suggested that the T. gondii pantothenate synthetase, the enzyme responsible for the synthesis of the vitamin B5 (pantothenate), the precursor of the important cofactor, coenzyme A, is a good drug target. Their conclusion was based on the ability of potent inhibitors of the M. tuberculosis pantothenate synthetase to inhibit the proliferation of T. gondii tachyzoites. They also reported that the inhibitory effect of the compounds could be antagonised by supplementing the medium with pantothenate, supporting their conclusion that the compounds were acting on the intended target. Contrary to these observations, we find that compound SW314, one of the compounds used in the Mageed et al. study and previously shown to be active against M. tuberculosis pantothenate synthetase in vitro, is inactive against the T. gondii pantothenate synthetase and does not inhibit tachyzoite proliferation, despite gaining access into the parasite in situ. Furthermore, we validate the recent observation that the pantothenate synthetase gene in T. gondii can be disrupted without detrimental effect to the survival of the tachyzoite-stage parasite in the presence or absence of extracellular pantothenate. We conclude that the T. gondii pantothenate synthetase is not essential during the tachyzoite stage of the parasite and it is therefore not a target for drug discovery against T. gondii tachyzoites.
Collapse
|
5
|
Yan W, Zheng Y, Dou C, Zhang G, Arnaout T, Cheng W. The pathogenic mechanism of Mycobacterium tuberculosis: implication for new drug development. MOLECULAR BIOMEDICINE 2022; 3:48. [PMID: 36547804 PMCID: PMC9780415 DOI: 10.1186/s43556-022-00106-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is a tenacious pathogen that has latently infected one third of the world's population. However, conventional TB treatment regimens are no longer sufficient to tackle the growing threat of drug resistance, stimulating the development of innovative anti-tuberculosis agents, with special emphasis on new protein targets. The Mtb genome encodes ~4000 predicted proteins, among which many enzymes participate in various cellular metabolisms. For example, more than 200 proteins are involved in fatty acid biosynthesis, which assists in the construction of the cell envelope, and is closely related to the pathogenesis and resistance of mycobacteria. Here we review several essential enzymes responsible for fatty acid and nucleotide biosynthesis, cellular metabolism of lipids or amino acids, energy utilization, and metal uptake. These include InhA, MmpL3, MmaA4, PcaA, CmaA1, CmaA2, isocitrate lyases (ICLs), pantothenate synthase (PS), Lysine-ε amino transferase (LAT), LeuD, IdeR, KatG, Rv1098c, and PyrG. In addition, we summarize the role of the transcriptional regulator PhoP which may regulate the expression of more than 110 genes, and the essential biosynthesis enzyme glutamine synthetase (GlnA1). All these enzymes are either validated drug targets or promising target candidates, with drugs targeting ICLs and LAT expected to solve the problem of persistent TB infection. To better understand how anti-tuberculosis drugs act on these proteins, their structures and the structure-based drug/inhibitor designs are discussed. Overall, this investigation should provide guidance and support for current and future pharmaceutical development efforts against mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Weizhu Yan
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Yanhui Zheng
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Chao Dou
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Guixiang Zhang
- grid.13291.380000 0001 0807 1581Division of Gastrointestinal Surgery, Department of General Surgery and Gastric Cancer center, West China Hospital, Sichuan University, No. 37. Guo Xue Xiang, Chengdu, 610041 China
| | - Toufic Arnaout
- Kappa Crystals Ltd., Dublin, Ireland ,MSD Dunboyne BioNX, Co. Meath, Ireland
| | - Wei Cheng
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| |
Collapse
|
6
|
Synthesis, structural elucidation, pharmacological and molecular docking studies of terpolymer transition metal complexes. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Butman HS, Kotzé TJ, Dowd CS, Strauss E. Vitamin in the Crosshairs: Targeting Pantothenate and Coenzyme A Biosynthesis for New Antituberculosis Agents. Front Cell Infect Microbiol 2020; 10:605662. [PMID: 33384970 PMCID: PMC7770189 DOI: 10.3389/fcimb.2020.605662] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/23/2020] [Indexed: 01/05/2023] Open
Abstract
Despite decades of dedicated research, there remains a dire need for new drugs against tuberculosis (TB). Current therapies are generations old and problematic. Resistance to these existing therapies results in an ever-increasing burden of patients with disease that is difficult or impossible to treat. Novel chemical entities with new mechanisms of action are therefore earnestly required. The biosynthesis of coenzyme A (CoA) has long been known to be essential in Mycobacterium tuberculosis (Mtb), the causative agent of TB. The pathway has been genetically validated by seminal studies in vitro and in vivo. In Mtb, the CoA biosynthetic pathway is comprised of nine enzymes: four to synthesize pantothenate (Pan) from l-aspartate and α-ketoisovalerate; five to synthesize CoA from Pan and pantetheine (PantSH). This review gathers literature reports on the structure/mechanism, inhibitors, and vulnerability of each enzyme in the CoA pathway. In addition to traditional inhibition of a single enzyme, the CoA pathway offers an antimetabolite strategy as a promising alternative. In this review, we provide our assessment of what appear to be the best targets, and, thus, which CoA pathway enzymes present the best opportunities for antitubercular drug discovery moving forward.
Collapse
Affiliation(s)
- Hailey S. Butman
- Department of Chemistry, George Washington University, Washington, DC, United States
| | - Timothy J. Kotzé
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Cynthia S. Dowd
- Department of Chemistry, George Washington University, Washington, DC, United States
| | - Erick Strauss
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
8
|
Suresh A, Srinivasarao S, Khetmalis YM, Nizalapur S, Sankaranarayanan M, Gowri Chandra Sekhar KV. Inhibitors of pantothenate synthetase of Mycobacterium tuberculosis - a medicinal chemist perspective. RSC Adv 2020; 10:37098-37115. [PMID: 35521286 PMCID: PMC9057165 DOI: 10.1039/d0ra07398a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 09/30/2020] [Indexed: 01/27/2023] Open
Abstract
Tuberculosis (TB), one of the most prevalent infections, is on the rise today. Although there are drugs available in the market to combat this lethal disorder, there are several shortcomings with the current drug regimen, such as prolonged treatment period, drug resistance, high cost, etc. Hence, it is inevitable for the current researchers across the globe to embark on new strategies for TB drug discovery, which will yield highly active low cost drugs with a shorter treatment period. To achieve this, novel strategies need to be adopted to discover new drugs. Pantothenate Synthetase (PS) is one such striking drug target in Mycobacterium tuberculosis (MTB). It was observed that the pantothenate biosynthetic pathway is crucial for the pathogenicity of MTB. Pantothenate is absent in mammals and needs to be obtained from dietary sources. Hence, the pantothenate biosynthesis pathway is an impending target for emerging new therapeutics to treat TB. Worldwide, several approaches have been implemented by researchers in the quest for these inhibitors such as high-throughput screening, simulating the reaction intermediate pantoyl adenylate, use of vibrant combinatorial chemistry, hybridization approach, virtual screening of databases, inhibitors based on the crystal structure of MTB PS, etc. The present review recapitulates current developments in PS inhibitors, important analogues of numerous metabolic intermediates, and newly established inhibitors with innumerable chemical structures.
Collapse
Affiliation(s)
- Amaroju Suresh
- Department of Chemistry, Birla Institute of Technology & Science-Pilani Hyderabad Campus, Medchal District Hyderabad-500078 Telangana India +91 40 66303527
| | - Singireddi Srinivasarao
- Department of Chemistry, Birla Institute of Technology & Science-Pilani Hyderabad Campus, Medchal District Hyderabad-500078 Telangana India +91 40 66303527
| | - Yogesh Mahadu Khetmalis
- Department of Chemistry, Birla Institute of Technology & Science-Pilani Hyderabad Campus, Medchal District Hyderabad-500078 Telangana India +91 40 66303527
| | | | - Murugesan Sankaranarayanan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani Pilani Campus Pilani 333031 Rajasthan India
| | | |
Collapse
|
9
|
Kita A, Kishimoto A, Shimosaka T, Tomita H, Yokooji Y, Imanaka T, Atomi H, Miki K. Crystal structure of pantoate kinase from Thermococcus kodakarensis. Proteins 2019; 88:718-724. [PMID: 31697438 DOI: 10.1002/prot.25852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/29/2019] [Accepted: 11/03/2019] [Indexed: 11/09/2022]
Abstract
The coenzyme A biosynthesis pathways in most archaea involve two unique enzymes, pantoate kinase and phosphopantothenate synthetase, to convert pantoate to 4'-phosphopantothenate. Here, we report the first crystal structure of pantoate kinase from the hyperthermophilic archaeon, Thermococcus kodakarensis and its complex with ATP and a magnesium ion. The electron density for the adenosine moiety of ATP was very weak, which most likely relates to its broad nucleotide specificity. Based on the structure of the active site that contains a glycerol molecule, the pantoate binding site and the roles of the highly conserved residues are suggested.
