1
|
Nandi A, Zhang A, Chu ZT, Xie WJ, Xu Z, Dong S, Warshel A. Exploring the Light-Emitting Agents in Renilla Luciferases by an Effective QM/MM Approach. J Am Chem Soc 2024; 146:13875-13885. [PMID: 38718165 PMCID: PMC11293844 DOI: 10.1021/jacs.4c00963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Bioluminescence is a fascinating natural phenomenon, wherein organisms produce light through specific biochemical reactions. Among these organisms, Renilla luciferase (RLuc) derived from the sea pansy Renilla reniformis is notable for its blue light emission and has potential applications in bioluminescent tagging. Our study focuses on RLuc8, a variant of RLuc with eight amino acid substitutions. Recent studies have shown that the luminescent emitter coelenteramide can adopt multiple protonation states, which may be influenced by nearby residues at the enzyme's active site, demonstrating a complex interplay between protein structure and bioluminescence. Herein, using the quantum mechanical consistent force field method and the semimacroscopic protein dipole-Langevin dipole method with linear response approximation, we show that the phenolate state of coelenteramide in RLuc8 is the primary light-emitting species in agreement with experimental results. Our calculations also suggest that the proton transfer (PT) from neutral coelenteramide to Asp162 plays a crucial role in the bioluminescence process. Additionally, we reproduced the observed emission maximum for the amide anion in RLuc8-D120A and the pyrazine anion in the presence of a Na+ counterion in RLuc8-D162A, suggesting that these are the primary emitters. Furthermore, our calculations on the neutral emitter in the engineered AncFT-D160A enzyme, structurally akin to RLuc8-D162A but with a considerably blue-shifted emission peak, aligned with the observed data, possibly explaining the variance in emission peaks. Overall, this study demonstrates an effective approach to investigate chromophores' bimolecular states while incorporating the PT process in emission spectra calculations, contributing valuable insights for future studies of PT in photoproteins.
Collapse
Affiliation(s)
- Ashim Nandi
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Aoxuan Zhang
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Zhen Tao Chu
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Wen Jun Xie
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), Genetics Institute, University of Florida, Gainesville, Florida 32610, United States
| | - Zhongxin Xu
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Suwei Dong
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| |
Collapse
|
2
|
Abstract
The marvel of X-ray crystallography is the beauty and precision of the atomic structures deduced from diffraction patterns. Since these patterns record only amplitudes, phases for the diffracted waves must also be evaluated for systematic structure determination. Thus, we have the phase problem as a central complication, both intellectually for the field and practically so for many analyses. Here, I discuss how we - myself, my laboratory and the diffraction community - have faced the phase problem, considering the evolution of methods for phase evaluation as structural biology developed to the present day. During the explosive growth of macromolecular crystallography, practice in diffraction analysis evolved from a universal reliance on isomorphous replacement to the eventual domination of anomalous diffraction for de novo structure determination. As the Protein Data Bank (PDB) grew and familial relationships among proteins became clear, molecular replacement overtook all other phasing methods; however, experimental phasing remained essential for molecules without obvious precedents, with multi- and single-wavelength anomalous diffraction (MAD and SAD) predominating. While the mathematics-based direct methods had proved to be inadequate for typical macromolecules, they returned to crack substantial selenium substructures in SAD analyses of selenomethionyl proteins. Native SAD, exploiting the intrinsic S and P atoms of biomolecules, has become routine. Selenomethionyl SAD and MAD were the mainstays of structural genomics efforts to populate the PDB with novel proteins. A recent dividend has been paid in the success of PDB-trained artificial intelligence approaches for protein structure prediction. Currently, molecular replacement with AlphaFold models often obviates the need for experimental phase evaluation. For multiple reasons, we are now unfazed by the phase problem. Cryo-EM analysis is an attractive alternative to crystallography for many applications faced by today's structural biologists. It simply finesses the phase problem; however, the principles and procedures of diffraction analysis remain pertinent and are adopted in single-particle cryo-EM studies of biomolecules.
Collapse
Affiliation(s)
- Wayne A. Hendrickson
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| |
Collapse
|
3
|
Natashin PV, Burakova LP, Kovaleva MI, Shevtsov MB, Dmitrieva DA, Eremeeva EV, Markova SV, Mishin AV, Borshchevskiy VI, Vysotski ES. The Role of Tyr-His-Trp Triad and Water Molecule Near the N1-Atom of 2-Hydroperoxycoelenterazine in Bioluminescence of Hydromedusan Photoproteins: Structural and Mutagenesis Study. Int J Mol Sci 2023; 24:ijms24076869. [PMID: 37047842 PMCID: PMC10095345 DOI: 10.3390/ijms24076869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Hydromedusan photoproteins responsible for the bioluminescence of a variety of marine jellyfish and hydroids are a unique biochemical system recognized as a stable enzyme-substrate complex consisting of apoprotein and preoxygenated coelenterazine, which is tightly bound in the protein inner cavity. The binding of calcium ions to the photoprotein molecule is only required to initiate the light emission reaction. Although numerous experimental and theoretical studies on the bioluminescence of these photoproteins were performed, many features of their functioning are yet unclear. In particular, which ionic state of dioxetanone intermediate decomposes to yield a coelenteramide in an excited state and the role of the water molecule residing in a proximity to the N1 atom of 2-hydroperoxycoelenterazine in the bioluminescence reaction are still under discussion. With the aim to elucidate the function of this water molecule as well as to pinpoint the amino acid residues presumably involved in the protonation of the primarily formed dioxetanone anion, we constructed a set of single and double obelin and aequorin mutants with substitutions of His, Trp, Tyr, and Ser to residues with different properties of side chains and investigated their bioluminescence properties (specific activity, bioluminescence spectra, stopped-flow kinetics, and fluorescence spectra of Ca2+-discharged photoproteins). Moreover, we determined the spatial structure of the obelin mutant with a substitution of His64, the key residue of the presumable proton transfer, to Phe. On the ground of the bioluminescence properties of the obelin and aequorin mutants as well as the spatial structures of the obelin mutants with the replacements of His64 and Tyr138, the conclusion was made that, in fact, His residue of the Tyr-His-Trp triad and the water molecule perform the "catalytic function" by transferring the proton from solvent to the dioxetanone anion to generate its neutral ionic state in complex with water, as only the decomposition of this form of dioxetanone can provide the highest light output in the light-emitting reaction of the hydromedusan photoproteins.
Collapse
Affiliation(s)
- Pavel V Natashin
- Photobiology Laboratory, Institute of Biophysics of Siberian Branch of the Russian Academy of Sciences, Federal Research Center "Krasnoyarsk Science Center" of Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk 660036, Russia
| | - Ludmila P Burakova
- Photobiology Laboratory, Institute of Biophysics of Siberian Branch of the Russian Academy of Sciences, Federal Research Center "Krasnoyarsk Science Center" of Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk 660036, Russia
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk 660041, Russia
| | - Margarita I Kovaleva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Mikhail B Shevtsov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Daria A Dmitrieva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Elena V Eremeeva
- Photobiology Laboratory, Institute of Biophysics of Siberian Branch of the Russian Academy of Sciences, Federal Research Center "Krasnoyarsk Science Center" of Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk 660036, Russia
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk 660041, Russia
| | - Svetlana V Markova
- Photobiology Laboratory, Institute of Biophysics of Siberian Branch of the Russian Academy of Sciences, Federal Research Center "Krasnoyarsk Science Center" of Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk 660036, Russia
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk 660041, Russia
| | - Alexey V Mishin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Valentin I Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
- Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - Eugene S Vysotski
- Photobiology Laboratory, Institute of Biophysics of Siberian Branch of the Russian Academy of Sciences, Federal Research Center "Krasnoyarsk Science Center" of Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk 660036, Russia
| |
Collapse
|
4
|
Natashin PV, Eremeeva EV, Shevtsov MB, Kovaleva MI, Bukhdruker SS, Dmitrieva DA, Gulnov DV, Nemtseva EV, Gordeliy VI, Mishin AV, Borshchevskiy VI, Vysotski ES. Crystal structure of semi-synthetic obelin-v after calcium induced bioluminescence implies coelenteramine as the main reaction product. Sci Rep 2022; 12:19613. [PMID: 36379962 PMCID: PMC9666459 DOI: 10.1038/s41598-022-24117-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Coelenterazine-v (CTZ-v), a synthetic vinylene-bridged π-extended derivative, is able to significantly alter bioluminescence spectra of different CTZ-dependent luciferases and photoproteins by shifting them towards longer wavelengths. However, Ca2+-regulated photoproteins activated with CTZ-v display very low bioluminescence activities that hampers its usage as a substrate of photoprotein bioluminescence. Here, we report the crystal structure of semi-synthetic Ca2+-discharged obelin-v bound with the reaction product determined at 2.1 Å resolution. Comparison of the crystal structure of Ca2+-discharged obelin-v with those of other obelins before and after bioluminescence reaction reveals no considerable changes in the overall structure. However, the drastic changes in CTZ-binding cavity are observed owing to the completely different reaction product, coelenteramine-v (CTM-v). Since CTM-v is certainly the main product of obelin-v bioluminescence and is considered to be a product of the "dark" pathway of dioxetanone intermediate decomposition, it explains the low bioluminescence activity of obelin and apparently of other photoproteins with CTZ-v.
Collapse
Affiliation(s)
- Pavel V. Natashin
- grid.418863.00000 0004 0637 9162Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk, Russia
| | - Elena V. Eremeeva
- grid.418863.00000 0004 0637 9162Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk, Russia ,grid.412592.90000 0001 0940 9855Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
| | - Mikhail B. Shevtsov
- grid.18763.3b0000000092721542Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Margarita I. Kovaleva
- grid.18763.3b0000000092721542Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Sergey S. Bukhdruker
- grid.18763.3b0000000092721542Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Daria A. Dmitrieva
- grid.18763.3b0000000092721542Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Dmitry V. Gulnov
- grid.412592.90000 0001 0940 9855Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
| | - Elena V. Nemtseva
- grid.418863.00000 0004 0637 9162Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk, Russia ,grid.412592.90000 0001 0940 9855Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
| | - Valentin I. Gordeliy
- grid.457348.90000 0004 0630 1517Institut de Biologie Structurale (IBS), Université de Grenoble Alpes, CEA, CNRS, Grenoble, France ,grid.1957.a0000 0001 0728 696XInstitute of Crystallography, University of Aachen (RWTH), Aachen, Germany
| | - Alexey V. Mishin
- grid.18763.3b0000000092721542Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Valentin I. Borshchevskiy
- grid.18763.3b0000000092721542Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia ,grid.33762.330000000406204119Joint Institute for Nuclear Research, Dubna, Russia
| | - Eugene S. Vysotski
- grid.418863.00000 0004 0637 9162Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk, Russia
| |
Collapse
|
5
|
Liu YJ. Understanding the complete bioluminescence cycle from a multiscale computational perspective: A review. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
6
|
Bashmakova EE, Panamarev NS, Kudryavtsev AN, Frank LA. N-extended photoprotein obelin to competitively detect small protein tumor markers. Biochem Biophys Res Commun 2022; 598:69-73. [PMID: 35151206 DOI: 10.1016/j.bbrc.2022.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/04/2022] [Indexed: 11/26/2022]
Abstract
Two variants of Ca2+-regulated photoprotein obelin, extended from the N-terminus with small tumor markers - melanoma inhibitory activity protein (MIA) and survivin, one of the protein inhibitors of apoptosis, were designed, obtained and studied. Both domains in the obtained hybrid proteins exhibit the properties of the initial molecules: the main features of Ca2+-triggered bioluminescence are close to those of obelin, and the tumor markers' domains are recognized and bound by the corresponding antibodies. The obtained hybrids compete with the corresponding tumor markers for binding with antibodies, immobilized on the surface and their use has been shown to be promising as bioluminescent labels in a one-stage solid-phase competitive immunoassay.
