1
|
Jin T, Coley CW, Alexander-Katz A. Designing single-polymer-chain nanoparticles to mimic biomolecular hydration frustration. Nat Chem 2025:10.1038/s41557-025-01760-9. [PMID: 40074826 DOI: 10.1038/s41557-025-01760-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 01/29/2025] [Indexed: 03/14/2025]
Abstract
Native folded proteins rely on sculpting the local chemical environment of their active or binding sites, as well as their shapes, to achieve functionality. In particular, proteins use hydration frustration-control over the dehydration of hydrophilic residues and the hydration of hydrophobic residues-to amplify their chemical or binding activity. Here we uncover that single-polymer-chain nanoparticles formed by random heteropolymers comprising four or more components can display similar levels of hydration frustration. We categorize these nanoparticles into three types based on whether either hydrophobic or hydrophilic residues, or both types, display frustrated states. We propose a series of physicochemical rules that determine the state of these nanoparticles. We demonstrate the generality of these rules in atomistic and simplified Monte Carlo models of single-polymer-chain nanoparticles with different backbones and residues. Our work provides insights into the design of single-chain nanoparticles, an emerging polymer modality that achieves the ease and cost of fabrication of polymeric material with the functionality of biological proteins.
Collapse
Affiliation(s)
- Tianyi Jin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Connor W Coley
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alfredo Alexander-Katz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
2
|
Zhang R, Liu Y, Liu S, Zhao Y, Xiang N, Gao X, Yuan T. Comparative organelle genomics in Daphniphyllaceae reveal phylogenetic position and organelle structure evolution. BMC Genomics 2025; 26:40. [PMID: 39815181 PMCID: PMC11737216 DOI: 10.1186/s12864-025-11213-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025] Open
Abstract
The family Daphniphyllaceae has a single genus, and no relevant comparative phylogenetic study has been reported on it. To explore the phylogenetic relationships and organelle evolution mechanisms of Daphniphyllaceae species, we sequenced and assembled the chloroplast and mitochondrial genomes of Daphniphyllum macropodum. We also conducted comparative analyses of organelles in Daphniphyllaceae species in terms of genome structure, phylogenetic relationships, divergence times, RNA editing events, and evolutionary rates, etc. Results indicated differences in the evolutionary patterns of the plastome and mitogenome in D. macropodum. The plastome had a more conserved structure but a faster nucleotide substitution rate, and the mitogenome showed a more complex structure while the mitotic genome shows a more complex structure but a slower nucleotide substitution rate. We identified several unidirectional protein-coding gene transfer events from the plastome to the mitogenome based on homology analysis, but no transfer events occurred from the mitogenome to the plastome. Multiple TE fragments existed in organelle genomes, and two organelles showed different preferences for nuclear TE insertion types. The estimation of divergence time indicated that the differentiation of Daphniphyllaceae and Altingiaceae at around 29.86 Mya might be due to the dramatic uplift of Tibetan Plateau during the Oligocene. About 75% of codon changes in organelles were found to be hydrophilic to hydrophobic amino acids. The RNA editing in protein-coding transcripts is the result of amino acid changes to increase their hydrophobicity and conservation in alleles, which may contribute to the formation of functional 3D structures in proteins. This study would enrich genomic resources and provide valuable insights into the structural dynamics and molecular biology of Daphniphyllaceae species.
Collapse
Affiliation(s)
- Rongxiang Zhang
- School of Biological Science, Guizhou Education University, Guiyang, 550018, China
| | - Ying Liu
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Shuwen Liu
- School of Biological Science, Guizhou Education University, Guiyang, 550018, China
| | - Yuemei Zhao
- School of Biological Science, Guizhou Education University, Guiyang, 550018, China
| | - Niyan Xiang
- School of Ecology and Environment, Tibet University, Lhasa, 850000, China
- School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Xiaoman Gao
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- School of Ecology and Environment, Tibet University, Lhasa, 850000, China
| | - Tao Yuan
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
- School of Ecology and Environment, Tibet University, Lhasa, 850000, China.
| |
Collapse
|
3
|
Howes JM, Harper MT. Application of the Cellular Thermal Shift Assay (CETSA) to validate drug target engagement in platelets. Platelets 2024; 35:2354833. [PMID: 38767506 DOI: 10.1080/09537104.2024.2354833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024]
Abstract
Small molecule drugs play a major role in the study of human platelets. Effective action of a drug requires it to bind to one or more targets within the platelet (target engagement). However, although in vitro assays with isolated proteins can be used to determine drug affinity to these targets, additional factors affect target engagement and its consequences in an intact platelet, including plasma membrane permeability, intracellular metabolism or compartmentalization, and level of target expression. Mechanistic interpretation of the effect of drugs on platelet activity requires comprehensive investigation of drug binding in the proper cellular context, i.e. in intact platelets. The Cellular Thermal Shift Assay (CETSA) is a valuable method to investigate target engagement within complex cellular environments. The assay is based on the principle that drug binding to a target protein increases that protein's thermal stability. In this technical report, we describe the application of CETSA to platelets. We highlight CETSA as a quick and informative technique for confirming the direct binding of drugs to platelet protein targets, providing a platform for understanding the mechanism of action of drugs in platelets, and which will be a valuable tool for investigating platelet signaling and function.
Collapse
Affiliation(s)
| | - Matthew T Harper
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Famuyiwa FG, Patil RB, Famuyiwa SO, Olayemi UI, Olanudun EA, Bhongade BA, Sangshetti JN, Shalom EO, Vakare SN, Musa MS, Moin AT, Uddin MH, Faloye KO. Elucidating the monoamine oxidase B inhibitory effect of kaurene diterpenoids from Xylopia aethiopica: An in silico approach. PLoS One 2024; 19:e0308021. [PMID: 39602408 PMCID: PMC11602026 DOI: 10.1371/journal.pone.0308021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/15/2024] [Indexed: 11/29/2024] Open
Abstract
Parkinson disease is a neurogenerative disease common in adults and results in different kinds of memory dysfuntions. This study evaluated the monoamine oxidase B (MAO-B) inhibitory potential of kaurane diterpenoids previously isolated from Xylopia aethiopica through comprehensive computational approaches. Molecular docking study and molecular dynamics simulation were used to access the binding mode and interaction of xylopic acid and MAO-B enzyme. The ADMET properties of the phytochemical were evaluated to provide information on its druggability. The molecular docking and molecular dynamics simulation revealed xylopic acid as potential MAO-B inhibitor due to the good binding energy elicited and stability throughout the 100 ns simulation period. The ADMET properties of the ligand showed it as a promising drug candidate. The study recommend further comprehensive in vitro investigation towards the development of xylopic acid as potent MAO-B inhibitor.
Collapse
Affiliation(s)
| | - Rajesh B. Patil
- Department of Pharmaceutical Chemistry, Sinhgad Technical Education Society’s, Sinhgad College of Pharmacy, Pune, Maharashtra, India
| | | | - Uduak Ime Olayemi
- Department of Chemistry, Faculty of Science, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Esther Aina Olanudun
- Department of Industrial Chemistry, Faculty of Science, University of Ilesa, Ilesa, Nigeria
| | - Bhoomendra A. Bhongade
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical & Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | | | | | - Suvarna N. Vakare
- Department of Pharmaceutical Chemistry, Sinhgad Technical Education Society’s, Sinhgad College of Pharmacy, Pune, Maharashtra, India
| | - Mohammed Sakib Musa
- Department of Applied Chemistry and Chemical Engineering, University of Chittagong, Chattogram, Bangladesh
| | - Abu Tayab Moin
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Mohammad Helal Uddin
- Department of Applied Chemistry and Chemical Engineering, University of Chittagong, Chattogram, Bangladesh
| | | |
Collapse
|
5
|
Andrade GCD, Mota MF, Moreira-Ferreira DN, Silva JL, de Oliveira GAP, Marques MA. Protein aggregation in health and disease: A looking glass of two faces. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 145:145-217. [PMID: 40324846 DOI: 10.1016/bs.apcsb.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Protein molecules organize into an intricate alphabet of twenty amino acids and five architecture levels. The jargon "one structure, one functionality" has been challenged, considering the amount of intrinsically disordered proteins in the human genome and the requirements of hierarchical hetero- and homo-protein complexes in cell signaling. The assembly of large protein structures in health and disease is now viewed through the lens of phase separation and transition phenomena. What drives protein misfolding and aggregation? Or, more fundamentally, what hinders proteins from maintaining their native conformations, pushing them toward aggregation? Here, we explore the principles of protein folding, phase separation, and aggregation, which hinge on crucial events such as the reorganization of solvents, the chemical properties of amino acids, and their interactions with the environment. We focus on the dynamic shifts between functional and dysfunctional states of proteins and the conditions that promote protein misfolding, often leading to disease. By exploring these processes, we highlight potential therapeutic avenues to manage protein aggregation and reduce its harmful impacts on health.
Collapse
Affiliation(s)
- Guilherme C de Andrade
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology, Federal University of Rio de Janeiro, Rio De Janeiro, RJ, Brazil
| | - Michelle F Mota
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology, Federal University of Rio de Janeiro, Rio De Janeiro, RJ, Brazil
| | - Dinarte N Moreira-Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology, Federal University of Rio de Janeiro, Rio De Janeiro, RJ, Brazil
| | - Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology, Federal University of Rio de Janeiro, Rio De Janeiro, RJ, Brazil
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology, Federal University of Rio de Janeiro, Rio De Janeiro, RJ, Brazil.
| | - Mayra A Marques
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology, Federal University of Rio de Janeiro, Rio De Janeiro, RJ, Brazil.
| |
Collapse
|
6
|
Yoshida R, Hori Y, Uraguchi D, Asano K. BODNs as biocompatible brominating reagents: visible-light photocatalytic tyrosine modification under physiologically favorable conditions. Chem Commun (Camb) 2024; 60:12381-12384. [PMID: 39370922 DOI: 10.1039/d4cc04171b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The photochemical reactivity of 1-bromo-2-oxo-1,2-dihydronaphthalene-1-carboxylates (BODNs) was demonstrated. They are inert in the dark under physiological conditions but become active as brominating reagents for tyrosine modification under visible light irradiation in the presence of a photocatalyst. The BODNs can be applied to protein labeling with bromo groups as sensitive mass tags.
Collapse
Affiliation(s)
- Rakuto Yoshida
- Institute for Catalysis, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan.
| | - Yuichiro Hori
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Fukuoka 819-0395, Japan
| | - Daisuke Uraguchi
- Institute for Catalysis, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan.