Collapse
Affiliation(s)
- Akiko Kita
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka, Japan
| | - Asako Kishimoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Takahiro Shimosaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Hiroya Tomita
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Yuusuke Yokooji
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Tadayuki Imanaka
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Japan.,JST, CREST, Tokyo, Japan
| | - Haruyuki Atomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan.,JST, CREST, Tokyo, Japan
| | - Kunio Miki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan.,JST, CREST, Tokyo, Japan
| |
Collapse
|
10
|
Liyanage SI, Gupta M, Wu F, Taylor M, Carter MD, Weaver DF. Inhibition of Pantothenate Synthetase by Analogs of β-Alanine Precursor Ineffective as an Antibacterial Strategy. Chemotherapy 2019; 64:22-27. [PMID: 31167192 DOI: 10.1159/000499899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 03/24/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Pantothenate, the fundamental precursor to coenzyme A, is required for optimal growth and virulence of microbial pathogens. It is synthesized by the enzyme-catalyzed condensation of β-alanine and pantoate, which has shown susceptibility to inhibition by analogs of its molecular constituents. Accordingly, analogs of β-alanine are gaining inquiry as potential antimicrobial chemotherapeutics. METHODS We synthesized and evaluated 35 derivatives of β-alanine, substituted at the α, β, amine, and carboxyl sites, derived from in silico, dynamic molecular modeling to be potential competitive inhibitors of pantothenate synthetase. Employing the Clinical Laboratory Standards M7-A6 broth microdilution method, we tested these for inhibition of growth in Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. RESULTS All compounds proved entirely ineffective in all species tested, with no inhibition of growth being observed up to 200 µM/mL. CONCLUSIONS Upon revision of the literature, we conclude that high enzyme selectivity or external salvage mechanisms may render this strategy futile against most bacteria.
Collapse
Affiliation(s)
- S Imindu Liyanage
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Mayuri Gupta
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Fan Wu
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Marcy Taylor
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Michael D Carter
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Donald F Weaver
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada, .,Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada, .,Department of Chemistry, University of Toronto, Toronto, Ontario, Canada, .,Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada,
| |
Collapse
|
11
|
Lux MC, Standke LC, Tan DS. Targeting adenylate-forming enzymes with designed sulfonyladenosine inhibitors. J Antibiot (Tokyo) 2019; 72:325-349. [PMID: 30982830 PMCID: PMC6594144 DOI: 10.1038/s41429-019-0171-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/19/2019] [Accepted: 02/26/2019] [Indexed: 02/07/2023]
Abstract
Adenylate-forming enzymes are a mechanistic superfamily that are involved in diverse biochemical pathways. They catalyze ATP-dependent activation of carboxylic acid substrates as reactive acyl adenylate (acyl-AMP) intermediates and subsequent coupling to various nucleophiles to generate ester, thioester, and amide products. Inspired by natural products, acyl sulfonyladenosines (acyl-AMS) that mimic the tightly bound acyl-AMP reaction intermediates have been developed as potent inhibitors of adenylate-forming enzymes. This simple yet powerful inhibitor design platform has provided a wide range of biological probes as well as several therapeutic lead compounds. Herein, we provide an overview of the nine structural classes of adenylate-forming enzymes and examples of acyl-AMS inhibitors that have been developed for each.
Collapse
Affiliation(s)
- Michaelyn C Lux
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Lisa C Standke
- Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Derek S Tan
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Chemical Biology Program, Sloan Kettering Institute, and Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
12
|
Synthesis and evaluation of antimicrobial, antitubercular and anticancer activities of benzimidazole derivatives. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.ejbas.2017.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Zheng P, Zhang M, Khan MH, Liu H, Jin Y, Yue J, Gao Y, Teng M, Zhu Z, Niu L. Crystallographic Analysis of the Catalytic Mechanism of Phosphopantothenoylcysteine Synthetase from Saccharomyces cerevisiae. J Mol Biol 2019; 431:764-776. [PMID: 30653991 DOI: 10.1016/j.jmb.2019.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/06/2019] [Accepted: 01/08/2019] [Indexed: 11/20/2022]
Abstract
Phosphopantothenoylcysteine (PPC) synthetase (PPCS) catalyzes nucleoside triphosphate-dependent condensation reaction between 4'-phosphopantothenate (PPA) and l-cysteine to form PPC in CoA biosynthesis. The catalytic mechanism of PPCS has not been resolved yet. Coenzyme A biosynthesis protein 2 (Cab2) possesses activity of PPCS in Saccharomyces cerevisiae. Our enzymatic assays suggest that Cab2 could utilize both ATP and CTP to activate PPA in vitro. The results of isothermal titration calorimetry indicate that PPA, CTP, and ATP could bind to Cab2 individually, with PPA having the highest binding affinity. To provide further insight into the catalytic mechanism of Cab2, we determined the crystal structures of Cab2 and its complex with PPA, the reaction intermediate 4'-phosphopantothenoyl-CMP, the final reaction product PPC, and the product analogue phosphopantothenoylcystine. Except for PPA, all other ligands were generated in situ and present in the active-site pocket of Cab2. Structures of Cab2 in complex with ligands provide insight into substrates binding and its catalytic mechanism. Analysis of structures indicates that the carboxyl of PPA-moiety of ligands and the γ-amino group of Asn97 possess different conformations in these complex structures. The cysteine/cystine/serine selectivity assays for Cab2 indicate that the amino group rather than the thiol group of l-cysteine attacks the carbonyl of 4'-phosphopantothenoyl-CMP to form PPC. Based on structural and biochemical data, the catalytic mechanism of Cab2 was proposed for the first time.
Collapse
Affiliation(s)
- Peiyi Zheng
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Mengying Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China.
| | - Muhammad Hidayatullah Khan
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Hejun Liu
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Yuping Jin
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Jian Yue
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Yongxiang Gao
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Maikun Teng
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Zhongliang Zhu
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China.
| | - Liwen Niu
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China.
| |
Collapse
|
14
|
Malothu N, Kulandaivelu U, Jojula M, Gunda SK, Akkinepally RR. Synthesis, Antimycobacterial Evaluation and Docking Studies of Some 7-Methyl-5,6,7,8-tetrahydropyrido[4′,3′:4,5]thieno[2,3- d]pyrimidin-4(3 H)-ones. Chem Pharm Bull (Tokyo) 2018; 66:923-931. [DOI: 10.1248/cpb.c17-00999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Narender Malothu
- Medicinal Chemistry Division, University College of Pharmaceutical Sciences
| | | | - Malathi Jojula
- Department of Microbiology, Sri Shivani College of Pharmacy
| | | | | |
Collapse
|
15
|
Dadová J, Galan SR, Davis BG. Synthesis of modified proteins via functionalization of dehydroalanine. Curr Opin Chem Biol 2018; 46:71-81. [PMID: 29913421 DOI: 10.1016/j.cbpa.2018.05.022] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/02/2018] [Accepted: 05/29/2018] [Indexed: 12/17/2022]
Abstract
Dehydroalanine has emerged in recent years as a non-proteinogenic residue with strong chemical utility in proteins for the study of biology. In this review we cover the several methods now available for its flexible and site-selective incorporation via a variety of complementary chemical and biological techniques and examine its reactivity, allowing both creation of modified protein side-chains through a variety of bond-forming methods (C-S, C-N, C-Se, C-C) and as an activity-based probe in its own right. We illustrate its utility with selected examples of biological and technological discovery and application.