Collapse
Affiliation(s)
- Eugenia E Bashmakova
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, 660036, Russia
| | - Nikita S Panamarev
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, 660036, Russia; Siberian Federal University, Krasnoyarsk, 660041, Russia
| | - Alexander N Kudryavtsev
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, 660036, Russia
| | - Ludmila A Frank
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, 660036, Russia; Siberian Federal University, Krasnoyarsk, 660041, Russia.
| |
Collapse
|
7
|
Larionova MD, Wu L, Eremeeva EV, Natashin PV, Gulnov DV, Nemtseva EV, Liu D, Liu Z, Vysotski ES. Crystal structure of semisynthetic obelin-v. Protein Sci 2022; 31:454-469. [PMID: 34802167 PMCID: PMC8819848 DOI: 10.1002/pro.4244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 02/03/2023]
Abstract
Coelenterazine-v (CTZ-v), a synthetic derivative with an additional benzyl ring, yields a bright bioluminescence of Renilla luciferase and its "yellow" mutant with a significant shift in the emission spectrum toward longer wavelengths, which makes it the substrate of choice for deep tissue imaging. Although Ca2+ -regulated photoproteins activated with CTZ-v also display red-shifted light emission, in contrast to Renilla luciferase their bioluminescence activities are very low, which makes photoproteins activated by CTZ-v unusable for calcium imaging. Here, we report the crystal structure of Ca2+ -regulated photoprotein obelin with 2-hydroperoxycoelenterazine-v (obelin-v) at 1.80 Å resolution. The structures of obelin-v and obelin bound with native CTZ revealed almost no difference; only the minor rearrangement in hydrogen-bond pattern and slightly increased distances between key active site residues and some atoms of 2-hydroperoxycoelenterazine-v were found. The fluorescence quantum yield (ΦFL ) of obelin bound with coelenteramide-v (0.24) turned out to be even higher than that of obelin with native coelenteramide (0.19). Since both obelins are in effect the enzyme-substrate complexes containing the 2-hydroperoxy adduct of CTZ-v or CTZ, we reasonably assume the chemical reaction mechanisms and the yields of the reaction products (ΦR ) to be similar for both obelins. Based on these findings we suggest that low bioluminescence activity of obelin-v is caused by the low efficiency of generating an electronic excited state (ΦS ). In turn, the low ΦS value as compared to that of native CTZ might be the result of small changes in the substrate microenvironment in the obelin-v active site.
Collapse
Affiliation(s)
- Marina D. Larionova
- Photobiology LaboratoryInstitute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”KrasnoyarskRussia,iHuman Institute, ShanghaiTech UniversityShanghaiChina
| | - Lijie Wu
- iHuman Institute, ShanghaiTech UniversityShanghaiChina
| | - Elena V. Eremeeva
- Photobiology LaboratoryInstitute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”KrasnoyarskRussia,Institute of Fundamental Biology and Biotechnology, Siberian Federal UniversityKrasnoyarskRussia
| | - Pavel V. Natashin
- Photobiology LaboratoryInstitute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”KrasnoyarskRussia
| | - Dmitry V. Gulnov
- Institute of Fundamental Biology and Biotechnology, Siberian Federal UniversityKrasnoyarskRussia
| | - Elena V. Nemtseva
- Photobiology LaboratoryInstitute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”KrasnoyarskRussia,Institute of Fundamental Biology and Biotechnology, Siberian Federal UniversityKrasnoyarskRussia
| | - Dongsheng Liu
- iHuman Institute, ShanghaiTech UniversityShanghaiChina
| | - Zhi‐Jie Liu
- iHuman Institute, ShanghaiTech UniversityShanghaiChina,School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
| | - Eugene S. Vysotski
- Photobiology LaboratoryInstitute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”KrasnoyarskRussia
| |
Collapse
|
8
|
Malikova NP, Eremeeva EV, Gulnov DV, Natashin PV, Nemtseva EV, Vysotski ES. Specific Activities of Hydromedusan Ca 2+ -Regulated Photoproteins. Photochem Photobiol 2021; 98:275-283. [PMID: 34727376 DOI: 10.1111/php.13556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/01/2021] [Indexed: 12/18/2022]
Abstract
Nowadays the recombinant Ca2+ -regulated photoproteins originating from marine luminous organisms are widely applied to monitor calcium transients in living cells due to their ability to emit light on Ca2+ binding. Here we report the specific activities of the recombinant Ca2+ -regulated photoproteins-aequorin from Aequorea victoria, obelins from Obelia longissima and Obelia geniculata, clytin from Clytia gregaria and mitrocomin from Mitrocoma cellularia. We demonstrate that along with bioluminescence spectra, kinetics of light signals and sensitivities to calcium, these photoproteins also differ in specific activities and consequently in quantum yields of bioluminescent reactions. The highest specific activities were found for obelins and mitrocomin, whereas those of aequorin and clytin were shown to be lower. To determine the factors influencing the variations in specific activities the fluorescence quantum yields for Ca2+ -discharged photoproteins were measured and found to be quite different varying in the range of 0.16-0.36. We propose that distinctions in specific activities may result from different efficiencies of singlet excited state generation and different fluorescence quantum yields of coelenteramide bound within substrate-binding cavity. This in turn may be conditioned by variations in the amino acid environment of the substrate-binding cavities and hydrogen bond distances between key residues and atoms of 2-hydroperoxycoelenterazine.
Collapse
Affiliation(s)
- Natalia P Malikova
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia
| | - Elena V Eremeeva
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia.,Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
| | - Dmitry V Gulnov
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
| | - Pavel V Natashin
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia
| | - Elena V Nemtseva
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia.,Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
| | - Eugene S Vysotski
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia
| |
Collapse
|
9
|
Nemati R, Molakarimi M, Mohseni A, Taghdir M, Khalifeh K, H. Sajedi R. Thermostability of Ctenophore and Coelenterate Ca 2+-Regulated Apo-photoproteins: A Comparative Study. ACS Chem Biol 2021; 16:1538-1545. [PMID: 34181382 DOI: 10.1021/acschembio.1c00401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The stabilities of Ca2+-regulated ctenophore and coelenterate apo-photoproteins, apo-mnemiopsin (apo-Mne) and apo-aequorin (apo-Aeq), respectively, were compared biochemically, biophysically, and structurally. Despite high degrees of structural and functional conservation, drastic variations in stability and structural dynamics were found between the two proteins. Irreversible thermoinactivation experiments were performed upon incubation of apo-photoproteins at representative temperatures. The inactivation rate constants (kinact) at 50 °C were determined to be 0.001 and 0.004 min-1 for apo-Mne and apo-Aeq, respectively. Detailed analysis of the inactivation process suggests that the higher thermostability of apo-Mne is due to the higher activation energy (Ea) and subsequently higher values of ΔH* and ΔG* at a given temperature. According to molecular dynamics simulation studies, the higher hydrogen bond, electrostatic, and van der Waals energies in apo-Mne can validate the relationship between the thermal adaptation of apo-Mne and the energy barrier for the inactivation process. Our results show that favorable residues for protein thermostability such as hydrophobic, charged, and adopted α-helical structure residues are more frequent in the apo-Mne structure. Although the effect of acrylamide on fluorescence quenching suggests that the local flexibility in regions around Trp and Tyr residues of apo-Aeq is higher than that of apo-Mne, which results in it having a better ability to penetrate acrylamide molecules, the root-mean-square fluctuation of helix A in apo-Mne is higher than that in apo-Aeq. It seems that the greater flexibility of apo-Mne in these regions may be considered as a determining factor, affecting the thermal stability of apo-Mne through a balance between structural rigidity and flexibility.
Collapse
Affiliation(s)
- Robabeh Nemati
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-154, Iran
| | - Maryam Molakarimi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-154, Iran
| | - Ammar Mohseni
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-154, Iran
| | - Majid Taghdir
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-154, Iran
| | - Khosrow Khalifeh
- Department of Biology, Faculty of Sciences, University of Zanjan, Zanjan 45371-38791, Iran
| | - Reza H. Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-154, Iran
| |
Collapse
|
10
|
Masrati G, Landau M, Ben-Tal N, Lupas A, Kosloff M, Kosinski J. Integrative Structural Biology in the Era of Accurate Structure Prediction. J Mol Biol 2021; 433:167127. [PMID: 34224746 DOI: 10.1016/j.jmb.2021.167127] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022]
Abstract
Characterizing the three-dimensional structure of macromolecules is central to understanding their function. Traditionally, structures of proteins and their complexes have been determined using experimental techniques such as X-ray crystallography, NMR, or cryo-electron microscopy-applied individually or in an integrative manner. Meanwhile, however, computational methods for protein structure prediction have been improving their accuracy, gradually, then suddenly, with the breakthrough advance by AlphaFold2, whose models of monomeric proteins are often as accurate as experimental structures. This breakthrough foreshadows a new era of computational methods that can build accurate models for most monomeric proteins. Here, we envision how such accurate modeling methods can combine with experimental structural biology techniques, enhancing integrative structural biology. We highlight the challenges that arise when considering multiple structural conformations, protein complexes, and polymorphic assemblies. These challenges will motivate further developments, both in modeling programs and in methods to solve experimental structures, towards better and quicker investigation of structure-function relationships.
