1
|
Ferreira JR, Xu R, Hensel Z. Mycobacterium tuberculosis FtsB and PerM interact via a C-terminal helix in FtsB to modulate cell division. J Bacteriol 2025; 207:e0044424. [PMID: 40135878 PMCID: PMC12004960 DOI: 10.1128/jb.00444-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/03/2024] [Indexed: 03/27/2025] Open
Abstract
Latent infection by Mycobacterium tuberculosis (Mtb) impedes effective tuberculosis therapy and eradication. The protein PerM is essential for chronic Mtb infections in mice and acts via the divisome protein FtsB to modulate cell division. Using transgenic co-expression in Escherichia coli, we studied the Mtb PerM-FtsB interaction in isolation from other Mtb proteins, engineering PerM to enhance expression in the E. coli membrane. Using fluorescence microscopy in E. coli, we observed that the previously reported PerM-dependent instability of Mtb FtsB required a segment of FtsB predicted to bind cell-division proteins FtsL and FtsQ. Furthermore, we found that the stability of membrane-localized PerM hinged on its interaction with a conserved, C-terminal helix in FtsB. We also observed that removing this helix disrupted PerM-FtsB interaction using single-molecule tracking. Molecular dynamics results supported the observation that FtsB stabilized PerM and suggested that interactions at the PerM-FtsB interface differ from our initial structure prediction in a way that is consistent with PerM sequence conservation. Although narrowly conserved, the PerM-FtsB interaction emerges as a potential therapeutic target for persistent infections by disrupting the regulation of cell division. Integrating protein structure prediction, molecular dynamics, and single-molecule microscopy, our approach is primed to screen potential inhibitors of the PerM-FtsB interaction and can be straightforwardly adapted to explore other putative interactions.IMPORTANCEOur research reveals significant insights into the dynamic interaction between the proteins PerM and FtsB within Mycobacterium tuberculosis, contributing to our understanding of bacterial cell division mechanisms crucial for infection persistence. By combining innovative fluorescence microscopy and molecular dynamics, we established that the stability of these proteins is interdependent; molecular dynamics placing PerM-FtsB in the context of the mycobacterial divisome shows how disrupting PerM-FtsB interactions can plausibly impact bacterial cell wall synthesis. These findings highlight the PerM-FtsB interface as a promising target for novel therapeutics aimed at combating persistent bacterial infections. Importantly, our approach can be adapted for similar studies in other bacterial systems, suggesting broad implications for microbial biology and antibiotic development.
Collapse
Affiliation(s)
| | - Ruilan Xu
- ITQB NOVA, Universidade Nova de Lisboa, Avenida da República, Lisbon, Portugal
| | - Zach Hensel
- ITQB NOVA, Universidade Nova de Lisboa, Avenida da República, Lisbon, Portugal
| |
Collapse
|
2
|
İncir İ, Kaplan Ö. Escherichia coli as a versatile cell factory: Advances and challenges in recombinant protein production. Protein Expr Purif 2024; 219:106463. [PMID: 38479588 DOI: 10.1016/j.pep.2024.106463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/25/2024] [Accepted: 03/11/2024] [Indexed: 05/08/2024]
Abstract
E. coli plays a substantial role in recombinant protein production. Its importance increased with the discovery of recombinant DNA technology and the subsequent production of the first recombinant insulin in E. coli. E. coli is a widely used and cost-effective host to produce recombinant proteins. It is also noteworthy that a significant portion of the approved therapeutic proteins have been produced in this organism. Despite these advantages, it has some disadvantages, such as toxicity and lack of eukaryotic post-translational modifications that can lead to the production of misfolded, insoluble, or dysfunctional proteins. This study focused on the challenges and engineering approaches for improved expression and solubility in recombinant protein production in E. coli. In this context, solution strategies such as strain and vector selection, codon usage, mRNA stability, expression conditions, translocation to the periplasmic region and addition of fusion tags in E. coli were discussed.
Collapse
Affiliation(s)
- İbrahim İncir
- Karamanoğlu Mehmetbey University, Kazım Karabekir Vocational School, Department of Medical Services and Techniques, Environmental Health Program Karaman, Turkey.
| | - Özlem Kaplan
- Alanya Alaaddin Keykubat University, Rafet Kayış Faculty of Engineering, Department of Genetics and Bioengineering, Antalya, Turkey.
| |
Collapse
|
3
|
Ntombela N, Matsiela M, Zuma S, Hiralal S, Naicker L, Mokoena N, Khoza T. Production of recombinant lumpy skin disease virus A27L and L1R proteins for application in diagnostics and vaccine development. Vaccine X 2023; 15:100384. [PMID: 37736535 PMCID: PMC10509699 DOI: 10.1016/j.jvacx.2023.100384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023] Open
Abstract
Vaccination using live attenuated vaccines (LAVs) is considered the most effective method for control of lumpy skin disease (LSD). However, this method is limited by safety concerns, with reports of adverse reactions following vaccination. This study evaluates A27L and L1R which are essential proteins for virus attachment and membrane fusion as recombinant sub-unit vaccines against LSD. These proteins were recombinantly expressed in Escherichia coli and purified using affinity chromatography. Purified proteins were formulated individually (A27L or L1R) and in combination (A27L and L1R) with 10% (w/w) Montanide™ Gel 01 PR adjuvant at a final antigen dose of 20 µg per protein. The safety and immunogenicity of these formulations were evaluated in rabbits in a 42-day clinical trial. Animals were vaccinated on day 0 and boost injection administered 21 days later. No reduced morbidity, increased temperature and any other clinical signs were recorded in vaccinated animals for all three vaccine formulations. The highest neutralizing antibody response was detected on day 42 post-primary vaccination for all formulations when using serum neutralising assay. The neutralisation data correlates with antibody titres quantified using a whole cell ELISA. Evaluating the combination of A27L and L1R as potential diagnostic reagents showed highest sensitivity for detection of antibodies against LSD when compared to individual proteins. This study reports the immunogenicity of recombinant A27L and L1R combination for successful application in LSD vaccine development. Furthermore, these proteins demonstrated the potential use in LSD diagnostics.
Collapse
Affiliation(s)
- Nomfundo Ntombela
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Pietermaritzburg Campus), Scottsville 3209, KwaZulu-Natal, South Africa
| | - Matome Matsiela
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Pietermaritzburg Campus), Scottsville 3209, KwaZulu-Natal, South Africa
- Onderstepoort Biological Products (SOC. Ltd), 100, Old, Soutpan Road, Onderstepoort, 0110, Pretoria, South Africa
| | - Sbahle Zuma
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Pietermaritzburg Campus), Scottsville 3209, KwaZulu-Natal, South Africa
| | - Suhavna Hiralal
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Pietermaritzburg Campus), Scottsville 3209, KwaZulu-Natal, South Africa
| | - Leeann Naicker
- Onderstepoort Biological Products (SOC. Ltd), 100, Old, Soutpan Road, Onderstepoort, 0110, Pretoria, South Africa
| | - Nobalanda Mokoena
- Onderstepoort Biological Products (SOC. Ltd), 100, Old, Soutpan Road, Onderstepoort, 0110, Pretoria, South Africa
| | - Thandeka Khoza
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Pietermaritzburg Campus), Scottsville 3209, KwaZulu-Natal, South Africa
| |
Collapse
|
4
|
Hoang MN, Peterbauer C. Double-Labeling Method for Visualization and Quantification of Membrane-Associated Proteins in Lactococcus lactis. Int J Mol Sci 2023; 24:10586. [PMID: 37445764 DOI: 10.3390/ijms241310586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Lactococcus lactis displaying recombinant proteins on its surface can be used as a potential drug delivery vector in prophylactic medication and therapeutic treatments for many diseases. These applications enable live-cell mucosal and oral administration, providing painless, needle-free solutions and triggering robust immune response at the site of pathogen entry. Immunization requires quantitative control of antigens and, ideally, a complete understanding of the bacterial processing mechanism applied to the target proteins. In this study, we propose a double-labeling method based on a conjugated dye specific for a recombinantly introduced polyhistidine tag (to visualize surface-exposed proteins) and a membrane-permeable dye specific for a tetra-cysteine tag (to visualize cytoplasmic proteins), combined with a method to block the labeling of surface-exposed tetra-cysteine tags, to clearly obtain location-specific signals of the two dyes. This allows simultaneous detection and quantification of targeted proteins on the cell surface and in the cytoplasm. Using this method, we were able to detect full-length peptide chains for the model proteins HtrA and BmpA in L. lactis, which are associated with the cell membrane by two different attachment modes, and thus confirm that membrane-associated proteins in L. lactis are secreted using the Sec-dependent post-translational pathway. We were able to quantitatively follow cytoplasmic protein production and accumulation and subsequent export and surface attachment, which provides a convenient tool for monitoring these processes for cell surface display applications.