Collapse
Affiliation(s)
- Jitka Dadová
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Sébastien Rg Galan
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Benjamin G Davis
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, United Kingdom.
| |
Collapse
|
16
|
Yadav S, Lim SM, Ramasamy K, Vasudevan M, Shah SAA, Mathur A, Narasimhan B. Synthesis and evaluation of antimicrobial, antitubercular and anticancer activities of 2-(1-benzoyl-1H-benzo[d]imidazol-2-ylthio)-N-substituted acetamides. Chem Cent J 2018; 12:66. [PMID: 29804151 PMCID: PMC5971037 DOI: 10.1186/s13065-018-0432-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 05/05/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The study describes the synthesis, characterization, in vitro antimicrobial and anticancer evaluation of a series of 2-(1-benzoyl-1H-benzo[d]imidazol-2-ylthio)-N-substituted acetamide derivatives. The synthesized derivatives were also assessed for in vitro antitubercular activity against Mycobacterium tuberculosis H37Rv. The compounds found active in in vitro study were assessed for their in vivo antitubercular activity in mice models and for their inhibitory action on vital mycobacterial enzymes viz, isocitrate lyase, pantothenate synthetase and chorismate mutase. RESULTS Compounds 8, 9 and 11 emerged out as excellent antimicrobial agents in antimicrobial assays when compared to standard antibacterial and antifungal drugs. The results of anticancer activity displayed that majority of the derivatives were less cytotoxic than standard drugs (tamoxifen and 5-fluorouracil) towards MCF7 and HCT116 cell lines. However, compound 2 (IC50 = 0.0047 µM/ml) and compound 10 (IC50 = 0.0058 µM/ml) showed highest cytotoxicity against MCF7 and HCT116 cell lines, respectively. The results of in vivo antitubercular activity revealed that a dose of 1.34 mg/kg was found to be safe for the synthesized compounds. The toxic dose of the compounds was 5.67 mg/kg while lethal dose varied from 1.81 to 3.17 mg/kg body weight of the mice. Compound 18 inhibited all the three mycobacterial enzymes to the highest level in comparison to the other synthesized derivatives but showed lesser inhibition as compared to streptomycin sulphate. CONCLUSIONS A further research on most active synthesized compounds as lead molecules may result in discovery of novel anticancer and antitubercular agents.
Collapse
Affiliation(s)
- Snehlata Yadav
- Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Siong Meng Lim
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), 42300, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.,Collaborative Drug Discovery Research (CDDR) Group, Pharmaceutical Life Sciences, Community of Research, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Selangor Darul Ehsan, Malaysia
| | - Kalavathy Ramasamy
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), 42300, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.,Collaborative Drug Discovery Research (CDDR) Group, Pharmaceutical Life Sciences, Community of Research, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Selangor Darul Ehsan, Malaysia
| | - Mani Vasudevan
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraidah, 51452, Saudi Arabia
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), 42300, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.,Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), Universiti Teknologi MARA, Puncak Alam Campus, 42300, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | | | | |
Collapse
|
17
|
High throughput screening against pantothenate synthetase identifies amide inhibitors against Mycobacterium tuberculosis and Staphylococcus aureus. In Silico Pharmacol 2018; 6:9. [PMID: 30607322 DOI: 10.1007/s40203-018-0046-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 04/10/2018] [Indexed: 01/14/2023] Open
Abstract
Abstract Pantothenate is a crucial enzyme for the synthesis of coenzyme A and acyl carrier protein in Mycobacterium tuberculosis and Staphylococcus aureus. It is indispensable for the growth and survival of these bacteria. Amides analogs are designed and have been used as inhibitors of pantothenate synthetase. Molecular docking approach has been used to design and predict the drug activity of molecule to the specific disease. In this work, more than hundred amides have been screened by Discovery Studio molecular docking programme to search best suitable molecule for the treatment of Mycobacterium tuberculosis. Pharmacophore generation has been done to recognize the binding modes of inhibitors in the receptor active site. To observe the stability and flexibility of inhibitors molecular dynamics (MD) simulation has been done; Lipinski's rule of five protocols is followed to screen drug likeness and ADMET (absorption, distribution, metabolism, excretion and toxicity) filtration is also used to value toxicity. DFT computation of optimized geometry and derivation of MOs has been used to correlate the drug likeness. The small difference in energy between HOMO and LUMO may help to activate the drug in the protein environment quickly. 2-Hydroxy-5-[(E)-2-{4-[(prop-2-enamido)sulfonyl]phenyl}diazen-1-yl]benzoic acid (M1) shows best theoretical efficiency against Mycobacterium tuberculosis (MTB) pantothenate synthetase and so does 2-hydroxy-5-[(E)-2-{4-[(2-phenylacetamido)sulfonyl]phenyl}diazen-1-yl]benzoic acid (M2) against Staphylococcus aureus pantothenate synthetase. These compounds also bind to Adenine-Thymine region of tuberculosis DNA. Graphical abstract
Collapse
|
18
|
Ashok D, Gundu S, Aamate VK, Devulapally MG, Bathini R, Manga V. Dimers of coumarin-1,2,3-triazole hybrids bearing alkyl spacer: Design, microwave-assisted synthesis, molecular docking and evaluation as antimycobacterial and antimicrobial agents. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.12.080] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Pandey B, Grover S, Goyal S, Kumari A, Singh A, Jamal S, Kaur J, Grover A. Alanine mutation of the catalytic sites of Pantothenate Synthetase causes distinct conformational changes in the ATP binding region. Sci Rep 2018; 8:903. [PMID: 29343701 PMCID: PMC5772511 DOI: 10.1038/s41598-017-19075-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/19/2017] [Indexed: 02/01/2023] Open
Abstract
The enzyme Pantothenate synthetase (PS) represents a potential drug target in Mycobacterium tuberculosis. Its X-ray crystallographic structure has demonstrated the significance and importance of conserved active site residues including His44, His47, Asn69, Gln72, Lys160 and Gln164 in substrate binding and formation of pantoyl adenylate intermediate. In the current study, molecular mechanism of decreased affinity of the enzyme for ATP caused by alanine mutations was investigated using molecular dynamics (MD) simulations and free energy calculations. A total of seven systems including wild-type + ATP, H44A + ATP, H47A + ATP, N69A + ATP, Q72A + ATP, K160A + ATP and Q164A + ATP were subjected to 50 ns MD simulations. Docking score, MM-GBSA and interaction profile analysis showed weak interactions between ATP (substrate) and PS (enzyme) in H47A and H160A mutants as compared to wild-type, leading to reduced protein catalytic activity. However, principal component analysis (PCA) and free energy landscape (FEL) analysis revealed that ATP was strongly bound to the catalytic core of the wild-type, limiting its movement to form a stable complex as compared to mutants. The study will give insight about ATP binding to the PS at the atomic level and will facilitate in designing of non-reactive analogue of pantoyl adenylate which will act as a specific inhibitor for PS.
Collapse
Affiliation(s)
- Bharati Pandey
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Sonam Grover
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Sukriti Goyal
- Department of Bioscience and Biotechnology, Banasthali University, Tonk, Rajasthan, 304022, India
| | - Anchala Kumari
- Department of Biotechnology, TERI University, VasantKunj, New Delhi, 110070, India
| | - Aditi Singh
- Department of Biotechnology, TERI University, VasantKunj, New Delhi, 110070, India
| | - Salma Jamal
- Department of Bioscience and Biotechnology, Banasthali University, Tonk, Rajasthan, 304022, India
| | - Jagdeep Kaur
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
20
|
de Oliveira Viana J, Scotti MT, Scotti L. Molecular Docking Studies in Multitarget Antitubercular Drug Discovery. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2018. [DOI: 10.1007/7653_2018_28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
21
|
Scotti L, Ishiki HM, Duarte MC, Oliveira TB, Scotti MT. Computational Approaches in Multitarget Drug Discovery. Methods Mol Biol 2018; 1800:327-345. [PMID: 29934901 DOI: 10.1007/978-1-4939-7899-1_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Current therapeutic strategies entail identifying and characterizing a single protein receptor whose inhibition is likely to result in the successful treatment of a disease of interest, and testing experimentally large libraries of small molecule compounds "in vitro" and "in vivo" to identify promising inhibitors in model systems and determine if the findings are extensible to humans. This highly complex process is largely based on tests, errors, risk, time, and intensive costs. The virtual computational study of compounds simulates situations predicting possible drug linkages with multiple protein target atomic structures, taking into account the dynamic protein inhibitor, and can help identify inhibitors efficiently, particularly for complex drug-resistant diseases. Some discussions will relate to the potential benefits of this approach, using HIV-1 and Plasmodium falciparum infections as examples. Some authors have proposed a virtual drug discovery that not only identifies efficient inhibitors but also helps to minimize side effects and toxicity, thus increasing the likelihood of successful therapies. This chapter discusses concepts and research of bioactive multitargets related to toxicology.