- List Sustainable Digital Transformation Catalyst Collaboration Research Platform, Institute for Chemical Reaction Design and Discovery (ICReDD List-PF), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Keisuke Asano
- Institute for Catalysis, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan.
| |
Collapse
|
7
|
Chen J, Chen L, Quan H, Lee S, Khan KF, Xie Y, Li Q, Valero M, Dai Z, Xie Y. A Comparative Analysis of SARS-CoV-2 Variants of Concern (VOC) Spike Proteins Interacting with hACE2 Enzyme. Int J Mol Sci 2024; 25:8032. [PMID: 39125601 PMCID: PMC11311974 DOI: 10.3390/ijms25158032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024] Open
Abstract
In late 2019, the emergence of a novel coronavirus led to its identification as SARS-CoV-2, precipitating the onset of the COVID-19 pandemic. Many experimental and computational studies were performed on SARS-CoV-2 to understand its behavior and patterns. In this research, Molecular Dynamic (MD) simulation is utilized to compare the behaviors of SARS-CoV-2 and its Variants of Concern (VOC)-Alpha, Beta, Gamma, Delta, and Omicron-with the hACE2 protein. Protein structures from the Protein Data Bank (PDB) were aligned and trimmed for consistency using Chimera, focusing on the receptor-binding domain (RBD) responsible for ACE2 interaction. MD simulations were performed using Visual Molecular Dynamics (VMD) and Nanoscale Molecular Dynamics (NAMD2), and salt bridges and hydrogen bond data were extracted from the results of these simulations. The data extracted from the last 5 ns of the 10 ns simulations were visualized, providing insights into the comparative stability of each variant's interaction with ACE2. Moreover, electrostatics and hydrophobic protein surfaces were calculated, visualized, and analyzed. Our comprehensive computational results are helpful for drug discovery and future vaccine designs as they provide information regarding the vital amino acids in protein-protein interactions (PPIs). Our analysis reveals that the Original and Omicron variants are the two most structurally similar proteins. The Gamma variant forms the strongest interaction with hACE2 through hydrogen bonds, while Alpha and Delta form the most stable salt bridges; the Omicron is dominated by positive potential in the binding site, which makes it easy to attract the hACE2 receptor; meanwhile, the Original, Beta, Delta, and Omicron variants show varying levels of interaction stability through both hydrogen bonds and salt bridges, indicating that targeted therapeutic agents can disrupt these critical interactions to prevent SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jiawei Chen
- College of Computing, Data Science and Society, University of California, Berkeley, CA 94720, USA;
| | - Lingtao Chen
- College of Computing and Software Engineering, Kennesaw State University, Marietta, GA 30060, USA; (L.C.); (Y.X.); (Q.L.); (M.V.)
| | - Heng Quan
- Department of Civil and Urban Engineering, New York University, Brooklyn, NY 10012, USA;
| | - Soongoo Lee
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA;
| | - Kaniz Fatama Khan
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA 30144, USA;
| | - Ying Xie
- College of Computing and Software Engineering, Kennesaw State University, Marietta, GA 30060, USA; (L.C.); (Y.X.); (Q.L.); (M.V.)
| | - Qiaomu Li
- College of Computing and Software Engineering, Kennesaw State University, Marietta, GA 30060, USA; (L.C.); (Y.X.); (Q.L.); (M.V.)
| | - Maria Valero
- College of Computing and Software Engineering, Kennesaw State University, Marietta, GA 30060, USA; (L.C.); (Y.X.); (Q.L.); (M.V.)
| | - Zhiyu Dai
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA;
| | - Yixin Xie
- College of Computing and Software Engineering, Kennesaw State University, Marietta, GA 30060, USA; (L.C.); (Y.X.); (Q.L.); (M.V.)
| |
Collapse
|
8
|
Méndez-Zamora A, Diaz-Vidal T, Robles-Machuca M, Pereira-Santana A, Casas-Godoy L. Unveiling potential PET degrading eukaryotes through in silico bioprospecting of PETases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174978. [PMID: 39047840 DOI: 10.1016/j.scitotenv.2024.174978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/05/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
This study addresses the environmental problem of PET plastic through in silico bioprospecting for the identification and experimental validation of novel PET degrading eukaryotes through the in silico bioprospectingI of PETases, employing a methodology that combines Hidden Markov Models (HMMs), clustering techniques, molecular docking, and dynamic simulations. A total of 424 putative PETase sequences were identified from 219 eukaryotic organisms, highlighting six sequences with low affinity energies. The Aspergillus luchuensis sequence showed the lowest Gibbs free energy and exhibited stability at different temperatures in molecular dynamics assays. Experimental validation, through a plate clearance assay and HPLC, confirmed PETase activity in three wild-type fungal strains, with A. luchuensis showing the highest efficiency. The results obtained demonstrate the effectiveness of combining computational and experimental approaches as proof of concept to discover and validate eukaryotes with PET-degrading capabilities opening new perspectives for the sustainable management of this type of waste and contributing to its environmental mitigation.
Collapse
Affiliation(s)
- Andrés Méndez-Zamora
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Avenida Normalistas 800, Col. Colinas de la Normal, C.P. 44270 Guadalajara, Jalisco, Mexico
| | - Tania Diaz-Vidal
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Avenida Normalistas 800, Col. Colinas de la Normal, C.P. 44270 Guadalajara, Jalisco, Mexico
| | - Marcela Robles-Machuca
- Tecnologia de alimentos, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n, C.P. 63000 Tepic, Nayarit, Mexico
| | - Alejandro Pereira-Santana
- CONAHCYT-Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Parque Científico Tecnológico de Yucatán, 97302 Mérida, Yucatán, Mexico.
| | - Leticia Casas-Godoy
- CONAHCYT-Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Camino Arenero 1227, El Bajío, 45019 Zapopan, Jalisco, Mexico.
| |
Collapse
|
9
|
Banerjee S, Mitra M, Roy S. Study of changes in folding/unfolding properties and stability of Arabidopsis thaliana MYB12 transcription factor following UV-B exposure in vitro. Heliyon 2024; 10:e34189. [PMID: 39071576 PMCID: PMC11279800 DOI: 10.1016/j.heliyon.2024.e34189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 06/14/2024] [Accepted: 07/04/2024] [Indexed: 07/30/2024] Open
Abstract
Flavonoids mostly protect plant cells from the harmful effects of UV-B radiation from the sun. In plants, the R2R3-subfamily of the MYB transcription factor, MYB12, is a key inducer of the biosynthesis of flavonoids. Our study involves the biophysical characterization of Arabidopsis thaliana MYB12 protein (AtMYB12) under UV-B exposure in vitro. Tryptophan fluorescence studies using recombinant full-length AtMYB12 (native) and the N-terminal truncated versions (first N-terminal MYB domain absent in AtMYB12Δ1, and both the first and second N-terminal MYB domains absent in AtMYB12Δ2) have revealed prominent alteration in the tryptophan microenvironment in AtMYB12Δ1 and AtMYB12Δ2 protein as a result of UV-B exposure as compared with the native AtMYB12. Bis-ANS binding assay and urea-mediated denaturation profiling showed an appreciable change in the structural conformation in AtMYB12Δ1 and AtMYB12Δ2 proteins as compared with the native AtMYB12 protein following UV-B irradiation. UV-B-treated AtMYB12Δ2 showed a higher predisposition of aggregate formation in vitro. CD spectral analyses revealed a decrease in α-helix percentage with a concomitant increase in random coiled structure formation in AtMYB12Δ1 and AtMYB12Δ2 as compared to native AtMYB12 following UV-B treatment. Overall, these findings highlight the critical function of the N-terminal MYB domains in maintaining the stability and structural conformation of the AtMYB12 protein under UV-B stress in vitro.
Collapse
Affiliation(s)
- Samrat Banerjee
- Department of Botany, UGC Centre for Advance Study, The University of Burdwan, Golapbag Campus, Burdwan, 713104, West Bengal, India
| | | | - Sujit Roy
- Department of Botany, UGC Centre for Advance Study, The University of Burdwan, Golapbag Campus, Burdwan, 713104, West Bengal, India
| |
Collapse
|
10
|
Stroet M, Setz M, Lee T, Malde AK, van den Bergen G, Sykacek P, Oostenbrink C, Mark AE. On the Validation of Protein Force Fields Based on Structural Criteria. J Phys Chem B 2024; 128:4602-4620. [PMID: 38711373 PMCID: PMC11103706 DOI: 10.1021/acs.jpcb.3c08469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024]
Abstract
Molecular dynamics simulations depend critically on the quality of the force field used to describe the interatomic interactions and the extent to which it has been validated for use in a specific application. Using a curated test set of 52 high-resolution structures, 39 derived from X-ray diffraction and 13 solved using NMR, we consider the extent to which different parameter sets of the GROMOS protein force field can be distinguished based on comparing a range of structural criteria, including the number of backbone hydrogen bonds, the number of native hydrogen bonds, polar and nonpolar solvent-accessible surface area, radius of gyration, the prevalence of secondary structure elements, J-coupling constants, nuclear Overhauser effect (NOE) intensities, positional root-mean-square deviations (RMSD), and the distribution of backbone ϕ and ψ dihedral angles. It is shown that while statistically significant differences between the average values of individual metrics could be detected, these were in general small. Furthermore, improvements in agreement in one metric were often offset by loss of agreement in another. The work establishes a framework and test set against which protein force fields can be validated. It also highlights the danger of inferring the relative quality of a given force field based on a small range of structural properties or small number of proteins.
Collapse
Affiliation(s)
- Martin Stroet
- The
University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Martina Setz
- Institute
for Molecular Modeling and Simulation, Department of Material Science
and Process Engineering, University of Natural
Resources and Life Sciences, Vienna Muthgasse 18, 1190 Vienna, Austria
| | - Thomas Lee
- The
University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Alpeshkumar K. Malde
- Institute
for Glycomics and School of Environment and Science, Griffith University, Gold Coast, Queensland 4222, Australia
| | | | - Peter Sykacek
- Institute
of Computational Biology, Department of Biotechnology, University of Natural Resources and Life Sciences,
Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Chris Oostenbrink
- Institute
for Molecular Modeling and Simulation, Department of Material Science
and Process Engineering, University of Natural
Resources and Life Sciences, Vienna Muthgasse 18, 1190 Vienna, Austria
- Christian
Doppler Laboratory for Molecular Informatics in the Biosciences, University of Natural Resources and Life Sciences,
Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Alan E. Mark
- The
University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
11
|
Saikia B, Baruah A. In silico design of misfolding resistant proteins: the role of structural similarity of a competing conformational ensemble in the optimization of frustration. SOFT MATTER 2024; 20:3283-3298. [PMID: 38529658 DOI: 10.1039/d4sm00171k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Most state-of-the-art in silico design methods fail due to misfolding of designed sequences to a conformation other than the target. Thus, a method to design misfolding resistant proteins will provide a better understanding of the misfolding phenomenon and will also increase the success rate of in silico design methods. In this work, we optimize the conformational ensemble to be selected for negative design purposes based on the similarity of the conformational ensemble to the target. Five ensembles with different degrees of similarity to the target are created and destabilized and the target is stabilized while designing sequences using mean field theory and Monte Carlo simulation methods. The results suggest that the degree of similarity of the non-native conformations to the target plays a prominent role in designing misfolding resistant protein sequences. The design procedures that destabilize the conformational ensemble with moderate similarity to the target have proven to be more promising. Incorporation of either highly similar or highly dissimilar conformations to the target conformation into the non-native ensemble to be destabilized may lead to sequences with a higher misfolding propensity. This will significantly reduce the conformational space to be considered in any protein design procedure. Interestingly, the results suggest that a sequence with higher frustration in the target structure does not necessarily lead to a misfold prone sequence. A successful design method may purposefully choose a frustrated sequence in the target conformation if that sequence is even more frustrated in the competing non-native conformations.