Collapse
Affiliation(s)
- Mai Ngoc Hoang
- Institute of Immunology, Department of Human Medicine, Carl von Ossietzky University of Oldenburg, 26129 Oldenburg, Germany
| | - Clemens Peterbauer
- Institute of Food Technology, Department of Food Science and Technology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| |
Collapse
|
5
|
Grāve K, Bennett MD, Högbom M. High-throughput strategy for identification of Mycobacterium tuberculosis membrane protein expression conditions using folding reporter GFP. Protein Expr Purif 2022; 198:106132. [PMID: 35750296 DOI: 10.1016/j.pep.2022.106132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 10/18/2022]
Abstract
Mycobacterium tuberculosis membrane protein biochemistry and structural biology studies are often hampered by challenges in protein expression and selection for well-expressing protein candidates, suitable for further investigation. Here we present a folding reporter GFP (frGFP) assay, adapted for M. tuberculosis membrane protein screening in Escherichia coli Rosetta 2 (DE3) and Mycobacterium smegmatis mc [2]4517. This method allows protein expression condition screening for multiple protein targets simultaneously by monitoring frGFP fluorescence in growing cells. We discuss the impact of common protein expression conditions on 42 essential M. tuberculosis H37Rv helical transmembrane proteins and establish the grounds for their further analysis. We have found that the basal expression of the lac operon in the T7-promoter expression system generally leads to high recombinant protein yield in M. smegmatis, and we suggest that a screening condition without the inducer is included in routine protein expression tests. In addition to the general observations, we describe conditions allowing high-level expression of more than 25 essential M. tuberculosis membrane proteins, containing 2 to 13 transmembrane helices. We hope that these findings will stimulate M. tuberculosis membrane protein research and aid the efforts in drug development against tuberculosis.
Collapse
Affiliation(s)
- Kristīne Grāve
- Department of Biochemistry and Biophysics, Stockholm University. Svante Arrhenius väg 16C, SE-10691, Stockholm, Sweden
| | - Matthew D Bennett
- Department of Biochemistry and Biophysics, Stockholm University. Svante Arrhenius väg 16C, SE-10691, Stockholm, Sweden
| | - Martin Högbom
- Department of Biochemistry and Biophysics, Stockholm University. Svante Arrhenius väg 16C, SE-10691, Stockholm, Sweden.
| |
Collapse
|
6
|
Kudryashova KS, Nekrasova OV, Kirpichnikov MP, Feofanov AV. Chimeras of KcsA and Kv1 as a bioengineering tool to study voltage-gated potassium channels and their ligands. Biochem Pharmacol 2021; 190:114646. [PMID: 34090876 DOI: 10.1016/j.bcp.2021.114646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 11/28/2022]
Abstract
Chimeric potassium channels KcsA-Kv1, which are among the most intensively studied hybrid membrane proteins to date, were constructed by replacing a part of the pore domain of bacterial potassium channel KcsA (K channel of streptomyces A) with corresponding regions of the mammalian voltage-gated potassium channels belonging to the Kv1 subfamily. In this way, the pore blocker binding site of Kv1 channels was transferred to KcsA, opening up possibility to use the obtained hybrids as receptors of Kv1-channel pore blockers of different origin. In this review the recent progress in KcsA-Kv1 channel design and applications is discussed with a focus on the development of new assays for studying interactions of pore blockers with the channels. A summary of experimental data is presented demonstrating that hybrid channels reproduce the blocker-binding profiles of parental Kv1 channels. It is overviewed how the KcsA-Kv1 chimeras are used to get new insight into the structure of potassium channels, to determine molecular basis for high affinity and selectivity of binding of peptide blockers to Kv1 channels, as well as to identify new peptide ligands.
Collapse
Affiliation(s)
- Ksenia S Kudryashova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Oksana V Nekrasova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
| | - Mikhail P Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, 119992 Moscow, Russia
| | - Alexey V Feofanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, 119992 Moscow, Russia
| |
Collapse
|
7
|
Yan F, Gao F. A systematic strategy for the investigation of vaccines and drugs targeting bacteria. Comput Struct Biotechnol J 2020; 18:1525-1538. [PMID: 32637049 PMCID: PMC7327267 DOI: 10.1016/j.csbj.2020.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023] Open
Abstract
Infectious and epidemic diseases induced by bacteria have historically caused great distress to people, and have even resulted in a large number of deaths worldwide. At present, many researchers are working on the discovery of viable drug and vaccine targets for bacteria through multiple methods, including the analyses of comparative subtractive genome, core genome, replication-related proteins, transcriptomics and riboswitches, which plays a significant part in the treatment of infectious and pandemic diseases. The 3D structures of the desired target proteins, drugs and epitopes can be predicted and modeled through target analysis. Meanwhile, molecular dynamics (MD) analysis of the constructed drug/epitope-protein complexes is an important standard for testing the suitability of these screened drugs and vaccines. Currently, target discovery, target analysis and MD analysis are integrated into a systematic set of drug and vaccine analysis strategy for bacteria. We hope that this comprehensive strategy will help in the design of high-performance vaccines and drugs.
Collapse
Affiliation(s)
- Fangfang Yan
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Feng Gao
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
8
|
Li H, Liu L, Zhang WJ, Zhang X, Zheng J, Li L, Zhu X, Yang Q, Zhang M, Liu H, Chen X, Jin Q. Analysis of the Antigenic Properties of Membrane Proteins of Mycobacterium tuberculosis. Sci Rep 2019; 9:3042. [PMID: 30816178 PMCID: PMC6395656 DOI: 10.1038/s41598-019-39402-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/21/2018] [Indexed: 11/08/2022] Open
Abstract
Tuberculosis (TB) is a continuing major threat to global health and a leading cause of death, particularly in developing countries. In this study, we aimed to identify a specific and sensitive diagnostic biomarker and develop a vaccine to prevent this disease. We investigated membrane proteins to reveal biomarkers in serum and peripheral blood mononuclear cells (PBMCs) obtained from TB patients. We employed Western blotting to evaluate serological immunoglobulin G levels, and Enzyme Linked Immunospot (ELISpot) to assess the antigen-specific cellular interferon-γ secretion from PBMCs after membrane protein stimulation. A total of 219 membrane proteins were identified, 52 exhibited at a higher levels than the 38-kDa prositive control. Of these 18 exhibited reacted ratios above 1, especially Rv1111c (427-981), with a ratios at 3.38. Accuracy and sensitivity were markedly higher for the top two antigen candidates, Rv0232 and Rv1115, after two rounds of ELISpot tests than ESAT-6 in the commercial kit (42.15 and 43.62%, respectively). These two proteins were administered to mice to detect whether they acted as effective antigens in vivo. These data provide a comprehensive view of the membranes involved in humoural and cellular immune responses that may be used as biomarkers for TB and candidates for a vaccine.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Animals
- Antigens, Bacterial/blood
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Antigens, Bacterial/isolation & purification
- Bacterial Proteins/blood
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
- Bacterial Proteins/isolation & purification
- Biomarkers/blood
- Cloning, Molecular
- Computational Biology
- Disease Models, Animal
- Female
- Humans
- Immunity, Cellular
- Immunity, Humoral
- Immunoglobulin G
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Male
- Membrane Proteins/blood
- Membrane Proteins/genetics
- Membrane Proteins/immunology
- Membrane Proteins/isolation & purification
- Mice
- Middle Aged
- Mycobacterium tuberculosis/immunology
- Recombinant Proteins/immunology
- Recombinant Proteins/isolation & purification
- Tuberculosis Vaccines/immunology
- Tuberculosis Vaccines/therapeutic use
- Tuberculosis, Pulmonary/blood
- Tuberculosis, Pulmonary/diagnosis
- Tuberculosis, Pulmonary/immunology
- Tuberculosis, Pulmonary/prevention & control
- Young Adult
Collapse
Affiliation(s)
- Haifeng Li
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Liguo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wei-Jia Zhang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Xiaobing Zhang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianhua Zheng
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Li Li
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiuyun Zhu
- Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Key Laboratory of Infection & Immunity, Shenzhen Third People's Hospital, Shenzhen, China
| | - Qianting Yang
- Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Key Laboratory of Infection & Immunity, Shenzhen Third People's Hospital, Shenzhen, China
| | - Mingxia Zhang
- Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Key Laboratory of Infection & Immunity, Shenzhen Third People's Hospital, Shenzhen, China
| | - Haiying Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Xinchun Chen
- Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China.
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
9
|
Garcia PK, Annamalai T, Wang W, Bell RS, Le D, Martin Pancorbo P, Sikandar S, Seddek A, Yu X, Sun D, Uhlemann AC, Tiwari PB, Leng F, Tse-Dinh YC. Mechanism and resistance for antimycobacterial activity of a fluoroquinophenoxazine compound. PLoS One 2019; 14:e0207733. [PMID: 30794538 PMCID: PMC6386362 DOI: 10.1371/journal.pone.0207733] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/07/2019] [Indexed: 01/28/2023] Open
Abstract
We have previously reported the inhibition of bacterial topoisomerase I activity by a fluoroquinophenoxazine compound (FP-11g) with a 6-bipiperidinyl lipophilic side chain that exhibited promising antituberculosis activity (MIC = 2.5 μM against Mycobacterium tuberculosis, SI = 9.8). Here, we found that the compound is bactericidal towards Mycobacterium smegmatis, resulting in greater than 5 Log10 reduction in colony-forming units [cfu]/mL following a 10 h incubation at 1.25 μM (4X MIC) concentration. Growth inhibition (MIC = 50 μM) and reduction in cfu could also be observed against a clinical isolate of Mycobacterium abscessus. Stepwise isolation of resistant mutants of M. smegmatis was conducted to explore the mechanism of resistance. Mutations in the resistant isolates were identified by direct comparison of whole-genome sequencing data from mutant and wild-type isolates. These include mutations in genes likely to affect the entry and retention of the compound. FP-11g inhibits Mtb topoisomerase I and Mtb gyrase with IC50 of 0.24 and 27 μM, respectively. Biophysical analysis showed that FP-11g binds DNA as an intercalator but the IC50 for inhibition of Mtb topoisomerase I activity is >10 fold lower than the compound concentrations required for producing negatively supercoiled DNA during ligation of nicked circular DNA. Thus, the DNA-binding property of FP-11g may contribute to its antimycobacterial mechanism, but that alone cannot account for the observed inhibition of Mtb topoisomerase I.
