1
|
Becker L, Plückthun A. DARPins bind their cytosolic targets after having been translocated through the protective antigen pore of anthrax toxin. Sci Rep 2023; 13:8048. [PMID: 37198284 DOI: 10.1038/s41598-023-34647-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 05/04/2023] [Indexed: 05/19/2023] Open
Abstract
Intracellular protein-protein interactions in aberrant signaling pathways have emerged as a prime target in several diseases, particularly cancer. Since many protein-protein interactions are mediated by rather flat surfaces, they can typically not be interrupted by small molecules as they require cavities for binding. Therefore, protein drugs might be developed to compete with undesired interactions. However, proteins in general are not able to translocate from the extracellular side to the cytosolic target site by themselves, and thus an efficient protein translocation system, ideally combining efficient translocation with receptor specificity, is in high demand. Anthrax toxin, the tripartite holotoxin of Bacillus anthracis, is one of the best studied bacterial protein toxins and has proven to be a suitable candidate for cell-specific translocation of cargoes in vitro and in vivo. Our group recently developed a retargeted protective antigen (PA) variant fused to different Designed Ankyrin Repeat Proteins (DARPins) to achieve receptor specificity, and we incorporated a receptor domain to stabilize the prepore and prevent cell lysis. This strategy had been shown to deliver high amounts of cargo DARPins fused behind the N-terminal 254 amino acids of Lethal Factor (LFN). Here, we established a cytosolic binding assay, demonstrating the ability of DARPins to refold in the cytosol and bind their target after been translocated by PA.
Collapse
Affiliation(s)
- Lukas Becker
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland.
| |
Collapse
|
2
|
Rast JP, D'Alessio S, Kraev I, Lange S. Post-translational protein deimination signatures in sea lamprey (Petromyzon marinus) plasma and plasma-extracellular vesicles. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 125:104225. [PMID: 34358577 DOI: 10.1016/j.dci.2021.104225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Lampreys are a jawless vertebrate species belonging to an ancient vertebrate lineage that diverged from a common ancestor with humans ~500 million years ago. The sea lamprey (Petromyzon marinus) has a filter feeding ammocoete larval stage that metamorphoses into a parasitic adult, feeding both on teleost and elasmobranch fish. Lampreys are a valuable comparative model species for vertebrate immunity and physiology due to their unique phylogenetic position, unusual adaptive immune system, and physiological adaptions such as tolerance to salinity changes and urea. Peptidylarginine deiminases (PADs) are a phylogenetically conserved enzyme family which catalyses post-translational deimination/citrullination in target proteins, enabling proteins to gain new functions (moonlighting). The identification of deiminated protein targets in species across phylogeny may provide novel insights into post-translational regulation of physiological and pathophysiological processes. Extracellular vesicles (EVs) are membrane vesicles released from cells that carry cargos of small molecules and proteins for cellular communication, involved in both normal and pathological processes. The current study identified deimination signatures in proteins of both total plasma and plasma-EVs in sea lamprey and furthermore reports the first characterisation of plasma-EVs in lamprey. EVs were poly-dispersed in the size range of 40-500 nm, similar to what is observed in other taxa, positive for CD63 and Flotillin-1. Plasma-EV morphology was confirmed by transmission electron microscopy. Assessment of deimination/citrullination signatures in lamprey plasma and plasma-EVs, revealed 72 deimination target proteins involved in immunity, metabolism and gene regulation in whole plasma, and 37 target proteins in EVs, whereof 24 were shared targets. Furthermore, the presence of deiminated histone H3, indicative of gene-regulatory mechanisms and also a marker of neutrophil extracellular trap formation (NETosis), was confirmed in lamprey plasma. Functional protein network analysis revealed some differences in KEGG and GO pathways of deiminated proteins in whole plasma compared with plasma-EVs. For example, while common STRING network clusters in plasma and plasma-EVs included Peptide chain elongation, Viral mRNA translation, Glycolysis and gluconeogenesis, STRING network clusters specific for EVs only included: Cellular response to heat stress, Muscle protein and striated muscle thin filament, Nucleosome, Protein processing in endoplasmic reticulum, Nucleosome and histone deacetylase complex. STRING network clusters specific for plasma were: Adipokinetic hormone receptor activity, Fibrinogen alpha/beta chain family, peptidase S1A, Glutathione synthesis and recycling-arginine, Fructose 1,6-bisphosphate metabolic process, Carbon metabolism and lactate dehydrogenase activity, Post-translational protein phosphorylation, Regulation of insulin-like growth factor transport and clotting cascade. Overall, for the EV citrullinome, five STRING network clusters, 10 KEGG pathways, 15 molecular GO pathways and 29 Reactome pathways were identified, compared with nine STRING network clusters, six KEGG pathways, two Molecular GO pathways and one Reactome pathway specific for whole plasma; while further pathways were shared. The reported findings indicate that major pathways relevant for immunity and metabolism are targets of deimination in lamprey plasma and plasma-EVs, with some differences, and may help elucidating roles for the conserved PAD enzyme family in regulation of immune and metabolic function throughout phylogeny.
Collapse
Affiliation(s)
- Jonathan P Rast
- Emory University School of Medicine, Pathology & Laboratory Medicine, Atlanta, GA, 30322, USA.
| | - Stefania D'Alessio
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes, MK7 6AA, UK.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK.
| |
Collapse
|
3
|
Global versus local mechanisms of temperature sensing in ion channels. Pflugers Arch 2018; 470:733-744. [PMID: 29340775 DOI: 10.1007/s00424-017-2102-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 02/07/2023]
Abstract
Ion channels turn diverse types of inputs, ranging from neurotransmitters to physical forces, into electrical signals. Channel responses to ligands generally rely on binding to discrete sensor domains that are coupled to the portion of the channel responsible for ion permeation. By contrast, sensing physical cues such as voltage, pressure, and temperature arises from more varied mechanisms. Voltage is commonly sensed by a local, domain-based strategy, whereas the predominant paradigm for pressure sensing employs a global response in channel structure to membrane tension changes. Temperature sensing has been the most challenging response to understand and whether discrete sensor domains exist for pressure and temperature has been the subject of much investigation and debate. Recent exciting advances have uncovered discrete sensor modules for pressure and temperature in force-sensitive and thermal-sensitive ion channels, respectively. In particular, characterization of bacterial voltage-gated sodium channel (BacNaV) thermal responses has identified a coiled-coil thermosensor that controls channel function through a temperature-dependent unfolding event. This coiled-coil thermosensor blueprint recurs in other temperature sensitive ion channels and thermosensitive proteins. Together with the identification of ion channel pressure sensing domains, these examples demonstrate that "local" domain-based solutions for sensing force and temperature exist and highlight the diversity of both global and local strategies that channels use to sense physical inputs. The modular nature of these newly discovered physical signal sensors provides opportunities to engineer novel pressure-sensitive and thermosensitive proteins and raises new questions about how such modular sensors may have evolved and empowered ion channel pores with new sensibilities.
