1
|
Cao X, Li F, Xie X, Ling G, Tang X, He W, Tian J, Ge Y. Efferocytosis and inflammation: a bibliometric and systematic analysis. Front Med (Lausanne) 2025; 12:1498503. [PMID: 39995691 PMCID: PMC11847848 DOI: 10.3389/fmed.2025.1498503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/22/2025] [Indexed: 02/26/2025] Open
Abstract
Objective To visualize and analyze the trends and hotspots of efferocytosis and inflammation via bibliometric methods. Methods Relevant articles and reviews from 2006 to 2023 were retrieved from the Web of Science Core Collection. The data were processed with CiteSpace, and some graphs were generated with Microsoft Excel (version 2016), VOSviewer, Scimago Graphica, Bibliometrix and R Studio. Results A total of 1,003 papers were included, revealing a significant upward trend in efferocytosis and inflammation research. The United States (456, 45.46%), China (164, 16.35%) and the United Kingdom (99, 9.87%) were the three countries with the highest numbers of publications. Harvard University (84, 6.74%) contributes the most out of the top 5 institutions. Among the researchers in this field, Serhan CN was the author with the highest number of articles in the field (35, 3.49%), and deCathelineau AM first named "efferocytosis" in 2003. Keyword analysis identified "activation," "tam receptors," "docosahexaenoic acid" "systemic lupus erythematosus," "myocardial infarction" and "alveolar macrophages" as core topics, indicating a concentrated trend in the mechanism of physiological state and inflammatory diseases such as autoimmune, cardiovascular, and pulmonary diseases. The latest surge words "inflammation resolution" and "cancer" in the keyword heatmap indicate future research directions. Conclusion Research on the association between efferocytosis and inflammation has been a promising field. Key areas of focus include the crucial role of efferocytosis on tissue homeostasis and the pathogenesis of nontumorous inflammatory diseases. Future research will likely continue to explore these frontiers, with an emphasis on understanding efferocytosis in the context of chronic diseases and cancer, as well as developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Xin Cao
- Department of Rheumatology & Immunology, The Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Medical Research Center for Systemic Autoimmune Diseases, Changsha, China
| | - Fen Li
- Department of Rheumatology & Immunology, The Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Medical Research Center for Systemic Autoimmune Diseases, Changsha, China
| | - Xi Xie
- Department of Rheumatology & Immunology, The Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Medical Research Center for Systemic Autoimmune Diseases, Changsha, China
| | - Guanghui Ling
- Department of Rheumatology & Immunology, The Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Medical Research Center for Systemic Autoimmune Diseases, Changsha, China
| | - Xiaoyu Tang
- Department of Rheumatology & Immunology, The Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Medical Research Center for Systemic Autoimmune Diseases, Changsha, China
| | - Wenfang He
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jing Tian
- Department of Rheumatology & Immunology, The Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Medical Research Center for Systemic Autoimmune Diseases, Changsha, China
| | - Yan Ge
- Department of Rheumatology & Immunology, The Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Medical Research Center for Systemic Autoimmune Diseases, Changsha, China
| |
Collapse
|
2
|
Dong X, Zhang Z, Shu X, Zhuang Z, Liu P, Liu R, Xia S, Bao X, Xu Y, Chen Y. MFG-E8 Alleviates Cognitive Impairments Induced by Chronic Cerebral Hypoperfusion by Phagocytosing Myelin Debris and Promoting Remyelination. Neurosci Bull 2024; 40:483-499. [PMID: 37979054 PMCID: PMC11003935 DOI: 10.1007/s12264-023-01147-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/22/2023] [Indexed: 11/19/2023] Open
Abstract
Chronic cerebral hypoperfusion is one of the pathophysiological mechanisms contributing to cognitive decline by causing white matter injury. Microglia phagocytosing myelin debris in a timely manner can promote remyelination and contribute to the repair of white matter. However, milk fat globule-epidermal growth factor-factor 8 (MFG-E8), a microglial phagocytosis-related protein, has not been well studied in hypoperfusion-related cognitive dysfunction. We found that the expression of MFG-E8 was significantly decreased in the brain of mice after bilateral carotid artery stenosis (BCAS). MFG-E8 knockout mice demonstrated more severe BCAS-induced cognitive impairments in the behavioral tests. In addition, we discovered that the deletion of MFG-E8 aggravated white matter damage and the destruction of myelin microstructure through fluorescent staining and electron microscopy. Meanwhile, MFG-E8 overexpression by AAV improved white matter injury and increased the number of mature oligodendrocytes after BCAS. Moreover, in vitro and in vivo experiments showed that MFG-E8 could enhance the phagocytic function of microglia via the αVβ3/αVβ5/Rac1 pathway and IGF-1 production to promote the differentiation of oligodendrocyte progenitor cells into mature oligodendrocytes. Interestingly, we found that MFG-E8 was mainly derived from astrocytes, not microglia. Our findings suggest that MFG-E8 is a potential therapeutic target for cognitive impairments following cerebral hypoperfusion.