Collapse
Affiliation(s)
- Luciana Scotti
- Postgraduate Program in Natural Products and Synthetic Bioactive, Federal University of Paraíba, João Pessoa, PB, Brazil.
- Teaching and Research Management - University Hospital, Federal University of Paraíba, João Pessoa, PB, Brazil.
| | | | | | | | - Marcus T Scotti
- Postgraduate Program in Natural Products and Synthetic Bioactive, Federal University of Paraíba, João Pessoa, PB, Brazil
| |
Collapse
|
22
|
Dadová J, Wu KJ, Isenegger PG, Errey JC, Bernardes GL, Chalker JM, Raich L, Rovira C, Davis BG. Precise Probing of Residue Roles by Post-Translational β,γ-C,N Aza-Michael Mutagenesis in Enzyme Active Sites. ACS CENTRAL SCIENCE 2017; 3:1168-1173. [PMID: 29202018 PMCID: PMC5704290 DOI: 10.1021/acscentsci.7b00341] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Indexed: 06/07/2023]
Abstract
Biomimicry valuably allows the understanding of the essential chemical components required to recapitulate biological function, yet direct strategies for evaluating the roles of amino acids in proteins can be limited by access to suitable, subtly-altered unnatural variants. Here we describe a strategy for dissecting the role of histidine residues in enzyme active sites using unprecedented, chemical, post-translational side-chain-β,γ C-N bond formation. Installation of dehydroalanine (as a "tag") allowed the testing of nitrogen conjugate nucleophiles in "aza-Michael"-1,4-additions (to "modify"). This allowed the creation of a regioisomer of His (iso-His, Hisiso) linked instead through its pros-Nπ atom rather than naturally linked via C4, as well as an aza-altered variant aza-Hisiso. The site-selective generation of these unnatural amino acids was successfully applied to probe the contributing roles (e.g., size, H-bonding) of His residues toward activity in the model enzymes subtilisin protease from Bacillus lentus and Mycobacterium tuberculosis pantothenate synthetase.
Collapse
Affiliation(s)
- Jitka Dadová
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Kuan-Jung Wu
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Patrick G. Isenegger
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - James C. Errey
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Gonçalo
J. L. Bernardes
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Justin M. Chalker
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Lluís Raich
- Departament
de Química Inorgànica i Orgànica (secció
de Química Orgànica) & Institut de Química
Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Carme Rovira
- Departament
de Química Inorgànica i Orgànica (secció
de Química Orgànica) & Institut de Química
Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- Institució
Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys, 23, 08010 Barcelona, Spain
| | - Benjamin G. Davis
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| |
Collapse
|
23
|
Goud GL, Ramesh S, Ashok D, Reddy VP, Yogeeswari P, Sriram D, Saikrishna B, Manga V. Design, synthesis, molecular-docking and antimycobacterial evaluation of some novel 1,2,3-triazolyl xanthenones. MEDCHEMCOMM 2017; 8:559-570. [PMID: 30108772 PMCID: PMC6072411 DOI: 10.1039/c6md00593d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/26/2016] [Indexed: 11/21/2022]
Abstract
As part of an ongoing effort to develop new antitubercular and antimicrobial agents, a series of substituted xanthenone derivatives (7a-p) were synthesized. Xanthenone derivatives (7a-p) were prepared via a one-pot three-component thermal cyclization reaction of β-naphthol (5), substituted 1-aryl-1H-[1,2,3]triazole-4-carbaldehydes (4a-h), and cyclic-1,3-diones (6a, b) in the presence of a catalytic amount of iodine. The newly synthesized compounds were characterized by IR, NMR, mass spectral data, and elemental analysis. These compounds (4a-h and 7a-p) were screened for in vitro antitubercular activity against the M. tuberculosis H37Rv (ATCC 27294) strain, for antibacterial activity against Gram-positive and Gram-negative strains, and for antifungal activity against a pathogenic strain of fungi. Among the compounds tested, most of them showed good to excellent antimicrobial and antitubercular activity. The active compounds displaying good potency in the MTB were further examined for toxicity in a HEK cell line. In addition, the structure and antitubercular activity relationship were further supported by in silico molecular-docking studies of the active compounds against the pantothenate synthetase (PS) enzyme of M. tuberculosis.
Collapse
Affiliation(s)
- Gudikadi Linga Goud
- Green and Medicinal Chemistry Laboratory , Department of Chemistry , Osmania University , Hyderabad , Telangana-500 007 , India . ; Tel: +91 9391024769
| | - Seela Ramesh
- Green and Medicinal Chemistry Laboratory , Department of Chemistry , Osmania University , Hyderabad , Telangana-500 007 , India . ; Tel: +91 9391024769
| | - Dongamanti Ashok
- Green and Medicinal Chemistry Laboratory , Department of Chemistry , Osmania University , Hyderabad , Telangana-500 007 , India . ; Tel: +91 9391024769
| | - Vummenthala Prabhakar Reddy
- Green and Medicinal Chemistry Laboratory , Department of Chemistry , Osmania University , Hyderabad , Telangana-500 007 , India . ; Tel: +91 9391024769
| | - Perumal Yogeeswari
- Department of Pharmacy , Birla Institute of Technology & Science - Hyderabad Campus , Jawahar Nagar , Hyderabad , Telangana-500 078 , India
| | - Dharmarajan Sriram
- Department of Pharmacy , Birla Institute of Technology & Science - Hyderabad Campus , Jawahar Nagar , Hyderabad , Telangana-500 078 , India
| | - Balabadra Saikrishna
- Molecular Modeling and Medicinal Chemistry Group , Department of Chemistry , Osmania University , Hyderabad , Telangana-500 007 , India
| | - Vijjulatha Manga
- Molecular Modeling and Medicinal Chemistry Group , Department of Chemistry , Osmania University , Hyderabad , Telangana-500 007 , India
| |
Collapse
|
24
|
Subhedar DD, Shaikh MH, Nawale L, Sarkar D, Khedkar VM, Shingate BB. Quinolidene based monocarbonyl curcumin analogues as promising antimycobacterial agents: Synthesis and molecular docking study. Bioorg Med Chem Lett 2017; 27:922-928. [DOI: 10.1016/j.bmcl.2017.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/05/2016] [Accepted: 01/04/2017] [Indexed: 12/17/2022]
|
25
|
Amaroju S, Kalaga MN, Srinivasarao S, Napiórkowska A, Augustynowicz-Kopeć E, Murugesan S, Chander S, Krishnan R, Chandra Sekhar KVG. Identification and development of pyrazolo[4,3-c]pyridine carboxamides as Mycobacterium tuberculosis pantothenate synthetase inhibitors. NEW J CHEM 2017. [DOI: 10.1039/c6nj02671k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A novel series of pyrazolo[4,3-c]pyridine carboxamides were synthesized and characterized. The compounds were evaluated for their antitubercular activity and pantothenate synthetase enzyme inhibition study.
Collapse
Affiliation(s)
- Suresh Amaroju
- Department of Chemistry
- Birla Institute of Technology and Science-Pilani
- R. R. Dist. Hyderabad
- India
| | - Mahalakshmi Naidu Kalaga
- Department of Chemistry
- Birla Institute of Technology and Science-Pilani
- R. R. Dist. Hyderabad
- India
| | - Singireddi Srinivasarao
- Department of Chemistry
- Birla Institute of Technology and Science-Pilani
- R. R. Dist. Hyderabad
- India
| | - Agnieszka Napiórkowska
- Microbiology Department
- National Tuberculosis and Lung Diseases Research Institute
- 01-138 Warsaw
- Poland
| | - Ewa Augustynowicz-Kopeć
- Microbiology Department
- National Tuberculosis and Lung Diseases Research Institute
- 01-138 Warsaw
- Poland
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory
- Department of Pharmacy
- Birla Institute of Technology & Science
- Pilani
- India
| | - Subhash Chander
- Medicinal Chemistry Research Laboratory
- Department of Pharmacy
- Birla Institute of Technology & Science
- Pilani
- India
| | - Rangan Krishnan
- Department of Chemistry
- Birla Institute of Technology and Science-Pilani
- R. R. Dist. Hyderabad
- India
| | | |
Collapse
|
26
|
Abstract
Tuberculosis is an infectious disease associated with significant mortality and morbidity worldwide, particularly in developing countries. The rise of antibiotic resistance in Mycobacterium tuberculosis (Mtb) urgently demands the development of new drug leads to tackle resistant strains. Fragment-based methods have recently emerged at the forefront of pharmaceutical development as a means to generate more effective lead structures, via the identification of fragment molecules that form weak but high quality interactions with the target biomolecule and subsequent fragment optimization. This review highlights a number of novel inhibitors of Mtb targets that have been developed through fragment-based approaches in recent years.