Collapse
Affiliation(s)
- Gal Masrati
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Meytal Landau
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel; European Molecular Biology Laboratory (EMBL), Hamburg 22607, Germany
| | - Nir Ben-Tal
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Andrei Lupas
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany.
| | - Mickey Kosloff
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Ave., Mt. Carmel, 3498838 Haifa, Israel.
| | - Jan Kosinski
- European Molecular Biology Laboratory (EMBL), Hamburg 22607, Germany; Centre for Structural Systems Biology (CSSB), Hamburg 22607, Germany; Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
11
|
Agnarelli A, El Omari K, Duman R, Wagner A, Mancini EJ. Phosphorus and sulfur SAD phasing of the nucleic acid-bound DNA-binding domain of interferon regulatory factor 4. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2021; 77:202-207. [PMID: 34196610 PMCID: PMC8248823 DOI: 10.1107/s2053230x21006506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/21/2021] [Indexed: 11/24/2022]
Abstract
Solution of the structure of the DNA-binding domain of interferon regulatory factor 4 bound to its interferon-stimulated response element by native intrinsic phosphorus and sulfur single-wavelength anomalous dispersion methods (native SAD) is described. Pivotal to the regulation of key cellular processes such as the transcription, replication and repair of DNA, DNA-binding proteins play vital roles in all aspects of genetic activity. The determination of high-quality structures of DNA-binding proteins, particularly those in complexes with DNA, provides crucial insights into the understanding of these processes. The presence in such complexes of phosphate-rich oligonucleotides offers the choice of a rapid method for the routine solution of DNA-binding proteins through the use of long-wavelength beamlines such as I23 at Diamond Light Source. This article reports the use of native intrinsic phosphorus and sulfur single-wavelength anomalous dispersion methods to solve the complex of the DNA-binding domain (DBD) of interferon regulatory factor 4 (IRF4) bound to its interferon-stimulated response element (ISRE). The structure unexpectedly shows three molecules of the IRF4 DBD bound to one ISRE. The sole reliance on native intrinsic anomalous scattering elements that belong to DNA–protein complexes renders the method of general applicability to a large number of such protein complexes that cannot be solved by molecular replacement or by other phasing methods.
Collapse
Affiliation(s)
- Alessandro Agnarelli
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | - Kamel El Omari
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Ramona Duman
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Armin Wagner
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Erika J Mancini
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| |
Collapse
|
12
|
Tomilin FN, Rogova AV, Burakova LP, Tchaikovskaya ON, Avramov PV, Fedorov DG, Vysotski ES. Unusual shift in the visible absorption spectrum of an active ctenophore photoprotein elucidated by time-dependent density functional theory. Photochem Photobiol Sci 2021; 20:10.1007/s43630-021-00039-5. [PMID: 33834429 DOI: 10.1007/s43630-021-00039-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/29/2021] [Indexed: 11/28/2022]
Abstract
Active hydromedusan and ctenophore Ca2+-regulated photoproteins form complexes consisting of apoprotein and strongly non-covalently bound 2-hydroperoxycoelenterazine (an oxygenated intermediate of coelenterazine). Whereas the absorption maximum of hydromedusan photoproteins is at 460-470 nm, ctenophore photoproteins absorb at 437 nm. Finding out a physical reason for this blue shift is the main objective of this work, and, to achieve it, the whole structure of the protein-substrate complex was optimized using a linear scaling quantum-mechanical method. Electronic excitations pertinent to the spectra of the 2-hydroperoxy adduct of coelenterazine were simulated with time-dependent density functional theory. The dihedral angle of 60° of the 6-(p-hydroxy)-phenyl group relative to the imidazopyrazinone core of 2-hydroperoxycoelenterazine molecule was found to be the key factor determining the absorption of ctenophore photoproteins at 437 nm. The residues relevant to binding of the substrate and its adopting the particular rotation were also identified.
Collapse
Affiliation(s)
- Felix N Tomilin
- Kirensky Institute of Physics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok 50/38, Krasnoyarsk, 660036, Russia
- Siberian Federal University, Svobodny 79 pr., Krasnoyarsk, 660041, Russia
- National Research Tomsk State University, Lenin Avenue 36, Tomsk, 634050, Russia
| | - Anastasia V Rogova
- Siberian Federal University, Svobodny 79 pr., Krasnoyarsk, 660041, Russia
| | - Ludmila P Burakova
- Siberian Federal University, Svobodny 79 pr., Krasnoyarsk, 660041, Russia
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok 50/50, Krasnoyarsk, 660036, Russia
| | - Olga N Tchaikovskaya
- National Research Tomsk State University, Lenin Avenue 36, Tomsk, 634050, Russia
| | - Pavel V Avramov
- Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, South Korea
| | - Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba, 305-8568, Japan.
| | - Eugene S Vysotski
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok 50/50, Krasnoyarsk, 660036, Russia.
| |
Collapse
|
13
|
Yu J, Shinoda A, Kato K, Tanaka I, Yao M. A solution-free crystal-mounting platform for native SAD. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2020; 76:938-945. [PMID: 33021495 DOI: 10.1107/s2059798320011584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/25/2020] [Indexed: 11/11/2022]
Abstract
The native SAD phasing method uses the anomalous scattering signals from the S atoms contained in most proteins, the P atoms in nucleic acids or other light atoms derived from the solution used for crystallization. These signals are very weak and careful data collection is required, which makes this method very difficult. One way to enhance the anomalous signal is to use long-wavelength X-rays; however, these wavelengths are more strongly absorbed by the materials in the pathway. Therefore, a crystal-mounting platform for native SAD data collection that removes solution around the crystals has been developed. This platform includes a novel solution-free mounting tool and an automatic robot, which extracts the surrounding solution, flash-cools the crystal and inserts the loop into a UniPuck cassette for use in the synchrotron. Eight protein structures (including two new structures) have been successfully solved by the native SAD method from crystals prepared using this platform.
Collapse
Affiliation(s)
- Jian Yu
- Faculty of Advanced Life Science, Hokkaido University, North 10 West 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Akira Shinoda
- Faculty of Advanced Life Science, Hokkaido University, North 10 West 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Koji Kato
- Faculty of Advanced Life Science, Hokkaido University, North 10 West 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Isao Tanaka
- Faculty of Advanced Life Science, Hokkaido University, North 10 West 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Min Yao
- Faculty of Advanced Life Science, Hokkaido University, North 10 West 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
14
|
Krasitskaya VV, Goncharova NS, Biriukov VV, Bashmakova EE, Kabilov MR, Baykov IK, Sokolov AE, Frank LA. The Ca 2+ -Regulated Photoprotein Obelin as a Tool for SELEX Monitoring and DNA Aptamer Affinity Evaluation. Photochem Photobiol 2020; 96:1041-1046. [PMID: 32304233 DOI: 10.1111/php.13274] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/29/2020] [Indexed: 12/11/2022]
Abstract
Bioluminescent solid-phase analysis was proposed to monitor the selection process and to determine binding characteristics of the aptamer-target complexes during design and development of the specific aptamers. The assay involves Ca2+ -regulated photoprotein obelin as a simple, sensitive and fast reporter. Applicability and the prospects of the approach were exemplified by identification of DNA aptamers to cardiac troponin I, a highly specific early biomarker for acute myocardial infarction. Two structurally different aptamers specific to various epitopes of troponin I were obtained and then tested in a model bioluminescent assay.
Collapse
Affiliation(s)
| | | | | | - Eugenia E Bashmakova
- Institute of Biophysics SB RAS, Federal Research Center KSC SB RAS, Krasnoyarsk, Russia
| | - Marsel R Kabilov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Ivan K Baykov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Aleksey E Sokolov
- Siberian Federal University, Krasnoyarsk, Russia.,Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, Russia
| | - Ludmila A Frank
- Institute of Biophysics SB RAS, Federal Research Center KSC SB RAS, Krasnoyarsk, Russia.,Siberian Federal University, Krasnoyarsk, Russia
| |
Collapse
|
15
|
Burakova LP, Eremeeva EV, Vysotski ES. The interaction of C-terminal Tyr208 and Tyr13 of the first α-helix ensures a closed conformation of ctenophore photoprotein berovin. Photochem Photobiol Sci 2020; 19:313-323. [PMID: 32057065 DOI: 10.1039/c9pp00436j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Light-sensitive Ca2+-regulated photoprotein berovin is responsible for the bioluminescence of the ctenophore Beroe abyssicola. It shares many properties of hydromedusan photoproteins although the degree of identity of its amino acid sequence with those of photoproteins is low. There is a hydrogen bond between C-terminal Pro and Arg situated in the N-terminal α-helix of hydromedusan photoproteins that supports a closed conformation of the internal cavity of the photoprotein molecule with bound 2-hydroperoxycoelenterazine. The C- and N-terminal hydrogen bond network is necessary to properly isolate the photoprotein active site from the solvent and consequently to provide a high quantum yield of the bioluminescence reaction. In order to find out which berovin residues perform the same function we modified the N- and C-termini of the protein by replacing or deleting various amino acid residues. The studies on berovin mutants showed that the interaction between C-terminal Tyr208 and Tyr13 localized in the first α-helix of the photoprotein is important for the stabilization and proper orientation of the oxygenated coelenterazine adduct within the internal cavity as well as for supporting the closed photoprotein conformation. We also suggest that the interplay between Tyr residues in ctenophore photoproteins occurs rather through the π-π interaction of their phenyl rings than through hydrogen bonds as in hydromedusan photoproteins.
Collapse
Affiliation(s)
- Ludmila P Burakova
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia
| | - Elena V Eremeeva
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia
| | - Eugene S Vysotski
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia.
| |
Collapse
|
16
|
Hosseinnia M, Khalifeh K, Jafarian V. Polarity change of a representative helix in coelenterazin-binding cavity of mnemiopsin 2: Functional and structural consequences. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Griffiths TM, Oakley AJ, Yu H. Atomistic Insights into Photoprotein Formation: Computational Prediction of the Properties of Coelenterazine and Oxygen Binding in Obelin. J Comput Chem 2019; 41:587-603. [DOI: 10.1002/jcc.26125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 11/17/2019] [Accepted: 11/19/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Thomas M. Griffiths
- School of Chemistry and Molecular Bioscience University of Wollongong Wollongong New South Wales 2500 Australia
- Molecular Horizons University of Wollongong Wollongong New South Wales 2500 Australia
- Illawarra Health and Medical Research Institute, Northfields Ave Keiraville New South Wales 2500 Australia
| | - Aaron J. Oakley
- School of Chemistry and Molecular Bioscience University of Wollongong Wollongong New South Wales 2500 Australia
- Molecular Horizons University of Wollongong Wollongong New South Wales 2500 Australia
- Illawarra Health and Medical Research Institute, Northfields Ave Keiraville New South Wales 2500 Australia
| | - Haibo Yu
- School of Chemistry and Molecular Bioscience University of Wollongong Wollongong New South Wales 2500 Australia
- Molecular Horizons University of Wollongong Wollongong New South Wales 2500 Australia
- Illawarra Health and Medical Research Institute, Northfields Ave Keiraville New South Wales 2500 Australia
| |
Collapse
|
18
|
Gao M, Ding BW, Liu YJ. Tuning the fluorescence of calcium-discharged photoprotein obelin via mutating at the His22-Phe88-Trp92 triad - a QM/MM study. Photochem Photobiol Sci 2019; 18:1823-1832. [PMID: 31165126 DOI: 10.1039/c9pp00191c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fluorescence (FL) of calcium-discharged photoprotein (CaDP) can be altered by easily mutating CaDP without modifying coelenteramide (CLM), which is the decarboxylation product of coelenterazine in calcium-regulated photoprotein. The His22-Phe88-Trp92 triad (the ordering numbers of three amino acids are sorted by a crystal structure (PDB: 2F8P) of calcium-discharged obelin, i.e., CaDP-obelin) is closely related to CaDP-obelin FL, since it exists in close proximity to the 5-p-hydroxyphenyl of CLM. Therefore, it is important to thoroughly investigate how the mutations of this triad affect the emission color of CaDP-obelin FL. In this study, by mutating wild-type CaDP-obelin (WT) at the His22-Phe88-Trp92 triad, we theoretically constructed its nine mutants of separable FL colors. Through combined quantum mechanics and molecular mechanics (QM/MM) calculations and molecular dynamics (MD) simulations, the influence of the mutations of this triad on the CaDP-obelin FL was analyzed considering the H-bond effect and the charge effect. This study demonstrated that the mutations at the His22-Phe88-Trp92 triad redistribute the charges on the D-π-A molecule, CLM, change the charge transfer from the D to the (π + A) moiety, and thereby alter the FL emission. Appending more negative charges on the phenolate moiety of CLM benefits the FL redshift.