Collapse
|
4
|
Tripp KW, Sternke M, Majumdar A, Barrick D. Creating a Homeodomain with High Stability and DNA Binding Affinity by Sequence Averaging. J Am Chem Soc 2017; 139:5051-5060. [PMID: 28326770 DOI: 10.1021/jacs.6b11323] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There is considerable interest in generating proteins with both high stability and high activity for biomedical and industrial purposes. One approach that has been used successfully to increase the stability of linear repeat proteins is consensus design. It is unclear the extent over which the consensus design approach can be used to produce folded and hyperstable proteins, and importantly, whether such stabilized proteins would retain function. Here we extend the consensus strategy to design a globular protein. We show that a consensus-designed homeodomain (HD) sequence adopts a cooperatively folded homeodomain structure. The unfolding free energy of the consensus-HD is 5 kcal·mol-1 higher than that of the naturally occurring engrailed-HD from Drosophila melanogaster. Remarkably, the consensus-HD binds the engrailed-HD cognate DNA in a similar mode as the engrailed-HD with approximately 100-fold higher affinity. 15N relaxation studies show a decrease in ps-ns backbone dynamics in the free state of consensus-HD, suggesting that increased affinity is not a result of increased plasticity. In addition to demonstrating the potential for consensus design of globular proteins with increased stability, these results demonstrate that greatly stabilized proteins can bind cognate substrates with increased affinities, showing that high stability is compatible with function.
Collapse
Affiliation(s)
- Katherine W Tripp
- The T. C. Jenkins Department of Biophysics and ‡Biomolecular NMR Center, Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Matt Sternke
- The T. C. Jenkins Department of Biophysics and ‡Biomolecular NMR Center, Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Ananya Majumdar
- The T. C. Jenkins Department of Biophysics and ‡Biomolecular NMR Center, Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Doug Barrick
- The T. C. Jenkins Department of Biophysics and ‡Biomolecular NMR Center, Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
5
|
Discrete kinetic models from funneled energy landscape simulations. PLoS One 2012; 7:e50635. [PMID: 23251375 PMCID: PMC3520928 DOI: 10.1371/journal.pone.0050635] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 10/23/2012] [Indexed: 01/01/2023] Open
Abstract
A general method for facilitating the interpretation of computer simulations of protein folding with minimally frustrated energy landscapes is detailed and applied to a designed ankyrin repeat protein (4ANK). In the method, groups of residues are assigned to foldons and these foldons are used to map the conformational space of the protein onto a set of discrete macrobasins. The free energies of the individual macrobasins are then calculated, informing practical kinetic analysis. Two simple assumptions about the universality of the rate for downhill transitions between macrobasins and the natural local connectivity between macrobasins lead to a scheme for predicting overall folding and unfolding rates, generating chevron plots under varying thermodynamic conditions, and inferring dominant kinetic folding pathways. To illustrate the approach, free energies of macrobasins were calculated from biased simulations of a non-additive structure-based model using two structurally motivated foldon definitions at the full and half ankyrin repeat resolutions. The calculated chevrons have features consistent with those measured in stopped flow chemical denaturation experiments. The dominant inferred folding pathway has an “inside-out”, nucleation-propagation like character.
Collapse
|
6
|
Itzhaki LS, Lowe AR. From artificial antibodies to nanosprings: the biophysical properties of repeat proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 747:153-66. [PMID: 22949117 DOI: 10.1007/978-1-4614-3229-6_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this chapter we review recent studies of repeat proteins, a class of proteins consisting of tandem arrays of small structural motifs that stack approximately linearly to produce elongated structures. We discuss the observation that, despite lacking the long-range tertiary interactions that are thought to be the hallmark of globular protein stability, repeat proteins can be as stable and as co-orperatively folded as their globular counterparts. The symmetry inherent in the structures of repeat arrays, however, means there can be many partly folded species (whether it be intermediates or transition states) that have similar stabilities. Consequently they do have distinct folding properties compared with globular proteins and these are manifest in their behaviour both at equilibrium and under kinetic conditions. Thus, when studying repeat proteins one appears to be probing a moving target: a relatively small perturbation, by mutation for example, can result in a shift to a different intermediate or transition state. The growing literature on these proteins illustrates how their modular architecture can be adapted to a remarkable array of biological and physical roles, both in vivo and in vitro. Further, their simple architecture makes them uniquely amenable to redesign-of their stability, folding and function-promising exciting possibilities for future research.
Collapse
Affiliation(s)
- Laura S Itzhaki
- Department of Chemistry, University of Cambridge, Cambridge, UK.
| | | |
Collapse
|
7
|
Vieux EF, Barrick D. Deletion of internal structured repeats increases the stability of a leucine-rich repeat protein, YopM. Biophys Chem 2011; 159:152-61. [PMID: 21764506 DOI: 10.1016/j.bpc.2011.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 06/07/2011] [Accepted: 06/07/2011] [Indexed: 01/17/2023]
Abstract
Mapping the stability distributions of proteins in their native folded states provides a critical link between structure, thermodynamics, and function. Linear repeat proteins have proven more amenable to this kind of mapping than globular proteins. C-terminal deletion studies of YopM, a large, linear leucine-rich repeat (LRR) protein, show that stability is distributed quite heterogeneously, yet a high level of cooperativity is maintained [1]. Key components of this distribution are three interfaces that strongly stabilize adjacent sequences, thereby maintaining structural integrity and promoting cooperativity. To better understand the distribution of interaction energy around these critical interfaces, we studied internal (rather than terminal) deletions of three LRRs in this region, including one of these stabilizing interfaces. Contrary to our expectation that deletion of structured repeats should be destabilizing, we find that internal deletion of folded repeats can actually stabilize the native state, suggesting that these repeats are destabilizing, although paradoxically, they are folded in the native state. We identified two residues within this destabilizing segment that deviate from the consensus sequence at a position that normally forms a stacked leucine ladder in the hydrophobic core. Replacement of these nonconsensus residues with leucine is stabilizing. This stability enhancement can be reproduced in the context of nonnative interfaces, but it requires an extended hydrophobic core. Our results demonstrate that different LRRs vary widely in their contribution to stability, and that this variation is context-dependent. These two factors are likely to determine the types of rearrangements that lead to folded, functional proteins, and in turn, are likely to restrict the pathways available for the evolution of linear repeat proteins.