Collapse
|
27
|
Morrison PM, Balmforth MR, Ness SW, Williamson DJ, Rugen MD, Turnbull WB, Webb ME. Confirmation of a Protein-Protein Interaction in the Pantothenate Biosynthetic Pathway by Using Sortase-Mediated Labelling. Chembiochem 2016; 17:753-8. [PMID: 26818742 PMCID: PMC5963676 DOI: 10.1002/cbic.201500547] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Indexed: 01/29/2023]
Abstract
High-throughput studies have been widely used to identify protein-protein interactions; however, few of these candidate interactions have been confirmed in vitro. We have used a combination of isothermal titration calorimetry and fluorescence anisotropy to screen candidate interactions within the pantothenate biosynthetic pathway. In particular, we observed no interaction between the next enzyme in the pathway, pantothenate synthetase (PS), and aspartate decarboxylase, but did observe an interaction between PS and the putative Nudix hydrolase, YfcD. Confirmation of the interaction by fluorescence anisotropy was dependent upon labelling an adventitiously formed glycine on the protein N-terminal affinity purification tag by using Sortase. Subsequent formation of the protein-protein complex led to apparent restriction of the dynamics of this tag, thus suggesting that this approach could be generally applied to a subset of other protein-protein interaction complexes.
Collapse
Affiliation(s)
- Philip M Morrison
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Matthew R Balmforth
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Samuel W Ness
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Daniel J Williamson
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Michael D Rugen
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - W Bruce Turnbull
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Michael E Webb
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
28
|
Samala G, Devi PB, Saxena S, Meda N, Yogeeswari P, Sriram D. Design, synthesis and biological evaluation of imidazo[2,1-b]thiazole and benzo[d]imidazo[2,1-b]thiazole derivatives as Mycobacterium tuberculosis pantothenate synthetase inhibitors. Bioorg Med Chem 2016; 24:1298-307. [PMID: 26867485 DOI: 10.1016/j.bmc.2016.01.059] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/29/2016] [Accepted: 01/30/2016] [Indexed: 11/29/2022]
Abstract
In the present study, we have designed imidazo[2,1-b]thiazole and benzo[d]imidazo[2,1-b]thiazole derivatives from earlier reported imidazo[1,2-a]pyridine based Mycobacterium tuberculosis (MTB) pantothenate synthetase (PS) inhibitors. We synthesized thirty compounds and they were evaluated for MTB PS inhibition study, in vitro anti-TB activities against replicative and non-replicative MTB, in vivo activity using Mycobacterium marinum infected Zebra fish and cytotoxicity against RAW 264.7 cell line. Among them compound 2-methyl-N'-(4-phenoxybenzoyl)benzo[d]imidazo[2,1-b]thiazole-3-carbohydrazide (5bc) emerged as potent compound active against MTB PS with IC50 of 0.53±0.13 μM, MIC of 3.53 μM, 2.1 log reduction against nutrient starved MTB, with 33% cytotoxicity at 50 μM. It also showed 1.5 log reduction of M. marinum load in Zebra fish at 10mg/kg.
Collapse
Affiliation(s)
- Ganesh Samala
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shameerpet, Hyderabad 500078, India
| | - Parthiban Brindha Devi
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shameerpet, Hyderabad 500078, India
| | - Shalini Saxena
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shameerpet, Hyderabad 500078, India
| | - Nikhila Meda
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shameerpet, Hyderabad 500078, India
| | - Perumal Yogeeswari
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shameerpet, Hyderabad 500078, India
| | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shameerpet, Hyderabad 500078, India.
| |
Collapse
|
29
|
Abstract
Pantothenate is vitamin B5 and is the key precursor for the biosynthesis of coenzyme A (CoA), a universal and essential cofactor involved in a myriad of metabolic reactions, including the synthesis of phospholipids, the synthesis and degradation of fatty acids, and the operation of the tricarboxylic acid cycle. CoA is also the only source of the phosphopantetheine prosthetic group for enzymes that shuttle intermediates between the active sites of enzymes involved in fatty acid, nonribosomal peptide, and polyketide synthesis. Pantothenate can be synthesized de novo and/or transported into the cell through a pantothenatepermease. Pantothenate uptake is essential for those organisms that lack the genes to synthesize this vitamin. The intracellular levels of CoA are controlled by the balance between synthesis and degradation. In particular, CoA is assembled in five enzymatic steps, starting from the phosphorylation of pantothenate to phosphopantothenatecatalyzed by pantothenate kinase, the product of the coaA gene. In some bacteria, the production of phosphopantothenate by pantothenate kinase is the rate limiting and most regulated step in the biosynthetic pathway. CoA synthesis additionally networks with other vitamin-associated pathways, such as thiamine and folic acid.
Collapse
|
30
|
Salicylanilide diethyl phosphates as potential inhibitors of some mycobacterial enzymes. ScientificWorldJournal 2014; 2014:703053. [PMID: 25538961 PMCID: PMC4236894 DOI: 10.1155/2014/703053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 09/26/2014] [Indexed: 12/15/2022] Open
Abstract
Antimycobacterially active salicylanilide diethyl phosphates were evaluated to identify their potential drug target(s) for the inhibition of several mycobacterial enzymes, including isocitrate lyase, L-alanine dehydrogenase (MtAlaDH), lysine ε-aminotransferase, chorismate mutase, and pantothenate synthetase. The enzymes are related to the nongrowing state of Mycobacterium tuberculosis. Salicylanilide diethyl phosphates represent new candidates with significant inhibitory activity especially against L-alanine dehydrogenase. The most active MtAlaDH inhibitor, 5-chloro-2-[(3-chlorophenyl)carbamoyl]phenyl diethyl phosphate, has an IC50 of 4.96 µM and the best docking results. Other mycobacterial enzymes were mostly inhibited by some derivatives but at higher concentrations; isocitrate lyase showed the highest resistance to salicylanilide diethyl phosphates.
Collapse
|
31
|
Devi PB, Samala G, Sridevi JP, Saxena S, Alvala M, Salina EG, Sriram D, Yogeeswari P. Structure-guided design of thiazolidine derivatives as Mycobacterium tuberculosis pantothenate synthetase inhibitors. ChemMedChem 2014; 9:2538-47. [PMID: 25155986 DOI: 10.1002/cmdc.201402171] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Indexed: 11/07/2022]
Abstract
The pantothenate biosynthetic pathway is essential for the persistent growth and virulence of Mycobacterium tuberculosis (Mtb) and one of the enzymes in the pathway, pantothenate synthetase (PS, EC: 6.3.2.1), encoded by the panC gene, has become an appropriate target for new therapeutics to treat tuberculosis. Herein, we report nanomolar thiazolidine inhibitors of Mtb PS developed by a rational inhibitor design approach. The thiazolidine compounds were discovered by using energy-based pharmacophore modelling and subsequent in vitro screening, which resulted in compounds with a half maximal inhibitory concentration (IC50) value of (1.12 ± 0.12) μM. These compounds were subsequently optimised by a combination of modelling and synthetic chemistry. Hit expansion of the lead by chemical synthesis led to an improved inhibitor with an IC50 value of 350 nM and an Mtb minimum inhibitory concentration (MIC) of 1.55 μM. Some of these compounds also showed good activity against dormant Mtb cells.
Collapse
Affiliation(s)
- Parthiban Brindha Devi
- Drug Discovery Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad-500078 (India)
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Ntie-Kang F, Kannan S, Wichapong K, Owono Owono LC, Sippl W, Megnassan E. Binding of pyrazole-based inhibitors to Mycobacterium tuberculosis pantothenate synthetase: docking and MM-GB(PB)SA analysis. MOLECULAR BIOSYSTEMS 2014; 10:223-39. [PMID: 24240974 DOI: 10.1039/c3mb70449a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently, the search for new drugs against tuberculosis (TB) has been a hot topic and the search for new inhibitors against validated drug targets and pathways other than those currently targeted by known drugs is suggested to be the most promising way forward. Mycobacterium tuberculosis pantothenate synthetase (MTBPS) happens to be one of such targets. In a quest to carry out virtual screening for active inhibitors against MTBPS and to get ideas for the design of new inhibitors against this target, we have docked a set of pyrazole-based inhibitors to the active site of this enzyme. The docking solutions were post processed using the MM-PB(GB)SA method and molecular dynamic simulations in order to analyze and validate the two previously proposed binding modes. The results show that both the MM-PBSA and MM-GBSA were able to discriminate between active and inactive compounds. Moreover, the pharmacophore-based scoring method proved efficient in discriminating the active compounds from inactives. From this work a protocol for screening of potential inhibitors of the enzyme from commercially available databases has been devised.