Collapse
Affiliation(s)
- Xiaohong Dong
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Zhi Zhang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Xin Shu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Zi Zhuang
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Pinyi Liu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, 210008, China
| | - Renyuan Liu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, 210008, China
| | - Shengnan Xia
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, 210008, China
| | - Xinyu Bao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, 210008, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China.
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, 210008, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China.
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, 210008, China.
| | - Yan Chen
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China.
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, 210008, China.
| |
Collapse
|
3
|
Mizote Y, Inoue T, Akazawa T, Kunimasa K, Tamiya M, Kumamoto Y, Tsuda A, Yoshida S, Tatsumi K, Ekawa T, Honma K, Nishino K, Tahara H. Potent CTLs can be induced against tumor cells in an environment of lower levels of systemic MFG-E8. Cancer Sci 2024; 115:1114-1128. [PMID: 38332689 PMCID: PMC11007000 DOI: 10.1111/cas.16099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/19/2023] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
The direction and magnitude of immune responses are critically affected when dead cells are disposed of. Milk fat globule-epidermal growth factor-factor 8 (MFG-E8) promotes the engulfment of apoptotic normal and cancerous cells without inducing inflammation. We have previously reported that a certain proportion of the cancer cells express abundant MFG-E8, and that such expression is associated with the shorter survival of patients with esophageal cancer who had received chemotherapy before surgery. However, the influence of tumor-derived and systemically existing MFG-E8 on antitumor immune responses has not yet been fully investigated. Herein, we showed that CTL-dependent antitumor immune responses were observed in mice with no or decreased levels of systemic MFG-E8, and that such responses were enhanced further with the administration of anti-PD-1 antibody. In mice with decreased levels of systemic MFG-E8, the dominance of regulatory T cells in tumor-infiltrating lymphocytes was inverted to CD8+ T cell dominance. MFG-E8 expression by tumor cells appears to affect antitumor immune responses only when the level of systemic MFG-E8 is lower than the physiological status. We have also demonstrated in the clinical setting that lower levels of plasma MFG-E8, but not MFG-E8 expression in tumor cells, before the treatment was associated with objective responses to anti-PD-1 therapy in patients with non-small cell lung cancer. These results suggest that systemic MFG-E8 plays a critical role during the immunological initiation process of antigen-presenting cells to increase tumor-specific CTLs. Regulation of the systemic level of MFG-E8 might induce efficient antitumor immune responses and enhance the potency of anti-PD-1 therapy.