Collapse
Affiliation(s)
- Ellen F Vieux
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
8
|
Temperature dependence of acetylcholine receptor channels activated by different agonists. Biophys J 2011; 100:895-903. [PMID: 21320433 DOI: 10.1016/j.bpj.2010.12.3727] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 12/14/2010] [Accepted: 12/16/2010] [Indexed: 11/20/2022] Open
Abstract
The temperature dependence of agonist binding and channel gating were measured for wild-type adult neuromuscular acetylcholine receptors activated by acetylcholine, carbamylcholine, or choline. With acetylcholine, temperature changed the gating rate constants (Q(10) ≈ 3.2) but had almost no effect on the equilibrium constant. The enthalpy change associated with gating was agonist-dependent, but for all three ligands it was approximately equal to the corresponding free-energy change. The equilibrium dissociation constant of the resting conformation (K(d)), the slope of the rate-equilibrium free-energy relationship (Φ), and the acetylcholine association and dissociation rate constants were approximately temperature-independent. In the mutant αG153S, the choline association and dissociation rate constants were temperature-dependent (Q(10) ≈ 7.4) but K(d) was not. By combining two independent mutations, we were able to compensate for the catalytic effect of temperature on the decay time constant of a synaptic current. At mouse body temperature, the channel-opening and -closing rate constants are ∼400 and 16 ms(-1). We hypothesize that the agonist dependence of the gating enthalpy change is associated with differences in ligand binding, specifically to the open-channel conformation of the protein.
Collapse
|
9
|
DeVries I, Ferreiro DU, Sánchez IE, Komives EA. Folding kinetics of the cooperatively folded subdomain of the IκBα ankyrin repeat domain. J Mol Biol 2011; 408:163-76. [PMID: 21329696 DOI: 10.1016/j.jmb.2011.02.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/03/2011] [Accepted: 02/09/2011] [Indexed: 11/15/2022]
Abstract
The ankyrin repeat (AR) domain of IκBα consists of a cooperative folding unit of roughly four ARs (AR1-AR4) and of two weakly folded repeats (AR5 and AR6). The kinetic folding mechanism of the cooperative subdomain, IκBα(67-206), was analyzed using rapid mixing techniques. Despite its apparent architectural simplicity, IκBα(67-206) displays complex folding kinetics, with two sequential on-pathway high-energy intermediates. The effect of mutations to or away from the consensus sequences of ARs on folding behavior was analyzed, particularly the GXTPLHLA motif, which have not been examined in detail previously. Mutations toward the consensus generally resulted in an increase in folding stability, whereas mutations away from the consensus resulted in decreased overall stability. We determined the free energy change upon mutation for three sequential transition state ensembles along the folding route for 16 mutants. We show that folding initiates with the formation of the interface of the outer helices of AR3 and AR4, and then proceeds to consolidate structure in these repeats. Subsequently, AR1 and AR2 fold in a concerted way in a single kinetic step. We show that this mechanism is robust to the presence of AR5 and AR6 as they do not strongly affect the folding kinetics. Overall, the protein appears to fold on a rather smooth energy landscape, where the folding mechanism conforms a one-dimensional approximation. However, we note that the AR does not necessarily act as a single folding element.
Collapse
Affiliation(s)
- Ingrid DeVries
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0378, USA
| | | | | | | |
Collapse
|
10
|
Guo Y, Yuan C, Tian F, Huang K, Weghorst CM, Tsai MD, Li J. Contributions of conserved TPLH tetrapeptides to the conformational stability of ankyrin repeat proteins. J Mol Biol 2010; 399:168-81. [PMID: 20398677 DOI: 10.1016/j.jmb.2010.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 03/27/2010] [Accepted: 04/06/2010] [Indexed: 01/11/2023]
Abstract
Ankyrin repeat (AR) proteins are one of the most abundant classes of repeat proteins and are involved in numerous physiological processes. These proteins are composed of various numbers of AR motifs stacked in a nearly linear fashion to adopt an elongated and nonglobular architecture. One salient feature prevalent in such a structural unit is the TPLH tetrapeptide or a close variant, T/SxxH, which initiates the helix-turn-helix conformation and presumably contributes to conformational stability through a hydrogen-bonding network. In the present study, we investigated the roles of T/SxxH motif in the stability, structure, and function of AR proteins by a systematic and rationalized mutagenic study on, followed by biochemical and biophysical characterization of, gankyrin, an oncogenic protein composed of seven ARs and six T/SxxH tetrapeptides, and P16, a tumor suppressor with four ARs but no TPLH tetrapeptide. Our results showed that this tetrapeptide is ineffectual on global structure and function, but contributes significantly to conformational stability when its stabilizing potentials are fully realized in the local conformation, including (1) the intra-AR hydrogen bonding involving the hydroxyl group; (2) the intra-AR and inter-AR hydrogen bonds involving the imidazole ring; and (3) the hydrophobic interaction associated with the Thr-methyl group. Considering that the capping and close-to-capping units tend to have more sequence diversity and more conformational variation, it could be also generally true that a T/SxxH motif close to the terminal repeats contributes little or even negatively to stability with respect to Ala substitution, but substantially stabilizes the global conformation when located in the middle of a long stretch of ARs.
Collapse
Affiliation(s)
- Yi Guo
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Serquera D, Lee W, Settanni G, Marszalek PE, Paci E, Itzhaki LS. Mechanical unfolding of an ankyrin repeat protein. Biophys J 2010; 98:1294-301. [PMID: 20371329 PMCID: PMC2849098 DOI: 10.1016/j.bpj.2009.12.4287] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 11/25/2009] [Accepted: 12/01/2009] [Indexed: 11/16/2022] Open
Abstract
Ankryin repeat proteins comprise tandem arrays of a 33-residue, predominantly alpha-helical motif that stacks roughly linearly to produce elongated and superhelical structures. They function as scaffolds mediating a diverse range of protein-protein interactions, and some have been proposed to play a role in mechanical signal transduction processes in the cell. Here we use atomic force microscopy and molecular-dynamics simulations to investigate the natural 7-ankyrin repeat protein gankyrin. We find that gankyrin unfolds under force via multiple distinct pathways. The reactions do not proceed in a cooperative manner, nor do they always involve fully stepwise unfolding of one repeat at a time. The peeling away of half an ankyrin repeat, or one or more ankyrin repeats, occurs at low forces; however, intermediate species are formed that are resistant to high forces, and the simulations indicate that in some instances they are stabilized by nonnative interactions. The unfolding of individual ankyrin repeats generates a refolding force, a feature that may be more easily detected in these proteins than in globular proteins because the refolding of a repeat involves a short contraction distance and incurs a low entropic cost. We discuss the origins of the differences between the force- and chemical-induced unfolding pathways of ankyrin repeat proteins, as well as the differences between the mechanics of natural occurring ankyrin repeat proteins and those of designed consensus ankyin repeat and globular proteins.