Collapse
Affiliation(s)
- Pamela K. Garcia
- Biomolecular Sciences Institute, Florida International University, Miami, Florida, United States of America
- Biochemistry PhD Program, Florida International University, Miami, Florida, United States of America
| | - Thirunavukkarasu Annamalai
- Biomolecular Sciences Institute, Florida International University, Miami, Florida, United States of America
- Department of Chemistry & Biochemistry, Florida International University, Miami, Florida, United States of America
| | - Wenjie Wang
- Biomolecular Sciences Institute, Florida International University, Miami, Florida, United States of America
- Department of Chemistry & Biochemistry, Florida International University, Miami, Florida, United States of America
| | - Raven S. Bell
- Department of Chemistry & Biochemistry, Florida International University, Miami, Florida, United States of America
| | - Duc Le
- Department of Chemistry & Biochemistry, Florida International University, Miami, Florida, United States of America
| | - Paula Martin Pancorbo
- Biomolecular Sciences Institute, Florida International University, Miami, Florida, United States of America
| | - Sabah Sikandar
- Biomolecular Sciences Institute, Florida International University, Miami, Florida, United States of America
| | - Ahmed Seddek
- Biomolecular Sciences Institute, Florida International University, Miami, Florida, United States of America
- Department of Chemistry & Biochemistry, Florida International University, Miami, Florida, United States of America
| | - Xufen Yu
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, Hawaii, United States of America
| | - Dianqing Sun
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, Hawaii, United States of America
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Columbia University Medical Center, New York, New York, United States of America
| | - Purushottam B. Tiwari
- Department of Oncology, School of Medicine, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, United States of America
| | - Fenfei Leng
- Biomolecular Sciences Institute, Florida International University, Miami, Florida, United States of America
- Department of Chemistry & Biochemistry, Florida International University, Miami, Florida, United States of America
| | - Yuk-Ching Tse-Dinh
- Biomolecular Sciences Institute, Florida International University, Miami, Florida, United States of America
- Department of Chemistry & Biochemistry, Florida International University, Miami, Florida, United States of America
| |
Collapse
|
10
|
Liu EW, Skinner J, Tran TM, Kumar K, Narum DL, Jain A, Ongoiba A, Traoré B, Felgner PL, Crompton PD. Protein-Specific Features Associated with Variability in Human Antibody Responses to Plasmodium falciparum Malaria Antigens. Am J Trop Med Hyg 2018; 98:57-66. [PMID: 29141757 PMCID: PMC5928716 DOI: 10.4269/ajtmh.17-0437] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The magnitude of antibody responses varies across the individual proteins that constitute any given microorganism, both in the context of natural infection and vaccination with attenuated or inactivated pathogens. The protein-specific factors underlying this variability are poorly understood. In 267 individuals exposed to intense seasonal malaria, we examined the relationship between immunoglobulin G (IgG) responses to 861 Plasmodium falciparum proteins and specific features of these proteins, including their subcellular location, relative abundance, degree of polymorphism, and whether they are predicted to have human orthologs. We found that IgG reactivity was significantly higher to extracellular and plasma membrane proteins and also correlated positively with both protein abundance and degree of protein polymorphism. Conversely, IgG reactivity was significantly lower to proteins predicted to have human orthologs. These findings provide insight into protein-specific factors that are associated with variability in the magnitude of antibody responses to natural P. falciparum infection-data that could inform vaccine strategies to optimize antibody-mediated immunity as well as the selection of antigens for sero-diagnostic purposes.
Collapse
Affiliation(s)
- Eugene W Liu
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Jeff Skinner
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Tuan M Tran
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Krishan Kumar
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - David L Narum
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Aarti Jain
- University of California, Irvine, Irvine, California
| | - Aissata Ongoiba
- Mali International Center of Excellence in Research, University of Sciences,Techniques and Technologies of Bamako, Bamako, Mali
| | - Boubacar Traoré
- Mali International Center of Excellence in Research, University of Sciences,Techniques and Technologies of Bamako, Bamako, Mali
| | | | - Peter D Crompton
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| |
Collapse
|
11
|
Saladi SM, Javed N, Müller A, Clemons WM. A statistical model for improved membrane protein expression using sequence-derived features. J Biol Chem 2018; 293:4913-4927. [PMID: 29378850 PMCID: PMC5880134 DOI: 10.1074/jbc.ra117.001052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/22/2018] [Indexed: 11/06/2022] Open
Abstract
The heterologous expression of integral membrane proteins (IMPs) remains a major bottleneck in the characterization of this important protein class. IMP expression levels are currently unpredictable, which renders the pursuit of IMPs for structural and biophysical characterization challenging and inefficient. Experimental evidence demonstrates that changes within the nucleotide or amino acid sequence for a given IMP can dramatically affect expression levels, yet these observations have not resulted in generalizable approaches to improve expression levels. Here, we develop a data-driven statistical predictor named IMProve that, using only sequence information, increases the likelihood of selecting an IMP that expresses in Escherichia coli The IMProve model, trained on experimental data, combines a set of sequence-derived features resulting in an IMProve score, where higher values have a higher probability of success. The model is rigorously validated against a variety of independent data sets that contain a wide range of experimental outcomes from various IMP expression trials. The results demonstrate that use of the model can more than double the number of successfully expressed targets at any experimental scale. IMProve can immediately be used to identify favorable targets for characterization. Most notably, IMProve demonstrates for the first time that IMP expression levels can be predicted directly from sequence.
Collapse
Affiliation(s)
- Shyam M Saladi
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Nauman Javed
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Axel Müller
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - William M Clemons
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125.
| |
Collapse
|
12
|
Kaur J, Kumar A, Kaur J. Strategies for optimization of heterologous protein expression in E. coli: Roadblocks and reinforcements. Int J Biol Macromol 2018; 106:803-822. [DOI: 10.1016/j.ijbiomac.2017.08.080] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/02/2017] [Accepted: 08/12/2017] [Indexed: 12/29/2022]
|
13
|
Kaur J, Kumar A, Kaur J. Strategies for optimization of heterologous protein expression in E. coli: Roadblocks and reinforcements. Int J Biol Macromol 2018. [DOI: 10.1016/j.ijbiomac.2017.08.080 10.1242/jeb.069716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
14
|
Buldum G, Bismarck A, Mantalaris A. Recombinant biosynthesis of bacterial cellulose in genetically modified Escherichia coli. Bioprocess Biosyst Eng 2017; 41:265-279. [PMID: 29177720 PMCID: PMC5773641 DOI: 10.1007/s00449-017-1864-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 11/04/2017] [Indexed: 01/16/2023]
Abstract
Bacterial cellulose (BC) exhibits unique properties such as high purity compared to plant-based cellulose; however, commercial production of BC has remained a challenge, primarily due to the strain properties of cellulose-producing bacteria. Herein, we developed a functional and stable BC production system in genetically modified (GM) Escherichia coli by recombinant expression of both the BC synthase operon (bcsABCD) and the upstream operon (cmcax, ccpAx). BC production was achieved in GM HMS174 (DE3) and in GM C41 (DE3) by optimization of the culture temperature (22 °C, 30 °C, and 37 °C) and IPTG concentration. BC biosynthesis was detected much earlier in GM C41 (DE3) cultures (3 h after IPTG induction) than those of Gluconacetobacter hansenii. GM HMS174 (DE3) produced dense fibres having a length of approximately 1000–3000 μm and a diameter of 10–20 μm, which were remarkably larger than the fibres of BC typically produced by G. hansenii.
Collapse
Affiliation(s)
- Gizem Buldum
- Biological Systems Engineering Laboratory (BSEL), Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ UK
- Department of Bioengineering, Marmara University, Göztepe Campus, Istanbul, Turkey
| | - Alexander Bismarck
- Polymer and Composite Engineering (PaCE) Group, Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ UK
- Polymer and Composite Engineering (PaCE) Group, Institute of Materials Chemistry and Research, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Athanasios Mantalaris
- Biological Systems Engineering Laboratory (BSEL), Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ UK
| |
Collapse
|
15
|
Baseer S, Ahmad S, Ranaghan KE, Azam SS. Towards a peptide-based vaccine against Shigella sonnei: A subtractive reverse vaccinology based approach. Biologicals 2017; 50:87-99. [PMID: 28826780 DOI: 10.1016/j.biologicals.2017.08.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/11/2017] [Accepted: 08/08/2017] [Indexed: 02/06/2023] Open
Abstract
Shigella sonnei is one of the major causes of shigellosis in technically advanced countries and reports of its unprecedented increase are published from the Middle East, Latin America, and Asia. The pathogen exhibits resistance against first and second line antibiotics which highlights the need for the development of an effective broad-spectrum vaccine. A computational based approach comprising subtractive reverse vaccinology was used for the identification of potential peptide-based vaccine candidates in the proteome of S. sonnei reference strain (53G). The protocol revealed three essential, host non-homologous, highly virulent, antigenic, conserved and adhesive vaccine proteins: TolC, PhoE, and outer membrane porin protein. The cellular interactome of these proteins supports their direct and indirect involvement in biologically significant pathways, essential for pathogen survival. Epitope mapping of these candidates reveals the presence of surface exposed 9-mer B-cell-derived T-cell epitopes of an antigenic, virulent, non-allergen nature and have broad-spectrum potency. In addition, molecular docking studies demonstrated the deep binding of the epitopes in the binding groove and the stability of the complex with the most common binding allele in the human population, DRB1*0101. Future characterization of the screened epitopes in order to further investigate the immune protection efficacy in animal models is highly desirable.