Collapse
Affiliation(s)
- Meng Gao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, P. R. China.
| | - Bo-Wen Ding
- School of Environment, Beijing Normal University, Beijing, P. R. China
| | - Ya-Jun Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, P. R. China.
| |
Collapse
|
19
|
Guo G, Zhu P, Fuchs MR, Shi W, Andi B, Gao Y, Hendrickson WA, McSweeney S, Liu Q. Synchrotron microcrystal native-SAD phasing at a low energy. IUCRJ 2019; 6:532-542. [PMID: 31316798 PMCID: PMC6608635 DOI: 10.1107/s2052252519004536] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/03/2019] [Indexed: 05/31/2023]
Abstract
De novo structural evaluation of native biomolecules from single-wavelength anomalous diffraction (SAD) is a challenge because of the weakness of the anomalous scattering. The anomalous scattering from relevant native elements - primarily sulfur in proteins and phospho-rus in nucleic acids - increases as the X-ray energy decreases toward their K-edge transitions. Thus, measurements at a lowered X-ray energy are promising for making native SAD routine and robust. For microcrystals with sizes less than 10 µm, native-SAD phasing at synchrotron microdiffraction beamlines is even more challenging because of difficulties in sample manipulation, diffraction data collection and data analysis. Native-SAD analysis from microcrystals by using X-ray free-electron lasers has been demonstrated but has required use of thousands of thousands of microcrystals to achieve the necessary accuracy. Here it is shown that by exploitation of anomalous microdiffraction signals obtained at 5 keV, by the use of polyimide wellmounts, and by an iterative crystal and frame-rejection method, microcrystal native-SAD phasing is possible from as few as about 1 200 crystals. Our results show the utility of low-energy native-SAD phasing with microcrystals at synchrotron microdiffraction beamlines.
Collapse
Affiliation(s)
- Gongrui Guo
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
- Photon Science, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Ping Zhu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Martin R. Fuchs
- Photon Science, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Wuxian Shi
- Photon Science, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Babak Andi
- Photon Science, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Yuan Gao
- Photon Science, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Wayne A. Hendrickson
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Sean McSweeney
- Photon Science, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Qun Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
- Photon Science, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
20
|
Basu S, Olieric V, Leonarski F, Matsugaki N, Kawano Y, Takashi T, Huang CY, Yamada Y, Vera L, Olieric N, Basquin J, Wojdyla JA, Bunk O, Diederichs K, Yamamoto M, Wang M. Long-wavelength native-SAD phasing: opportunities and challenges. IUCRJ 2019; 6:373-386. [PMID: 31098019 PMCID: PMC6503925 DOI: 10.1107/s2052252519002756] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/22/2019] [Indexed: 05/04/2023]
Abstract
Native single-wavelength anomalous dispersion (SAD) is an attractive experimental phasing technique as it exploits weak anomalous signals from intrinsic light scatterers (Z < 20). The anomalous signal of sulfur in particular, is enhanced at long wavelengths, however the absorption of diffracted X-rays owing to the crystal, the sample support and air affects the recorded intensities. Thereby, the optimal measurable anomalous signals primarily depend on the counterplay of the absorption and the anomalous scattering factor at a given X-ray wavelength. Here, the benefit of using a wavelength of 2.7 over 1.9 Å is demonstrated for native-SAD phasing on a 266 kDa multiprotein-ligand tubulin complex (T2R-TTL) and is applied in the structure determination of an 86 kDa helicase Sen1 protein at beamline BL-1A of the KEK Photon Factory, Japan. Furthermore, X-ray absorption at long wavelengths was controlled by shaping a lysozyme crystal into spheres of defined thicknesses using a deep-UV laser, and a systematic comparison between wavelengths of 2.7 and 3.3 Å is reported for native SAD. The potential of laser-shaping technology and other challenges for an optimized native-SAD experiment at wavelengths >3 Å are discussed.
Collapse
Affiliation(s)
- Shibom Basu
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Vincent Olieric
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Filip Leonarski
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Naohiro Matsugaki
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, 305-0801, Japan
| | - Yoshiaki Kawano
- Advanced Photon Technology Division, RIKEN SPring-8 Center, Hyogo 679-5148, Japan
| | - Tomizaki Takashi
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Chia-Ying Huang
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Yusuke Yamada
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, 305-0801, Japan
| | - Laura Vera
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Natacha Olieric
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institut, Villigen, PSI 5232, Switzerland
| | - Jerome Basquin
- Department of Biochemistry, Max Planck Institute of Biochemistry, Munich, Germany
| | - Justyna A. Wojdyla
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Oliver Bunk
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Kay Diederichs
- Department of Biology, University of Konstanz, Konstanz, 78457, Germany
| | - Masaki Yamamoto
- Advanced Photon Technology Division, RIKEN SPring-8 Center, Hyogo 679-5148, Japan
| | - Meitian Wang
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| |
Collapse
|
21
|
Markova SV, Larionova MD, Vysotski ES. Shining Light on the Secreted Luciferases of Marine Copepods: Current Knowledge and Applications. Photochem Photobiol 2019; 95:705-721. [PMID: 30585639 DOI: 10.1111/php.13077] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 12/18/2018] [Indexed: 01/02/2023]
Abstract
Copepod luciferases-a family of small secretory proteins of 18.4-24.3 kDa, including a signal peptide-are responsible for bright secreted bioluminescence of some marine copepods. The copepod luciferases use coelenterazine as a substrate to produce blue light in a simple oxidation reaction without any additional cofactors. They do not share sequence or structural similarity with other identified bioluminescent proteins including coelenterazine-dependent Renilla and Oplophorus luciferases. The small size, strong luminescence activity and high stability, including thermostability, make secreted copepod luciferases very attractive candidates as reporter proteins which are particularly useful for nondisruptive reporter assays and for high-throughput format. The most known and extensively investigated representatives of this family are the first cloned GpLuc and MLuc luciferases from copepods Gaussia princeps and Metridia longa, respectively. Immediately after cloning, these homologous luciferases were successfully applied as bioluminescent reporters in vivo and in vitro, and since then, the scope of their applications continues to grow. This review is an attempt to systemize and critically evaluate the data scattered through numerous articles regarding the main structural features of copepod luciferases, their luminescent and physicochemical properties. We also review the main trends of their application as bioluminescent reporters in cell and molecular biology.
Collapse
Affiliation(s)
- Svetlana V Markova
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia.,Siberian Federal University, Krasnoyarsk, Russia.,N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, Moscow, Russia
| | - Marina D Larionova
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia.,N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, Moscow, Russia
| | - Eugene S Vysotski
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia.,N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, Moscow, Russia
| |
Collapse
|
22
|
Mohammadi Ghanbarlou R, Shirdel SA, Jafarian V, Khalifeh K. Molecular mechanisms governing the evolutionary conservation of Glycine in the 6 th position of loops ΙΙΙ and ΙV in photoprotein mnemiopsin 2. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 187:18-24. [PMID: 30096539 DOI: 10.1016/j.jphotobiol.2018.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/26/2018] [Accepted: 08/01/2018] [Indexed: 11/30/2022]
Abstract
Photoproteins in their functional form are complexed noncovalently with 2-hydroperoxycoelenterazine. A conformational change upon coordination of Ca+2 ions with their EF-hand loops leads to oxidation of substrate and emission of light. In all photoproteins, EF-hand loops Ι, ΙΙΙ and ΙV have standard sequence for binding to Ca+2 ion, however the second one is not able for Ca+2 coordination. Sequence analysis of Mnemiopsin 2 and other known photoproteins shows that Glutamate (Glu) is occurred in the 6th position of its first EF-hand loop, but this position in other loops of mnemiopsin 2 and all functional loops of other photoproteins is occupied by Glycine (Gly). Here we designed and made single and double mutants where Gly residue at the 6th positions of loops ΙΙΙ and ΙV of mnemiopsin 2 was replaced with Glu. According to the activity measurements, wild-type (WT) and G142E variants have more initial luminescence intensity than G176E and double mutants; while WT and G176E have higher values of half decay time when compared with G142E and double mutants. According to the isothermal denaturation experiments, all protein variants are structurally more stable than WT mnemiopsin 2 and that the stabilizing effects of single mutants are paired resulting in more stability of double mutant against urea denaturation. We concluded that simultaneous occurrence of Gly in the 6th position of loops ΙΙΙ and ΙV is essential for evolutionary adjustment of initial intensity and decay rate of luminescence emission via affecting the interaction of the core structure of photoprotein with coelenteramide and binding affinity of Ca+2 to the corresponding loops, respectively.