Collapse
Affiliation(s)
- David Serquera
- MRC Cancer Cell Unit, Hutchison/MRC Research Centre, Cambridge, United Kingdom
| | - Whasil Lee
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina
| | | | - Piotr E. Marszalek
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina
| | - Emanuele Paci
- School of Physics and Astronomy, University of Leeds, Leeds, United Kingdom
| | - Laura S. Itzhaki
- MRC Cancer Cell Unit, Hutchison/MRC Research Centre, Cambridge, United Kingdom
| |
Collapse
|
12
|
Ferreiro DU, Komives EA. Molecular mechanisms of system control of NF-kappaB signaling by IkappaBalpha. Biochemistry 2010; 49:1560-7. [PMID: 20055496 DOI: 10.1021/bi901948j] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The NF-kappaB family of transcription factors responds to inflammatory cytokines with rapid transcriptional activation and subsequent signal repression. Much of the system control depends on the unique characteristics of its major inhibitor, IkappaBalpha, which appears to have folding dynamics that underlie the biophysical properties of its activity. Theoretical folding studies followed by experiments have shown that a portion of the ankyrin repeat domain of IkappaBalpha folds on binding. In resting cells, IkappaBalpha is constantly being synthesized, but most of it is rapidly degraded, leaving only a very small pool of free IkappaBalpha. Nearly all of the NF-kappaB is bound to IkappaBalpha, resulting in near-complete inhibition of nuclear localization and transcriptional activation. Combined solution biophysical measurements and quantitative protein half-life measurements inside cells have allowed us to understand how the inhibition occurs, why IkappaBalpha can be degraded quickly in the free state but remain extremely stable in the bound state, and how signal activation and repression can be tuned by IkappaB folding dynamics. This review summarizes results of in vitro and in vivo experiments that converge demonstrating the effective interplay between biophysics and cell biology in understanding transcriptional control by the NF-kappaB signaling module.
Collapse
Affiliation(s)
- Diego U Ferreiro
- Laboratorio de Expresion y Plegado de Proteinas, Universidad Nacional de Quilmes, Roque Saenz Pena 352,B1876BXD Bernal, Buenos Aires, Argentina
| | | |
Collapse
|
13
|
Sklenovský P, Otyepka M. In SilicoStructural and Functional Analysis of Fragments of the Ankyrin Repeat Protein p18INK4c. J Biomol Struct Dyn 2010; 27:521-40. [DOI: 10.1080/07391102.2010.10507336] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
14
|
Guo Y, Mahajan A, Yuan C, Joo SH, Weghorst CM, Tsai MD, Li J. Comparisons of the conformational stability of cyclin-dependent kinase (CDK) 4-interacting ankyrin repeat (AR) proteins. Biochemistry 2009; 48:4050-62. [PMID: 19320462 DOI: 10.1021/bi802247p] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Ankyrin repeat (AR) proteins are one of the most abundant repeat protein classes in nature, and they are involved in numerous physiological processes through mediating protein/protein interactions. The repetitive and modular architecture of these AR proteins may lead to biochemical and biophysical properties distinct from those of globular proteins. It has been demonstrated that like most globular proteins, AR proteins exhibit a two-state, cooperative transition in chemical- and heat-induced unfolding. However, the biophysical characteristics underlying such cooperative unfolding remain to be further investigated. In the present study, we evaluated the conformational stability of a group of cyclin-dependent kinase (CDK) 4-interacting AR proteins, P16, P18, IkappaBalpha, gankyrin, and their truncated mutants under different conditions, including the presence of denaturants, temperature, and pH. Our results showed that the first four N-terminal ARs are required to form a potent and stable CDK4 modulator. Moreover, in spite of their similarities in skeleton structure, CDK4 binding, and cooperative unfolding, P16, P18, IkappaBalpha, and gankyrin exhibited considerably different biophysical properties with regard to the conformational stability, and these differences mainly resulted from the discrepancies in the primary sequence of the relatively conserved AR motifs. Our results also demonstrated that these sequence discrepancies are able to influence the function of AR proteins to a certain extent. Overall, our results provide important insights into understanding the biophysical properties of AR proteins.
Collapse
Affiliation(s)
- Yi Guo
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
The complexity of the mechanisms by which proteins fold has been shown by many studies to be governed by their native-state topologies. This was manifested in the ability of the native topology-based model to capture folding mechanisms and the success of folding rate predictions based on various topological measures, such as the contact order. However, while the finer details of topological complexity have been thoroughly examined and related to folding kinetics, simpler characteristics of the protein, such as its overall shape, have been largely disregarded. In this study, we investigated the folding of proteins with an unusual elongated geometry that differs substantially from the common globular structure. To study the effect of the elongation degree on the folding kinetics, we used repeat proteins, which become more elongated as they include more repeating units. Some of these have apparently anomalous experimental folding kinetics, with rates that are often less than expected on the basis of rates for globular proteins possessing similar topological complexity. Using experimental folding rates and a larger set of rates obtained from simulations, we have shown that as the protein becomes increasingly elongated, its folding kinetics becomes slower and deviates more from the rate expected on the basis of topology measures fitted for globular proteins. The observed slow kinetics is a result of a more complex pathway in which stable intermediates composed of several consecutive repeats can appear. We thus propose a novel measure, an elongation-sensitive contact order, that takes into account both the extent of elongation and the topological complexity of the protein. This new measure resolves the apparent discrimination between the folding of globular and elongated repeat proteins. Our study extends the current capabilities of folding-rate predictions by unifying the kinetics of repeat and globular proteins.
Collapse
Affiliation(s)
- Tzachi Hagai
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
16
|
Khairy K, Foo J, Howard J. Shapes of Red Blood Cells: Comparison of 3D Confocal Images with the Bilayer-Couple Model. Cell Mol Bioeng 2008; 1:173-181. [PMID: 21031149 DOI: 10.1007/s12195-008-0019-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cells and organelles are shaped by the chemical and physical forces that bend cell membranes. The human red blood cell (RBC) is a model system for studying how such forces determine cell morphology. It is thought that RBCs, which are typically biconcave discoids, take the shape that minimizes their membrane-bending energies, subject to the constraints of fixed area and volume. However, recently it has been hypothesized that shear elasticity arising from the membrane-associated cytoskeleton (MS) is necessary to account for shapes of real RBCs, especially ones with highly curved features such as echinocytes. In this work we tested this hypothesis by following RBC shape changes using spherical harmonic series expansions of theoretical cell surfaces and those estimated from 3D confocal microscopy images of live cells. We found (i) quantitative agreement between shapes obtained from the theoretical model including the MS and real cells, (ii) that weakening the MS, by using urea (which denatures spectrin), leads to the theoretically predicted gradual decrease in spicule number of echinocytes, (iii) that the theory predicts that the MS is essential for stabilizing the discocyte morphology against changes in lipid composition, and that without it, the shape would default to the elliptocyte (a biconcave ellipsoid), (iv) that we were able to induce RBCs to adopt the predicted elliptocyte morphology by treating healthy discocytes with urea. The latter observation is consistent with the known connection between the blood disease hereditary elliptocytosis and spectrin mutations that weaken the cell cortex. We conclude that while the discocyte, in absence of shear, is indeed a minimum energy shape, its stabilization in healthy RBCs requires the MS, and that elliptocytosis can be explained based on purely mechanical considerations.