Collapse
Affiliation(s)
- Shehneela Baseer
- Computational Biology Lab, National Center for Bioinformatics (NCB), Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sajjad Ahmad
- Computational Biology Lab, National Center for Bioinformatics (NCB), Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Kara E Ranaghan
- Centre for Computational Chemistry, University of Bristol, Bristol, United Kingdom
| | - Syed Sikander Azam
- Computational Biology Lab, National Center for Bioinformatics (NCB), Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
16
|
Niesen MJM, Marshall SS, Miller TF, Clemons WM. Improving membrane protein expression by optimizing integration efficiency. J Biol Chem 2017; 292:19537-19545. [PMID: 28918393 DOI: 10.1074/jbc.m117.813469] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/12/2017] [Indexed: 12/22/2022] Open
Abstract
The heterologous overexpression of integral membrane proteins in Escherichia coli often yields insufficient quantities of purifiable protein for applications of interest. The current study leverages a recently demonstrated link between co-translational membrane integration efficiency and protein expression levels to predict protein sequence modifications that improve expression. Membrane integration efficiencies, obtained using a coarse-grained simulation approach, robustly predicted effects on expression of the integral membrane protein TatC for a set of 140 sequence modifications, including loop-swap chimeras and single-residue mutations distributed throughout the protein sequence. Mutations that improve simulated integration efficiency were 4-fold enriched with respect to improved experimentally observed expression levels. Furthermore, the effects of double mutations on both simulated integration efficiency and experimentally observed expression levels were cumulative and largely independent, suggesting that multiple mutations can be introduced to yield higher levels of purifiable protein. This work provides a foundation for a general method for the rational overexpression of integral membrane proteins based on computationally simulated membrane integration efficiencies.
Collapse
Affiliation(s)
- Michiel J M Niesen
- From the Department of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Stephen S Marshall
- From the Department of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Thomas F Miller
- From the Department of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - William M Clemons
- From the Department of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
17
|
Construction and immunogenicity of a new Fc-based subunit vaccine candidate against Mycobacterium tuberculosis. Mol Biol Rep 2016; 43:911-22. [PMID: 27251218 DOI: 10.1007/s11033-016-4024-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 05/27/2016] [Indexed: 12/17/2022]
Abstract
As an ancient disease, tuberculosis (TB) is a major global health threat. Therefore, there is an urgent need for an effective and safe anti-TB vaccine. In the current study, a delivery system of Fc domain of mouse IgG2a and early secreted antigenic target protein 6 (ESAT-6) was evaluated for the selective uptake of antigens by antigen-presenting cells (APCs). Thus, it was based on the immunogenicity of a fusion protein. The study was initiated by the transfer of recombinant expression vectors of pPICZαA-ESAT-6:Fcγ2a and pPICZαA-ESAT-6: His into Pichia pastoris (P. pastoris). Recombinant proteins were assessed for immunogenicity following the immunoblotting analysis. High levels of IFN-γ and IL-12 were produced to induce Th1-type cellular responses through vaccination with both recombinant proteins [ESAT-6:Fcγ2a (EF) and ESAT-6:His (EH)]. The Fc-tagged recombinant protein induced more effective Th1-type cellular responses with a low increment in IL-4 compared to PBS, BCG, and EH groups. Although in all the immunized groups, the ratio of IFN-γ/IL-4 was in favor of Th1 responses, the highest Th1/Th2 balance was observed in EF immunized group. Fc fragment of mouse IgG2a may induce a selective uptake of APCs towards the cross-presentation and formation of Th1 responses in favor of an appropriate protective anti-tuberculosis reaction. Thus, further research on Fc-fusion proteins is required to develop Fc-based TB vaccines.
Collapse
|
18
|
Joseph NMS, Ho KL, Tey BT, Tan CS, Shafee N, Tan WS. Production of the virus-like particles of nipah virus matrix protein inPichia pastorisas diagnostic reagents. Biotechnol Prog 2016; 32:1038-45. [DOI: 10.1002/btpr.2279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 02/03/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Narcisse MS Joseph
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences; Universiti Putra Malaysia; UPM Serdang Selangor 43400 Malaysia
| | - Kok Lian Ho
- Department of Pathology, Faculty of Medicine and Health Sciences; Universiti Putra Malaysia; UPM Serdang Selangor 43400 Malaysia
| | - Beng Ti Tey
- Multidisciplinary Platform of Advance Engineering; Monash University Malaysia; Bandar Sunway Selangor 46150 Malaysia
- Discipline of Chemical Engineering, School of Engineering, Monash University Malaysia; Bandar Sunway Selangor 46150 Malaysia
| | - Chon Seng Tan
- Biotechnology Research Centre, Malaysia Agricultural Research and Development Institute (MARDI); Serdang Selangor 43400 Malaysia
| | - Norazizah Shafee
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences; Universiti Putra Malaysia; UPM Serdang Selangor 43400 Malaysia
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences; Universiti Putra Malaysia; UPM Serdang Selangor 43400 Malaysia
- Institute of Bioscience, Universiti Putra Malaysia; UPM Serdang Selangor 43400 Malaysia
| |
Collapse
|
19
|
Jeffery CJ. Expression, Solubilization, and Purification of Bacterial Membrane Proteins. ACTA ACUST UNITED AC 2016; 83:29.15.1-29.15.15. [PMID: 26836409 DOI: 10.1002/0471140864.ps2915s83] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Bacterial integral membrane proteins play many important roles, including sensing changes in the environment, transporting molecules into and out of the cell, and in the case of commensal or pathogenic bacteria, interacting with the host organism. Working with membrane proteins in the lab can be more challenging than working with soluble proteins because of difficulties in their recombinant expression and purification. This protocol describes a standard method to express, solubilize, and purify bacterial integral membrane proteins. The recombinant protein of interest with a 6His affinity tag is expressed in E. coli. After harvesting the cultures and isolating cellular membranes, mild detergents are used to solubilize the membrane proteins. Protein-detergent complexes are then purified using IMAC column chromatography. Support protocols are included to help select a detergent for protein solubilization and for use of gel filtration chromatography for further purification.
Collapse
Affiliation(s)
- Constance J Jeffery
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
20
|
Structure of CrgA, a cell division structural and regulatory protein from Mycobacterium tuberculosis, in lipid bilayers. Proc Natl Acad Sci U S A 2014; 112:E119-26. [PMID: 25548160 DOI: 10.1073/pnas.1415908112] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The 93-residue transmembrane protein CrgA in Mycobacterium tuberculosis is a central component of the divisome, a large macromolecular machine responsible for cell division. Through interactions with multiple other components including FtsZ, FtsQ, FtsI (PBPB), PBPA, and CwsA, CrgA facilitates the recruitment of the proteins essential for peptidoglycan synthesis to the divisome and stabilizes the divisome. CrgA is predicted to have two transmembrane helices. Here, the structure of CrgA was determined in a liquid-crystalline lipid bilayer environment by solid-state NMR spectroscopy. Oriented-sample data yielded orientational restraints, whereas magic-angle spinning data yielded interhelical distance restraints. These data define a complete structure for the transmembrane domain and provide rich information on the conformational ensembles of the partially disordered N-terminal region and interhelical loop. The structure of the transmembrane domain was refined using restrained molecular dynamics simulations in an all-atom representation of the same lipid bilayer environment as in the NMR samples. The two transmembrane helices form a left-handed packing arrangement with a crossing angle of 24° at the conserved Gly39 residue. This helix pair exposes other conserved glycine and alanine residues to the fatty acyl environment, which are potential sites for binding CrgA's partners such as CwsA and FtsQ. This approach combining oriented-sample and magic-angle spinning NMR spectroscopy in native-like lipid bilayers with restrained molecular dynamics simulations represents a powerful tool for structural characterization of not only isolated membrane proteins, but their complexes, such as those that form macromolecular machines.
Collapse
|
21
|
Self-assembled MmsF proteinosomes control magnetite nanoparticle formation in vitro. Proc Natl Acad Sci U S A 2014; 111:16094-9. [PMID: 25349410 DOI: 10.1073/pnas.1409256111] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Magnetotactic bacteria synthesize highly uniform intracellular magnetite nanoparticles through the action of several key biomineralization proteins. These proteins are present in a unique lipid-bound organelle (the magnetosome) that functions as a nanosized reactor in which the particle is formed. A master regulator protein of nanoparticle formation, magnetosome membrane specific F (MmsF), was recently discovered. This predicted integral membrane protein is essential for controlling the monodispersity of the nanoparticles in Magnetospirillum magneticum strain AMB-1. Two MmsF homologs sharing over 60% sequence identity, but showing no apparent impact on particle formation, were also identified in the same organism. We have cloned, expressed, and used these three purified proteins as additives in synthetic magnetite precipitation reactions. Remarkably, these predominantly α-helical membrane spanning proteins are unusually highly stable and water-soluble because they self-assemble into spherical aggregates with an average diameter of 36 nm. The MmsF assembly appears to be responsible for a profound level of control over particle size and iron oxide (magnetite) homogeneity in chemical precipitation reactions, consistent with its indicated role in vivo. The assemblies of its two homologous proteins produce imprecise various iron oxide materials, which is a striking difference for proteins that are so similar to MmsF both in sequence and hierarchical structure. These findings show MmsF is a significant, previously undiscovered, protein additive for precision magnetite nanoparticle production. Furthermore, the self-assembly of these proteins into discrete, soluble, and functional "proteinosome" structures could lead to advances in fields ranging from membrane protein production to drug delivery applications.