Collapse
Affiliation(s)
- Fidele Ntie-Kang
- CEPAMOQ, Faculty of Science, University of Douala, P.O. Box 8580, Douala, Cameroon.
| | | | | | | | | | | |
Collapse
|
33
|
Samala G, Nallangi R, Devi PB, Saxena S, Yadav R, Sridevi JP, Yogeeswari P, Sriram D. Identification and development of 2-methylimidazo[1,2-a]pyridine-3-carboxamides as Mycobacterium tuberculosis pantothenate synthetase inhibitors. Bioorg Med Chem 2014; 22:4223-32. [DOI: 10.1016/j.bmc.2014.05.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/07/2014] [Accepted: 05/16/2014] [Indexed: 10/25/2022]
|
34
|
Pantothenic acid biosynthesis in the parasite Toxoplasma gondii: a target for chemotherapy. Antimicrob Agents Chemother 2014; 58:6345-53. [PMID: 25049241 DOI: 10.1128/aac.02640-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toxoplasma gondii is a major food pathogen and neglected parasitic infection that causes eye disease, birth defects, and fetal abortion and plays a role as an opportunistic infection in AIDS. In this study, we investigated pantothenic acid (vitamin B5) biosynthesis in T. gondii. Genes encoding the full repertoire of enzymes for pantothenate synthesis and subsequent metabolism to coenzyme A were identified and are expressed in T. gondii. A panel of inhibitors developed to target Mycobacterium tuberculosis pantothenate synthetase were tested and found to exhibit a range of values for inhibition of T. gondii growth. Two inhibitors exhibited lower effective concentrations than the currently used toxoplasmosis drug pyrimethamine. The inhibition was specific for the pantothenate pathway, as the effect of the pantothenate synthetase inhibitors was abrogated by supplementation with pantothenate. Hence, T. gondii encodes and expresses the enzymes for pantothenate synthesis, and this pathway is essential for parasite growth. These promising findings increase our understanding of growth and metabolism in this important parasite and highlight pantothenate synthetase as a new drug target.
Collapse
|
35
|
Kumar M, Makhal B, Gupta VK, Sharma A. In silico investigation of medicinal spectrum of imidazo-azines from the perspective of multitarget screening against malaria, tuberculosis and Chagas disease. J Mol Graph Model 2014; 50:1-9. [DOI: 10.1016/j.jmgm.2014.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 02/14/2014] [Accepted: 02/21/2014] [Indexed: 11/29/2022]
|
36
|
Xu Z, Yin W, Martinelli LK, Evans J, Chen J, Yu Y, Wilson DJ, Mizrahi V, Qiao C, Aldrich CC. Reaction intermediate analogues as bisubstrate inhibitors of pantothenate synthetase. Bioorg Med Chem 2014; 22:1726-35. [PMID: 24507827 PMCID: PMC4667779 DOI: 10.1016/j.bmc.2014.01.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/25/2013] [Accepted: 01/14/2014] [Indexed: 11/16/2022]
Abstract
The biosynthesis of pantothenate, the core of coenzyme A (CoA), has been considered an attractive target for the development of antimicrobial agents since this pathway is essential in prokaryotes, but absent in mammals. Pantothenate synthetase, encoded by the gene panC, catalyzes the final condensation of pantoic acid with β-alanine to afford pantothenate via an intermediate pantoyl adenylate. We describe the synthesis and biochemical characterization of five PanC inhibitors that mimic the intermediate pantoyl adenylate. These inhibitors are competitive inhibitors with respect to pantoic acid and possess submicromolar to micromolar inhibition constants. The observed SAR is rationalized through molecular docking studies based on the reported co-crystal structure of 1a with PanC. Finally, whole cell activity is assessed against wild-type Mtb as well as a PanC knockdown strain where PanC is depleted to less than 5% of wild-type levels.
Collapse
Affiliation(s)
- Zhixiang Xu
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | - Wei Yin
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | | | - Joanna Evans
- MRC/NHLS/UCT Molecular Mycobacteriology Research Unit and DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Institute of Infectious Disease and Molecular Medicine and Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town 7925, South Africa
| | - Jinglei Chen
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | - Yang Yu
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | - Daniel J Wilson
- Center for Drug Design, University of Minnesota, MN 55455, USA
| | - Valerie Mizrahi
- MRC/NHLS/UCT Molecular Mycobacteriology Research Unit and DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Institute of Infectious Disease and Molecular Medicine and Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town 7925, South Africa
| | - Chunhua Qiao
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China.
| | | |
Collapse
|
37
|
Samala G, Devi PB, Nallangi R, Sridevi JP, Saxena S, Yogeeswari P, Sriram D. Development of novel tetrahydrothieno[2,3-c]pyridine-3-carboxamide based Mycobacterium tuberculosis pantothenate synthetase inhibitors: molecular hybridization from known antimycobacterial leads. Bioorg Med Chem 2014; 22:1938-47. [PMID: 24565972 DOI: 10.1016/j.bmc.2014.01.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/18/2014] [Accepted: 01/20/2014] [Indexed: 10/25/2022]
Abstract
Twenty six 2,6-disubstituted 4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxamide derivatives were designed by molecular hybridization approach using and synthesized from piperidin-4-one by five step synthesis. Compounds were evaluated for Mycobacterium tuberculosis (MTB) pantothenate synthetase (PS) inhibition study, in vitro activities against MTB, cytotoxicity against RAW 264.7 cell line. Among the compounds, 6-(4-nitrophenylsulfonyl)-2-(5-nitrothiophene-2-carboxamido)-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxamide (11) was found to be the most active compound with IC50 of 5.87 ± 0.12 μM against MTB PS, inhibited MTB with MIC of 9.28 μM and it was non-cytotoxic at 50 μM. The binding affinity of the most potent inhibitor 11 was further confirmed biophysically through differential scanning fluorimetry.
Collapse
Affiliation(s)
- Ganesh Samala
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shameerpet, R.R. District, Hyderabad 500078, Andhra Pradesh, India
| | - Parthiban Brindha Devi
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shameerpet, R.R. District, Hyderabad 500078, Andhra Pradesh, India
| | - Radhika Nallangi
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shameerpet, R.R. District, Hyderabad 500078, Andhra Pradesh, India
| | - Jonnalagadda Padma Sridevi
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shameerpet, R.R. District, Hyderabad 500078, Andhra Pradesh, India
| | - Shalini Saxena
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shameerpet, R.R. District, Hyderabad 500078, Andhra Pradesh, India
| | - Perumal Yogeeswari
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shameerpet, R.R. District, Hyderabad 500078, Andhra Pradesh, India
| | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shameerpet, R.R. District, Hyderabad 500078, Andhra Pradesh, India.
| |
Collapse
|
38
|
Echols N, Moriarty NW, Klei HE, Afonine PV, Bunkóczi G, Headd JJ, McCoy AJ, Oeffner RD, Read RJ, Terwilliger TC, Adams PD. Automating crystallographic structure solution and refinement of protein-ligand complexes. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:144-54. [PMID: 24419387 PMCID: PMC3919266 DOI: 10.1107/s139900471302748x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 10/07/2013] [Indexed: 11/29/2022]
Abstract
High-throughput drug-discovery and mechanistic studies often require the determination of multiple related crystal structures that only differ in the bound ligands, point mutations in the protein sequence and minor conformational changes. If performed manually, solution and refinement requires extensive repetition of the same tasks for each structure. To accelerate this process and minimize manual effort, a pipeline encompassing all stages of ligand building and refinement, starting from integrated and scaled diffraction intensities, has been implemented in Phenix. The resulting system is able to successfully solve and refine large collections of structures in parallel without extensive user intervention prior to the final stages of model completion and validation.