Collapse
Affiliation(s)
- Bondeepa Saikia
- Department of Chemistry, Dibrugarh University, Dibrugarh 786004, India.
| | - Anupaul Baruah
- Department of Chemistry, Dibrugarh University, Dibrugarh 786004, India.
| |
Collapse
|
12
|
Kjeldsen T, Andersen AS, Hubálek F, Johansson E, Kreiner FF, Schluckebier G, Kurtzhals P. Molecular engineering of insulin for recombinant expression in yeast. Trends Biotechnol 2024; 42:464-478. [PMID: 37880066 DOI: 10.1016/j.tibtech.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023]
Abstract
Since the first administration of insulin to a person with diabetes in 1922, scientific contributions from academia and industry have improved insulin therapy and access. The pharmaceutical need for insulin is now more than 40 tons annually, half of which is produced by recombinant secretory expression in Saccharomyces cerevisiae. We discuss how, in this yeast species, adaptation of insulin precursors by removable structural elements is pivotal for efficient secretory expression. The technologies reviewed have been implemented at industrial scale and are seminal for the supply of human insulin and insulin analogues to people with diabetes now and in the future. Engineering of a target protein with removable structural elements may provide a general approach to yield optimisation.
Collapse
|
13
|
Ansari NK, Rais A, Naeem A. Methotrexate for Drug Repurposing as an Anti-Aggregatory Agent to Mercuric Treated α-Chymotrypsinogen-A. Protein J 2024; 43:362-374. [PMID: 38431536 DOI: 10.1007/s10930-024-10187-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
Protein aggregation is related to numerous pathological conditions like Alzheimer's and Parkinson's disease. In our study, we have shown that an already existing FDA-approved drug; methotrexate (MTX) can be reprofiled on preformed α-chymotrypsinogen A (α-Cgn A) aggregates. The zymogen showed formation of aggregates upon interaction with mercuric ions, with increasing concentration of Hg2Cl2 (0-150 µM). The hike in ThT and ANS fluorescence concomitant with blue shift, bathochromic shift and the hyperchromic effect in the CR absorbance, RLS and turbidity measurements, substantiate the zymogen β-rich aggregate formation. The secondary structural alterations of α- Cgn A as analyzed by CD measurements, FTIR and Raman spectra showed the transformation of native β-barrel conformation to β-inter-molecular rich aggregates. The native α- Cgn A have about 30% α-helical content which was found to be about 3% in presence of mercuric ions suggesting the formation of aggregates. The amorphous aggregates were visualized by SEM. On incubation of Hg2Cl2 treated α- Cgn A with increasing concentration of the MTX resulted in reversing aggregates to the native-like structure. These results were supported by remarkable decrease in ThT and ANS fluorescence intensities and CR absorbance and also consistent with CD, FTIR, and Raman spectroscopy data. MTX was found to increase the α-helical content of the zymogen from 3 to 15% proposing that drug is efficient in disrupting the β-inter-molecular rich aggregates and reverting it to native like structure. The SEM images are in accordance with CD data showing the disintegration of aggregates. The most effective concentration of the drug was found to be 120 µM. Molecular docking analysis showed that MTX molecule was surrounded by the hydrophobic residues including Phe39, His40, Arg145, Tyr146, Thr151, Gly193, Ser195, and Gly216 and conventional hydrogen bonds, including Gln73 (bond length: 2.67Å), Gly142 (2.59Å), Thr144 (2.81Å), Asn150 (2.73Å), Asp153 (2.71Å), and Cys191 (2.53Å). This investigation will help to find the use of already existing drugs to cure protein misfolding-related abnormalities.
Collapse
Affiliation(s)
- Neha Kausar Ansari
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, U.P, 202002, India
| | - Amaan Rais
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, U.P, 202002, India
| | - Aabgeena Naeem
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, U.P, 202002, India.
| |
Collapse
|
14
|
Lamers SL, Fogel GB, Liu ES, Nolan DJ, Rose R, McGrath MS. HIV-1 subtypes maintain distinctive physicochemical signatures in Nef domains associated with immunoregulation. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 115:105514. [PMID: 37832752 PMCID: PMC10842591 DOI: 10.1016/j.meegid.2023.105514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND HIV subtype is associated with varied rates of disease progression. The HIV accessory protein, Nef, continues to be present during antiretroviral therapy (ART) where it has numerous immunoregulatory effects. In this study, we analyzed Nef sequences from HIV subtypes A1, B, C, and D using a machine learning approach that integrates functional amino acid information to identify if unique physicochemical features are associated with Nef functional/structural domains in a subtype-specific manner. METHODS 2253 sequences representing subtypes A1, B, C, and D were aligned and domains with known functional properties were scored based on amino acid physicochemical properties. Following feature generation, we used statistical pruning and evolved neural networks (ENNs) to determine if we could successfully classify subtypes. Next, we used ENNs to identify the top five key Nef physicochemical features applied to specific immunoregulatory domains that differentiated subtypes. A signature pattern analysis was performed to the assess amino acid diversity in sub-domains that differentiated each subtype. RESULTS In validation studies, ENNs successfully differentiated each subtype at A1 (87.2%), subtype B (89.5%), subtype C (91.7%), and subtype D (85.1%). Our feature-based domain scoring, followed by t-tests, and a similar ENN identified subtype-specific domain-associated features. Subtype A1 was associated with alterations in Nef CD4 binding domain; subtype B was associated with alterations with the AP-2 Binding domain; subtype C was associated with alterations in a structural Alpha Helix domain; and, subtype D was associated with alterations in a Beta-Sheet domain. CONCLUSIONS Recent studies have focused on HIV Nef as a driver of immunoregulatory disease in those HIV infected and on ART. Nef acts through a complex mixture of interactions that are directly linked to the key features of the subtype-specific domains we identified with the ENN. The study supports the hypothesis that varied Nef subtypes contribute to subtype-specific disease progression.
Collapse
Affiliation(s)
| | | | - Enoch S Liu
- Natural Selection, San Diego, California, USA
| | | | | | | |
Collapse
|
15
|
Tan JH, Ding HX, Fong MY, Lau YL. Genetic diversity and in silico analysis of Plasmodium knowlesi Serine Repeat Antigen (SERA) 3 antigen 2 in Malaysia. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 114:105490. [PMID: 37595939 DOI: 10.1016/j.meegid.2023.105490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/29/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Plasmodium knowlesi is the leading cause of malaria in Malaysia. Serine Repeat Antigens (SERAs) have an essential role in the parasite life cycle. However, genetic characterization on P. knowlesi SERA3 Ag2 (PkSERA3 Ag2) is lacking. In the present study, nucleotide diversity, natural selection, and haplotypes of PkSERA3 Ag2 in clinical samples from Peninsular Malaysia and Malaysian Borneo were investigated. A total of 50 P. knowlesi clinical samples were collected from Peninsular Malaysia and Malaysian Borneo. The PkSERA3 Ag2 gene was amplified using PCR, and subsequently cloned and sequenced. Genetic diversity, haplotype, natural selection as well as genetic structure and differentiation of PkSERA3 Ag2 were analysed. In addition, in silico analyses were performed to identify repeat motifs, B-cell epitopes, and antigenicity indices of the protein. Analysis of 114 PkSERA3 Ag2 sequences revealed high nucleotide diversity of the gene in Malaysia. A codon-based Z-test indicated that the gene underwent purifying selection. Haplotype and population structure analyses identified two distinct PkSERA3 Ag2 clusters (K = 2, ΔK = 721.14) but no clear genetic distinction between PkSERA3 Ag2 from Peninsular Malaysia and Malaysian Borneo. FST index indicated moderate differentiation of the gene. In silico analyses revealed unique repeat motifs among PkSERA3 Ag2 isolates. Moreover, the amino acid sequence of PkSERA3 Ag2 exhibited potential B-cell epitopes and possessed high antigenicity indices. These findings enhance the understanding of PkSERA3 Ag2 gene as well as its antigenic properties. Further validation is necessary to ascertain the utility of PkSERA3 Ag2 as a serological marker for P. knowlesi infection.
Collapse
Affiliation(s)
- Jia Hui Tan
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hans Xing Ding
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mun Yik Fong
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yee Ling Lau
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
16
|
Malawska KJ, Takano S, Oisaki K, Yanagisawa H, Kikkawa M, Tsukuda T, Kanai M. Bioconjugation of Au 25 Nanocluster to Monoclonal Antibody at Tryptophan. Bioconjug Chem 2023. [PMID: 36893358 DOI: 10.1021/acs.bioconjchem.3c00069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
We report the first bioconjugation of Au25 nanocluster to a monoclonal antibody at scarcely exposed tryptophan (Trp) residues toward the development of high-resolution probes for cryogenic electron microscopy (cryo-EM) and tomography (cryo-ET). To achieve this, we improved the Trp-selective bioconjugation using hydroxylamine (ABNOH) reagents instead of previously developed N-oxyl radicals (ABNO). This new protocol allowed for the application of Trp-selective bioconjugation to acid-sensitive proteins such as antibodies. We found that a two-step procedure utilizing first Trp-selective bioconjugation for the introduction of azide groups to the protein and then strain-promoted azide-alkyne cycloaddition (SPAAC) to attach a bicyclononyne (BCN)-presenting redox-sensitive Au25 nanocluster was essential for a scalable procedure. Covalent labeling of the antibody with gold nanoclusters was confirmed by various analytical methods, including cryo-EM analysis of the Au25 nanocluster conjugates.