Collapse
Affiliation(s)
- Yu Mizote
- Department of Cancer Drug Discovery and Development, Research CenterOsaka International Cancer InstituteOsakaJapan
| | - Takako Inoue
- Department of Thoracic OncologyOsaka International Cancer InstituteOsakaJapan
| | - Takashi Akazawa
- Department of Cancer Drug Discovery and Development, Research CenterOsaka International Cancer InstituteOsakaJapan
| | - Kei Kunimasa
- Department of Thoracic OncologyOsaka International Cancer InstituteOsakaJapan
| | - Motohiro Tamiya
- Department of Thoracic OncologyOsaka International Cancer InstituteOsakaJapan
| | - Yachiyo Kumamoto
- Department of Cancer Drug Discovery and Development, Research CenterOsaka International Cancer InstituteOsakaJapan
| | - Arisa Tsuda
- Department of Thoracic OncologyOsaka International Cancer InstituteOsakaJapan
| | - Satomi Yoshida
- Department of Cancer Drug Discovery and Development, Research CenterOsaka International Cancer InstituteOsakaJapan
| | - Kumiko Tatsumi
- Department of Cancer Drug Discovery and Development, Research CenterOsaka International Cancer InstituteOsakaJapan
| | - Tomoya Ekawa
- Department of Cancer Drug Discovery and Development, Research CenterOsaka International Cancer InstituteOsakaJapan
| | - Keiichiro Honma
- Department of Diagnostic Pathology and CytologyOsaka International Cancer InstituteOsakaJapan
| | - Kazumi Nishino
- Department of Thoracic OncologyOsaka International Cancer InstituteOsakaJapan
| | - Hideaki Tahara
- Department of Cancer Drug Discovery and Development, Research CenterOsaka International Cancer InstituteOsakaJapan
- Project Division of Cancer Biomolecular Therapy, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| |
Collapse
|
4
|
Marazuela P, Solé M, Bonaterra-Pastra A, Pizarro J, Camacho J, Martínez-Sáez E, Kuiperij HB, Verbeek MM, de Kort AM, Schreuder FHBM, Klijn CJM, Castillo-Ribelles L, Pancorbo O, Rodríguez-Luna D, Pujadas F, Delgado P, Hernández-Guillamon M. MFG-E8 (LACTADHERIN): a novel marker associated with cerebral amyloid angiopathy. Acta Neuropathol Commun 2021; 9:154. [PMID: 34530925 PMCID: PMC8444498 DOI: 10.1186/s40478-021-01257-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 02/08/2023] Open
Abstract
Brain accumulation of amyloid-beta (Aβ) is a crucial feature in Alzheimer´s disease (AD) and cerebral amyloid angiopathy (CAA), although the pathophysiological relationship between these diseases remains unclear. Numerous proteins are associated with Aβ deposited in parenchymal plaques and/or cerebral vessels. We hypothesized that the study of these proteins would increase our understanding of the overlap and biological differences between these two pathologies and may yield new diagnostic tools and specific therapeutic targets. We used a laser capture microdissection approach combined with mass spectrometry in the APP23 transgenic mouse model of cerebral-β-amyloidosis to specifically identify vascular Aβ-associated proteins. We focused on one of the main proteins detected in the Aβ-affected cerebrovasculature: MFG-E8 (milk fat globule-EGF factor 8), also known as lactadherin. We first validated the presence of MFG-E8 in mouse and human brains. Immunofluorescence and immunoblotting studies revealed that MFG-E8 brain levels were higher in APP23 mice than in WT mice. Furthermore, MFG-E8 was strongly detected in Aβ-positive vessels in human postmortem CAA brains, whereas MFG-E8 was not present in parenchymal Aβ deposits. Levels of MFG-E8 were additionally analysed in serum and cerebrospinal fluid (CSF) from patients diagnosed with CAA, patients with AD and control subjects. Whereas no differences were found in MFG-E8 serum levels between groups, MFG-E8 concentration was significantly lower in the CSF of CAA patients compared to controls and AD patients. Finally, in human vascular smooth muscle cells MFG-E8 was protective against the toxic effects of the treatment with the Aβ40 peptide containing the Dutch mutation. In summary, our study shows that MFG-E8 is highly associated with CAA pathology and highlights MFG-E8 as a new CSF biomarker that could potentially be used to differentiate cerebrovascular Aβ pathology from parenchymal Aβ deposition.