Collapse
Affiliation(s)
| | - Seyedeh Akram Shirdel
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Vahab Jafarian
- Department of Biology, Faculty of Sciences, University of Zanjan, Zanjan, Iran.
| | - Khosrow Khalifeh
- Department of Biology, Faculty of Sciences, University of Zanjan, Zanjan, Iran.
| |
Collapse
|
23
|
Eremeeva EV, Vysotski ES. Exploring Bioluminescence Function of the Ca2+
-regulated Photoproteins with Site-directed Mutagenesis. Photochem Photobiol 2018; 95:8-23. [DOI: 10.1111/php.12945] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 05/25/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Elena V. Eremeeva
- Photobiology Laboratory; Institute of Biophysics SB RAS; Federal Research Center “Krasnoyarsk Science Center SB RAS”; Krasnoyarsk Russia
| | - Eugene S. Vysotski
- Photobiology Laboratory; Institute of Biophysics SB RAS; Federal Research Center “Krasnoyarsk Science Center SB RAS”; Krasnoyarsk Russia
| |
Collapse
|
24
|
Krasitskaya VV, Davydova AS, Vorobjeva MA, Frank LA. The Ca2+-Regulated Photoprotein Obelin as a Target for the RNA Aptamer Selection. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162018030093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Sharifian S, Homaei A, Hemmati R, B Luwor R, Khajeh K. The emerging use of bioluminescence in medical research. Biomed Pharmacother 2018; 101:74-86. [PMID: 29477474 DOI: 10.1016/j.biopha.2018.02.065] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 01/01/2023] Open
Abstract
Bioluminescence is the light produced by a living organism and is commonly emitted by sea life with Ca2+-regulated photoproteins being the most responsible for bioluminescence emission. Marine coelenterates provide important functions involved in essential purposes such as defense, feeding, and breeding. In this review, the main characteristics of marine photoproteins including aequorin, clytin, obelin, berovin, pholasin and symplectin from different marine organisms will be discussed. We will focused on the recent use of recombinant photoproteins in different biomedical research fields including the measurement of Ca2+ in different intracellular compartments of animal cells, as labels in the design and development of binding assays. This review will also outline how bioluminescent photoproteins have been used in a plethora of analytical methods including ultra-sensitive assays and in vivo imaging of cellular processes. Due to their unique properties including elective intracellular distribution, wide dynamic range, high signal-to-noise ratio and low Ca2+-buffering effect, recombinant photoproteins represent a promising future analytical tool in several in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Sana Sharifian
- Department of Marine Biology, Faculty of Sciences, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Biochemistry, Faculty of Sciences, University of Hormozgan, Bandar Abbas, Iran.
| | - Roohullah Hemmati
- Department of Biology, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Rodney B Luwor
- Department of Surgery, Level 5, Clinical Sciences Building, The University of Melbourne, The Royal Melbourne Hospital, Grattan Street, Parkville, VIC 3050, Australia
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
26
|
Ebrahimi M, Mohseni A, Khalifeh K, Ranjbar B, Sajedi RH. Evolutionary conservation of EF-hand ΙΙ loop in aequorin: Priority of intensity to decay rate in bioluminescence emission. Arch Biochem Biophys 2017; 634:29-37. [PMID: 28970088 DOI: 10.1016/j.abb.2017.09.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 09/15/2017] [Accepted: 09/28/2017] [Indexed: 12/15/2022]
Abstract
As a Ca2+-regulated photoprotein, aequorin (Aeq) contains four EF-hand motifs, the second one lacks the standard sequence for Ca2+ coordination and doesn't bind to Ca2+. Here, we replaced this loop with a functional loop. According to structural studies, although the global stability of modified aequorin (4EFAeq) is higher than that of Aeq; increasing the local flexibility accompanied by internal structural rearrangements in 4EFAeq result in its penetrability to urea and acrylamide. A fast decay rate was observed for 4EFAeq. Assuming the presence of intermediate states in the luminescent reaction, this observation indicate that the loop replacement leads to the lowering of the half-life of intermediate states which results in increasing the rate of conformational switching of 4EFAeq to light emitting form. However, considerable reduction in initial luminescence intensity of 4EFAeq suggests that the number of functional complexes is reduced. Our findings demonstrate that the conformational effects of the second loop in Aeq elicit a delicate balance between local flexibility and global stability which may be considered as an important functional parameter in photoproteins. It was also concluded that evolutionary conservation of EF-hand ΙΙ in the current form is a consequence of priority of intensity to decay rate in bioluminescent organisms.
Collapse
Affiliation(s)
- Mahsa Ebrahimi
- Department of Biology, Faculty of Sciences, University of Zanjan, Zanjan, Iran
| | - Ammar Mohseni
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Khosrow Khalifeh
- Department of Biology, Faculty of Sciences, University of Zanjan, Zanjan, Iran.
| | - Bijan Ranjbar
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reza H Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
27
|
Alieva RR, Kudryasheva NS. Variability of fluorescence spectra of coelenteramide-containing proteins as a basis for toxicity monitoring. Talanta 2017; 170:425-431. [PMID: 28501192 DOI: 10.1016/j.talanta.2017.04.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/10/2017] [Accepted: 04/16/2017] [Indexed: 11/30/2022]
Abstract
Nowadays, physicochemical approach to understanding toxic effects remains underdeveloped. A proper development of such mode would be concerned with simplest bioassay systems. Coelenteramide-Containing Fluorescent Proteins (CLM-CFPs) can serve as proper tools for study primary physicochemical processes in organisms under external exposures. CLM-CFPs are products of bioluminescent reactions of marine coelenterates. As opposed to Green Fluorescent Proteins, the CLM-CFPs are not widely applied in biomedical research, and their potential as colored biomarkers is undervalued now. Coelenteramide, fluorophore of CLM-CFPs, is a photochemically active molecule; it acts as a proton donor in its electron-excited states, generating several forms of different fluorescent state energy and, hence, different fluorescence color, from violet to green. Contributions of the forms to the visible fluorescence depend on the coelenteramide microenvironment in proteins. Hence, CLM-CFPs can serve as fluorescence biomarkers with color differentiation to monitor results of destructive biomolecule exposures. The paper reviews experimental and theoretical studies of spectral-luminescent and photochemical properties of CLM-CFPs, as well as their variation under different exposures - chemicals, temperature, and ionizing radiation. Application of CLM-CFPs as toxicity bioassays of a new type is justified.
Collapse
Affiliation(s)
- Roza R Alieva
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok 50/50, Krasnoyarsk 660036, Russia; Siberian Federal University, Svobodny Prospect 79, Krasnoyarsk 660041, Russia
| | - Nadezhda S Kudryasheva
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok 50/50, Krasnoyarsk 660036, Russia; Siberian Federal University, Svobodny Prospect 79, Krasnoyarsk 660041, Russia
| |
Collapse
|
28
|
Hegde RP, Fedorov AA, Sauder JM, Burley SK, Almo SC, Ramagopal UA. The hidden treasure in your data: phasing with unexpected weak anomalous scatterers from routine data sets. Acta Crystallogr F Struct Biol Commun 2017; 73:184-195. [PMID: 28368276 PMCID: PMC5379167 DOI: 10.1107/s2053230x17002680] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/16/2017] [Indexed: 12/25/2022] Open
Abstract
Single-wavelength anomalous dispersion (SAD) utilizing anomalous signal from native S atoms, or other atoms with Z ≤ 20, generally requires highly redundant data collected using relatively long-wavelength X-rays. Here, the results from two proteins are presented where the anomalous signal from serendipitously acquired surface-bound Ca atoms with an anomalous data multiplicity of around 10 was utilized to drive de novo structure determination. In both cases, the Ca atoms were acquired from the crystallization solution, and the data-collection strategy was not optimized to exploit the anomalous signal from these scatterers. The X-ray data were collected at 0.98 Å wavelength in one case and at 1.74 Å in the other (the wavelength was optimized for sulfur, but the anomalous signal from calcium was exploited for structure solution). Similarly, using a test case, it is shown that data collected at ∼1.0 Å wavelength, where the f'' value for sulfur is 0.28 e, are sufficient for structure determination using intrinsic S atoms from a strongly diffracting crystal. Interestingly, it was also observed that SHELXD was capable of generating a substructure solution from high-exposure data with a completeness of 70% for low-resolution reflections extending to 3.5 Å resolution with relatively low anomalous multiplicity. Considering the fact that many crystallization conditions contain anomalous scatterers such as Cl, Ca, Mn etc., checking for the presence of fortuitous anomalous signal in data from well diffracting crystals could prove useful in either determining the structure de novo or in accurately assigning surface-bound atoms.
Collapse
Affiliation(s)
- Raghurama P. Hegde
- Division of Biological Sciences, Poornaprajna Institute of Scientific Research, #4, 16th Cross, Sadashivnagar, Bangalore 560 080, India
| | - Alexander A. Fedorov
- Department of Biochemistry, Albert Einstein College of Medicine, Ullmann Building, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Bronx, New York, NY 10461, USA
| | - J. Michael Sauder
- Lilly Biotechnology Center, Eli Lilly and Company, 10290 Campus Point Drive, San Diego, CA 92121, USA
| | - Stephen K. Burley
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers University, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
- Institute of Quantitative Biomedicine, Rutgers University, The State University of New Jersey, Piscataway, NJ 08854, USA
- Rutgers Cancer Institute of New Jersey, Rutgers University, The State University of New Jersey, New Brunswick, NJ 08903, USA
- RCSB Protein Data Bank, San Diego Supercomputer Center, San Diego, California, USA
- Skaggs School of Pharmacy and Pharmceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Steven C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Ullmann Building, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Bronx, New York, NY 10461, USA
| | - Udupi A. Ramagopal
- Division of Biological Sciences, Poornaprajna Institute of Scientific Research, #4, 16th Cross, Sadashivnagar, Bangalore 560 080, India
| |
Collapse
|
29
|
Krasitskaya VV, Burakova LP, Komarova AA, Bashmakova EE, Frank LA. Mutants of Ca2+-regulated Photoprotein Obelin for Site-specific Conjugation. Photochem Photobiol 2017; 93:553-557. [DOI: 10.1111/php.12712] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/27/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Vasilisa V. Krasitskaya
- Institute of Biophysics SB RAS; Federal Research Center “Krasnoyarsk Science Center SB RAS”; Krasnoyarsk Russia
| | - Ludmila P. Burakova
- Institute of Biophysics SB RAS; Federal Research Center “Krasnoyarsk Science Center SB RAS”; Krasnoyarsk Russia
| | | | - Eugenia E. Bashmakova
- Institute of Biophysics SB RAS; Federal Research Center “Krasnoyarsk Science Center SB RAS”; Krasnoyarsk Russia
- Siberian Federal University; Krasnoyarsk Russia
| | - Ludmila A. Frank
- Institute of Biophysics SB RAS; Federal Research Center “Krasnoyarsk Science Center SB RAS”; Krasnoyarsk Russia
- Siberian Federal University; Krasnoyarsk Russia
| |
Collapse
|
30
|
Larionova MD, Markova SV, Vysotski ES. Tyr72 and Tyr80 are Involved in the Formation of an Active Site of a Luciferase of CopepodMetridia longa. Photochem Photobiol 2017; 93:503-510. [DOI: 10.1111/php.12694] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/31/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Marina D. Larionova
- Photobiology Laboratory; Institute of Biophysics SB RAS; Federal Research Center “Krasnoyarsk Science Center SB RAS”; Krasnoyarsk Russia
- Chair of Biophysics; Siberian Federal University; Krasnoyarsk Russia
| | - Svetlana V. Markova
- Photobiology Laboratory; Institute of Biophysics SB RAS; Federal Research Center “Krasnoyarsk Science Center SB RAS”; Krasnoyarsk Russia
- Chair of Biophysics; Siberian Federal University; Krasnoyarsk Russia
| | - Eugene S. Vysotski
- Photobiology Laboratory; Institute of Biophysics SB RAS; Federal Research Center “Krasnoyarsk Science Center SB RAS”; Krasnoyarsk Russia
- Chair of Biophysics; Siberian Federal University; Krasnoyarsk Russia
| |
Collapse
|
31
|
Lee J. Perspectives on Bioluminescence Mechanisms. Photochem Photobiol 2016; 93:389-404. [PMID: 27748947 DOI: 10.1111/php.12650] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/24/2016] [Indexed: 11/27/2022]
Abstract
The molecular mechanisms of the bioluminescence systems of the firefly, bacteria and those utilizing imidazopyrazinone luciferins such as coelenterazine are gradually being uncovered using modern biophysical methods such as dynamic (ns-ps) fluorescence spectroscopy, NMR, X-ray crystallography and computational chemistry. The chemical structures of all reactants are well defined, and the spatial structures of the luciferases are providing important insight into interactions within the active cavity. It is generally accepted that the firefly and coelenterazine systems, although proceeding by different chemistries, both generate a dioxetanone high-energy species that undergoes decarboxylation to form directly the product in its S1 state, the bioluminescence emitter. More work is still needed to establish the structure of the products completely. In spite of the bacterial system receiving the most research attention, the chemical pathway for excitation remains mysterious except that it is clearly not by a decarboxylation. Both the coelenterazine and bacterial systems have in common of being able to employ "antenna proteins," lumazine protein and the green-fluorescent protein, for tuning the color of the bioluminescence. Spatial structure information has been most valuable in informing the mechanism of the Ca2+ -regulated photoproteins and the antenna protein interactions.