Collapse
Affiliation(s)
- Katarzyna Joanna Malawska
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shinjiro Takano
- Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kounosuke Oisaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Haruaki Yanagisawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masahide Kikkawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tatsuya Tsukuda
- Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
17
|
Azizogli AR, Pai V, Coppola F, Jafari R, Dodd-o JB, Harish R, Balasubramanian B, Kashyap J, Acevedo-Jake AM, Král P, Kumar VA. Scalable Inhibitors of the Nsp3-Nsp4 Coupling in SARS-CoV-2. ACS OMEGA 2023; 8:5349-5360. [PMID: 36798146 PMCID: PMC9923439 DOI: 10.1021/acsomega.2c06384] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/29/2022] [Indexed: 06/18/2023]
Abstract
The human Betacoronavirus SARS-CoV-2 is a novel pathogen claiming millions of lives and causing a global pandemic that has disrupted international healthcare systems, economies, and communities. The virus is fast mutating and presenting more infectious but less lethal versions. Currently, some small-molecule therapeutics have received FDA emergency use authorization for the treatment of COVID-19, including Lagevrio (molnupiravir) and Paxlovid (nirmaltrevir/ritonavir), which target the RNA-dependent RNA polymerase and the 3CLpro main protease, respectively. Proteins downstream in the viral replication process, specifically the nonstructural proteins (Nsps1-16), are potential drug targets due to their crucial functions. Of these Nsps, Nsp4 is a particularly promising drug target due to its involvement in the SARS-CoV viral replication and double-membrane vesicle formation (mediated via interaction with Nsp3). Given the degree of sequence conservation of these two Nsps across the Betacoronavirus clade, their protein-protein interactions and functions are likely to be conserved as well in SARS-CoV-2. Through AlphaFold2 and its recent advancements, protein structures were generated of Nsp3 and 4 lumenal loops of interest. Then, using a combination of molecular docking suites and an existing library of lead-like compounds, we virtually screened 7 million ligands to identify five putative ligand inhibitors of Nsp4, which could present an alternative pharmaceutical approach against SARS-CoV-2. These ligands exhibit promising lead-like properties (ideal molecular weight and log P profiles), maintain fixed-Nsp4-ligand complexes in molecular dynamics (MD) simulations, and tightly associate with Nsp4 via hydrophobic interactions. Additionally, alternative peptide inhibitors based on Nsp3 were designed and shown in MD simulations to provide a highly stable binding to the Nsp4 protein. Finally, these therapeutics were attached to dendrimer structures to promote their multivalent binding with Nsp4, especially its large flexible luminal loop (Nsp4LLL). The therapeutics tested in this study represent many different approaches for targeting large flexible protein structures, especially those localized to the ER. This study is the first work targeting the membrane rearrangement system of viruses and will serve as a potential avenue for treating viruses with similar replicative function.
Collapse
Affiliation(s)
- Abdul-Rahman Azizogli
- Department
of Biological Sciences, New Jersey Institute
of Technology, Newark, New Jersey 07102, United States
| | - Varun Pai
- Department
of Biological Sciences, New Jersey Institute
of Technology, Newark, New Jersey 07102, United States
| | - Francesco Coppola
- Department
of Chemistry, University of Illinois at
Chicago, Chicago, Illinois 60607, United States
| | - Roya Jafari
- Department
of Chemistry, University of Illinois at
Chicago, Chicago, Illinois 60607, United States
| | - Joseph B. Dodd-o
- Department
of Biomedical Engineering, New Jersey Institute
of Technology, Newark, New Jersey 07102, United States
| | - Rohan Harish
- Department
of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Bhavani Balasubramanian
- Department
of Chemistry and Environmental Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Jatin Kashyap
- Department
of Biomedical Engineering, New Jersey Institute
of Technology, Newark, New Jersey 07102, United States
| | - Amanda M. Acevedo-Jake
- Department
of Biomedical Engineering, New Jersey Institute
of Technology, Newark, New Jersey 07102, United States
| | - Petr Král
- Department
of Chemistry, University of Illinois at
Chicago, Chicago, Illinois 60607, United States
- Departments
of Physics, Pharmaceutical Sciences, and Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Vivek A. Kumar
- Department
of Biological Sciences, New Jersey Institute
of Technology, Newark, New Jersey 07102, United States
- Department
of Biomedical Engineering, New Jersey Institute
of Technology, Newark, New Jersey 07102, United States
- Department
of Chemical and Materials Engineering, New
Jersey Institute of Technology, Newark, New Jersey 07102, United States
- Department
of Endodontics, Rutgers School of Dental
Medicine, Newark, New Jersey 07103, United States
| |
Collapse
|
18
|
On the electrochemical oxidation of methionine residues of proteins. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
19
|
Fischer NH, Oliveira MT, Diness F. Chemical modification of proteins - challenges and trends at the start of the 2020s. Biomater Sci 2023; 11:719-748. [PMID: 36519403 DOI: 10.1039/d2bm01237e] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ribosomally expressed proteins perform multiple, versatile, and specialized tasks throughout Nature. In modern times, chemically modified proteins, including improved hormones, enzymes, and antibody-drug-conjugates have become available and have found advanced industrial and pharmaceutical applications. Chemical modification of proteins is used to introduce new functionalities, improve stability or drugability. Undertaking chemical reactions with proteins without compromising their native function is still a core challenge as proteins are large conformation dependent multifunctional molecules. Methods for functionalization ideally should be chemo-selective, site-selective, and undertaken under biocompatible conditions in aqueous buffer to prevent denaturation of the protein. Here the present challenges in the field are discussed and methods for modification of the 20 encoded amino acids as well as the N-/C-termini and protein backbone are presented. For each amino acid, common and traditional modification methods are presented first, followed by more recent ones.
Collapse
Affiliation(s)
- Niklas Henrik Fischer
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark. .,Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Maria Teresa Oliveira
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Frederik Diness
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark. .,Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| |
Collapse
|
20
|
Yang Y, Yu X, Wei P, Liu C, Chen Z, Li X, Liu X. Comparative chloroplast genome and transcriptome analysis on the ancient genus Isoetes from China. FRONTIERS IN PLANT SCIENCE 2022; 13:924559. [PMID: 35968088 PMCID: PMC9372280 DOI: 10.3389/fpls.2022.924559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Isoetes is a famous living fossil that plays a significant role in the evolutionary studies of the plant kingdom. To explore the adaptive evolution of the ancient genus Isoetes from China, we focused on Isoetes yunguiensis (Q.F. Wang and W.C. Taylor), I. shangrilaensis (X. Li, Y.Q. Huang, X.K. Dai & X. Liu), I. taiwanensis (DeVol), I. sinensis (T.C. Palmer), I. hypsophila_GHC (Handel-Mazzetti), and I. hypsophila_HZS in this study. We sequenced, assembled, and annotated six individuals' chloroplast genomes and transcriptomes, and performed a series of analyses to investigate their chloroplast genome structures, RNA editing events, and adaptive evolution. The six chloroplast genomes of Isoetes exhibited a typical quadripartite structure with conserved genome sequence and structure. Comparative analyses of Isoetes species demonstrated that the gene organization, genome size, and GC contents of the chloroplast genome are highly conserved across the genus. Besides, our positive selection analyses suggested that one positively selected gene was statistically supported in Isoetes chloroplast genomes using the likelihood ratio test (LRT) based on branch-site models. Moreover, we detected positive selection signals using transcriptome data, suggesting that nuclear-encoded genes involved in the adaption of Isoetes species to the extreme environment of the Qinghai-Tibetan Plateau (QTP). In addition, we identified 291-579 RNA editing sites in the chloroplast genomes of six Isoetes based on transcriptome data, well above the average of angiosperms. RNA editing in protein-coding transcripts results from amino acid changes to increase their hydrophobicity and conservation in Isoetes, which may help proteins form functional three-dimensional structure. Overall, the results of this study provide comprehensive transcriptome and chloroplast genome resources and contribute to a better understanding of adaptive evolutionary and molecular biology in Isoetes.
Collapse
Affiliation(s)
- Yujiao Yang
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaolei Yu
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Pei Wei
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chenlai Liu
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhuyifu Chen
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaoyan Li
- Biology Experimental Teaching Center, School of Life Science, Wuhan University, Wuhan, China
| | - Xing Liu
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
21
|
Rawashdeh O, Rawashdeh RY, Kebede T, Kapp D, Ralescu A. Bio-informatic analysis of CRISPR protospacer adjacent motifs (PAMs) in T4 genome. BMC Genom Data 2022; 23:40. [PMID: 35655130 PMCID: PMC9161530 DOI: 10.1186/s12863-022-01056-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The existence of protospacer adjacent motifs (PAMs) sequences in bacteriophage genome is critical for the recognition and function of the clustered regularly interspaced short palindromic repeats-Cas (CRISPR-Cas) machinery system. We further elucidate the significance of PAMs and their function, particularly as a part of transcriptional regulatory regions in T4 bacteriophages. METHODS A scripting language was used to analyze a sequence of T4 phage genome, and a list of few selected PAMs. Mann-Whitney Wilcoxon (MWW) test was used to compare the sequence hits for the PAMs versus the hits of all the possible sequences of equal lengths. RESULTS The results of MWW test show that certain PAMs such as: 'NGG' and 'TATA' are preferably located at the core of phage promoters: around -10 position, whereas the position around -35 appears to have no detectable count variation of any of the tested PAMs. Among all tested PAMs, the following three sequences: 5'-GCTV-3', 5'-TTGAAT-3' and 5'-TTGGGT-3' have higher prevalence in essential genes. By analyzing all the possible ways of reading PAM sequences as codons for the corresponding amino acids, it was found that deduced amino acids of some PAMs have a significant tendency to prefer the surface of proteins. CONCLUSION These results provide novel insights into the location and the subsequent identification of the role of PAMs as transcriptional regulatory elements. Also, CRISPR targeting certain PAM sequences is somehow likely to be connected to the hydrophilicity (water solubility) of amino acids translated from PAM's triplets. Therefore, these amino acids are found at the interacting unit at protein-protein interfaces.
Collapse
Affiliation(s)
- Omar Rawashdeh
- Department of Electrical Engineering and Computer Sciences, University of Cincinnati, Cincinnati, OH 45221 USA
| | - Rabeah Y. Rawashdeh
- Department of Biological Sciences, Yarmouk University, Shafiq Irshidat Street, Irbid, 21163 Jordan
| | | | | | - Anca Ralescu
- Department of Electrical Engineering and Computer Sciences, University of Cincinnati, Cincinnati, OH 45221 USA
| |
Collapse
|
22
|
Ferenczy GG, Kellermayer M. Contribution of Hydrophobic Interactions to Protein Mechanical Stability. Comput Struct Biotechnol J 2022; 20:1946-1956. [PMID: 35521554 PMCID: PMC9062142 DOI: 10.1016/j.csbj.2022.04.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/07/2022] [Accepted: 04/17/2022] [Indexed: 11/26/2022] Open
Abstract
The role of hydrophobic and polar interactions in providing thermodynamic stability to folded proteins has been intensively studied, but the relative contribution of these interactions to the mechanical stability is less explored. We used steered molecular dynamics simulations with constant-velocity pulling to generate force-extension curves of selected protein domains and monitor hydrophobic surface unravelling upon extension. Hydrophobic contribution was found to vary between one fifth and one third of the total force while the rest of the contribution is attributed primarily to hydrogen bonds. Moreover, hydrophobic force peaks were shifted towards larger protein extensions with respect to the force peaks attributed to hydrogen bonds. The higher importance of hydrogen bonds compared to hydrophobic interactions in providing mechanical resistance is in contrast with the relative importance of the hydrophobic interactions in providing thermodynamic stability of proteins. The different contributions of these interactions to the mechanical stability are explained by the steeper free energy dependence of hydrogen bonds compared to hydrophobic interactions on the relative positions of interacting atoms. Comparative analyses for several protein domains revealed that the variation of hydrophobic forces is modest, while the contribution of hydrogen bonds to the force peaks becomes increasingly important for mechanically resistant protein domains.