Collapse
Affiliation(s)
- Paula Marazuela
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Hospital Universitari Vall d´Hebron, Universitat Autónoma de Barcelona, Pg. Vall d´Hebron, 119-129, 08035, Barcelona, Spain
| | - Montse Solé
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Hospital Universitari Vall d´Hebron, Universitat Autónoma de Barcelona, Pg. Vall d´Hebron, 119-129, 08035, Barcelona, Spain
| | - Anna Bonaterra-Pastra
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Hospital Universitari Vall d´Hebron, Universitat Autónoma de Barcelona, Pg. Vall d´Hebron, 119-129, 08035, Barcelona, Spain
| | - Jesús Pizarro
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Hospital Universitari Vall d´Hebron, Universitat Autónoma de Barcelona, Pg. Vall d´Hebron, 119-129, 08035, Barcelona, Spain
| | - Jessica Camacho
- Pathology Department, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elena Martínez-Sáez
- Pathology Department, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - H Bea Kuiperij
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel M Verbeek
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anna M de Kort
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Floris H B M Schreuder
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Catharina J M Klijn
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laura Castillo-Ribelles
- Clinical Biochemistry Department, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Olalla Pancorbo
- Stroke Unit, Department of Neurology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - David Rodríguez-Luna
- Stroke Unit, Department of Neurology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Francesc Pujadas
- Neurology Department, Dementia Unit, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Pilar Delgado
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Hospital Universitari Vall d´Hebron, Universitat Autónoma de Barcelona, Pg. Vall d´Hebron, 119-129, 08035, Barcelona, Spain
| | - Mar Hernández-Guillamon
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Hospital Universitari Vall d´Hebron, Universitat Autónoma de Barcelona, Pg. Vall d´Hebron, 119-129, 08035, Barcelona, Spain.
| |
Collapse
|
5
|
Ushikubo M, Saito S, Kikuchi J, Takeshita M, Yoshimoto K, Yasuoka H, Yamaoka K, Seki N, Suzuki K, Oshima H, Takeuchi T. Milk fat globule epidermal growth factor 8 (MFG-E8) on monocytes is a novel biomarker of disease activity in systemic lupus erythematosus. Lupus 2020; 30:61-69. [PMID: 33115371 DOI: 10.1177/0961203320967761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Milk fat globule epidermal growth factor (MFG-E8) is related secreted protein which links phosphatidylserine on apoptotic cells and integrin αvβ3/5 on phagocytes. To clarify the clinical significance of MFG-E8 in SLE, we analyzed the correlation between expression level of MFG-E8 in circulating phagocytic leukocytes and clinical parameters of patients. METHODS The study was conducted under a multi-center, prospective cohort design. Patients with one or both BILAG A or B, or SLEDAI- 2 K ≥ 4 with clinical symptoms were defined as the active SLE group. Expression of MFG-E8 on monocytes and concentration in serum were measured by FACS and ELISA, respectively. RESULTS 96 subjects were enrolled. The absolute number and proportion of MFG-E8-positive monocytes to total monocytes were significantly higher in the active SLE group (p < 0.01). Importantly, the proportion was also significantly correlated with SLEDAI-2K, clinical SLEDAI, as well as serum levels of anti-ds-DNA antibody and complement and C1q. In addition, the proportion of MFG-E8-positive monocytes to total monocytes was significantly decreased from baseline in active SLE patients after 6 months' treatment and increased concordantly with disease activity in 6 refractory cases. Further, in receiver operating characteristic curve analysis for discrimination between active and inactive SLE, the AUC of the proportion of MFG-E8 was 0.854, which was equivalent to classical activity markers such as anti-ds DNA antibody (0.776), complement (0.897) and C1q (0.815). CONCLUSIONS The proportion of MFG-E8-positive monocytes to total monocytes in peripheral blood was positively associated with disease activity in SLE and may be a novel biomarker of disease activity.