Collapse
Affiliation(s)
- Nathaniel Echols
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8235, USA
| | - Nigel W. Moriarty
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8235, USA
| | - Herbert E. Klei
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8235, USA
| | - Pavel V. Afonine
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8235, USA
| | - Gábor Bunkóczi
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Cambridge CB2 0XY, England
| | - Jeffrey J. Headd
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8235, USA
| | - Airlie J. McCoy
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Cambridge CB2 0XY, England
| | - Robert D. Oeffner
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Cambridge CB2 0XY, England
| | - Randy J. Read
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Cambridge CB2 0XY, England
| | | | - Paul D. Adams
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8235, USA
- Department of Bioengineering, University of California at Berkeley, Berkeley, CA 94720-1762, USA
| |
Collapse
|
39
|
Kumar A, Casey A, Odingo J, Kesicki EA, Abrahams G, Vieth M, Masquelin T, Mizrahi V, Hipskind PA, Sherman DR, Parish T. A high-throughput screen against pantothenate synthetase (PanC) identifies 3-biphenyl-4-cyanopyrrole-2-carboxylic acids as a new class of inhibitor with activity against Mycobacterium tuberculosis. PLoS One 2013; 8:e72786. [PMID: 24244263 PMCID: PMC3820577 DOI: 10.1371/journal.pone.0072786] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/12/2013] [Indexed: 12/17/2022] Open
Abstract
The enzyme pantothenate synthetase, PanC, is an attractive drug target in Mycobacterium tuberculosis. It is essential for the in vitro growth of M. tuberculosis and for survival of the bacteria in the mouse model of infection. PanC is absent from mammals. We developed an enzyme-based assay to identify inhibitors of PanC, optimized it for high-throughput screening, and tested a large and diverse library of compounds for activity. Two compounds belonging to the same chemical class of 3-biphenyl-4- cyanopyrrole-2-carboxylic acids had activity against the purified recombinant protein, and also inhibited growth of live M. tuberculosis in manner consistent with PanC inhibition. Thus we have identified a new class of PanC inhibitors with whole cell activity that can be further developed.
Collapse
Affiliation(s)
- Anuradha Kumar
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Samala G, Devi PB, Nallangi R, Yogeeswari P, Sriram D. Development of 3-phenyl-4,5,6,7-tetrahydro-1H-pyrazolo[4,3-c]pyridine derivatives as novel Mycobacterium tuberculosis pantothenate synthetase inhibitors. Eur J Med Chem 2013; 69:356-64. [PMID: 24077526 DOI: 10.1016/j.ejmech.2013.08.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 08/22/2013] [Accepted: 08/25/2013] [Indexed: 11/16/2022]
Abstract
Forty 3-phenyl-4,5,6,7-tetrahydro-1H-pyrazolo[4,3-c]pyridine derivatives were synthesized from piperidin-4-one by five step synthesis and evaluated for Mycobacterium tuberculosis (MTB) pantothenate synthetase (PS) inhibition study, in vitro activities against MTB, cytotoxicity against RAW 264.7 cell line. Among the compounds, 1-benzoyl-N-(4-nitrophenyl)-3-phenyl-6,7-dihydro-1H-pyrazolo[4,3-c]pyridine-5(4H)-carboxamide (6ac) was found to be the most active compound with IC₅₀ of 21.8 ± 0.8 μM against MTB PS, inhibited MTB with MIC of 26.7 μM and it was non-cytotoxic at 50 μM.
Collapse
Affiliation(s)
- Ganesh Samala
- Antitubercular Drug Discovery Laboratory, Department of Pharmacy, Birla Institute of Technology and Science - Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad 500 078, India
| | | | | | | | | |
Collapse
|
41
|
Integrated biophysical approach to fragment screening and validation for fragment-based lead discovery. Proc Natl Acad Sci U S A 2013; 110:12984-9. [PMID: 23872845 DOI: 10.1073/pnas.1304045110] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In fragment-based drug discovery, the weak affinities exhibited by fragments pose significant challenges for screening. Biophysical techniques are used to address this challenge, but there is no clear consensus on which cascade of methods is best suited to identify fragment hits that ultimately translate into bound X-ray structures and provide bona fide starting points for synthesis. We have benchmarked an integrated biophysical approach for fragment screening and validation against Mycobacterium tuberculosis pantothenate synthetase. A primary screen of 1,250 fragments library was performed by thermal shift, followed by secondary screen using one-dimensional NMR spectroscopy (water ligand observed gradient spectroscopy and saturation transfer difference binding experiments) and ultimate hit validation by isothermal titration calorimetry and X-ray crystallography. Our multibiophysical approach identified three distinct binding sites for fragments and laid a solid foundation for successful structure-based elaboration into potent inhibitors.
Collapse
|
42
|
Duckworth BP, Nelson KM, Aldrich CC. Adenylating enzymes in Mycobacterium tuberculosis as drug targets. Curr Top Med Chem 2012; 12:766-96. [PMID: 22283817 DOI: 10.2174/156802612799984571] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 11/08/2011] [Indexed: 11/22/2022]
Abstract
Adenylation or adenylate-forming enzymes (AEs) are widely found in nature and are responsible for the activation of carboxylic acids to intermediate acyladenylates, which are mixed anhydrides of AMP. In a second reaction, AEs catalyze the transfer of the acyl group of the acyladenylate onto a nucleophilic amino, alcohol, or thiol group of an acceptor molecule leading to amide, ester, and thioester products, respectively. Mycobacterium tuberculosis encodes for more than 60 adenylating enzymes, many of which represent potential drug targets due to their confirmed essentiality or requirement for virulence. Several strategies have been used to develop potent and selective AE inhibitors including highthroughput screening, fragment-based screening, and the rationale design of bisubstrate inhibitors that mimic the acyladenylate. In this review, a comprehensive analysis of the mycobacterial adenylating enzymes will be presented with a focus on the identification of small molecule inhibitors. Specifically, this review will cover the aminoacyl tRNAsynthetases (aaRSs), MenE required for menaquinone synthesis, the FadD family of enzymes including the fatty acyl- AMP ligases (FAAL) and the fatty acyl-CoA ligases (FACLs) involved in lipid metabolism, and the nonribosomal peptide synthetase adenylation enzyme MbtA that is necessary for mycobactin synthesis. Additionally, the enzymes NadE, GuaA, PanC, and MshC involved in the respective synthesis of NAD, guanine, pantothenate, and mycothiol will be discussed as well as BirA that is responsible for biotinylation of the acyl CoA-carboxylases.
Collapse
|
43
|
A detailed biochemical characterization of phosphopantothenate synthetase, a novel enzyme involved in coenzyme A biosynthesis in the Archaea. Extremophiles 2012; 16:819-28. [PMID: 22940806 DOI: 10.1007/s00792-012-0477-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 08/16/2012] [Indexed: 10/27/2022]
Abstract
We have previously reported that the majority of the archaea utilize a novel pathway for coenzyme A biosynthesis (CoA). Bacteria/eukaryotes commonly use pantothenate synthetase and pantothenate kinase to convert pantoate to 4'-phosphopantothenate. However, in the hyperthermophilic archaeon Thermococcus kodakarensis, two novel enzymes specific to the archaea, pantoate kinase and phosphopantothenate synthetase, are responsible for this conversion. Here, we examined the enzymatic properties of the archaeal phosphopantothenate synthetase, which catalyzes the ATP-dependent condensation of 4-phosphopantoate and β-alanine. The activation energy of the phosphopantothenate synthetase reaction was 82.3 kJ mol(-1). In terms of substrate specificity toward nucleoside triphosphates, the enzyme displayed a strict preference for ATP. Among several amine substrates, activity was detected with β-alanine, but not with γ-aminobutyrate, glycine nor aspartate. The phosphopantothenate synthetase reaction followed Michaelis-Menten kinetics toward β-alanine, whereas substrate inhibition was observed with 4-phosphopantoate and ATP. Feedback inhibition by CoA/acetyl-CoA and product inhibition by 4'-phosphopantothenate were not observed. By contrast, the other archaeal enzyme pantoate kinase displayed product inhibition by 4-phosphopantoate in a non-competitive manner. Based on our results, we discuss the regulation of CoA biosynthesis in the archaea.