Collapse
|
23
|
Tolbatov I, Marrone A. Reaction of dirhodium and diruthenium paddlewheel tetraacetate complexes with nucleophilic protein sites: A computational study. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120684] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
Heads JT, Kelm S, Tyson K, Lawson ADG. A computational method for predicting the aggregation propensity of IgG1 and IgG4(P) mAbs in common storage buffers. MAbs 2022; 14:2138092. [PMID: 36418193 PMCID: PMC9704409 DOI: 10.1080/19420862.2022.2138092] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The propensity for some monoclonal antibodies (mAbs) to aggregate at physiological and manufacturing pH values can prevent their use as therapeutic molecules or delay time to market. Consequently, developability assessments are essential to select optimum candidates, or inform on mitigation strategies to avoid potential late-stage failures. These studies are typically performed in a range of buffer solutions because factors such as pH can dramatically alter the aggregation propensity of the test mAbs (up to 100-fold in extreme cases). A computational method capable of robustly predicting the aggregation propensity at the pH values of common storage buffers would have substantial value. Here, we describe a mAb aggregation prediction tool (MAPT) that builds on our previously published isotype-dependent, charge-based model of aggregation. We show that the addition of a homology model-derived hydrophobicity descriptor to our electrostatic aggregation model enabled the generation of a robust mAb developability indicator. To contextualize our aggregation scoring system, we analyzed 97 clinical-stage therapeutic mAbs. To further validate our approach, we focused on six mAbs (infliximab, tocilizumab, rituximab, CNTO607, MEDI1912 and MEDI1912_STT) which have been reported to cover a large range of aggregation propensities. The different aggregation propensities of the case study molecules at neutral and slightly acidic pH were correctly predicted, verifying the utility of our computational method.
Collapse
Affiliation(s)
- James T. Heads
- UCB Pharma, 208 Bath Road, SloughSL1 3WE, UK,CONTACT James T. Heads UCB Pharma, 208 Bath Road, SloughSL1 3WE, UK
| | | | - Kerry Tyson
- UCB Pharma, 208 Bath Road, SloughSL1 3WE, UK
| | | |
Collapse
|
25
|
Giri P, Pagar AD, Patil MD, Yun H. Chemical modification of enzymes to improve biocatalytic performance. Biotechnol Adv 2021; 53:107868. [PMID: 34774927 DOI: 10.1016/j.biotechadv.2021.107868] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 12/23/2022]
Abstract
Improvement in intrinsic enzymatic features is in many instances a prerequisite for the scalable applicability of many industrially important biocatalysts. To this end, various strategies of chemical modification of enzymes are maturing and now considered as a distinct way to improve biocatalytic properties. Traditional chemical modification methods utilize reactivities of amine, carboxylic, thiol and other side chains originating from canonical amino acids. On the other hand, noncanonical amino acid- mediated 'click' (bioorthogoal) chemistry and dehydroalanine (Dha)-mediated modifications have emerged as an alternate and promising ways to modify enzymes for functional enhancement. This review discusses the applications of various chemical modification tools that have been directed towards the improvement of functional properties and/or stability of diverse array of biocatalysts.
Collapse
Affiliation(s)
- Pritam Giri
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Amol D Pagar
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Mahesh D Patil
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81, PO Manauli, S.A.S. Nagar, Mohali 140306, Punjab, India
| | - Hyungdon Yun
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
26
|
Dissection of the amyloid formation pathway in AL amyloidosis. Nat Commun 2021; 12:6516. [PMID: 34764275 PMCID: PMC8585945 DOI: 10.1038/s41467-021-26845-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 10/25/2021] [Indexed: 11/18/2022] Open
Abstract
In antibody light chain (AL) amyloidosis, overproduced light chain (LC) fragments accumulate as fibrils in organs and tissues of patients. In vitro, AL fibril formation is a slow process, characterized by a pronounced lag phase. The events occurring during this lag phase are largely unknown. We have dissected the lag phase of a patient-derived LC truncation and identified structural transitions that precede fibril formation. The process starts with partial unfolding of the VL domain and the formation of small amounts of dimers. This is a prerequisite for the formation of an ensemble of oligomers, which are the precursors of fibrils. During oligomerization, the hydrophobic core of the LC domain rearranges which leads to changes in solvent accessibility and rigidity. Structural transitions from an anti-parallel to a parallel β-sheet secondary structure occur in the oligomers prior to amyloid formation. Together, our results reveal a rate-limiting multi-step mechanism of structural transitions prior to fibril formation in AL amyloidosis, which offers, in the long run, opportunities for therapeutic intervention. AL amyloidosis is caused by the accumulation of overproduced light chain (LC) fragments as fibrils in patient organs and it is the most prevalent systemic amyloidosis. Here, the authors combine biochemical and biophysical experiments to characterise the lag phase of a patient-derived truncated LC and they identify structural transitions that precede fibril formation.
Collapse
|
27
|
|
28
|
Shevkani K, Kaur M, Singh N. Composition, pasting, functional, and microstructural properties of flours from different split dehulled pulses (
dhals
). J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Khetan Shevkani
- Department of Applied Agriculture Central University of Punjab Bathinda151401India
| | - Manmeet Kaur
- Department of Food Science and Technology Guru Nanak Dev University Amritsar143005India
| | - Narpinder Singh
- Department of Food Science and Technology Guru Nanak Dev University Amritsar143005India
| |
Collapse
|
29
|
Simões AM, Venâncio C, Alves L, Antunes FE, Lopes I. Hydrophobic modifications of hydroxyethyl cellulose polymers: Their influence on the acute toxicity to aquatic biota. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124966. [PMID: 33418294 DOI: 10.1016/j.jhazmat.2020.124966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
The hydrophobic substitution (HS) of cationic cellulose derivatives may be tuned, promoting their efficiency. This work studied the influence of HS on the acute ecotoxicity of quaternized hydroxyethyl cellulose polymers (SL) to aquatic biota. The ecotoxicity of four SL with different HS (SL-5, SL-30, SL-60, SL-100) was assessed for seven species: Vibrio fischeri, Raphidocelis subcapitata, Chlorella vulgaris, Daphnia magna, Brachionus calyciflorus, Heterocypris incongruens, and Danio rerio. The computed median effective concentrations were used to derive hazard concentrations, by using species sensitive distribution curves. All SL suspensions were characterized for particle size, zeta potential and rheological properties. Results indicated instability of the SL in suspension due to their relatively low zeta potential. Raphidocelis subcapitata, C. vulgaris and B. calyciflorus were the most sensitive to the four SL, suggesting that exposure to these compounds may imbalance the lowest trophic levels. Also, HS influenced the toxicity of SL, with the lowest HS (SL-5) revealing lower ecotoxicity. The maximum acceptable concentrations were 14.0, 2.9, 3.9 and 1.4 mg L-1 for SL-5, SL-30, SL-60, and SL-100, respectively. Accordingly, SL-5 is suggested as the eco-friendliest and is recommended to be used in the production of care products, in detriment of the other three tested variants.
Collapse
Affiliation(s)
- Anabela M Simões
- CESAM & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; CQC, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - C Venâncio
- University of Coimbra, Centre for Functional Ecology, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Luís Alves
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II, PT, 3030-790 Coimbra, Portugal
| | - Filipe E Antunes
- CQC, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Isabel Lopes
- CESAM & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
30
|
Pagar AD, Patil MD, Flood DT, Yoo TH, Dawson PE, Yun H. Recent Advances in Biocatalysis with Chemical Modification and Expanded Amino Acid Alphabet. Chem Rev 2021; 121:6173-6245. [PMID: 33886302 DOI: 10.1021/acs.chemrev.0c01201] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The two main strategies for enzyme engineering, directed evolution and rational design, have found widespread applications in improving the intrinsic activities of proteins. Although numerous advances have been achieved using these ground-breaking methods, the limited chemical diversity of the biopolymers, restricted to the 20 canonical amino acids, hampers creation of novel enzymes that Nature has never made thus far. To address this, much research has been devoted to expanding the protein sequence space via chemical modifications and/or incorporation of noncanonical amino acids (ncAAs). This review provides a balanced discussion and critical evaluation of the applications, recent advances, and technical breakthroughs in biocatalysis for three approaches: (i) chemical modification of cAAs, (ii) incorporation of ncAAs, and (iii) chemical modification of incorporated ncAAs. Furthermore, the applications of these approaches and the result on the functional properties and mechanistic study of the enzymes are extensively reviewed. We also discuss the design of artificial enzymes and directed evolution strategies for enzymes with ncAAs incorporated. Finally, we discuss the current challenges and future perspectives for biocatalysis using the expanded amino acid alphabet.
Collapse
Affiliation(s)
- Amol D Pagar
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Mahesh D Patil
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Dillon T Flood
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon 16499, Korea
| | - Philip E Dawson
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Hyungdon Yun
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| |
Collapse
|
31
|
Robson B. Techniques assisting peptide vaccine and peptidomimetic design. Sidechain exposure in the SARS-CoV-2 spike glycoprotein. Comput Biol Med 2020; 128:104124. [PMID: 33276271 PMCID: PMC7679524 DOI: 10.1016/j.compbiomed.2020.104124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 01/15/2023]
Abstract
The aim of the present study is to discuss the design of peptide vaccines and peptidomimetics against SARS-COV-2, to develop and apply a method of protein structure analysis that is particularly appropriate to applying and discussing such design, and also to use that method to summarize some important features of the SARS-COV-2 spike protein sequence. A tool for assessing sidechain exposure in the SARS-CoV-2 spike glycoprotein is described. It extends to assessing accessibility of sidechains by considering several different three-dimensional structure determinations of SARS-CoV-2 and SARS-CoV-1 spike protein. The method is designed to be insensitive to a distance limit for counting neighboring atoms and the results are in good agreement with the physical chemical properties and exposure trends of the 20 naturally occurring sidechains. The spike protein sequence is analyzed with comment regarding exposable character. It includes studies of complexes with antibody elements and ACE2. These indicate changes in exposure at sites remote to those at which the antibody binds. They are of interest concerning design of synthetic peptide vaccines, and for peptidomimetics as a basis of drug discovery. The method was also developed in order to provide linear (one-dimensional) information that can be used along with other bioinformatics data of this kind in data mining and machine learning, potentially as genomic data regarding protein polymorphisms to be combined with more traditional clinical data. Bioinformatics studies are carried out on SARS-CoV-2 spike, studying solvent exposure. The methods are particularly suited for synthetic vaccines and d-amino acid peptidomimetics. Methods of generating d-amino acid peptidomimetics are described and reviewed. The effect of antibody binding in stabilizing loop conformation and exposing remote sites is noted.