Collapse
Affiliation(s)
- Mari Ushikubo
- Department of Connective Tissue Disease, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.,Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shuntaro Saito
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Jun Kikuchi
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Masaru Takeshita
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Keiko Yoshimoto
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hidekata Yasuoka
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kunihiro Yamaoka
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Noriyasu Seki
- Research Unit/Immunology and Inflammation, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan
| | - Katsuya Suzuki
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hisaji Oshima
- Department of Connective Tissue Disease, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Tsutomu Takeuchi
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Abstract
Phagocytosis is a pivotal immunological process, and its discovery by Elia Metchnikoff in 1882 was a step toward the establishment of the innate immune system as a separate branch of immunology. Elia Metchnikoff received the Nobel Prize in physiology and medicine for this discovery in 1908. Since its discovery almost 140 years before, phagocytosis remains the hot topic of research in immunology. The phagocytosis research has seen a great advancement since its first discovery. Functionally, phagocytosis is a simple immunological process required to engulf and remove pathogens, dead cells and tumor cells to maintain the immune homeostasis. However, mechanistically, it is a very complex process involving different mechanisms, induced and regulated by several pattern recognition receptors, soluble pattern recognition molecules, scavenger receptors (SRs) and opsonins. These mechanisms involve the formation of phagosomes, their maturation into phagolysosomes causing pathogen destruction or antigen synthesis to present them to major histocompatibility complex molecules for activating an adaptive immune response. Any defect in this mechanism may predispose the host to certain infections and inflammatory diseases (autoinflammatory and autoimmune diseases) along with immunodeficiency. The article is designed to discuss its mechanistic complexity at each level, varying from phagocytosis induction to phagolysosome resolution.
Collapse
Affiliation(s)
- Vijay Kumar
- Faculty of Medicine, Children's Health Queensland Clinical Unit, School of Clinical Medicine, Mater Research, University of Queensland, ST Lucia, Brisbane, Queensland, Australia.,Faculty of Medicine, School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Queensland, Australia
| |
Collapse
|
7
|
Park C, Kehrl JH. An integrin/MFG-E8 shuttle loads HIV-1 viral-like particles onto follicular dendritic cells in mouse lymph node. eLife 2019; 8:47776. [PMID: 31793433 PMCID: PMC6901335 DOI: 10.7554/elife.47776] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 11/08/2019] [Indexed: 12/03/2022] Open
Abstract
During human immunodeficiency virus-1 (HIV-1) infection lymphoid organ follicular dendritic cells (FDCs) serve as a reservoir for infectious virus and an obstacle to curative therapies. Here, we identify a subset of lymphoid organ sinus lining macrophage (SMs) that provide a cell-cell contact portal, which facilitates the uptake of HIV-1 viral-like particles (VLPs) by FDCs and B cells in mouse lymph node. Central for portal function is the bridging glycoprotein MFG-E8. Using a phosphatidylserine binding domain and an RGD motif, MFG-E8 helps target HIV-1 VLPs to αv integrin bearing SMs. Lack of MFG-E8 or integrin blockade severely limits HIV-1 VLP spread onto FDC networks. Direct SM-FDC virion transfer also depends upon short-lived FDC network abutment, likely triggered by SCSM antigen uptake. This provides a mechanism for rapid FDC loading broadening the opportunity for rare, antigen reactive follicular B cells to acquire antigen, and a means for HIV virions to accumulate on the FDC network.
Collapse
Affiliation(s)
- Chung Park
- B-cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - John H Kehrl
- B-cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| |
Collapse
|
8
|
Polymorphisms of MFGE8 are associated with susceptibility and clinical manifestations through gene expression modulation in Koreans with systemic lupus erythematosus. Sci Rep 2019; 9:18565. [PMID: 31811237 PMCID: PMC6897915 DOI: 10.1038/s41598-019-55061-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 11/20/2019] [Indexed: 12/22/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is characterized by impaired clearance of apoptotic cells. Milk fat globule epidermal growth factor 8 (MFGE8) is a protein that connects αvβ3 integrin on phagocytic macrophages with phosphatidylserine on apoptotic cells. We investigated whether genetic variation of the MFGE8 gene and serum MFGE8 concentration are associated with SLE. Single nucleotide polymorphisms (SNPs) were genotyped and serum concentrations were analyzed. The rs2271715 C allele and rs3743388 G allele showed higher frequency in SLE than in healthy subjects (HSs). Three haplotypes were found among 4 SNPs (rs4945, rs1878327, rs2271715, and rs3743388): AACG, CGCG, and CGTC. CGCG haplotype was significantly more common in SLE than in HSs. rs4945 was associated with the erythrocyte sedimentation rate and rs1878327 was associated with alopecia, C-reactive protein, complement 3, anti-dsDNA antibody, and high disease activity. rs2271715 and rs3743388 were associated with renal disease, cumulative glucocorticoid dose, and cyclophosphamide and mycophenolate mofetil use. Serum MFGE8 concentrations were significantly higher in SLE than in HSs. Furthermore, the levels of MFGE8 were significantly higher in SLE than HSs of the rs2271715 CC genotype. In conclusion, MFGE8 genetic polymorphisms are associated not only with susceptibility to SLE but also with disease activity through modulation of gene expression.