Collapse
Affiliation(s)
- Khaled Khairy
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany
| | | | | |
Collapse
|
17
|
The leucine-rich repeat domain of Internalin B folds along a polarized N-terminal pathway. Structure 2008; 16:705-14. [PMID: 18462675 DOI: 10.1016/j.str.2008.02.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 02/08/2008] [Accepted: 02/09/2008] [Indexed: 11/24/2022]
Abstract
The leucine-rich repeat domain of Internalin B is composed of seven tandem leucine-rich repeats, which each contain a short beta strand connected to a 3(10) helix by a short turn, and an N-terminal alpha-helical capping motif. To determine whether folding proceeds along a single, discrete pathway or multiple, parallel pathways, and to map the structure of the transition state ensemble, we examined the effects of destabilizing substitutions of conserved residues in each repeat. We find that, despite the structural redundancy among the repeats, folding proceeds through an N-terminal transition state ensemble in which the extent of structure formation is biased toward repeats one and two and includes both local and interrepeat interactions. Our results suggest that the N-terminal capping motif serves to polarize the folding pathway by acting as a fast-growing nucleus onto which consecutive repeats fold in the transition state ensemble, and highlight the importance of sequence-specific interactions in pathway selection.
Collapse
|
18
|
Barrick D, Ferreiro DU, Komives EA. Folding landscapes of ankyrin repeat proteins: experiments meet theory. Curr Opin Struct Biol 2008; 18:27-34. [PMID: 18243686 DOI: 10.1016/j.sbi.2007.12.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 12/04/2007] [Accepted: 12/05/2007] [Indexed: 10/22/2022]
Abstract
Nearly 6% of eukaryotic protein sequences contain ankyrin repeat (AR) domains, which consist of several repeats and often function in binding. AR proteins show highly cooperative folding despite a lack of long-range contacts. Both theory and experiment converge to explain that formation of the interface between elements is more favorable than formation of any individual repeat unit. IkappaBalpha and Notch both undergo partial folding upon binding perhaps influencing the binding free energy. The simple architecture, combined with identification of consensus residues that are important for stability, has enabled systematic perturbation of the energy landscape by single point mutations that affect stability or by addition of consensus repeats. The folding energy landscapes appear highly plastic, with small perturbations re-routing folding pathways.
Collapse
Affiliation(s)
- Doug Barrick
- T.C. Jenkins Department of Biophysics, The Johns Hopkins University, 3400N, Charles St. Baltimore, MD 21218, USA
| | | | | |
Collapse
|
19
|
Sklenovský P, Banás P, Otyepka M. Two C-terminal ankyrin repeats form the minimal stable unit of the ankyrin repeat protein p18INK4c. J Mol Model 2008; 14:747-59. [PMID: 18481120 DOI: 10.1007/s00894-008-0300-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Accepted: 03/11/2008] [Indexed: 12/24/2022]
Abstract
Ankyrin repeat proteins (ARPs) appear to be abundant in organisms from all phyla, and play critical regulatory roles, mediating specific interactions with target biomolecules and thus ordering the sequence of events in diverse cellular processes. ARPs possess a non-globular scaffold consisting of repeating motifs named ankyrin (ANK) repeats, which stack on each other. The modular architecture of ARPs provides a new paradigm for understanding protein stability and folding mechanisms. In the present study, the stability of various C-terminal fragments of the ARP p18(INK4c) was investigated by all-atomic 450 ns molecular dynamics (MD) simulations in explicit water solvent. Only motifs with at least two ANK repeats made stable systems in the available timescale. All smaller fragments were unstable, readily losing their native fold and alpha-helical content. Since each non-terminal ANK repeat has two hydrophobic sides, we may hypothesize that at least one hydrophobic side must be fully covered and shielded from the water as a necessary, but not sufficient, condition to maintain ANK repeat stability. Consequently, at least two ANK repeats are required to make a stable ARP.
Collapse
Affiliation(s)
- Petr Sklenovský
- Department of Physical Chemistry and Center for Biomolecules and Complex Molecular Systems, Faculty of Science, Palacký University, tr. Svobody 26, 771 46, Olomouc, Czech Republic
| | | | | |
Collapse
|
20
|
Structural insights into an equilibrium folding intermediate of an archaeal ankyrin repeat protein. Proc Natl Acad Sci U S A 2008; 105:3779-84. [PMID: 18305166 DOI: 10.1073/pnas.0710657105] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Repeat proteins are widespread in nature, with many of them functioning as binding molecules in protein-protein recognition. Their simple structural architecture is used in biotechnology for generating proteins with high affinities to target proteins. Recent folding studies of ankyrin repeat (AR) proteins revealed a new mechanism of protein folding. The formation of an intermediate state is rate limiting in the folding reaction, suggesting a scaffold function of this transient state for intrinsically less stable ARs. To investigate a possible common mechanism of AR folding, we studied the structure and folding of a new thermophilic AR protein (tANK) identified in the archaeon Thermoplasma volcanium. The x-ray structure of the evolutionary much older tANK revealed high homology to the human CDK inhibitor p19(INK4d), whose sequence was used for homology search. As for p19(INK4d), equilibrium and kinetic folding analyses classify tANK to the family of sequential three-state folding proteins, with an unusual fast equilibrium between native and intermediate state. Under equilibrium conditions, the intermediate can be populated to >90%, allowing characterization on a residue-by-residue level using NMR spectroscopy. These data clearly show that the three C-terminal ARs are natively folded in the intermediate state, whereas native cross-peaks for the rest of the molecule are missing. Therefore, the formation of a stable folding unit consisting of three ARs is the necessary rate-limiting step before AR 1 and 2 can assemble to form the native state.
Collapse
|
21
|
Wetzel SK, Settanni G, Kenig M, Binz HK, Plückthun A. Folding and Unfolding Mechanism of Highly Stable Full-Consensus Ankyrin Repeat Proteins. J Mol Biol 2008; 376:241-57. [DOI: 10.1016/j.jmb.2007.11.046] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 10/03/2007] [Accepted: 11/16/2007] [Indexed: 11/29/2022]
|
22
|
Kloss E, Courtemanche N, Barrick D. Repeat-protein folding: new insights into origins of cooperativity, stability, and topology. Arch Biochem Biophys 2008; 469:83-99. [PMID: 17963718 PMCID: PMC2474553 DOI: 10.1016/j.abb.2007.08.034] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Accepted: 08/28/2007] [Indexed: 10/22/2022]
Abstract
Although our understanding of globular protein folding continues to advance, the irregular tertiary structures and high cooperativity of globular proteins complicates energetic dissection. Recently, proteins with regular, repetitive tertiary structures have been identified that sidestep limitations imposed by globular protein architecture. Here we review recent studies of repeat-protein folding. These studies uniquely advance our understanding of both the energetics and kinetics of protein folding. Equilibrium studies provide detailed maps of local stabilities, access to energy landscapes, insights into cooperativity, determination of nearest-neighbor interaction parameters using statistical thermodynamics, relationships between consensus sequences and repeat-protein stability. Kinetic studies provide insight into the influence of short-range topology on folding rates, the degree to which folding proceeds by parallel (versus localized) pathways, and the factors that select among multiple potential pathways. The recent application of force spectroscopy to repeat-protein unfolding is providing a unique route to test and extend many of these findings.