Collapse
Affiliation(s)
- B Robson
- Ingine Inc. Cleveland Ohio USA and the Dirac Foundation, Oxfordshire, UK.
| |
Collapse
|
32
|
|
33
|
Rahimidashaghoul K, Klimánková I, Hubálek M, Matoušek V, Filgas J, Slavíček P, Slanina T, Beier P. Visible‐Light‐Driven Fluoroalkylation of Tryptophan Residues in Peptides. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Kheironnesae Rahimidashaghoul
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo náměstí 2 166 10 Prague 6 Czech Republic
- Department of Organic Chemistry, Faculty of Science Charles University Hlavova 2030/8 128 43 Prague Czech Republic
| | - Iveta Klimánková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo náměstí 2 166 10 Prague 6 Czech Republic
| | - Martin Hubálek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo náměstí 2 166 10 Prague 6 Czech Republic
| | - Václav Matoušek
- CF Plus Chemicals s.r.o., Karásek 1767/1 621 00 Brno Czech Republic
| | - Josef Filgas
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo náměstí 2 166 10 Prague 6 Czech Republic
- University of Chemistry and Technology Technická 5 160 00 Prague 6 Czech Republic
| | - Petr Slavíček
- University of Chemistry and Technology Technická 5 160 00 Prague 6 Czech Republic
| | - Tomáš Slanina
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo náměstí 2 166 10 Prague 6 Czech Republic
| | - Petr Beier
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo náměstí 2 166 10 Prague 6 Czech Republic
| |
Collapse
|
34
|
Mancini JA, Pike DH, Tyryshkin AM, Haramaty L, Wang MS, Poudel S, Hecht M, Nanda V. Design of a Fe 4 S 4 cluster into the core of a de novo four-helix bundle. Biotechnol Appl Biochem 2020; 67:574-585. [PMID: 32770861 DOI: 10.1002/bab.2003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022]
Abstract
We explore the capacity of the de novo protein, S824, to incorporate a multinuclear iron-sulfur cluster within the core of a single-chain four-helix bundle. This topology has a high intrinsic designability because sequences are constrained largely by the pattern of hydrophobic and hydrophilic amino acids, thereby allowing for the extensive substitution of individual side chains. Libraries of novel proteins based on these constraints have surprising functional potential and have been shown to complement the deletion of essential genes in E. coli. Our structure-based design of four first-shell cysteine ligands, one per helix, in S824 resulted in successful incorporation of a cubane Fe4 S4 cluster into the protein core. A number of challenges were encountered during the design and characterization process, including nonspecific metal-induced aggregation and the presence of competing metal-cluster stoichiometries. The introduction of buried iron-sulfur clusters into the helical bundle is an initial step toward converting libraries of designed structures into functional de novo proteins with catalytic or electron-transfer functionalities.
Collapse
Affiliation(s)
- Joshua A Mancini
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA.,Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School and the Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Douglas H Pike
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School and the Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Alexei M Tyryshkin
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Liti Haramaty
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Michael S Wang
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Saroj Poudel
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA.,Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School and the Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Michael Hecht
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Vikas Nanda
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School and the Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
35
|
Novel Apoptotic Mediators Identified by Conservation of Vertebrate Caspase Targets. Biomolecules 2020; 10:biom10040612. [PMID: 32326640 PMCID: PMC7225963 DOI: 10.3390/biom10040612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/08/2020] [Accepted: 04/13/2020] [Indexed: 12/27/2022] Open
Abstract
Caspases are proteases conserved throughout Metazoans and responsible for initiating and executing the apoptotic program. Currently, there are over 1800 known apoptotic caspase substrates, many of them known regulators of cell proliferation and death, which makes them attractive therapeutic targets. However, most caspase substrates are by-standers, and identifying novel apoptotic mediators amongst all caspase substrates remains an unmet need. Here, we conducted an in silico search for significant apoptotic caspase targets across different species within the Vertebrata subphylum, using different criteria of conservation combined with structural features of cleavage sites. We observed that P1 aspartate is highly conserved while the cleavage sites are extensively variable and found that cleavage sites are located primarily in coiled regions composed of hydrophilic amino acids. Using the combination of these criteria, we determined the final list of the 107 most relevant caspase substrates including 30 novel targets previously unknown for their role in apoptosis and cancer. These newly identified substrates can be potential regulators of apoptosis and candidates for anti-tumor therapy.
Collapse
|
36
|
Sato S, Matsumura M, Kadonosono T, Abe S, Ueno T, Ueda H, Nakamura H. Site-Selective Protein Chemical Modification of Exposed Tyrosine Residues Using Tyrosine Click Reaction. Bioconjug Chem 2020; 31:1417-1424. [PMID: 32223219 DOI: 10.1021/acs.bioconjchem.0c00120] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Targeting less abundant amino acid residues on the protein surface may realize site-selective protein modification of natural proteins. The relative hydrophobicity of tyrosine combined with the π-π stacking tendency of the aromatic rings results in generally low accessibility. In this study, site-selective protein modification was achieved by targeting surface-exposed tyrosine residues without using a genetic encoding system. Tyrosine residues were modified with N-methylated luminol derivative under single-electron transfer (SET) reaction conditions. Horseradish peroxidase (HRP)-catalyzed SET and electrochemically activated SET modified surface-exposed tyrosine residues selectively. N-Methylated luminol derivative modified tyrosine residues more efficiently than 4-arylurazole under tyrosine click conditions using HRP and electrochemistry. Tyrosine residues that are evolutionarily exposed only in the complementarity-determining region (CDR) of an antibody were selectively modified by tyrosine click reactions. CDR-modified antibodies were applied to in vivo imaging and antibody-drug conjugated (ADC).
Collapse
Affiliation(s)
- Shinichi Sato
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Masaki Matsumura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan.,School of Life Science and Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
| | - Tetsuya Kadonosono
- School of Life Science and Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
| | - Satoshi Abe
- School of Life Science and Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
| | - Takafumi Ueno
- School of Life Science and Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
37
|
Kazman P, Vielberg MT, Pulido Cendales MD, Hunziger L, Weber B, Hegenbart U, Zacharias M, Köhler R, Schönland S, Groll M, Buchner J. Fatal amyloid formation in a patient's antibody light chain is caused by a single point mutation. eLife 2020; 9:52300. [PMID: 32151314 PMCID: PMC7064341 DOI: 10.7554/elife.52300] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 02/06/2020] [Indexed: 11/29/2022] Open
Abstract
In systemic light chain amyloidosis, an overexpressed antibody light chain (LC) forms fibrils which deposit in organs and cause their failure. While it is well-established that mutations in the LC’s VL domain are important prerequisites, the mechanisms which render a patient LC amyloidogenic are ill-defined. In this study, we performed an in-depth analysis of the factors and mutations responsible for the pathogenic transformation of a patient-derived λ LC, by recombinantly expressing variants in E. coli. We show that proteolytic cleavage of the patient LC resulting in an isolated VL domain is essential for fibril formation. Out of 11 mutations in the patient VL, only one, a leucine to valine mutation, is responsible for fibril formation. It disrupts a hydrophobic network rendering the C-terminal segment of VL more dynamic and decreasing domain stability. Thus, the combination of proteolytic cleavage and the destabilizing mutation trigger conformational changes that turn the LC pathogenic. Amyloid light chain amyloidosis, shortened to AL amyloidosis, is a rare and often fatal disease. It is caused by a disorder of the bone marrow. Usually, cells in the bone marrow produce Y-shaped proteins called antibodies to fight infections. In AL amyloidosis, these cells release too much of the short arm of the antibody, known as its light chain, and the light chains also carry mutations. The antibodies are no longer able to assemble properly, and instead misfold and form structures, known as amyloid fibrils. The fibrils build up outside the cells, gradually causing damage to tissues and organs that can lead to life-threatening organ failure. Due to the rareness of the disease, diagnosis is often overlooked and delayed. People experience widely varying symptoms, depending on the organs affected. Also, given the diversity of antibodies people make, every person with AL amyloidosis has a variety of mutations implicated in their disease. It is thought that mutations in the antibody light chain make it unstable and prone to misfolding, but it remains unclear which specific mutations trigger a cascade of amyloid fibril formation. Now, Kazman et al. have pinpointed the exact mechanism in one case of the disease. First, tissue biopsies from a woman with advanced AL amyloidosis were analyzed, and the defunct antibody light chain was isolated. Eleven mutations were identified in the antibody light chain, only one of which was found to be responsible for the formation of the harmful fibrils. The next step was to determine how this one small change was so damaging. The experiments showed that after the antibody light chain was cut in two, a process that happens naturally in the body, this single mutation transforms it into a protein capable of causing disease. In this ‘bedside to lab bench’ study, Kazman et al. have succeeded in determining the molecular origin of one case of AL amyloidosis. The results have also shown that the instability of antibodies due to mutation does not alone explain the formation of amyloid fibrils in this disease and that the cutting of this protein in two is also important. It is hoped that, in the long run, this work will lead to new diagnostics and treatment options for people with AL amyloidosis.