Collapse
Affiliation(s)
- John Lee
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA
| |
Collapse
|
32
|
Bashmakova EE, Krasitskaya VV, Kudryavtsev AN, Grigorenko VG, Frank LA. Hybrid Minimal Core Streptavidin-Obelin as a Versatile Reporter for Bioluminescence-based Bioassay. Photochem Photobiol 2016; 93:548-552. [DOI: 10.1111/php.12648] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 08/28/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Eugenia E. Bashmakova
- Institute of Biophysics; Siberian Branch; Russian Academy of Sciences; Krasnoyarsk Russia
- Siberian Federal University; Krasnoyarsk Russia
| | | | | | | | - Ludmila A. Frank
- Institute of Biophysics; Siberian Branch; Russian Academy of Sciences; Krasnoyarsk Russia
- Siberian Federal University; Krasnoyarsk Russia
| |
Collapse
|
33
|
Pashandi Z, Molakarimi M, Sajedi RH, Taghdir M, Naderi-Manesh H. Light induced structural changes of the photoprotein mnemiopsin: Characterization and contribution in photoinactivation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 165:133-140. [PMID: 27780117 DOI: 10.1016/j.jphotobiol.2016.10.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/14/2016] [Indexed: 10/20/2022]
Abstract
Mnemiopsin, an EF-hand Ca2+ binding photoprotein isolated from luminous ctenophore Mnemiopsis leidyi, emits blue light from its chromophore, coelenterazine, which is non-covalently bond in its central hydrophobic core. Previous studies have revealed unique biochemical properties for ctenophore photoproteins such as inactivation by light, but only few have focused on photoinactivation process. To understand the nature of photoinactivation process we have investigated the impact of light alone and in the presence of Ca2+ ion on the structure of this photoprotein. We used UV-Vis, circular dichroism (CD) and fluorescence spectroscopy following Ca2+ binding assay to analyze the light effects on mnemiopsin conformation in comparison with aequorin at both apo and holo form. Our results showed light induced structural changes which resulted into photoinactivation. These changes include significant modification on secondary structure of mnemiopsin in comparison with aequorin. Our data also revealed that light could influence structure of apo protein regardless of presence of coelenterazine. The comparative studies of Ca2+ ion binding affinity following light exposure, also showed that light induced structural changes could presumably affect coelenterazine binding or its conformation in binding site in such a way that causes photoinactivation. In conclusion, we have proposed that structural rearrangement of helix 5 and C-terminal motif could be responsible for light induced structural changes.
Collapse
Affiliation(s)
- Zaiddodine Pashandi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Molakarimi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reza H Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Majid Taghdir
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Naderi-Manesh
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
34
|
Burakova LP, Natashin PV, Markova SV, Eremeeva EV, Malikova NP, Cheng C, Liu ZJ, Vysotski ES. Mitrocomin from the jellyfish Mitrocoma cellularia with deleted C-terminal tyrosine reveals a higher bioluminescence activity compared to wild type photoprotein. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 162:286-297. [PMID: 27395792 DOI: 10.1016/j.jphotobiol.2016.06.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/30/2016] [Accepted: 06/30/2016] [Indexed: 10/21/2022]
Abstract
The full-length cDNA genes encoding five new isoforms of Ca(2+)-regulated photoprotein mitrocomin from a small tissue sample of the outer bell margin containing photocytes of only one specimen of the luminous jellyfish Mitrocoma cellularia were cloned, sequenced, and characterized after their expression in Escherichia coli and subsequent purification. The analysis of cDNA nucleotide sequences encoding mitrocomin isoforms allowed suggestion that two isoforms might be the products of two allelic genes differing in one amino acid residue (64R/Q) whereas other isotypes appear as a result of transcriptional mutations. In addition, the crystal structure of mitrocomin was determined at 1.30Å resolution which expectedly revealed a high similarity with the structures of other hydromedusan photoproteins. Although mitrocomin isoforms reveal a high degree of identity of amino acid sequences, they vary in specific bioluminescence activities. At that, all isotypes displayed the identical bioluminescence spectra (473-474nm with no shoulder at 400nm). Fluorescence spectra of Ca(2+)-discharged mitrocomins were almost identical to their light emission spectra similar to the case of Ca(2+)-discharged aequorin, but different from Ca(2+)-discharged obelins and clytin which fluorescence is red-shifted by 25-30nm from bioluminescence spectra. The main distinction of mitrocomin from other hydromedusan photoproteins is an additional Tyr at the C-terminus. Using site-directed mutagenesis, we showed that this Tyr is not important for bioluminescence because its deletion even increases specific activity and efficiency of apo-mitrocomin conversion into active photoprotein, in contrast to C-terminal Pro of other photoproteins. Since genes in a population generally exist as different isoforms, it makes us anticipate the cloning of even more isoforms of mitrocomin and other hydromedusan photoproteins with different bioluminescence properties.
Collapse
Affiliation(s)
- Ludmila P Burakova
- Photobiology Laboratory, Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk 660036, Russia
| | - Pavel V Natashin
- Photobiology Laboratory, Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk 660036, Russia; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Svetlana V Markova
- Photobiology Laboratory, Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk 660036, Russia
| | - Elena V Eremeeva
- Photobiology Laboratory, Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk 660036, Russia
| | - Natalia P Malikova
- Photobiology Laboratory, Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk 660036, Russia
| | - Chongyun Cheng
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhi-Jie Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650500, China; iHuman Institute, ShanghaiTech University, Shanghai 201210, China.
| | - Eugene S Vysotski
- Photobiology Laboratory, Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk 660036, Russia.
| |
Collapse
|
35
|
Rose JP, Wang BC. SAD phasing: History, current impact and future opportunities. Arch Biochem Biophys 2016; 602:80-94. [PMID: 27036852 DOI: 10.1016/j.abb.2016.03.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/17/2016] [Accepted: 03/19/2016] [Indexed: 01/17/2023]
Abstract
Single wavelength anomalous diffraction (SAD) can trace its beginnings to the early 1950s. Researchers at the time recognized that SAD offers some unique features that might be advantageous for crystallographic phasing, despite the fact that at that time recording accurate SAD data was problematic. In this review we will follow the trail from those early days, highlighting key advances in the field and interpreting them in terms on how they stimulated continued phasing development that produced the theoretical foundation for the routine macromolecular structure determination by SAD today. The technological advances over the past three decades in both hardware and software, which played a significant role in making SAD phasing a 'first choice method', will also be described.
Collapse
Affiliation(s)
- John P Rose
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA.
| | - Bi-Cheng Wang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
36
|
Wagner A, Duman R, Henderson K, Mykhaylyk V. In-vacuum long-wavelength macromolecular crystallography. Acta Crystallogr D Struct Biol 2016; 72:430-9. [PMID: 26960130 PMCID: PMC4784674 DOI: 10.1107/s2059798316001078] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 01/18/2016] [Indexed: 01/10/2023] Open
Abstract
Structure solution based on the weak anomalous signal from native (protein and DNA) crystals is increasingly being attempted as part of synchrotron experiments. Maximizing the measurable anomalous signal by collecting diffraction data at longer wavelengths presents a series of technical challenges caused by the increased absorption of X-rays and larger diffraction angles. A new beamline at Diamond Light Source has been built specifically for collecting data at wavelengths beyond the capability of other synchrotron macromolecular crystallography beamlines. Here, the theoretical considerations in support of the long-wavelength beamline are outlined and the in-vacuum design of the endstation is discussed, as well as other hardware features aimed at enhancing the accuracy of the diffraction data. The first commissioning results, representing the first in-vacuum protein structure solution, demonstrate the promising potential of the beamline.
Collapse
Affiliation(s)
- Armin Wagner
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot OX11 0DE, England
| | - Ramona Duman
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot OX11 0DE, England
| | - Keith Henderson
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot OX11 0DE, England
| | - Vitaliy Mykhaylyk
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot OX11 0DE, England
| |
Collapse
|
37
|
Eremeeva EV, van Berkel WJ, Vysotski ES. Transient-state kinetic analysis of complex formation between photoprotein clytin and GFP from jellyfishClytia gregaria. FEBS Lett 2016; 590:307-16. [DOI: 10.1002/1873-3468.12052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/15/2015] [Accepted: 12/23/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Elena V. Eremeeva
- Photobiology Laboratory; Institute of Biophysics; Russian Academy of Sciences; Siberian Branch; Krasnoyarsk Russia
| | | | - Eugene S. Vysotski
- Photobiology Laboratory; Institute of Biophysics; Russian Academy of Sciences; Siberian Branch; Krasnoyarsk Russia
| |
Collapse
|
38
|
Burakova LP, Stepanyuk GA, Eremeeva EV, Vysotski ES. Role of certain amino acid residues of the coelenterazine-binding cavity in bioluminescence of light-sensitive Ca2+-regulated photoprotein berovin. Photochem Photobiol Sci 2016; 15:691-704. [DOI: 10.1039/c6pp00050a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We suggest that in the inner cavity of ctenophore photoproteins coelenterazine is bound as a 2-peroxy anion which is stabilized owing to Coulomb interaction with a guanidinium group of R41 paired with Y204.