Collapse
Affiliation(s)
- Ellen Kloss
- T.C. Jenkins Department of Biophyics, The Johns Hopkins University, 3400 N. Charles St., Baltimore MD 21218 USA
| | - Naomi Courtemanche
- T.C. Jenkins Department of Biophyics, The Johns Hopkins University, 3400 N. Charles St., Baltimore MD 21218 USA
| | - Doug Barrick
- T.C. Jenkins Department of Biophyics, The Johns Hopkins University, 3400 N. Charles St., Baltimore MD 21218 USA
| |
Collapse
|
23
|
Interlandi G, Wetzel SK, Settanni G, Plückthun A, Caflisch A. Characterization and Further Stabilization of Designed Ankyrin Repeat Proteins by Combining Molecular Dynamics Simulations and Experiments. J Mol Biol 2008; 375:837-54. [DOI: 10.1016/j.jmb.2007.09.042] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 08/11/2007] [Accepted: 09/06/2007] [Indexed: 11/28/2022]
|
24
|
Mahajan A, Guo Y, Yuan C, Weghorst CM, Tsai MD, Li J. Dissection of protein-protein interaction and CDK4 inhibition in the oncogenic versus tumor suppressing functions of gankyrin and P16. J Mol Biol 2007; 373:990-1005. [PMID: 17881001 PMCID: PMC2693045 DOI: 10.1016/j.jmb.2007.08.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 07/22/2007] [Accepted: 08/16/2007] [Indexed: 10/22/2022]
Abstract
Protein-protein interactions usually involve a large number of residues; thus it is difficult to elucidate functional and structural roles of specific residues located in the interface. This problem is particularly challenging for ankyrin repeat proteins (ARs), which consist of linear arrays of small repeating units and play critical roles in almost every life process via protein-protein interactions, because the residues involved are discontinuously dispersed in both the ARs and their partners. Our previous studies showed that while both specific CDK4 inhibitor p16INK4A (P16) and gankyrin bind to cyclin-dependent kinase 4 (CDK4) in similar fashion, only P16 inhibits the kinase activity of CDK4. While this could explain why P16 is a tumor suppressor and gankyrin is oncogenic, the structural basis of these contrasting properties was unknown. Here we show that a double mutant of gankyrin, L62H/I79D, inhibits the kinase activity of CDK4, similar to P16, and such CDK4-inhibtory activity is associated with the I79D but not L62H mutation. In addition, mutations at I79 and L62 bring about a moderate decrease in the stability of gankyrin. Further structural and biophysical analyses suggest that the substitution of Ile79 with Asp leads to local conformational changes in loops I-III of gankyrin. Taken together, our results allow the dissection of the "protein-protein binding" and "CDK4 inhibition" functions of P16, show that the difference between tumor suppressing and oncogenic functions of P16 and gankyrin, respectively, mainly resides in a single residue, and provide structural insight to the contrasting biological functions of the two AR proteins.
Collapse
Affiliation(s)
- Anjali Mahajan
- Departments of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Yi Guo
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA
| | - Chunhua Yuan
- Campus Chemical Instrument Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Christopher M. Weghorst
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio 43210, USA
| | - Ming-Daw Tsai
- Departments of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA
- Campus Chemical Instrument Center, The Ohio State University, Columbus, Ohio 43210, USA
- Genomics Research Center and Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Junan Li
- Departments of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
25
|
Löw C, Weininger U, Zeeb M, Zhang W, Laue ED, Schmid FX, Balbach J. Folding mechanism of an ankyrin repeat protein: scaffold and active site formation of human CDK inhibitor p19(INK4d). J Mol Biol 2007; 373:219-31. [PMID: 17804013 DOI: 10.1016/j.jmb.2007.07.063] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2007] [Revised: 07/22/2007] [Accepted: 07/26/2007] [Indexed: 10/23/2022]
Abstract
The p19(INK4d) protein consists of five ankyrin repeats (ANK) and controls the human cell cycle by inhibiting the cyclin D-dependent kinases (CDK) 4 and 6. We investigated the folding of p19(INK4d) by urea-induced unfolding transitions, kinetic analyses of unfolding and refolding, including double-mixing experiments and a special assay for folding intermediates. Folding is a sequential two-step reaction via a hyperfluorescent on-pathway intermediate. This intermediate is present under all conditions, during unfolding, refolding and at equilibrium. The folding mechanism was confirmed by a quantitative global fit of a consistent set of equilibrium and kinetic data revealing the thermodynamics and intrinsic folding rates of the different states. Surprisingly, the N<-->I transition is much faster compared to the I<-->U transition. The urea-dependence of the intrinsic folding rates causes population of the intermediate at equilibrium close to the transition midpoint. NMR detected hydrogen/deuterium exchange and the analysis of truncated variants showed that the C-terminal repeats ANK3-5 are already folded in the on-pathway intermediate, whereas the N-terminal repeats 1 and 2 are not folded. We suggest that during refolding, repeats ANK3-ANK5 first form the scaffold for the subsequent assembly of repeats ANK1 and ANK2. The binding function of p19(INK4d) resides in the latter repeats. We propose that the graded stability and the facile unfolding of repeats 1 and 2 is a prerequisite for the down-regulation of the inhibitory activity of p19(INK4d) during the cell-cycle.
Collapse
Affiliation(s)
- Christian Löw
- Institut für Physik, Biophysik, and Mitteldeutsches Zentrum für Struktur und Dynamik der Proteine (MZP), Martin-Luther-Universität Halle-Wittenberg, D-06120 Halle(Saale), Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Werbeck ND, Itzhaki LS. Probing a moving target with a plastic unfolding intermediate of an ankyrin-repeat protein. Proc Natl Acad Sci U S A 2007; 104:7863-8. [PMID: 17483458 PMCID: PMC1876538 DOI: 10.1073/pnas.0610315104] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Indexed: 11/18/2022] Open
Abstract
Repeat proteins are composed of tandem arrays of 30- to 40-residue structural motifs and are characterized by short-range interactions between residues close in sequence. Here we have investigated the equilibrium unfolding of D34, a 426-residue fragment of ankyrinR that comprises 12 ankyrin repeats. We show that D34 unfolds via an intermediate in which the C-terminal half of the protein is structured and the N-terminal half is unstructured. Surprisingly, however, we find that we change the unfolding process when we attempt to probe it. Single-site, moderately destabilizing mutations at the C terminus result in different intermediates dominating. The closer to the C terminus the mutation, the fewer repeats are structured in the intermediate; thus, structure in the intermediate frays from the site of the mutation. This behavior contrasts with the robust unfolding of globular proteins in which mutations can destabilize an intermediate but do not cause a different intermediate to be populated. We suggest that, for large repeat arrays, the energy landscape is very rough, with many different low-energy species containing varying numbers of folded modules so the species that dominates can be altered easily by single, conservative mutations. The multiplicity of partly folded states populated in the equilibrium unfolding of D34 is also mirrored by the kinetic folding mechanism of ankyrin-repeat proteins in which we have observed that parallel pathways are accessible from different initiation sites in the structure.