Collapse
Affiliation(s)
- Pamina Kazman
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Garching, Germany
| | - Marie-Theres Vielberg
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Garching, Germany
| | - María Daniela Pulido Cendales
- Center for Integrated Protein Science Munich at the Department Physik, Technische Universität München, Garching, Germany
| | - Lioba Hunziger
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Garching, Germany
| | - Benedikt Weber
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Garching, Germany
| | - Ute Hegenbart
- Medical Department V, Amyloidosis Center, University of Heidelberg, Heidelberg, Germany
| | - Martin Zacharias
- Center for Integrated Protein Science Munich at the Department Physik, Technische Universität München, Garching, Germany
| | - Rolf Köhler
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Stefan Schönland
- Medical Department V, Amyloidosis Center, University of Heidelberg, Heidelberg, Germany
| | - Michael Groll
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Garching, Germany
| |
Collapse
|
38
|
Trushina NI, Mulkidjanian AY, Brandt R. The microtubule skeleton and the evolution of neuronal complexity in vertebrates. Biol Chem 2020; 400:1163-1179. [PMID: 31116700 DOI: 10.1515/hsz-2019-0149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/17/2019] [Indexed: 12/21/2022]
Abstract
The evolution of a highly developed nervous system is mirrored by the ability of individual neurons to develop increased morphological complexity. As microtubules (MTs) are crucially involved in neuronal development, we tested the hypothesis that the evolution of complexity is driven by an increasing capacity of the MT system for regulated molecular interactions as it may be implemented by a higher number of molecular players and a greater ability of the individual molecules to interact. We performed bioinformatics analysis on different classes of components of the vertebrate neuronal MT cytoskeleton. We show that the number of orthologs of tubulin structure proteins, MT-binding proteins and tubulin-sequestering proteins expanded during vertebrate evolution. We observed that protein diversity of MT-binding and tubulin-sequestering proteins increased by alternative splicing. In addition, we found that regions of the MT-binding protein tau and MAP6 displayed a clear increase in disorder extent during evolution. The data provide evidence that vertebrate evolution is paralleled by gene expansions, changes in alternative splicing and evolution of coding sequences of components of the MT system. The results suggest that in particular evolutionary changes in tubulin-structure proteins, MT-binding proteins and tubulin-sequestering proteins were prominent drivers for the development of increased neuronal complexity.
Collapse
Affiliation(s)
- Nataliya I Trushina
- Department of Neurobiology, University of Osnabrück, Barbarastraße 11, D-49076 Osnabrück, Germany
| | - Armen Y Mulkidjanian
- Department of Physics, University of Osnabrück, Barbarastraße 7, D-49076 Osnabrück, Germany.,A.N. Belozersky Institute of Physico-Chemical Biology and School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Roland Brandt
- Department of Neurobiology, University of Osnabrück, Barbarastraße 11, D-49076 Osnabrück, Germany.,Center for Cellular Nanoanalytics, University of Osnabrück, Barbarastraße 11, D-49076 Osnabrück, Germany.,Institute of Cognitive Science, University of Osnabrück, Barbarastraße 11, D-49076 Osnabrück, Germany
| |
Collapse
|
39
|
Bianco V, Franzese G, Coluzza I. In Silico Evidence That Protein Unfolding is a Precursor of Protein Aggregation. Chemphyschem 2020; 21:377-384. [DOI: 10.1002/cphc.201900904] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/01/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Valentino Bianco
- Faculty of Chemistry, Chemical Physics Department, Universidad Complutense de Madrid, Plaza de las Ciencias Ciudad Universitaria Madrid 28040 Spain
| | - Giancarlo Franzese
- Secció de Física Estadística i Interdisciplinària-Departament de Física de la Matèria Condensada, Facultat de Física & Institute of Nanoscience and Nanotechnology (IN2UB) Universitat de Barcelona Martí i Franquès 1 08028 Barcelona Spain
| | - Ivan Coluzza
- CIC biomaGUNE Paseo Miramon 182 20014 San Sebastian Spain
- IKERBASQUE, Basque Foundation for Science 48013 Bilbao Spain
| |
Collapse
|
40
|
Bonifacino C, Franco-Fraguas E, López DN, Wagner JR, Cabezas DM, Panizzolo LA, Palazolo GG, Abirached C. Emulsifying properties of defatted rice bran concentrates enriched in fiber and proteins. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:1336-1343. [PMID: 31756264 DOI: 10.1002/jsfa.10150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/06/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Rice bran (RB), a by-product of the rice milling industry, constitutes around 10% of the total weight of rough rice. The interest in the use of RB is centered on its nutritional quality, its low cost, and its extensive worldwide production. As RB is commonly used for oil extraction, the defatted rice bran (DRB) is obtained as a second by-product. The aim of this work was to obtain a defatted rice bran concentrate (DRBC), enriched in protein and fiber, from defatted rice bran flour (DRBF) and to determine its physicochemical and emulsifying properties. RESULTS To obtain the DRBC, the starch was efficiently hydrolyzed (> 98%) with α-amylase and amyloglucosidase, with a concomitant increase in the proportions of crude protein (from 154.7 to 274.3 g kg-1 ) and total dietary fiber (from 276.1 to 492.3 g kg-1 ). Defatted rice bran concentrate exhibited a loss of protein solubility and increased surface hydrophobicity compared with DRBF. Defatted rice-bran concentrate dispersions with and without previous ultrasound treatment were prepared. The sonication led to an increase in the apparent viscosity. Emulsions were prepared with dispersions with and without previous ultrasound treatment and showed high stability in quiescent conditions over 28 days. However, the emulsions prepared with dispersions treated with ultrasound resulted in lower D4,3 values and higher elastic and viscous moduli. CONCLUSION The rice bran concentrate can be used to obtain stable oil-in-water (O/W) emulsions, including both soluble and insoluble fractions, in acidic and neutral conditions. These innovative findings thus contribute to increasing the added value of this important by-product of the rice-milling industry. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Carla Bonifacino
- Laboratorio de propiedades funcionales de Alimentos, Departamento de Ciencia y Tecnología de los Alimentos, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Eugenia Franco-Fraguas
- Laboratorio de propiedades funcionales de Alimentos, Departamento de Ciencia y Tecnología de los Alimentos, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Débora N López
- Área Fisicoquímica, Departamento de Química Física. Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario- CONICET, Rosario, Argentina
- Facultad de Química e Ingeniería del Rosario, Pontificia Universidad Católica Argentina, Rosario, Argentina
| | - Jorge R Wagner
- Laboratorio de Investigación en Funcionalidad y Tecnología de Alimentos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Bernal, Argentina
| | - Darío M Cabezas
- Laboratorio de Investigación en Funcionalidad y Tecnología de Alimentos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Bernal, Argentina
| | - Luis A Panizzolo
- Laboratorio de propiedades funcionales de Alimentos, Departamento de Ciencia y Tecnología de los Alimentos, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Gonzalo G Palazolo
- Laboratorio de Investigación en Funcionalidad y Tecnología de Alimentos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Bernal, Argentina
| | - Cecilia Abirached
- Laboratorio de propiedades funcionales de Alimentos, Departamento de Ciencia y Tecnología de los Alimentos, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
41
|
Belén LH, Rangel-Yagui CDO, Beltrán Lissabet JF, Effer B, Lee-Estevez M, Pessoa A, Castillo RL, Farías JG. From Synthesis to Characterization of Site-Selective PEGylated Proteins. Front Pharmacol 2019; 10:1450. [PMID: 31920645 PMCID: PMC6930235 DOI: 10.3389/fphar.2019.01450] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023] Open
Abstract
Covalent attachment of therapeutic proteins to polyethylene glycol (PEG) is widely used for the improvement of its pharmacokinetic and pharmacological properties, as well as the reduction in reactogenicity and related side effects. This technique named PEGylation has been successfully employed in several approved drugs to treat various diseases, even cancer. Some methods have been developed to obtain PEGylated proteins, both in multiple protein sites or in a selected amino acid residue. This review focuses mainly on traditional and novel examples of chemical and enzymatic methods for site-selective PEGylation, emphasizing in N-terminal PEGylation, that make it possible to obtain products with a high degree of homogeneity and preserve bioactivity. In addition, the main assay methods that can be applied for the characterization of PEGylated molecules in complex biological samples are also summarized in this paper.
Collapse
Affiliation(s)
- Lisandra Herrera Belén
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco, Chile
| | - Carlota de Oliveira Rangel-Yagui
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Jorge F. Beltrán Lissabet
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco, Chile
| | - Brian Effer
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco, Chile
| | - Manuel Lee-Estevez
- Faculty of Health Sciences, Universidad Autónoma de Chile, Temuco, Chile
| | - Adalberto Pessoa
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Rodrigo L. Castillo
- Department of Internal Medicine East, Faculty of Medicine, University of Chile, Santiago de Chile, Chile
| | - Jorge G. Farías
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
42
|
Dávalos Terán I, Imai K, Lacroix IME, Fogliano V, Udenigwe CC. Bioinformatics of edible yellow mealworm (Tenebrio molitor) proteome reveal the cuticular proteins as promising precursors of dipeptidyl peptidase-IV inhibitors. J Food Biochem 2019; 44:e13121. [PMID: 31837166 DOI: 10.1111/jfbc.13121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/31/2022]
Abstract
Bioinformatics was applied for strategic processing of yellow mealworm (Tenebrio molitor) proteins to produce dipeptidyl peptidase (DPP)-IV inhibiting peptides. In silico analysis of 384 mealworm proteins revealed structural proteins as better precursors of DPP-IV inhibiting peptides, compared with other protein types, after pepsin and papain hydrolysis. This was associated with the higher hydropathicity and amounts of residues associated with DPP-IV inhibition in the structural (cuticular) proteins. In silico, the peptides were mostly released with pepsin than papain. Cuticular (CP) and non-cuticular proteins (NC) were extracted from yellow mealworm and hydrolyzed with pepsin and papain in vitro to validate the virtual findings. CP hydrolysate with papain inhibited DPP-IV the most compared to CP hydrolysate with pepsin, whereas NC hydrolysates were mostly inactive. CP had higher hydrophobic-hydrophilic amino acid ratios and contents of the activity-associated residues than NC. The findings demonstrate the application of bioinformatics in processing proteins for bioactive peptide production. PRACTICAL APPLICATIONS: The discovery of bioactive peptides from food proteins is typically based on the classic approach involving working with a small number of protein-protease combinations in vitro. For the first time, this study reported the application of in silico tools in comprehensively studying hundreds of proteins from yellow mealworm (an edible insect) as sources of DPP-IV inhibitors, followed by in vitro processing and validation guided by the results obtained in silico. The advantage of this approach is that it allows for analysis of several protein-protease combinations (with multiple datasets of structural, functional, and bioactivity parameters) in a short time. This work is relevant in advancing research on emerging or alternative proteins as well as structure-informed food protein processing. The bioinformatics approach can be adapted for strategic processing of proteins in the food industry prior to making major resource investments.