Collapse
|
22
|
Bager RJ, Kudirkiene E, da Piedade I, Seemann T, Nielsen TK, Pors SE, Mattsson AH, Boyce JD, Adler B, Bojesen AM. In silico prediction of Gallibacterium anatis pan-immunogens. Vet Res 2014; 45:80. [PMID: 25223320 PMCID: PMC4423631 DOI: 10.1186/s13567-014-0080-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/21/2014] [Indexed: 12/22/2022] Open
Abstract
The Gram-negative bacterium Gallibacterium anatis is a major cause of salpingitis and peritonitis in commercial egg-layers, leading to reduced egg production and increased mortality. Unfortunately, widespread multidrug resistance and antigenic diversity makes it difficult to control infections and novel prevention strategies are urgently needed. In this study, a pan-genomic reverse vaccinology (RV) approach was used to identify potential vaccine candidates. Firstly, the genomes of 10 selected Gallibacterium strains were analyzed and proteins selected on the following criteria; predicted surface-exposure or secretion, none or one transmembrane helix (TMH), and presence in six or more of the 10 genomes. In total, 42 proteins were selected. The genes encoding 27 of these proteins were successfully cloned in Escherichia coli and the proteins expressed and purified. To reduce the number of vaccine candidates for in vivo testing, each of the purified recombinant proteins was screened by ELISA for their ability to elicit a significant serological response with serum from chickens that had been infected with G. anatis. Additionally, an in silico prediction of the protective potential was carried out based on a protein property prediction method. Of the 27 proteins, two novel putative immunogens were identified; Gab_1309 and Gab_2312. Moreover, three previously characterized virulence factors; GtxA, FlfA and Gab_2156, were identified. Thus, by combining the pan-genomic RV approach with subsequent in vitro and in silico screening, we have narrowed down the pan-proteome of G. anatis to five vaccine candidates. Importantly, preliminary immunization trials indicated an in vivo protective potential of GtxA-N, FlfA and Gab_1309.
Collapse
Affiliation(s)
- Ragnhild J Bager
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg C, Denmark.
| | - Egle Kudirkiene
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg C, Denmark.
| | - Isabelle da Piedade
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg C, Denmark.
| | - Torsten Seemann
- Victorian Bioinformatics Consortium, Monash University, 3800, Clayton, Melbourne, Australia.
| | - Tine K Nielsen
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen N, Denmark.
| | - Susanne E Pors
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg C, Denmark.
| | - Andreas H Mattsson
- Center for Biological Sequence Analysis, Technical University of Denmark, 2800, Lyngby, Denmark. .,Evaxion Biotech North America LLC, Wilmington, USA.
| | - John D Boyce
- Department of Microbiology, Monash University, 3800, Clayton, Melbourne, Australia.
| | - Ben Adler
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Department of Microbiology, Monash University, 3800, Clayton, Melbourne, Australia.
| | - Anders M Bojesen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg C, Denmark.
| |
Collapse
|
23
|
Liu L, Zhang WJ, Zheng J, Fu H, Chen Q, Zhang Z, Chen X, Zhou B, Feng L, Liu H, Jin Q. Exploration of novel cellular and serological antigen biomarkers in the ORFeome of Mycobacterium tuberculosis. Mol Cell Proteomics 2014; 13:897-906. [PMID: 24447912 DOI: 10.1074/mcp.m113.032623] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Increasing evidence demonstrates that antigen-specific cellular and humoral immunity plays an indispensable role in protection against Mycobacterium tuberculosis infection. Antigen is a key element in the development of a successful diagnostic method and vaccine. However, few antigens are available, and a systemic study on M. tuberculosis ORFeome-based antigen screening is still lacking. In the current study, a genome-wide examination was conducted on high-throughput M. tuberculosis encoding proteins and novel antigens were identified via a comprehensive investigation of serological and antigen-specific cellular responses. The serological immunoglobulin G level of each protein was detected in pooled sera from 200 pulmonary tuberculosis patients by means of semi-quantitative Western blot. Of the 1,250 detected proteins, 29 were present at a higher level relative to the commercialized 38-kDa protein. Furthermore, the top 12 of the 29 proteins had not been previously reported, and their antigenicity was validated in serum from each individual patient. Results confirmed that the 12 proteins displayed nearly identical immunoglobulin G antibody levels in patients with pulmonary and extrapulmonary tuberculosis. Antigen-specific cellular interferon-γ secretion was also evaluated using a cell-based ELISPOT assay. Thirty-four of the proteins were able to induce positive interferon-γ production by peripheral blood mononuclear cells from pulmonary tuberculosis patients as judged by positive (commercial ESAT-6 antigen) and negative controls. The top 4 candidates out of the 34 proteins displayed good accuracy ranging from 50% to 80% compared with the commercial ESAT-6 antigen. Subsequent epitope examination confirmed that a pool of peptides, including a 25aa peptide from Rv1198, demonstrated significant tuberculosis-specific cellular interferon-γ production. Overall, the current study draws significant attention to novel M. tuberculosis antigens, many of which have not been previously reported. This discovery provides a large amount of useful information for the diagnosis of tuberculosis and the development of vaccines to provide protection against tuberculosis.
Collapse
Affiliation(s)
- Liguo Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100176, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Bacterial-based membrane protein production. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:1739-49. [PMID: 24200679 DOI: 10.1016/j.bbamcr.2013.10.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/20/2013] [Accepted: 10/29/2013] [Indexed: 01/08/2023]
Abstract
Escherichia coli is by far the most widely used bacterial host for the production of membrane proteins. Usually, different strains, culture conditions and production regimes are screened for to design the optimal production process. However, these E. coli-based screening approaches often do not result in satisfactory membrane protein production yields. Recently, it has been shown that (i) E. coli strains with strongly improved membrane protein production characteristics can be engineered or selected for, (ii) many membrane proteins can be efficiently produced in E. coli-based cell-free systems, (iii) bacteria other than E. coli can be used for the efficient production of membrane proteins, and, (iv) membrane protein variants that retain functionality but are produced at higher yields than the wild-type protein can be engineered or selected for. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
|
25
|
Why are membrane targets discovered by phenotypic screens and genome sequencing in Mycobacterium tuberculosis? Tuberculosis (Edinb) 2013; 93:569-88. [DOI: 10.1016/j.tube.2013.09.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/04/2013] [Accepted: 09/06/2013] [Indexed: 12/11/2022]
|
26
|
Das N, Murray DT, Cross TA. Lipid bilayer preparations of membrane proteins for oriented and magic-angle spinning solid-state NMR samples. Nat Protoc 2013; 8:2256-70. [PMID: 24157546 DOI: 10.1038/nprot.2013.129] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Solid-state NMR spectroscopy has been used successfully for characterizing the structure and dynamics of membrane proteins as well as their interactions with other proteins in lipid bilayers. Such an environment is often necessary for achieving native-like structures. Sample preparation is the key to this success. Here we present a detailed description of a robust protocol that results in high-quality membrane protein samples for both magic-angle spinning and oriented-sample solid-state NMR. The procedure is demonstrated using two proteins: CrgA (two transmembrane helices) and Rv1861 (three transmembrane helices), both from Mycobacterium tuberculosis. The success of this procedure relies on two points. First, for samples for both types of NMR experiment, the reconstitution of the protein from a detergent environment to an environment in which it is incorporated into liposomes results in 'complete' removal of detergent. Second, for the oriented samples, proper dehydration followed by rehydration of the proteoliposomes is essential. By using this protocol, proteoliposome samples for magic-angle spinning NMR and uniformly aligned samples (orientational mosaicity of <1°) for oriented-sample NMR can be obtained within 10 d.
Collapse
Affiliation(s)
- Nabanita Das
- 1] Institute of Molecular Biophysics (IMB), Florida State University (FSU), Tallahassee, Florida, USA. [2] National High Magnetic Field Laboratory (NMHFL), FSU, Tallahassee, Florida, USA
| | | | | |
Collapse
|
27
|
Brooks CL, Morrison M, Joanne Lemieux M. Rapid expression screening of eukaryotic membrane proteins in Pichia pastoris. Protein Sci 2013; 22:425-33. [PMID: 23339074 DOI: 10.1002/pro.2223] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 01/15/2013] [Indexed: 01/21/2023]
Abstract
The overexpression of milligram quantities of protein remains a key bottleneck in membrane protein structural biology. A challenge of particular difficulty has been the overproduction of eukaryotic membrane proteins. In order to cope with the frequently poor expression levels associated with these challenging proteins, it is often necessary to screen a large number of homologues to find a well expressing clone. To facilitate this process using the heterologous, eukaryotic expression host Pichia pastoris, we have developed a simple fluorescent induction plate-screening assay that allows for the rapid detection of well expressing clones of eukaryotic membrane proteins that have been fused to GFP. Using a eukaryotic membrane protein known to express well in P. pastoris (human aquaporin 4) and homologues of the ER associated membrane protein phosphatidylethanolamine N-methyltransferase (PEMT), we demonstrate that when a large number of clones are screened, a small number of highly expressing "jackpot" clones can be isolated. A jackpot PEMT clone resulted in 5 mg/L yield after purification. The method allows for the facile simultaneous screening of hundreds of clones providing an alternate to in-culture screening and will greatly accelerate the search for overexpressing eukaryotic membrane proteins.