Collapse
Affiliation(s)
- Ludmila P. Burakova
- Photobiology Laboratory
- Institute of Biophysics
- Russian Academy of Sciences
- Siberian Branch
- Krasnoyarsk 660036
| | - Galina A. Stepanyuk
- Photobiology Laboratory
- Institute of Biophysics
- Russian Academy of Sciences
- Siberian Branch
- Krasnoyarsk 660036
| | - Elena V. Eremeeva
- Photobiology Laboratory
- Institute of Biophysics
- Russian Academy of Sciences
- Siberian Branch
- Krasnoyarsk 660036
| | - Eugene S. Vysotski
- Photobiology Laboratory
- Institute of Biophysics
- Russian Academy of Sciences
- Siberian Branch
- Krasnoyarsk 660036
| |
Collapse
|
39
|
Rose JP, Wang BC, Weiss MS. Native SAD is maturing. IUCRJ 2015; 2:431-40. [PMID: 26175902 PMCID: PMC4491315 DOI: 10.1107/s2052252515008337] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/28/2015] [Indexed: 05/20/2023]
Abstract
Native SAD phasing uses the anomalous scattering signal of light atoms in the crystalline, native samples of macromolecules collected from single-wavelength X-ray diffraction experiments. These atoms include sodium, magnesium, phosphorus, sulfur, chlorine, potassium and calcium. Native SAD phasing is challenging and is critically dependent on the collection of accurate data. Over the past five years, advances in diffraction hardware, crystallographic software, data-collection methods and strategies, and the use of data statistics have been witnessed which allow 'highly accurate data' to be routinely collected. Today, native SAD sits on the verge of becoming a 'first-choice' method for both de novo and molecular-replacement structure determination. This article will focus on advances that have caught the attention of the community over the past five years. It will also highlight both de novo native SAD structures and recent structures that were key to methods development.
Collapse
Affiliation(s)
- John P. Rose
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Bi-Cheng Wang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Manfred S. Weiss
- Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany
| |
Collapse
|
40
|
Klinke S, Foos N, Rinaldi JJ, Paris G, Goldbaum FA, Legrand P, Guimarães BG, Thompson A. S-SAD phasing of monoclinic histidine kinase from Brucella abortus combining data from multiple crystals and orientations: an example of data-collection strategy and a posteriori analysis of different data combinations. ACTA ACUST UNITED AC 2015; 71:1433-43. [PMID: 26143915 DOI: 10.1107/s1399004715007622] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 04/17/2015] [Indexed: 11/10/2022]
Abstract
The histidine kinase (HK) domain belonging to the light-oxygen-voltage histidine kinase (LOV-HK) from Brucella abortus is a member of the HWE family, for which no structural information is available, and has low sequence identity (20%) to the closest HK present in the PDB. The `off-edge' S-SAD method in macromolecular X-ray crystallography was used to solve the structure of the HK domain from LOV-HK at low resolution from crystals in a low-symmetry space group (P21) and with four copies in the asymmetric unit (∼108 kDa). Data were collected both from multiple crystals (diffraction limit varying from 2.90 to 3.25 Å) and from multiple orientations of the same crystal, using the κ-geometry goniostat on SOLEIL beamline PROXIMA 1, to obtain `true redundancy'. Data from three different crystals were combined for structure determination. An optimized HK construct bearing a shorter cloning artifact yielded crystals that diffracted X-rays to 2.51 Å resolution and that were used for final refinement of the model. Moreover, a thorough a posteriori analysis using several different combinations of data sets allowed us to investigate the impact of the data-collection strategy on the success of the structure determination.
Collapse
Affiliation(s)
- Sebastián Klinke
- Fundación Instituto Leloir, IIBBA-CONICET, Avenida Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
| | - Nicolas Foos
- Experimental Division, Synchrotron SOLEIL, BP 48, L'Orme des Merisiers, 91192 Gif-sur-Yvette, France
| | - Jimena J Rinaldi
- Fundación Instituto Leloir, IIBBA-CONICET, Avenida Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
| | - Gastón Paris
- Fundación Instituto Leloir, IIBBA-CONICET, Avenida Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
| | - Fernando A Goldbaum
- Fundación Instituto Leloir, IIBBA-CONICET, Avenida Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
| | - Pierre Legrand
- Experimental Division, Synchrotron SOLEIL, BP 48, L'Orme des Merisiers, 91192 Gif-sur-Yvette, France
| | - Beatriz G Guimarães
- Experimental Division, Synchrotron SOLEIL, BP 48, L'Orme des Merisiers, 91192 Gif-sur-Yvette, France
| | - Andrew Thompson
- Experimental Division, Synchrotron SOLEIL, BP 48, L'Orme des Merisiers, 91192 Gif-sur-Yvette, France
| |
Collapse
|
41
|
Gorgel M, Bøggild A, Ulstrup JJ, Weiss MS, Müller U, Nissen P, Boesen T. Against the odds? De novo structure determination of a pilin with two cysteine residues by sulfur SAD. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:1095-101. [PMID: 25945575 DOI: 10.1107/s1399004715003272] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 02/16/2015] [Indexed: 11/11/2022]
Abstract
Exploiting the anomalous signal of the intrinsic S atoms to phase a protein structure is advantageous, as ideally only a single well diffracting native crystal is required. However, sulfur is a weak anomalous scatterer at the typical wavelengths used for X-ray diffraction experiments, and therefore sulfur SAD data sets need to be recorded with a high multiplicity. In this study, the structure of a small pilin protein was determined by sulfur SAD despite several obstacles such as a low anomalous signal (a theoretical Bijvoet ratio of 0.9% at a wavelength of 1.8 Å), radiation damage-induced reduction of the cysteines and a multiplicity of only 5.5. The anomalous signal was improved by merging three data sets from different volumes of a single crystal, yielding a multiplicity of 17.5, and a sodium ion was added to the substructure of anomalous scatterers. In general, all data sets were balanced around the threshold values for a successful phasing strategy. In addition, a collection of statistics on structures from the PDB that were solved by sulfur SAD are presented and compared with the data. Looking at the quality indicator R(anom)/R(p.i.m.), an inconsistency in the documentation of the anomalous R factor is noted and reported.
Collapse
Affiliation(s)
- Manuela Gorgel
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| | - Andreas Bøggild
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| | - Jakob Jensen Ulstrup
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| | - Manfred S Weiss
- Macromolecular Crystallography (HZB-MX), Helmholtz Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, D-12489 Berlin, Germany
| | - Uwe Müller
- Macromolecular Crystallography (HZB-MX), Helmholtz Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, D-12489 Berlin, Germany
| | - Poul Nissen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| | - Thomas Boesen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| |
Collapse
|
42
|
Su XD, Zhang H, Terwilliger TC, Liljas A, Xiao J, Dong Y. Protein Crystallography from the Perspective of Technology Developments. CRYSTALLOGR REV 2014; 21:122-153. [PMID: 25983389 DOI: 10.1080/0889311x.2014.973868] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Early on, crystallography was a domain of mineralogy and mathematics and dealt mostly with symmetry properties and imaginary crystal lattices. This changed when Wilhelm Conrad Röntgen discovered X-rays in 1895, and in 1912 Max von Laue and his associates discovered X-ray irradiated salt crystals would produce diffraction patterns that could reveal the internal atomic periodicity of the crystals. In the same year the father-and-son team, Henry and Lawrence Bragg successfully solved the first crystal structure of sodium chloride and the era of modern crystallography began. Protein crystallography (PX) started some 20 years later with the pioneering work of British crystallographers. In the past 50-60 years, the achievements of modern crystallography and particularly those in protein crystallography have been due to breakthroughs in theoretical and technical advancements such as phasing and direct methods; to more powerful X-ray sources such as synchrotron radiation (SR); to more sensitive and efficient X-ray detectors; to ever faster computers and to improvements in software. The exponential development of protein crystallography has been accelerated by the invention and applications of recombinant DNA technology that can yield nearly any protein of interest in large amounts and with relative ease. Novel methods, informatics platforms, and technologies for automation and high-throughput have allowed the development of large-scale, high efficiency macromolecular crystallography efforts in the field of structural genomics (SG). Very recently, the X-ray free-electron laser (XFEL) sources and its applications in protein crystallography have shown great potential for revolutionizing the whole field again in the near future.
Collapse
Affiliation(s)
- Xiao-Dong Su
- State Key Laboratory of Protein and Plant Gene Research, and Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Heng Zhang
- State Key Laboratory of Protein and Plant Gene Research, and Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Thomas C Terwilliger
- Bioscience Division, Los Alamos National Laboratory, Mail Stop M888, Los Alamos, NM 87545, USA
| | - Anders Liljas
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Junyu Xiao
- State Key Laboratory of Protein and Plant Gene Research, and Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Yuhui Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
43
|
Liu Q, Guo Y, Chang Y, Cai Z, Assur Z, Mancia F, Greene MI, Hendrickson WA. Multi-crystal native SAD analysis at 6 keV. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:2544-57. [PMID: 25286840 PMCID: PMC4188002 DOI: 10.1107/s1399004714013376] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 06/08/2014] [Indexed: 11/10/2022]
Abstract
Anomalous diffraction signals from typical native macromolecules are very weak, frustrating their use in de novo structure determination. Here, native SAD procedures are described to enhance signal to noise in anomalous diffraction by using multiple crystals in combination with synchrotron X-rays at 6 keV. Increased anomalous signals were obtained at 6 keV compared with 7 keV X-ray energy, which was used for previous native SAD analyses. A feasibility test of multi-crystal-based native SAD phasing was performed at 3.2 Å resolution for a known tyrosine protein kinase domain, and real-life applications were made to two novel membrane proteins at about 3.0 Å resolution. The three applications collectively serve to validate the robust feasibility of native SAD phasing at lower energy.