Collapse
Affiliation(s)
- Irene Dávalos Terán
- Food Quality & Design Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Kento Imai
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada.,Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Isabelle M E Lacroix
- Food Bio-based Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Vincenzo Fogliano
- Food Quality & Design Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Chibuike C Udenigwe
- Food Quality & Design Group, Wageningen University and Research, Wageningen, The Netherlands.,School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada.,Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
43
|
Affiliation(s)
- Katsuya Maruyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
44
|
Rodrigues RL, Menezes GDL, Saivish MV, Costa VGD, Pereira M, Moreli ML, Silva RAD. Prediction of MAYV peptide antigens for immunodiagnostic tests by immunoinformatics and molecular dynamics simulations. Sci Rep 2019; 9:13339. [PMID: 31527652 PMCID: PMC6746749 DOI: 10.1038/s41598-019-50008-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023] Open
Abstract
The Mayaro virus is endemic to South America, and the possible involvement of Aedes spp. mosquitoes in its transmission is a risk factor for outbreaks of greater proportions. The virus causes a potentially disabling illness known as Mayaro fever, which is similar to that caused by the chikungunya virus. The cocirculation of both viruses, with their clinical and structural similarities, and the absence of prophylactic and therapeutic measures highlight the need for studies that seek to understand the Mayaro virus. Using approaches in silico, we identified an antigenic and specific epitope (p_MAYV4) in domain A of the E2 glycoprotein of the Mayaro virus. This epitope was theoretically predicted to be stable and exposed on the surface of the protein, where it showed key properties that enable its interaction with neutralizing antibodies. These characteristics make it an interesting target for the development of immunodiagnostic platforms. Molecular dynamics simulation-based structural analysis showed that the PHE95 residue in the E1 fusion loop region is conserved among Alphavirus family members. PHE95 interacts with the hydrophobic residues of the E2 glycoprotein to form a cage-shaped structure that is critical to assemble and stabilize the E1/E2 heterodimer. These results provide important insights useful for the advancement of diagnostic platforms and the study of therapeutic alternatives.
Collapse
Affiliation(s)
- Roger Luiz Rodrigues
- Universidade Federal de Goiás, Laboratório de Virologia, Jataí, GO, 75801-615, Brazil
| | | | | | - Vivaldo Gomes Da Costa
- Universidade de Brasília, Departamento de Biologia Celular, Brasília, DF, 70910-900, Brazil
| | - Maristela Pereira
- Universidade Federal de Goiás, Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Goiânia, GO, 74690-900, Brazil
| | - Marcos Lázaro Moreli
- Universidade Federal de Goiás, Laboratório de Virologia, Jataí, GO, 75801-615, Brazil.
| | - Roosevelt Alves Da Silva
- Universidade Federal de Goiás, Núcleo Colaborativo de BioSistemas, Jataí, GO, 75801-615, Brazil.
| |
Collapse
|
45
|
Bruce RM, Atungulu GG, Hettiarachchy NS, Horax R. Functional properties of endosperm protein from size‐fractionated broken rice kernels generated after milling of parboiled and nonparboiled rice. Cereal Chem 2019. [DOI: 10.1002/cche.10158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rebecca M. Bruce
- Department of Food Science University of Arkansas Division of Agriculture Fayetteville Arkansas
| | - Griffiths G. Atungulu
- Department of Food Science University of Arkansas Division of Agriculture Fayetteville Arkansas
| | - Navam S. Hettiarachchy
- Department of Food Science University of Arkansas Division of Agriculture Fayetteville Arkansas
| | - Ronny Horax
- Department of Food Science University of Arkansas Division of Agriculture Fayetteville Arkansas
| |
Collapse
|
46
|
Dai X, Böker A, Glebe U. Broadening the scope of sortagging. RSC Adv 2019; 9:4700-4721. [PMID: 35514663 PMCID: PMC9060782 DOI: 10.1039/c8ra06705h] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 01/31/2019] [Indexed: 01/20/2023] Open
Abstract
Sortases are enzymes occurring in the cell wall of Gram-positive bacteria. Sortase A (SrtA), the best studied sortase class, plays a key role in anchoring surface proteins with the recognition sequence LPXTG covalently to oligoglycine units of the bacterial cell wall. This unique transpeptidase activity renders SrtA attractive for various purposes and motivated researchers to study multiple in vivo and in vitro ligations in the last decades. This ligation technique is known as sortase-mediated ligation (SML) or sortagging and developed to a frequently used method in basic research. The advantages are manifold: extremely high substrate specificity, simple access to substrates and enzyme, robust nature and easy handling of sortase A. In addition to the ligation of two proteins or peptides, early studies already included at least one artificial (peptide equipped) substrate into sortagging reactions - which demonstrates the versatility and broad applicability of SML. Thus, SML is not only a biology-related technique, but has found prominence as a major interdisciplinary research tool. In this review, we provide an overview about the use of sortase A in interdisciplinary research, mainly for protein modification, synthesis of protein-polymer conjugates and immobilization of proteins on surfaces.
Collapse
Affiliation(s)
- Xiaolin Dai
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam-Golm Germany
- Lehrstuhl für Polymermaterialien und Polymertechnologie, Universität Potsdam 14476 Potsdam-Golm Germany
| | - Alexander Böker
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam-Golm Germany
- Lehrstuhl für Polymermaterialien und Polymertechnologie, Universität Potsdam 14476 Potsdam-Golm Germany
| | - Ulrich Glebe
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam-Golm Germany
| |
Collapse
|
47
|
Affiliation(s)
- Seiji SAKAMOTO
- Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Kyoto University
| | - Itaru HAMACHI
- Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Kyoto University
- ERATO Innovative Molecular Technology for Neuroscience Project, Japan Science and Technology Agency (JST)
| |
Collapse
|
48
|
Enache TA, Matei E, Diculescu VC. Electrochemical Sensor for Carbonyl Groups in Oxidized Proteins. Anal Chem 2019; 91:1920-1927. [PMID: 30574784 DOI: 10.1021/acs.analchem.8b03969] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interaction of proteins with free radicals leads, among other types of damages, to the production of stable carbonyl groups, which can be used as a quantification of oxidative stress at proteins level. The aim of this study was the development of an electrochemical sensor for the detection of carbonyl groups in proteins oxidized by reactive oxygen species. Its working principle is based on the redox properties of dinitrophenylhydrazine (DNPH). BSA was used as a model protein and its oxidation achieved through Fenton reactions. Using differential pulse voltammetry at glassy carbon electrode, the electrochemical behavior of DNPH and of the native and oxidized BSA was investigated in solution. It has been shown that the hydrazine moiety of the DNPH is the electroactive center and is responsible for carbonyl complexation. Special attention was paid to the immobilization of the DNPH in order to retain its redox properties, and this was achieved on a mixed 4-styrenesulfonic acid-nafion matrix. The sensor's surface characterization and the detection of carbonyl groups in oxidized protein were performed by voltammetry, Fourier-transformed infrared spectroscopy and scanning electron microscopy while the voltammetric results were confirmed by surface plasmon resonance measurements. It has been shown that upon interaction with carbonyl groups of the oxidized protein, the oxidation peak of the hydrazine moiety of DNPH decreases as a function of incubation time and protein concentration. The sensor sensitivity was 0.015 nmol carbonyl per mg of oxidized protein and detection limits of 50 μg oxidized BSA and 0.75 pmol carbonyls.
Collapse
Affiliation(s)
- Teodor Adrian Enache
- National Institute of Materials Physics , Atomistilor 405A , 077125 , Magurele , Romania
| | - Elena Matei
- National Institute of Materials Physics , Atomistilor 405A , 077125 , Magurele , Romania
| | | |
Collapse
|
49
|
Lombana TN, Matsumoto ML, Berkley AM, Toy E, Cook R, Gan Y, Du C, Schnier P, Sandoval W, Ye Z, Schartner JM, Kim J, Spiess C. High-resolution glycosylation site-engineering method identifies MICA epitope critical for shedding inhibition activity of anti-MICA antibodies. MAbs 2018; 11:75-93. [PMID: 30307368 PMCID: PMC6343778 DOI: 10.1080/19420862.2018.1532767] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
As an immune evasion strategy, MICA and MICB, the major histocompatibility complex class I homologs, are proteolytically cleaved from the surface of cancer cells leading to impairment of CD8 + T cell- and natural killer cell-mediated immune responses. Antibodies that inhibit MICA/B shedding from tumors have therapeutic potential, but the optimal epitopes are unknown. Therefore, we developed a high-resolution, high-throughput glycosylation-engineered epitope mapping (GEM) method, which utilizes site-specific insertion of N-linked glycans onto the antigen surface to mask local regions. We apply GEM to the discovery of epitopes important for shedding inhibition of MICA/B and validate the epitopes at the residue level by alanine scanning and X-ray crystallography (Protein Data Bank accession numbers 6DDM (1D5 Fab-MICA*008), 6DDR (13A9 Fab-MICA*008), 6DDV (6E1 Fab-MICA*008). Furthermore, we show that potent inhibition of MICA shedding can be achieved by antibodies that bind GEM epitopes adjacent to previously reported cleavage sites, and that these anti-MICA/B antibodies can prevent tumor growth in vivo.
Collapse
Affiliation(s)
- T Noelle Lombana
- a Department of Antibody Engineering , Genentech Inc ., South San Francisco , USA
| | | | - Amy M Berkley
- c Translational Oncology , Genentech Inc ., South San Francisco , USA
| | - Evangeline Toy
- c Translational Oncology , Genentech Inc ., South San Francisco , USA
| | - Ryan Cook
- d Biochemical and Cellular Pharmacology , Genentech Inc ., South San Francisco , USA
| | - Yutian Gan
- e Microchemistry, Proteomics and Lipidomics , Genentech Inc ., South San Francisco , USA
| | - Changchun Du
- d Biochemical and Cellular Pharmacology , Genentech Inc ., South San Francisco , USA
| | - Paul Schnier
- e Microchemistry, Proteomics and Lipidomics , Genentech Inc ., South San Francisco , USA
| | - Wendy Sandoval
- e Microchemistry, Proteomics and Lipidomics , Genentech Inc ., South San Francisco , USA
| | - Zhengmao Ye
- d Biochemical and Cellular Pharmacology , Genentech Inc ., South San Francisco , USA
| | - Jill M Schartner
- c Translational Oncology , Genentech Inc ., South San Francisco , USA
| | - Jeong Kim
- f Cancer Immunology , Genentech Inc ., South San Francisco , USA
| | - Christoph Spiess
- a Department of Antibody Engineering , Genentech Inc ., South San Francisco , USA
| |
Collapse
|
50
|
Oisaki K. Development of Highly Chemoselective Oxidative Transformations by Designing Organoradicals. Chem Pharm Bull (Tokyo) 2018; 66:907-919. [PMID: 30270237 DOI: 10.1248/cpb.c18-00501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To conduct organic synthesis in the field of pharmaceutical science, methodologies that can easily and quickly supply compounds with high drug-likeness are highly desirable. Based on the original catalyst design concept "Radical-Conjugated Redox Catalysis (RCRC)" established during my research, various C(sp3)-H functionalizations and protein modifications have been developed, taking advantage of the high reactivity and chemoselectivity of the single-electron transfer process. This review focuses on the eight-year research efforts by my collaborators and me, from conception to results.
Collapse
Affiliation(s)
- Kounosuke Oisaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| |
Collapse
|