Collapse
Affiliation(s)
- Nicolas D. Werbeck
- Medical Research Council Cancer Cell Unit, Hutchison/Medical Research Council Research Centre, Hills Road, Cambridge CB2 0XZ, United Kingdom
| | - Laura S. Itzhaki
- Medical Research Council Cancer Cell Unit, Hutchison/Medical Research Council Research Centre, Hills Road, Cambridge CB2 0XZ, United Kingdom
| |
Collapse
|
27
|
Zanuy D, Jiménez AI, Cativiela C, Nussinov R, Alemán C. Use of constrained synthetic amino acids in beta-helix proteins for conformational control. J Phys Chem B 2007; 111:3236-42. [PMID: 17388467 DOI: 10.1021/jp065025k] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A highly constrained amino acid has been introduced in the turn region of a beta-helix to increase the conformational stability of the native fold for nanotechnological purposes. The influence of this specific amino acid replacement in the final organization of beta-helix motifs has been evaluated by combining ab initio first-principles calculations on model systems and molecular dynamics simulations of entire peptide segments. The former methodology, which has been applied to a sequence containing three amino acids, has been used to develop adjusted templates. Calculations indicated that 1-amino-2,2-diphenylcyclopropanecarboxylic acid, a constrained cyclopropane analogue of phenylalanine, exhibits a strong tendency to form and promote folded conformations. On the other hand, molecular dynamics simulations are employed to probe the ability of such a synthetic amino acid to enhance the conformational stability of the beta-helix motif, which is the first requirement for further protein nanoengineering. A highly regular segment from a naturally occurring beta-helix protein was selected as a potential nanoconstruct module. Simulations of wild type and mutated segments revealed that the ability of the phenylalanine analogue to nucleate turn conformations enhances the conformational stability of the beta-helix motif in isolated peptide segments.
Collapse
Affiliation(s)
- David Zanuy
- Departament d'Enginyeria Química, ETSEIB, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
28
|
Lowe AR, Itzhaki LS. Biophysical characterisation of the small ankyrin repeat protein myotrophin. J Mol Biol 2007; 365:1245-55. [PMID: 17113103 DOI: 10.1016/j.jmb.2006.10.060] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 10/03/2006] [Accepted: 10/18/2006] [Indexed: 10/24/2022]
Abstract
The 118 residue protein myotrophin is composed of four ankyrin repeats that stack linearly to form an elongated, predominantly alpha-helical structure. The protein folds via a two-state mechanism at equilibrium. The free energy change of unfolding in water (DeltaG(U-N)(H(2)O)) is 5.8 kcal.mol(-1). The chevron plot reveals that the folding reaction has a broad energy barrier and that it conforms to a two-state mechanism. The rate of folding in water (k(f)(H(2)O)) of 95 s(-1) is several orders of magnitude slower than the value predicted by topological calculations. Proline mutants were used to show that the minor kinetic phases observed for myotrophin arise from heterogeneity of the ground states due to cis-trans isomerisation of prolyl as well as non-prolyl peptide bonds. Myotrophin is the first example of a naturally occurring ankyrin repeat protein that conforms to an apparent two-state mechanism at equilibrium and under kinetic conditions, making it highly suitable for high resolution protein folding studies.
Collapse
Affiliation(s)
- Alan R Lowe
- MRC Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road, Cambridge, CB2 2XZ, UK
| | | |
Collapse
|
29
|
Ferreiro DU, Cervantes CF, Truhlar SME, Cho SS, Wolynes PG, Komives EA. Stabilizing IkappaBalpha by "consensus" design. J Mol Biol 2006; 365:1201-16. [PMID: 17174335 PMCID: PMC1866275 DOI: 10.1016/j.jmb.2006.11.044] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 09/27/2006] [Accepted: 11/10/2006] [Indexed: 01/21/2023]
Abstract
IkappaBalpha is the major regulator of transcription factor NF-kappaB function. The ankyrin repeat region of IkappaBalpha mediates specific interactions with NF-kappaB dimers, but ankyrin repeats 1, 5 and 6 display a highly dynamic character when not in complex with NF-kappaB. Using chemical denaturation, we show here that IkappaBalpha displays two folding transitions: a non-cooperative conversion under weak perturbation, and a major cooperative folding phase upon stronger insult. Taking advantage of a native Trp residue in ankyrin repeat (AR) 6 and engineered Trp residues in AR2, AR4 and AR5, we show that the cooperative transition involves AR2 and AR3, while the non-cooperative transition involves AR5 and AR6. The major structural transition can be affected by single amino acid substitutions converging to the "consensus" ankyrin repeat sequence, increasing the native state stability significantly. We further characterized the structural and dynamic properties of the native state ensemble of IkappaBalpha and the stabilized mutants by H/(2)H exchange mass spectrometry and NMR. The solution experiments were complemented with molecular dynamics simulations to elucidate the microscopic origins of the stabilizing effect of the consensus substitutions, which can be traced to the fast conformational dynamics of the folded ensemble.
Collapse
Affiliation(s)
- Diego U Ferreiro
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0359, USA
| | | | | | | | | | | |
Collapse
|
30
|
Tripp KW, Barrick D. Enhancing the stability and folding rate of a repeat protein through the addition of consensus repeats. J Mol Biol 2006; 365:1187-200. [PMID: 17067634 PMCID: PMC1851695 DOI: 10.1016/j.jmb.2006.09.092] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 08/24/2006] [Accepted: 09/28/2006] [Indexed: 10/24/2022]
Abstract
Repeat proteins are constructed from a linear array of modular units, giving rise to an overall topology lacking long-range interactions. This suggests that stabilizing repeat modules based on consensus information might be added to a repeat protein domain, allowing it to be extended without altering its overall topology. Here we add consensus modules the ankyrin repeat domain from the Drosophila Notch receptor to investigate the structural tolerance to these modules, the relative thermodynamic stability of these hybrid proteins, and how alterations in the energy landscape influence folding kinetics. Insertions of consensus modules between repeats five and six of the Notch ankyrin domain have little effect on the far and near-UV CD spectra, indicating that neither secondary nor tertiary structure is dramatically altered. Furthermore, stable structure is maintained at increased denaturant concentrations in the polypeptides containing the consensus repeats, indicating that the consensus modules are capable of stabilizing much of the domain. However, insertion of the consensus repeats appears to disrupt cooperativity, producing a two-stage (three-state) unfolding transition in which the C-terminal repeats unfold at moderate urea concentrations. Removing the C-terminal repeats (Notch ankyrin repeats six and seven) restores equilibrium two-state folding and demonstrates that the high stability of the consensus repeats is propagated into the N-terminal, naturally occurring Notch ankyrin repeats. This stability increase greatly increases the folding rate, and suggests that the transition state ensemble may be repositioned in the chimeric consensus-stabilized proteins in response to local stability.