Collapse
Affiliation(s)
- Cory L Brooks
- Faculty of Medicine and Dentistry, Membrane Protein Disease Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | |
Collapse
|
28
|
Mycobacterium tuberculosis CwsA interacts with CrgA and Wag31, and the CrgA-CwsA complex is involved in peptidoglycan synthesis and cell shape determination. J Bacteriol 2012; 194:6398-409. [PMID: 23002219 DOI: 10.1128/jb.01005-12] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial cell division and cell wall synthesis are highly coordinated processes involving multiple proteins. Here, we show that Rv0008c, a novel small membrane protein from Mycobacterium tuberculosis, localizes to the poles and on membranes and shows an overall punctate localization throughout the cell. Furthermore, Rv0008c interacts with two proteins, CrgA and Wag31, implicated in peptidoglycan (PG) synthesis in mycobacteria. Deletion of the Rv0008c homolog in M. smegmatis, MSMEG_0023, caused bulged cell poles, formation of rounded cells, and defects in polar localization of Wag31 and cell wall synthesis, with cell wall synthesis measured by the incorporation of the [(14)C]N-acetylglucosamine cell wall precursor. The M. smegmatis MSMEG_0023 crgA double mutant strain showed severe defects in growth, viability, cell wall synthesis, cell shape, and the localization of the FtsZ, FtsI, and Wag31 proteins. The double mutant strain also exhibited increased autolytic activity in the presence of detergents. Because CrgA and Wag31 proteins interact with FtsI individually, we believe that regulated cell wall synthesis and cell shape maintenance require the concerted actions of the CrgA, Rv0008c, FtsI, and Wag31 proteins. We propose that, together, CrgA and Rv0008c, renamed CwsA for cell wall synthesis and cell shape protein A, play crucial roles in septal and polar PG synthesis and help coordinate these processes with the FtsZ-ring assembly in mycobacteria.
Collapse
|
29
|
Chowdhury A, Feng R, Tong Q, Zhang Y, Xie XQ. Mistic and TarCF as fusion protein partners for functional expression of the cannabinoid receptor 2 in Escherichia coli. Protein Expr Purif 2012; 83:128-34. [PMID: 22406258 DOI: 10.1016/j.pep.2012.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 01/14/2012] [Accepted: 01/16/2012] [Indexed: 10/28/2022]
Abstract
G protein coupled receptors (GPCRs) are key players in signal recognition and cellular communication making them important therapeutic targets. Large-scale production of these membrane proteins in their native form is crucial for understanding their mechanism of action and target-based drug design. Here we report the overexpression system for a GPCR, the cannabinoid receptor subtype 2 (CB2), in Escherichia coli C43(DE3) facilitated by two fusion partners: Mistic, an integral membrane protein expression enhancer at the N-terminal, and TarCF, a C-terminal fragment of the bacterial chemosensory transducer Tar at the C-terminal of the CB2 open reading frame region. Multiple histidine tags were added on both ends of the fusion protein to facilitate purification. Using individual and combined fusion partners, we found that CB2 fusion protein expression was maximized only when both partners were used. Variable growth and induction conditions were conducted to determine and optimize protein expression. More importantly, this fusion protein Mistic-CB2-TarCF can localize into the E. coli membrane and exhibit functional binding activities with known CB2 ligands including CP55,940, WIN55,212-2 and SR144,528. These results indicate that this novel expression and purification system provides us with a promising strategy for the preparation of biologically active GPCRs, as well as general application for the preparation of membrane-bound proteins using the two new fusion partners described.
Collapse
Affiliation(s)
- Ananda Chowdhury
- Department of Pharmaceutical Sciences, School of Pharmacy, and Computational Chemical Genomics Screening Center, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | | | |
Collapse
|
30
|
Itaya M, Brett IC, Smith SO. Synthesis, purification, and characterization of single helix membrane peptides and proteins for NMR spectroscopy. Methods Mol Biol 2012; 831:333-57. [PMID: 22167682 DOI: 10.1007/978-1-61779-480-3_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Membrane proteins function as receptors, channels, transporters, and enzymes. These proteins are generally difficult to express and purify in a functional form due to the hydrophobic nature of their membrane spanning sequences. Studies on membrane proteins with a single membrane spanning helix have been particularly challenging. Single-pass membrane proteins will often form dimers or higher order oligomers in cell membranes as a result of sequence motifs that mediate specific transmembrane helix interactions. Understanding the structural basis for helix association provides insights into how these proteins function. Nevertheless, nonspecific association or aggregation of hydrophobic membrane spanning sequences can occur when isolated transmembrane domains are reconstituted into membrane bilayers or solubilized into detergent micelles for structural studies by solid-state or solution NMR spectroscopy. Here, we outline the methods used to synthesize, purify, and characterize single transmembrane segments for structural studies. Two synthetic strategies are discussed. The first strategy is to express hydrophobic peptides as protein chimera attached to the maltose binding protein. The second strategy is by direct chemical synthesis. Purification is carried out by several complementary chromatography methods. The peptides are solubilized in detergent for solution NMR studies or reconstituted into model membranes for solid-state NMR studies. We describe the methods used to characterize the reconstitution of these systems prior to NMR structural studies to establish if there is nonspecific aggregation.
Collapse
Affiliation(s)
- Miki Itaya
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | | | | |
Collapse
|
31
|
Bernaudat F, Frelet-Barrand A, Pochon N, Dementin S, Hivin P, Boutigny S, Rioux JB, Salvi D, Seigneurin-Berny D, Richaud P, Joyard J, Pignol D, Sabaty M, Desnos T, Pebay-Peyroula E, Darrouzet E, Vernet T, Rolland N. Heterologous expression of membrane proteins: choosing the appropriate host. PLoS One 2011; 6:e29191. [PMID: 22216205 PMCID: PMC3244453 DOI: 10.1371/journal.pone.0029191] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 11/22/2011] [Indexed: 11/19/2022] Open
Abstract
Background Membrane proteins are the targets of 50% of drugs, although they only represent 1% of total cellular proteins. The first major bottleneck on the route to their functional and structural characterisation is their overexpression; and simply choosing the right system can involve many months of trial and error. This work is intended as a guide to where to start when faced with heterologous expression of a membrane protein. Methodology/Principal Findings The expression of 20 membrane proteins, both peripheral and integral, in three prokaryotic (E. coli, L. lactis, R. sphaeroides) and three eukaryotic (A. thaliana, N. benthamiana, Sf9 insect cells) hosts was tested. The proteins tested were of various origins (bacteria, plants and mammals), functions (transporters, receptors, enzymes) and topologies (between 0 and 13 transmembrane segments). The Gateway system was used to clone all 20 genes into appropriate vectors for the hosts to be tested. Culture conditions were optimised for each host, and specific strategies were tested, such as the use of Mistic fusions in E. coli. 17 of the 20 proteins were produced at adequate yields for functional and, in some cases, structural studies. We have formulated general recommendations to assist with choosing an appropriate system based on our observations of protein behaviour in the different hosts. Conclusions/Significance Most of the methods presented here can be quite easily implemented in other laboratories. The results highlight certain factors that should be considered when selecting an expression host. The decision aide provided should help both newcomers and old-hands to select the best system for their favourite membrane protein.
Collapse
Affiliation(s)
- Florent Bernaudat
- Institut de Biologie Structurale Jean-Pierre Ebel, CEA, Grenoble, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
High throughput platforms for structural genomics of integral membrane proteins. Curr Opin Struct Biol 2011; 21:517-22. [PMID: 21807498 DOI: 10.1016/j.sbi.2011.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Revised: 06/20/2011] [Accepted: 07/07/2011] [Indexed: 11/20/2022]
Abstract
Structural genomics approaches on integral membrane proteins have been postulated for over a decade, yet specific efforts are lagging years behind their soluble counterparts. Indeed, high throughput methodologies for production and characterization of prokaryotic integral membrane proteins are only now emerging, while large-scale efforts for eukaryotic ones are still in their infancy. Presented here is a review of recent literature on actively ongoing structural genomics of membrane protein initiatives, with a focus on those aimed at implementing interesting techniques aimed at increasing our rate of success for this class of macromolecules.
Collapse
|
33
|
Hu J, Qin H, Gao FP, Cross TA. A systematic assessment of mature MBP in membrane protein production: overexpression, membrane targeting and purification. Protein Expr Purif 2011; 80:34-40. [PMID: 21689756 DOI: 10.1016/j.pep.2011.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 06/01/2011] [Accepted: 06/02/2011] [Indexed: 01/17/2023]
Abstract
Obtaining enough membrane protein in native or native-like status is still a challenge in membrane protein structure biology. Maltose binding protein (MBP) has been widely used as a fusion partner in improving membrane protein production. In the present work, a systematic assessment on the application of mature MBP (mMBP) for membrane protein overexpression and purification was performed on 42 membrane proteins, most of which showed no or poor expression level in membrane fraction fused with an N-terminal Histag. It was found that most of the small membrane proteins were overexpressed in the native membrane of Escherichia coli when using mMBP. In addition, the proteolysis of the fusions were performed on the membrane without solubilization with detergents, leading to the development of an efficient protocol to directly purify the target membrane proteins from the membrane fraction through a one-step affinity chromatography. Our results indicated that mMBP is an excellent fusion partner for overexpression, membrane targeting and purification of small membrane proteins. The present expression and purification method may be a good solution for the large scale preparation of small membrane proteins in structural and functional studies.