Collapse
|
9
|
Kawano M, Nagata S. Efferocytosis and autoimmune disease. Int Immunol 2019; 30:551-558. [PMID: 30165442 PMCID: PMC6234909 DOI: 10.1093/intimm/dxy055] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 08/21/2018] [Indexed: 12/14/2022] Open
Abstract
An enormous number of cells in the body die by apoptosis during development and under homeostasis. Apoptotic cells are swiftly engulfed by macrophages and digested into units. This removal of apoptotic cells is called ‘efferocytosis’. For efferocytosis, macrophages recognize phosphatidylserine (PtdSer) exposed on the cell surface as an ‘eat me’ signal. In healthy cells, PtdSer is exclusively localized to the inner leaflet of the plasma membrane by the action of flippases. When cells undergo apoptosis, caspase cleaves flippases to inactivate them, while it cleaves pro-scramblases to active scramblases, which quickly translocate PtdSer to the cell surface. The PtdSer is then recognized by PtdSer-binding proteins or by PtdSer receptors on macrophages, which subsequently engulf the apoptotic cells. When efferocytosis fails, apoptotic cells can rupture, releasing cellular materials that can evoke an autoimmune response. Thus, a defect in the PtdSer-exposing or PtdSer-recognizing processes triggers autoimmunity, leading to a systemic lupus erythematosus-type autoimmune disease.
Collapse
Affiliation(s)
- Mahiru Kawano
- Laboratory of Biochemistry & Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Shigekazu Nagata
- Laboratory of Biochemistry & Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
10
|
Han C, Wang C, Chen Y, Wang J, Xu X, Hilton T, Cai W, Zhao Z, Wu Y, Li K, Houck K, Liu L, Sood AK, Wu X, Xue F, Li M, Dong JF, Zhang J. Placenta-derived extracellular vesicles induce preeclampsia in mouse models. Haematologica 2019; 105:1686-1694. [PMID: 31439676 PMCID: PMC7271597 DOI: 10.3324/haematol.2019.226209] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/22/2019] [Indexed: 01/23/2023] Open
Abstract
Preeclampsia is a pregnancy-induced condition that impairs the mother’s health and results in pregnancy termination or premature delivery. Elevated levels of placenta-derived extracellular vesicles (pcEV) in the circulation have been consistently associated with preeclampsia, but whether these vesicles induce preeclampsia or are the product of preeclampsia is not known. Guided by a small cohort study of preeclamptic patients, we examined the impact of pcEV on the pathogenesis of preeclampsia in mouse models. We detected pcEV in pregnant C56BL/6J mice with a peak level of 3.8±0.9×107/mL at 17-18 days post-coitum. However, these pregnant mice developed hypertension and proteinuria only after being infused with vesicles purified from injured placenta. These extracellular vesicles released from injured placenta disrupted endothelial integrity and induced vasoconstriction. Enhancing the clearance of extracellular vesicles prevented the development of the extracellular vesicle-induced preeclampsia in mice. Our results demonstrate a causal role of pcEV in preeclampsia and identify microvesicle clearance as a new therapeutic strategy for the treatment of this pregnancy-associated complication.