Collapse
|
31
|
Interlandi G, Settanni G, Caflisch A. Unfolding transition state and intermediates of the tumor suppressor p16
INK4a
investigated by molecular dynamics simulations. Proteins 2006; 64:178-92. [PMID: 16596641 DOI: 10.1002/prot.20953] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The ankyrin repeat is one of the most common protein motifs and is involved in protein-protein interactions. It consists of 33 residues that assume a beta-hairpin helix-loop-helix fold. Mutagenesis and kinetic experiments (Phi-value analysis of the folding transition state) have shown that the tumor suppressor p16(INK4a), a four-repeat protein, unfolds sequentially starting from the two N-terminal repeats. Here, the flexibility of p16(INK4a) at room temperature and its unfolding mechanism at high temperature have been investigated by multiple molecular dynamics runs in explicit water for a total simulation time of 0.65 micros. The transition state ensemble (TSE) of p16(INK4a) was identified by monitoring both the deviation from the experimental Phi values and sudden conformational changes along the unfolding trajectories. Conformations in the TSE have a mainly unstructured second repeat whereas the other repeats are almost completely folded. A rigid-body displacement of the first repeat involving both a rotation and translation is observed in all molecular dynamics simulations at high temperature. The Trp(15), Pro(75), and Ala(76) side-chains are more buried in the TSE than the native state. The sequential unfolding starting at the second repeat is in agreement with the mutagenesis studies whereas the displacement of the first repeat and the presence of nonnative interactions at the TSE are simulation results which supplement the experimental data. Furthermore, the unfolding trajectories reveal the presence of two on-pathway intermediates with partial alpha-helical structure. Finally, on the basis of the available experimental and simulation results we suggest that in modular proteins the shift of the folding TSE toward the native structure upon reduction of the number of tandem repeats is consistent with the Hammond effect.
Collapse
|
32
|
Xu G, Narayan M, Kurinov I, Ripoll DR, Welker E, Khalili M, Ealick SE, Scheraga HA. A localized specific interaction alters the unfolding pathways of structural homologues. J Am Chem Soc 2006; 128:1204-13. [PMID: 16433537 PMCID: PMC2529162 DOI: 10.1021/ja055313e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reductive unfolding studies of proteins are designed to provide information about intramolecular interactions that govern the formation (and stabilization) of the native state and about folding/unfolding pathways. By mutating Tyr92 to G, A, or L in the model protein, bovine pancreatic ribonuclease A, and through analysis of temperature factors and molecular dynamics simulations of the crystal structures of these mutants, it is demonstrated that the markedly different reductive unfolding rates and pathways of ribonuclease A and its structural homologue onconase can be attributed to a single, localized, ring-stacking interaction between Tyr92 and Pro93 in the bovine variant. The fortuitous location of this specific stabilizing interaction in a disulfide-bond-containing loop region of ribonuclease A results in the localized modulation of protein dynamics that, in turn, enhances the susceptibility of the disulfide bond to reduction leading to an alteration in the reductive unfolding behavior of the homologues. These results have important implications for folding studies involving topological determinants to obtain folding/unfolding rates and pathways, for protein structure-function prediction through fold recognition, and for predicting proteolytic cleavage sites.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Harold A. Scheraga
- *To whom correspondence should be addressed: Tel: 607 255-4034; Fax: 607 254-4700; E-mail:
| |
Collapse
|
33
|
Cho SS, Levy Y, Wolynes PG. P versus Q: structural reaction coordinates capture protein folding on smooth landscapes. Proc Natl Acad Sci U S A 2006; 103:586-91. [PMID: 16407126 PMCID: PMC1334664 DOI: 10.1073/pnas.0509768103] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Minding your p's and q's has become as important to protein-folding theorists as it is for those being instructed in the rules of etiquette. To assess the quality of structural reaction coordinates in predicting the transition-state ensemble (TSE) of protein folding, we benchmarked the accuracy of four structural reaction coordinates against the kinetic measure P(fold), whose value of 0.50 defines the stochastic separatrix for a two-state folding mechanism. For two proteins that fold by a simple two-state mechanism, c-src SH3 and CI-2, the Phi-values of the TSEs predicted by native topology-based reaction coordinates (including Q, the fraction of native contacts) are almost identical to those of the TSE based on P(fold), with correlation coefficients of >0.90. For proteins with complex folding mechanisms that have especially broad, asymmetrical free energy barriers such as the designed 3-ankyrin repeating protein (3ANK) or proteins with distinct intermediates such as cyanovirin-N (CV-N), we show that the ensemble of structures with P(fold) = 0.50 generally does not include the chemically relevant transition states. This weakness of P(fold) limits its usefulness in protein folding studies. For such systems, elucidating the essential features of folding mechanisms requires using multiple reaction coordinates, although the number is still rather small. At the same time, for simple folding mechanisms, there is no indication of superiority for P(fold) over structurally chosen and thermodynamically relevant reaction coordinates that correctly measure the degree of nativeness.
Collapse
Affiliation(s)
- Samuel S Cho
- Center for Theoretical Biological Physics and Department of Chemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
34
|
Mello CC, Bradley CM, Tripp KW, Barrick D. Experimental characterization of the folding kinetics of the notch ankyrin domain. J Mol Biol 2005; 352:266-81. [PMID: 16095609 DOI: 10.1016/j.jmb.2005.07.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2004] [Revised: 06/01/2005] [Accepted: 07/11/2005] [Indexed: 10/25/2022]
Abstract
Proteins constructed from linear arrays of tandem repeats provide a simplified architecture for understanding protein folding. Here, we examine the folding kinetics of the ankyrin repeat domain from the Drosophila Notch receptor, which consists of six folded ankyrin modules and a seventh partly disordered N-terminal ankyrin repeat sequence. Both the refolding and unfolding kinetics are best described as a sum of two exponential phases. The slow, minor refolding phase is limited by prolyl isomerization in the denatured state (D). The minor unfolding phase, which appears as a lag during fluorescence-detected unfolding, is consistent with an on-pathway intermediate (I). This intermediate, although not directly detected during refolding, is shown to be populated by interrupted refolding experiments. When plotted against urea, the rate constants for the major unfolding and refolding phases define a single non-linear v-shaped chevron, as does the minor unfolding phase. These two chevrons, along with unfolding amplitudes, are well-fitted by a sequential three-state model, which yields rate constants for the individual steps in folding and unfolding. Based on these fitted parameters, the D to I step is rate-limiting, and closely matches the major observed refolding phase at low denaturant concentrations. I appears to be midway between N and D in folding free energy and denaturant sensitivity, but has Trp fluorescence properties close to N. Although the Notch ankyrin domain has a simple architecture, folding is slow, with the limiting refolding rate constant as much as seven orders of magnitude smaller than expected from topological predictions.
Collapse
Affiliation(s)
- Cecilia C Mello
- Department of Biology, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|