Collapse
Affiliation(s)
- Jian Hu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32310, USA
| | | | | | | |
Collapse
|
34
|
Narayanan A, Ridilla M, Yernool DA. Restrained expression, a method to overproduce toxic membrane proteins by exploiting operator-repressor interactions. Protein Sci 2011; 20:51-61. [PMID: 21031485 DOI: 10.1002/pro.535] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A major rate-limiting step in determining structures of membrane proteins is heterologous protein production. Toxicity often associated with rapid overexpression results in reduced biomass along with low yields of target protein. Mitigation of toxic effects was achieved using a method we call "restrained expression," a controlled reduction in the frequency of transcription initiation by exploiting the infrequent transitions of Lac repressor to a free state from its complex with the lac-operator site within a T7lac promoter that occur in the absence of the inducer isopropyl β-D-1-thiogalactopyranoside. In addition, production of the T7 RNA polymerase that drives transcription of the target is limited using the tightly regulated arabinose promoter in Escherichia coli strain BL21-AI. Using this approach, we can achieve a 200-fold range of green fluorescent protein expression levels. Application to members of a family of ion pumps results in 5- to 25-fold increases in expression over the benchmark BL21(DE3) host strain. A viral ion channel highly toxic to E. coli can also be overexpressed. In comparative analyses, restrained expression outperforms commonly used E. coli expression strategies. The mechanism underlying improved target protein yield arises from minimization of protein aggregation and proteolysis that reduce membrane integrity and cell viability. This study establishes a method to overexpress toxic proteins.
Collapse
Affiliation(s)
- Anoop Narayanan
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | |
Collapse
|
35
|
Berger C, Montag C, Berndt S, Huster D. Optimization of Escherichia coli cultivation methods for high yield neuropeptide Y receptor type 2 production. Protein Expr Purif 2011; 76:25-35. [DOI: 10.1016/j.pep.2010.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 10/20/2010] [Accepted: 10/27/2010] [Indexed: 12/11/2022]
|
36
|
Madhavan V, Bhatt F, Jeffery CJ. Recombinant expression screening of P. aeruginosa bacterial inner membrane proteins. BMC Biotechnol 2010; 10:83. [PMID: 21114855 PMCID: PMC3009615 DOI: 10.1186/1472-6750-10-83] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Accepted: 11/29/2010] [Indexed: 11/17/2022] Open
Abstract
Background Transmembrane proteins (TM proteins) make up 25% of all proteins and play key roles in many diseases and normal physiological processes. However, much less is known about their structures and molecular mechanisms than for soluble proteins. Problems in expression, solubilization, purification, and crystallization cause bottlenecks in the characterization of TM proteins. This project addressed the need for improved methods for obtaining sufficient amounts of TM proteins for determining their structures and molecular mechanisms. Results Plasmid clones were obtained that encode eighty-seven transmembrane proteins with varying physical characteristics, for example, the number of predicted transmembrane helices, molecular weight, and grand average hydrophobicity (GRAVY). All the target proteins were from P. aeruginosa, a gram negative bacterial opportunistic pathogen that causes serious lung infections in people with cystic fibrosis. The relative expression levels of the transmembrane proteins were measured under several culture growth conditions. The use of E. coli strains, a T7 promoter, and a 6-histidine C-terminal affinity tag resulted in the expression of 61 out of 87 test proteins (70%). In this study, proteins with a higher grand average hydrophobicity and more transmembrane helices were expressed less well than less hydrophobic proteins with fewer transmembrane helices. Conclusions In this study, factors related to overall hydrophobicity and the number of predicted transmembrane helices correlated with the relative expression levels of the target proteins. Identifying physical characteristics that correlate with protein expression might aid in selecting the "low hanging fruit", or proteins that can be expressed to sufficient levels using an E. coli expression system. The use of other expression strategies or host species might be needed for sufficient levels of expression of transmembrane proteins with other physical characteristics. Surveys like this one could aid in overcoming the technical bottlenecks in working with TM proteins and could potentially aid in increasing the rate of structure determination.
Collapse
Affiliation(s)
- Vidya Madhavan
- Department of Biological Sciences, University of Illinois at Chicago, 60607, USA
| | | | | |
Collapse
|
37
|
Cross TA, Sharma M, Yi M, Zhou HX. Influence of solubilizing environments on membrane protein structures. Trends Biochem Sci 2010; 36:117-25. [PMID: 20724162 DOI: 10.1016/j.tibs.2010.07.005] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 07/02/2010] [Accepted: 07/13/2010] [Indexed: 12/21/2022]
Abstract
Membrane protein structures are stabilized by weak interactions and are influenced by additional interactions with the solubilizing environment. Structures of influenza virus A M2 protein, a proven drug target, have been determined in three different environments, thus providing a unique opportunity to assess environmental influences. Structures determined in detergents and detergent micelles can have notable differences from those determined in lipid bilayers. These differences make it imperative to validate membrane protein structures.
Collapse
Affiliation(s)
- Timothy A Cross
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA.
| | | | | | | |
Collapse
|
38
|
Simple genetic selection protocol for isolation of overexpressed genes that enhance accumulation of membrane-integrated human G protein-coupled receptors in Escherichia coli. Appl Environ Microbiol 2010; 76:5852-9. [PMID: 20639362 DOI: 10.1128/aem.00963-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The efficient production of membrane proteins in bacteria remains a major challenge. In this work, we sought to identify overexpressed genes that enhance the yields of recombinant membrane proteins in Escherichia coli. We developed a genetic selection system for bacterial membrane protein production, consisting of membrane protein fusions with the enzyme beta-lactamase and facile selection of high-production strains on ampicillin-containing media. This system was used to screen the ASKA library, an ordered library of plasmids encoding all the known E. coli open reading frames (ORFs), and several clones with the ability to accumulate enhanced amounts of recombinant membrane proteins were selected. Notably, coexpression of ybaB, a gene encoding a putative DNA-binding protein of unknown function, was found to enhance the accumulation of a variety of membrane-integrated human G protein-coupled receptors and other integral membrane proteins in E. coli by up to 10-fold. The results of this study highlight the power of genetic approaches for identifying factors that impact membrane protein biogenesis and for generating engineered microbial hosts for membrane protein production.
Collapse
|
39
|
Huang C, Mohanty S. Challenging the limit: NMR assignment of a 31 kDa helical membrane protein. J Am Chem Soc 2010; 132:3662-3. [PMID: 20178386 PMCID: PMC2862971 DOI: 10.1021/ja100078z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Structural determination of membrane proteins by NMR spectroscopy remains a challenge, especially for helical membrane proteins. Here we report the NMR assignment and secondary structure of a 31 kDa helical membrane protein, the C-terminal domain of Stt3p. The C-terminal domain of Stt3p has been proposed to be the catalytic domain of yeast oligosaccharyl transferase (OT), a multisubunit membrane-associated enzyme complex catalyzing N-glycosylation, which is an essential and highly conserved protein modification. NMR assignment is the first critical step in the determination of the high-resolution solution structure and further structure-function studies.
Collapse
Affiliation(s)
- Chengdong Huang
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849
| | - Smita Mohanty
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849
| |
Collapse
|
40
|
Geertsma ER, Poolman B. Production of membrane proteins in Escherichia coli and Lactococcus lactis. Methods Mol Biol 2010; 601:17-38. [PMID: 20099137 DOI: 10.1007/978-1-60761-344-2_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As the equivalent to gatekeepers of the cell, membrane transport proteins perform a variety of critical functions. Progress on the functional and structural characterization of membrane proteins is slowed due to problems associated with their (heterologous) overexpression. Often, overexpression fails or leads to aggregated material from which the production of functionally refolded protein is challenging. It is still difficult to predict whether a given membrane protein can be overproduced in a functional competent state. As a result, the most straightforward strategy to set up an overexpression system is to screen a multitude of conditions, including the comparison of homologues, type and location of (affinity) tags, and distinct expression hosts. Here, we detail methodology to rapidly establish and optimize (membrane) protein expression in Escherichia coli and Lactococcus lactis.
Collapse
Affiliation(s)
- Eric R Geertsma
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Netherlands Proteomics Centre, University of Groningen, The Netherlands
| | | |
Collapse
|
41
|
Koth CMM, Payandeh J. Strategies for the cloning and expression of membrane proteins. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2009; 76:43-86. [PMID: 20663478 DOI: 10.1016/s1876-1623(08)76002-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Despite the determination of thousands of high-resolution structures of soluble proteins, many features of integral membrane proteins render them difficult targets for the structural biologist. Among these, the most important challenge is in expressing sufficient quantities of active protein to support downstream purification and structure determination efforts. Over 190 unique membrane protein structures have now been solved, and noticeable trends in successful expression strategies are beginning to emerge. A number of groups have also explored high-throughput (HTP) methods for membrane protein expression, with varying degrees of success. Here we review the current state of expressing membrane proteins for functional and structural studies. We first survey successful methods that have already yielded levels of membrane protein expression sufficient for structure determination. HTP methods are also examined since these aim to explore large numbers of targets and can predict reasonable starting points for many membrane proteins. Since HTP techniques may fail, particularly for certain classes of eukaryotic targets, detailed strategies for the expression of two prominent classes of eukaryotic protein families, G-protein-coupled receptors and ion channels, are also summarized.