Collapse
Affiliation(s)
- Cha Han
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin, China.,Bloodworks Research Institute, Seattle, WA, USA
| | - Chenyu Wang
- Institute of Pathology, School of Medical Sciences and Gansu Provincial Key Laboratory of Preclinical Study for New Drug Development, Lanzhou University, Lanzhou, China
| | - Yuanyuan Chen
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiwei Wang
- Department of Neurosurgery, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
| | - Xin Xu
- Bloodworks Research Institute, Seattle, WA, USA
| | | | - Wei Cai
- Institute of Pathology, School of Medical Sciences and Gansu Provincial Key Laboratory of Preclinical Study for New Drug Development, Lanzhou University, Lanzhou, China
| | - Zilong Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital and Tianjin Neurological Institute, Tianjin, China
| | - Yingang Wu
- Department of Neurosurgery, the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ke Li
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin, China
| | - Katie Houck
- Bloodworks Research Institute, Seattle, WA, USA
| | - Li Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital and Tianjin Neurological Institute, Tianjin, China
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, Division of Surgery, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Xiaoping Wu
- Bloodworks Research Institute, Seattle, WA, USA
| | - Fengxia Xue
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin, China
| | - Min Li
- Institute of Pathology, School of Medical Sciences and Gansu Provincial Key Laboratory of Preclinical Study for New Drug Development, Lanzhou University, Lanzhou, China
| | - Jing-Fei Dong
- Bloodworks Research Institute, Seattle, WA, USA .,Division of Hematology, Department of Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital and Tianjin Neurological Institute, Tianjin, China
| |
Collapse
|
11
|
Fujiwara C, Uehara A, Sekiguchi A, Uchiyama A, Yamazaki S, Ogino S, Yokoyama Y, Torii R, Hosoi M, Suto C, Tsunekawa K, Murakami M, Ishikawa O, Motegi S. Suppressive Regulation by MFG‐E8 of Latent Transforming Growth Factor β–Induced Fibrosis via Binding to αv Integrin: Significance in the Pathogenesis of Fibrosis in Systemic Sclerosis. Arthritis Rheumatol 2019; 71:302-314. [DOI: 10.1002/art.40701] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/28/2018] [Indexed: 02/06/2023]
Affiliation(s)
| | - Akihito Uehara
- Gunma University Graduate School of Medicine Maebashi Japan
| | | | | | | | - Sachiko Ogino
- Gunma University Graduate School of Medicine Maebashi Japan
| | - Yoko Yokoyama
- Gunma University Graduate School of Medicine Maebashi Japan
| | - Ryoko Torii
- Gunma University Graduate School of Medicine Maebashi Japan
| | - Mari Hosoi
- Gunma University Graduate School of Medicine Maebashi Japan
| | - Chiaki Suto
- Gunma University Graduate School of Medicine Maebashi Japan
| | | | | | - Osamu Ishikawa
- Gunma University Graduate School of Medicine Maebashi Japan
| | | |
Collapse
|
12
|
Kamińska A, Enguita FJ, Stępień EŁ. Lactadherin: An unappreciated haemostasis regulator and potential therapeutic agent. Vascul Pharmacol 2017; 101:21-28. [PMID: 29169950 DOI: 10.1016/j.vph.2017.11.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/19/2017] [Accepted: 11/18/2017] [Indexed: 01/01/2023]
Abstract
Lactadherin is a small (53-66kDa) multifunctional glycoprotein belonging to the secreted extracellular matrix protein family. It has a multi-domain structure and is involved in many biological and physiological processes, including phagocytosis, angiogenesis, atherosclerosis, tissue remodeling, and haemostasis regulation. Lactadherin binds phosphatidylserine (PS)-enriched cell surfaces in a receptor-independent manner. Interaction between lactadherin and PS is crucial for regulation of blood coagulation processes. This review summarizes recent knowledge on the possible role of lactadherin in haemostasis control, emphasizing the great significance of the interaction between lactadherin and PS expressed on activated platelets and extracellular vesicles. The possible role of lactadherin as a therapeutic target and biomarker is also discussed.
Collapse
Affiliation(s)
- Agnieszka Kamińska
- Department of Medical Physics, Marian Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Prof. Stanisława Łojasiewicza 11 Street, Kraków 30-348, Poland.
| | - Francisco J Enguita
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, Lisboa 1649-028, Portugal.
| | - Ewa Ł Stępień
- Department of Medical Physics, Marian Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Prof. Stanisława Łojasiewicza 11 Street, Kraków 30-348, Poland.
| |
Collapse
|