Collapse
|
44
|
Tan YS, Fuentes G, Verma C. A comparison of the dynamics of pantothenate synthetase from M. tuberculosis and E. coli: computational studies. Proteins 2011; 79:1715-27. [PMID: 21425349 DOI: 10.1002/prot.22994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 11/24/2010] [Accepted: 12/15/2010] [Indexed: 11/11/2022]
Abstract
Pantothenate synthetase (PS) catalyzes the final step of the pantothenate pathway, in which pantothenate is formed from pantoate and β-alanine in an ATP-dependent reaction. Mycobacterium tuberculosis PS (MTB PS) is functionally a dimer and a potential target for novel antitubercular drugs. Molecular dynamics simulations show that the functional dynamics of the enzyme are dominated by motions of a flexible gate loop in the N-terminal domain and of the C-terminal domain. The gate loop motions dominate in MTB PS while the C-terminal domain motion dominates in Escherichia coli PS. Simulations also show that the correlated motions of the domains are severely compromised in the monomeric forms. Mutations that reduce the mobility of the gate loop in MTB PS and increased it in E. coli PS were designed and validated through simulations.
Collapse
Affiliation(s)
- Yaw Sing Tan
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | | | | |
Collapse
|
45
|
Škedelj V, Tomašić T, Mašič LP, Zega A. ATP-binding site of bacterial enzymes as a target for antibacterial drug design. J Med Chem 2011; 54:915-29. [PMID: 21235241 DOI: 10.1021/jm101121s] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Veronika Škedelj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | | | | | | |
Collapse
|
46
|
Satoh A, Konishi S, Tamura H, Stickland HG, Whitney HM, Smith AG, Matsumura H, Inoue T. Substrate-Induced Closing of the Active Site Revealed by the Crystal Structure of Pantothenate Synthetase from Staphylococcus aureus. Biochemistry 2010; 49:6400-10. [DOI: 10.1021/bi1004206] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Atsuko Satoh
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Saki Konishi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Haruka Tamura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hannah G. Stickland
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom
| | - Heather M. Whitney
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom
| | - Alison G. Smith
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom
| | - Hiroyoshi Matsumura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- CREST, JST, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tsuyoshi Inoue
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- CREST, JST, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
47
|
Lou Z, Zhang X. Protein targets for structure-based anti-Mycobacterium tuberculosis drug discovery. Protein Cell 2010; 1:435-42. [PMID: 21203958 DOI: 10.1007/s13238-010-0057-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 05/01/2010] [Indexed: 11/30/2022] Open
Abstract
Mycobacterium tuberculosis, which belongs to the genus Mycobacterium, is the pathogenic agent for most tuberculosis (TB). As TB remains one of the most rampant infectious diseases, causing morbidity and death with emergence of multi-drug-resistant and extensively-drug-resistant forms, it is urgent to identify new drugs with novel targets to ensure future therapeutic success. In this regards, the structural genomics of M. tuberculosis provides important information to identify potential targets, perform biochemical assays, determine crystal structures in complex with potential inhibitor(s), reveal the key sites/residues for biological activity, and thus validate drug targets and discover novel drugs. In this review, we will discuss the recent progress on novel targets for structure-based anti-M. tuberculosis drug discovery.
Collapse
Affiliation(s)
- Zhiyong Lou
- Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China.
| | | |
Collapse
|
48
|
Aleksandrov A, Thompson D, Simonson T. Alchemical free energy simulations for biological complexes: powerful but temperamental.... J Mol Recognit 2010; 23:117-27. [PMID: 19693787 DOI: 10.1002/jmr.980] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Free energy simulations compare multiple ligand:receptor complexes by "alchemically" transforming one into another, yielding binding free energy differences. Since their introduction in the 1980s, many technical and theoretical obstacles were surmounted, and the method ("MDFE," since molecular dynamics are often used) has matured into a powerful tool. We describe its current status, its effectiveness, and the challenges it faces. MDFE has provided chemical accuracy for many systems but remains expensive, with significant human overhead costs. The bottlenecks have shifted, partly due to increased computer power. To study diverse sets of ligands, force field availability and accuracy can be a major difficulty. Another difficulty is the frequent need to consider multiple states, related to sidechain protonation or buried waters, for example. Sophisticated, automated methods to sample these states are maturing, such as constant pH simulations. Meanwhile, combinations of MDFE and simpler approaches, like continuum dielectric models, can be very effective. As illustrations, we show how, with careful force field parameterization, MDFE accurately predicts binding specificities between complex tetracycline ligands and their targets. We describe substrate binding to the aspartyl-tRNA synthetase enzyme, where many distinct electrostatic states play a role, and a histidine and a Mg(2+) ion act as coupled switches that help enforce a strict preference for the aspartate substrate, relative to several analogs. Overall, MDFE has achieved a predictive status, where novel ligands can be studied and molecular recognition elucidated in depth. It should play an increasing role in the analysis of complex cellular processes and biomolecular engineering.
Collapse
Affiliation(s)
- Alexey Aleksandrov
- Laboratoire de Biochimie (CNRS UMR7654), Department of Biology, Ecole Polytechnique, 91128 Palaiseau, France
| | | | | |
Collapse
|
49
|
Sledz P, Silvestre HL, Hung AW, Ciulli A, Blundell TL, Abell C. Optimization of the interligand Overhauser effect for fragment linking: application to inhibitor discovery against Mycobacterium tuberculosis pantothenate synthetase. J Am Chem Soc 2010; 132:4544-5. [PMID: 20232910 PMCID: PMC4441724 DOI: 10.1021/ja100595u] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fragment-based methods are a new and emerging approach for the discovery of protein binders that are potential new therapeutic agents. Several ways of utilizing structural information to guide the inhibitor assembly have been explored to date. One of the approaches, application of interligand Overhauser effect (ILOE) observations, is of particular interest, as it does not require the availability of a three-dimensional protein structure and is an NMR-based method that can be applied to targets that cannot be observed directly because of their size. Fragments, as small and often hydrophobic molecules, suffer from problems including compound aggregation in an aqueous environment and nonspecific binding contributions, especially when screened at higher concentrations suitable for ILOE observations. Here we report how this problem can be overcome by applying a step-by-step iterative procedure that includes the application of optimized probe molecules with known binding modes to elucidate the unknown binding modes of fragments. An enzyme substrate with well-characterized binding was used as a starting point, and the relative binding modes of modified fragments derived from ILOE observations were used to guide the fragment linking, leading to a potent inhibitor of our model system, Mycobacterium tuberculosis pantothenate synthetase, a potential drug target. We have supported our NMR data with crystal structures, thus establishing the guidelines for optimizing the ILOE observations. This model study should expand the application of the technique in drug discovery.
Collapse
Affiliation(s)
- Pawel Sledz
- University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - H. Leonardo Silvestre
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Alvin W. Hung
- University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Alessio Ciulli
- University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Tom L. Blundell
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Chris Abell
- University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
50
|
Chakrabarti KS, Thakur KG, Gopal B, Sarma SP. X-ray crystallographic and NMR studies of pantothenate synthetase provide insights into the mechanism of homotropic inhibition by pantoate. FEBS J 2010; 277:697-712. [PMID: 20059543 DOI: 10.1111/j.1742-4658.2009.07515.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The structural basis for the homotropic inhibition of pantothenate synthetase by the substrate pantoate was investigated by X-ray crystallography and high-resolution NMR spectroscopic methods. The tertiary structure of the dimeric N-terminal domain of Escherichia coli pantothenate synthetase, determined by X-ray crystallography to a resolution of 1.7 A, showed a second molecule of pantoate bound in the ATP-binding pocket. Pantoate binding to the ATP-binding site induced large changes in structure, mainly for backbone and side chain atoms of residues in the ATP binding HXGH(34-37) motif. Sequence-specific NMR resonance assignments and solution secondary structure of the dimeric N-terminal domain, obtained using samples enriched in (2)H, (13)C, and (15)N, indicated that the secondary structural elements were conserved in solution. Nitrogen-15 edited two-dimensional solution NMR chemical shift mapping experiments revealed that pantoate, at 10 mm, bound at these two independent sites. The solution NMR studies unambiguously demonstrated that ATP stoichiometrically displaced pantoate from the ATP-binding site. All NMR and X-ray studies were conducted at substrate concentrations used for enzymatic characterization of pantothenate synthetase from different sources [Jonczyk R & Genschel U (2006) J Biol Chem 281, 37435-37446]. As pantoate binding to its canonical site is structurally conserved, these results demonstrate that the observed homotropic effects of pantoate on pantothenate biosynthesis are caused by competitive binding of this substrate to the ATP-binding site. The results presented here have implications for the design and development of potential antibacterial and herbicidal agents.
Collapse
|