Collapse
Affiliation(s)
- Qun Liu
- NYCOMPS, New York Structural Biology Center, New York, NY 10032, USA
- New York Structural Biology Center, NSLS X4, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Youzhong Guo
- NYCOMPS, New York Structural Biology Center, New York, NY 10032, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Yanqi Chang
- NYCOMPS, New York Structural Biology Center, New York, NY 10032, USA
| | - Zheng Cai
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zahra Assur
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Mark I. Greene
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wayne A. Hendrickson
- NYCOMPS, New York Structural Biology Center, New York, NY 10032, USA
- New York Structural Biology Center, NSLS X4, Brookhaven National Laboratory, Upton, NY 11973, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| |
Collapse
|
44
|
Chen CD, Huang YC, Chiang HL, Hsieh YC, Guan HH, Chuankhayan P, Chen CJ. Direct phase selection of initial phases from single-wavelength anomalous dispersion (SAD) for the improvement of electron density and ab initio structure determination. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:2331-43. [PMID: 25195747 PMCID: PMC4157445 DOI: 10.1107/s1399004714013868] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 06/13/2014] [Indexed: 11/10/2022]
Abstract
Optimization of the initial phasing has been a decisive factor in the success of the subsequent electron-density modification, model building and structure determination of biological macromolecules using the single-wavelength anomalous dispersion (SAD) method. Two possible phase solutions (φ1 and φ2) generated from two symmetric phase triangles in the Harker construction for the SAD method cause the well known phase ambiguity. A novel direct phase-selection method utilizing the θ(DS) list as a criterion to select optimized phases φ(am) from φ1 or φ2 of a subset of reflections with a high percentage of correct phases to replace the corresponding initial SAD phases φ(SAD) has been developed. Based on this work, reflections with an angle θ(DS) in the range 35-145° are selected for an optimized improvement, where θ(DS) is the angle between the initial phase φ(SAD) and a preliminary density-modification (DM) phase φ(DM)(NHL). The results show that utilizing the additional direct phase-selection step prior to simple solvent flattening without phase combination using existing DM programs, such as RESOLVE or DM from CCP4, significantly improves the final phases in terms of increased correlation coefficients of electron-density maps and diminished mean phase errors. With the improved phases and density maps from the direct phase-selection method, the completeness of residues of protein molecules built with main chains and side chains is enhanced for efficient structure determination.
Collapse
Affiliation(s)
- Chung-De Chen
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Yen-Chieh Huang
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Hsin-Lin Chiang
- Department of Physics, National Tsing Hua University, Hsinchu, Taiwan
| | - Yin-Cheng Hsieh
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Hong-Hsiang Guan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Phimonphan Chuankhayan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Chun-Jung Chen
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| |
Collapse
|
45
|
Alieva RR, Belogurova NV, Petrova AS, Kudryasheva NS. Effects of alcohols on fluorescence intensity and color of a discharged-obelin-based biomarker. Anal Bioanal Chem 2014; 406:2965-74. [PMID: 24618986 DOI: 10.1007/s00216-014-7685-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/05/2014] [Accepted: 02/07/2014] [Indexed: 10/25/2022]
Abstract
Photoproteins are responsible for bioluminescence of marine coelenterates; bioluminescent and fluorescent biomarkers based on photoproteins are useful for monitoring of calcium-dependent processes in medical investigations. Here, we present the analysis of intensity and color of light-induced fluorescence of Ca(2+)-discharged photoprotein obelin in the presence of alcohols (ethanol and glycerol). Complex obelin spectra obtained at different concentrations of the alcohols at 350- and 280-nm excitation (corresponding to polypeptide-bound coelenteramide and tryptophan absorption regions) were deconvoluted into Gaussian components; fluorescent intensity and contributions of the components to experimental spectra were analyzed. Five Gaussian components were found in different spectral regions-ultraviolet (tryptophan emission), blue-green (coelenteramide emission), and red (hypothetical indole-coelenteramide exciplex emission). Inhibition coefficients and contributions of the components to experimental fluorescent spectra showed that presence of alcohols increased contributions of ultraviolet, violet, and red components, but decreased contributions of components in the blue-green region. The effects were related to (1) changes of proton transfer efficiency in fluorescent S*1 state of coelenteramide in the obelin active center and (2) formation of indole-coelenteramide exciplex at 280-nm photoexcitation. The data show that variation of fluorescence color and intensity in the presence of alcohols and dependence of emission spectra on excitation wavelength should be considered while applying the discharged obelin as a fluorescence biomarker.
Collapse
Affiliation(s)
- Roza R Alieva
- Siberian Federal University, Svobodny Prospect 79, 660041, Krasnoyarsk, Russia
| | | | | | | |
Collapse
|
46
|
Vorobjeva MA, Krasitskaya VV, Fokina AA, Timoshenko VV, Nevinsky GA, Venyaminova AG, Frank LA. RNA aptamer against autoantibodies associated with multiple sclerosis and bioluminescent detection probe on its basis. Anal Chem 2014; 86:2590-4. [PMID: 24512542 DOI: 10.1021/ac4037894] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nowadays, there are no specific laboratory tests for establishing the diagnosis of multiple sclerosis (MS). The presence of proteolytic autoantibodies against myelin basic protein is now considered as a characteristic feature of MS. New 2'-F-containing RNA aptamer of high affinity and specificity to these antibodies was selected. Covalent conjugate of this aptamer and Ca(2+)-regulated photoprotein obelin was obtained for the first time and applied as a label in bioluminescent microplate assay to detect target antibodies. The developed model solid-phase microassay is simple, fast, and highly sensitive.
Collapse
Affiliation(s)
- Maria A Vorobjeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences , Novosibirsk 630090, Russia
| | | | | | | | | | | | | |
Collapse
|
47
|
Natashin PV, Ding W, Eremeeva EV, Markova SV, Lee J, Vysotski ES, Liu ZJ. Structures of the Ca2+-regulated photoprotein obelin Y138F mutant before and after bioluminescence support the catalytic function of a water molecule in the reaction. ACTA ACUST UNITED AC 2014; 70:720-32. [DOI: 10.1107/s1399004713032434] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/28/2013] [Indexed: 11/11/2022]
Abstract
Ca2+-regulated photoproteins, which are responsible for light emission in a variety of marine coelenterates, are a highly valuable tool for measuring Ca2+inside living cells. All of the photoproteins are a single-chain polypeptide to which a 2-hydroperoxycoelenterazine molecule is tightly but noncovalently bound. Bioluminescence results from the oxidative decarboxylation of 2-hydroperoxycoelenterazine, generating protein-bound coelenteramide in an excited state. Here, the crystal structures of the Y138F obelin mutant before and after bioluminescence are reported at 1.72 and 1.30 Å resolution, respectively. The comparison of the spatial structures of the conformational states of Y138F obelin with those of wild-type obelin gives clear evidence that the substitution of Tyr by Phe does not affect the overall structure of both Y138F obelin and its product following Ca2+discharge compared with the corresponding conformational states of wild-type obelin. Despite the similarity of the overall structures and internal cavities of Y138F and wild-type obelins, there is a substantial difference: in the cavity of Y138F obelin a water molecule corresponding to W2in wild-type obelin is not found. However, in Ca2+-discharged Y138F obelin this water molecule now appears in the same location. This finding, together with the observed much slower kinetics of Y138F obelin, clearly supports the hypothesis that the function of a water molecule in this location is to catalyze the 2-hydroperoxycoelenterazine decarboxylation reaction by protonation of a dioxetanone anion before its decomposition into the excited-state product. Although obelin differs from other hydromedusan Ca2+-regulated photoproteins in some of its properties, they are believed to share a common mechanism.
Collapse
|
48
|
Abstract
X-ray diffraction patterns from crystals of biological macromolecules contain sufficient information to define atomic structures, but atomic positions are inextricable without having electron-density images. Diffraction measurements provide amplitudes, but the computation of electron density also requires phases for the diffracted waves. The resonance phenomenon known as anomalous scattering offers a powerful solution to this phase problem. Exploiting scattering resonances from diverse elements, the methods of MAD (multiwavelength anomalous diffraction) and SAD (single-wavelength anomalous diffraction) now predominate for de novo determinations of atomic-level biological structures. This review describes the physical underpinnings of anomalous diffraction methods, the evolution of these methods to their current maturity, the elements, procedures and instrumentation used for effective implementation, and the realm of applications.
Collapse
Affiliation(s)
- Wayne A. Hendrickson
- Department of Biochemistry and Molecular Biophysics, and Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032 USA. New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027 USA
| |
Collapse
|
49
|
Natashin PV, Markova SV, Lee J, Vysotski ES, Liu ZJ. Crystal structures of the F88Y obelin mutant before and after bioluminescence provide molecular insight into spectral tuning among hydromedusan photoproteins. FEBS J 2014; 281:1432-1445. [DOI: 10.1111/febs.12715] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/15/2013] [Accepted: 01/04/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Pavel V. Natashin
- National Laboratory of Biomacromolecules; Institute of Biophysics; Chinese Academy of Sciences; Beijing China
- Photobiology Laboratory; Institute of Biophysics; Russian Academy of Sciences, Siberian Branch; Krasnoyarsk Russia
- Laboratory of Bioluminescence Biotechnology; Institute of Fundamental Biology and Biotechnology; Siberian Federal University; Russia
| | - Svetlana V. Markova
- Photobiology Laboratory; Institute of Biophysics; Russian Academy of Sciences, Siberian Branch; Krasnoyarsk Russia
- Laboratory of Bioluminescence Biotechnology; Institute of Fundamental Biology and Biotechnology; Siberian Federal University; Russia
| | - John Lee
- Department of Biochemistry and Molecular Biology; University of Georgia; Athens GA USA
| | - Eugene S. Vysotski
- Photobiology Laboratory; Institute of Biophysics; Russian Academy of Sciences, Siberian Branch; Krasnoyarsk Russia
- Laboratory of Bioluminescence Biotechnology; Institute of Fundamental Biology and Biotechnology; Siberian Federal University; Russia
| | - Zhi-Jie Liu
- National Laboratory of Biomacromolecules; Institute of Biophysics; Chinese Academy of Sciences; Beijing China
- iHuman Institute; ShanghaiTech University; Shanghai China
| |
Collapse
|
50
|
Eremeeva EV, Burakova LP, Krasitskaya VV, Kudryavtsev AN, Shimomura O, Frank LA. Hydrogen-bond networks between the C-terminus and Arg from the first α-helix stabilize photoprotein molecules. Photochem Photobiol Sci 2014; 13:541-7. [PMID: 24463740 DOI: 10.1039/c3pp50369k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Previous studies have stated that aequorin loses most of its bioluminescence activity upon modification of the C-terminus, thus limiting the production of photoprotein fusion proteins at its N-terminus. In the present work, we investigate the importance of the C-terminal proline and the hydrogen bonds it forms for photoprotein active complex formation, stability and functional activity. According to the crystal structures of obelin and aequorin, two Ca(2+)-regulated photoproteins, the carboxyl group of the C-terminal Pro forms two hydrogen bonds with the side chain of Arg21 (Arg15 in aequorin case) situated in the first α-helix. Whereas, deletion or substitution of the C-terminal proline could noticeably change the bioluminescence activity, stability or the yield of an active photoprotein complex. Therefore, modifications of the first α-helix Arg has a clear destructive effect on the main photoprotein properties. A C-terminal hydrogen-bond network is proposed to be important for the stability of photoprotein molecules towards external disturbances, when taking part in the formation of locked protein conformations and isolation of coelenterazine-binding cavities.
Collapse
Affiliation(s)
- Elena V Eremeeva
- Photobiology Laboratory, Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk, 660036, Russia.
| | | | | | | | | | | |
Collapse
|