Collapse
Affiliation(s)
- Christopher M M Koth
- Department of Structural Biology, Genentech, South San Francisco, California 94080, USA
| | | |
Collapse
|
42
|
Kim HJ, Howell SC, Van Horn WD, Jeon YH, Sanders CR. Recent Advances in the Application of Solution NMR Spectroscopy to Multi-Span Integral Membrane Proteins. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2009; 55:335-360. [PMID: 20161395 PMCID: PMC2782866 DOI: 10.1016/j.pnmrs.2009.07.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Affiliation(s)
- Hak Jun Kim
- Korea Polar Research Institute, Korea Ocean Research and Development Institute, Incheon, 406-840, Korea
| | - Stanley C. Howell
- Department of Biochemistry, Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232-8725, USA
| | - Wade D. Van Horn
- Department of Biochemistry, Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232-8725, USA
| | - Young Ho Jeon
- Center for Magnetic Resonance, Korea Basic Research Institute, Daejon, 305-333, Korea
| | - Charles R. Sanders
- Department of Biochemistry, Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232-8725, USA
- Corresponding Author: ; phone: 615-936-3756; fax: 615-936-2211
| |
Collapse
|
43
|
Butzin NC, Owen HA, Collins MLP. A new system for heterologous expression of membrane proteins: Rhodospirillum rubrum. Protein Expr Purif 2009; 70:88-94. [PMID: 19887111 DOI: 10.1016/j.pep.2009.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 10/20/2009] [Accepted: 10/23/2009] [Indexed: 11/29/2022]
Abstract
Heterologous expression of membrane proteins has met with only limited success. This work presents a new host/vector system for the production of heterologous membrane proteins based on a mutant of the facultatively phototrophic bacterium Rhodospirillum rubrum. Under certain growth conditions, R. rubrum forms an intracytoplasmic membrane (ICM) that houses the photosynthetic apparatus, the structural proteins of which are encoded by puhA and pufBALM. The mutant R. rubrum H2, which was constructed by allelic exchange deleting puhA and pufBALM, does not form ICM. This strain was used as a host for a plasmid expressing the Pseudomonas aeruginosa membrane protein MscL from the Rhodobacter capsulatus puc promoter. ICM was formed in the H2 strain producing MscL but not in the vector control strain. These results suggest that a heterologous membrane protein stimulates ICM formation in R. rubrum and indicate that the capacity to form an ICM that can accommodate heterologous proteins makes R. rubrum a host that will be useful for membrane protein production. P. aeruginosa MscL, which forms inclusion bodies when produced in Escherichia coli, was expressed in R. rubrum H2 and purified from membranes with a yield of 22.8-23.4 mg/L culture (5.53-5.60 mg/g cell paste). Additionally Streptomyces lividans KcsA and P. aeruginosa CycB were produced and purified from R. rubrum H2 with yields of 13.7-14.4 mg/L culture (2.19-2.55 mg/g cell paste) and 6.6-7.4 mg/L culture (1.1-1.2mg/g cell paste), respectively.
Collapse
Affiliation(s)
- Nicholas C Butzin
- Department of Biological Sciences, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201, USA
| | | | | |
Collapse
|
44
|
Schlegel S, Klepsch M, Gialama D, Wickström D, Slotboom DJ, de Gier JW. Revolutionizing membrane protein overexpression in bacteria. Microb Biotechnol 2009; 3:403-11. [PMID: 21255339 PMCID: PMC3815807 DOI: 10.1111/j.1751-7915.2009.00148.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The bacterium Escherichia coli is the most widely used expression host for overexpression trials of membrane proteins. Usually, different strains, culture conditions and expression regimes are screened for to identify the optimal overexpression strategy. However, yields are often not satisfactory, especially for eukaryotic membrane proteins. This has initiated a revolution of membrane protein overexpression in bacteria. Recent studies have shown that it is feasible to (i) engineer or select for E. coli strains with strongly improved membrane protein overexpression characteristics, (ii) use bacteria other than E. coli for the expression of membrane proteins, (iii) engineer or select for membrane protein variants that retain functionality but express better than the wild‐type protein, and (iv) express membrane proteins using E. coli‐based cell‐free systems.
Collapse
Affiliation(s)
- Susan Schlegel
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
45
|
Dan L, Jianping X, Ruzhen G, Honghai W. Cloning and characterization of Rv0621 gene related to surfactant stress tolerance in Mycobacterium tuberculosis. Mol Biol Rep 2009; 36:1811-7. [PMID: 18979228 DOI: 10.1007/s11033-008-9384-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2008] [Accepted: 10/17/2008] [Indexed: 10/21/2022]
Abstract
To understand how Mycobacterium tuberculosis (M. tuberculosis) could survive in human lung, Genomic expression library of M. tuberculosis in Escherichia coli (E. coli) had been prepared. Taking advantage of the genetic simplicity of E. coli and the functional conservation of some prokaryote proteins, a surfactant stress resistant gene Rv0621 was identified, which encodes a 37 kDa putative membrane protein. The E. coli colony with the partial Rv0621 gene insert, named S1, was able to grow in medium containing 0.4% sodium dodecyl sulfate, while the strain carried empty vector was unable to grow. The full length of the Rv0621 gene was then cloned into plasmid pET32a (+) expressed in E. coli BL21 (DE3). Using gas chromatographic-mass spectrometric (GC-MS), the fatty acid composition of the E. coli BL21 (DE3) carrying Rv0621-pET32a (+) and the E. coli BL21 (DE3) carrying empty vector pET32a (+) were compared. E. coli BL21 (DE3) carrying Rv0621-pET32a (+) contained more oleic acid. This suggests the gene may be involved in regulation of fatty acid synthesis and M. tuberculosis resistance to the surfactant defense of its host.
Collapse
MESH Headings
- Adaptation, Physiological/drug effects
- Amino Acid Sequence
- Bacterial Proteins/analysis
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Cloning, Molecular
- DNA, Bacterial/metabolism
- Electrophoresis, Polyacrylamide Gel
- Fatty Acids/analysis
- Gene Expression Regulation, Bacterial/drug effects
- Gene Library
- Genes, Bacterial
- Humans
- Microbial Viability/drug effects
- Molecular Sequence Data
- Mycobacterium tuberculosis/drug effects
- Mycobacterium tuberculosis/genetics
- Mycobacterium tuberculosis/growth & development
- Plasmids/genetics
- Recombinant Proteins/isolation & purification
- Recombinant Proteins/metabolism
- Restriction Mapping
- Sequence Analysis, DNA
- Sodium Dodecyl Sulfate/pharmacology
- Stress, Physiological/drug effects
- Stress, Physiological/genetics
- Surface-Active Agents/pharmacology
- Transformation, Genetic/drug effects
Collapse
Affiliation(s)
- Liao Dan
- Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing, People's Republic of China
| | | | | | | |
Collapse
|
46
|
Page RC, Lee S, Moore JD, Opella SJ, Cross TA. Backbone structure of a small helical integral membrane protein: A unique structural characterization. Protein Sci 2009; 18:134-46. [PMID: 19177358 DOI: 10.1002/pro.24] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The structural characterization of small integral membrane proteins pose a significant challenge for structural biology because of the multitude of molecular interactions between the protein and its heterogeneous environment. Here, the three-dimensional backbone structure of Rv1761c from Mycobacterium tuberculosis has been characterized using solution NMR spectroscopy and dodecylphosphocholine (DPC) micelles as a membrane mimetic environment. This 127 residue single transmembrane helix protein has a significant (10 kDa) C-terminal extramembranous domain. Five hundred and ninety distance, backbone dihedral, and orientational restraints were employed resulting in a 1.16 A rmsd backbone structure with a transmembrane domain defined at 0.40 A. The structure determination approach utilized residual dipolar coupling orientation data from partially aligned samples, long-range paramagnetic relaxation enhancement derived distances, and dihedral restraints from chemical shift indices to determine the global fold. This structural model of Rv1761c displays some influences by the membrane mimetic illustrating that the structure of these membrane proteins is dictated by a combination of the amino acid sequence and the protein's environment. These results demonstrate both the efficacy of the structural approach and the necessity to consider the biophysical properties of membrane mimetics when interpreting structural data of integral membrane proteins and, in particular, small integral membrane proteins.
Collapse
Affiliation(s)
- Richard C Page
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, USA
| | | | | | | | | |
Collapse
|
47
|
Massey-Gendel E, Zhao A, Boulting G, Kim HY, Balamotis MA, Seligman LM, Nakamoto RK, Bowie JU. Genetic selection system for improving recombinant membrane protein expression in E. coli. Protein Sci 2009; 18:372-83. [PMID: 19165721 DOI: 10.1002/pro.39] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A major barrier to the physical characterization and structure determination of membrane proteins is low yield in recombinant expression. To address this problem, we have designed a selection strategy to isolate mutant strains of Escherichia coli that improve the expression of a targeted membrane protein. In this method, the coding sequence of the membrane protein of interest is fused to a C-terminal selectable marker, so that the production of the selectable marker and survival on selective media is linked to expression of the targeted membrane protein. Thus, mutant strains with improved expression properties can be directly selected. We also introduce a rapid method for curing isolated strains of the plasmids used during the selection process, in which the plasmids are removed by in vivo digestion with the homing endonuclease I-CreI. We tested this selection system on a rhomboid family protein from Mycobacterium tuberculosis (Rv1337) and were able to isolate mutants, which we call EXP strains, with up to 75-fold increased expression. The EXP strains also improve the expression of other membrane proteins that were not the target of selection, in one case roughly 90-fold.
Collapse
|
48
|
Tanabe M, Iverson TM. Chapter 10 A Practical Guide to X‐Ray Crystallography of β‐barrel Membrane Proteins. CURRENT TOPICS IN MEMBRANES 2009. [DOI: 10.1016/s1063-5823(09)63010-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
49
|
|
50
|
Chapter 3 Harnessing Photosynthetic Bacteria for Membrane Protein Production. CURRENT TOPICS IN MEMBRANES 2009. [DOI: 10.1016/s1063-5823(09)63003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|