1
|
Sainz-Mejías M, Ma C, Hou Y, Jurado-Martin I, Romerio A, Franco AR, Shaik MM, Tomás-Cortázar J, Peri F, McClean S. Monosaccharide-Based Synthetic TLR4 Agonist Enhances Vaccine Efficacy against Pseudomonas aeruginosa Challenge. ACS Infect Dis 2025; 11:894-904. [PMID: 40129118 PMCID: PMC11998000 DOI: 10.1021/acsinfecdis.4c00932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/26/2025]
Abstract
Vaccine adjuvants are critical to improve the immunogenicity, efficacy, and durability of vaccines; however, their development has lagged behind that of vaccine antigens. Monophosphoryl lipid A (MPLA), a clinically approved adjuvant that stimulates Toll-like receptor 4 (TLR4), faces manufacturing challenges due to its complex and long synthesis. With the aim of simplifying the structure of MPLA while retaining its biological activity, we developed monosaccharide-based molecules FP18 and FP20Rha that activate TLR4 signaling. Both TLR4 agonists induced robust antibody activity against the model antigen, ovalbumin. Here, we report the potential of these TLR4 agonists to enhance the protective efficacy of the well-characterized OprF antigen against P. aeruginosa infection. OprF adjuvanted with FP18 showed reduced bacterial loads in lungs and spleens, relative to antigen alone in an acute P. aeruginosa pneumonia model. FP18-adjuvanted OprF also enhanced the production of anti-OprF antibodies and stimulated IFNγ and TNF in CD4+ T cells, suggesting a Th1-skewed cellular immune response. These adjuvants have promise for accelerating the development of effective vaccines against P. aeruginosa and other infectious diseases.
Collapse
Affiliation(s)
- Maite Sainz-Mejías
- School
of Biomolecular and Biomedical Sciences and Conway Institute of Biomolecular
and Biomedical Research, University College
Dublin, Belfield, Dublin 4 D04 V1W8, Ireland
| | - Chaoying Ma
- School
of Biomolecular and Biomedical Sciences and Conway Institute of Biomolecular
and Biomedical Research, University College
Dublin, Belfield, Dublin 4 D04 V1W8, Ireland
| | - Yueran Hou
- School
of Biomolecular and Biomedical Sciences and Conway Institute of Biomolecular
and Biomedical Research, University College
Dublin, Belfield, Dublin 4 D04 V1W8, Ireland
| | - Irene Jurado-Martin
- School
of Biomolecular and Biomedical Sciences and Conway Institute of Biomolecular
and Biomedical Research, University College
Dublin, Belfield, Dublin 4 D04 V1W8, Ireland
| | - Alessio Romerio
- Department
of Biotechnology and Biosciences, University
of Milano-Bicocca, Piazza della Scienza, 2, Milano 20126, Italy
| | - Ana Rita Franco
- Department
of Biotechnology and Biosciences, University
of Milano-Bicocca, Piazza della Scienza, 2, Milano 20126, Italy
| | - Mohammed Monsoor Shaik
- Department
of Biotechnology and Biosciences, University
of Milano-Bicocca, Piazza della Scienza, 2, Milano 20126, Italy
| | - Julen Tomás-Cortázar
- School
of Biomolecular and Biomedical Sciences and Conway Institute of Biomolecular
and Biomedical Research, University College
Dublin, Belfield, Dublin 4 D04 V1W8, Ireland
| | - Francesco Peri
- Department
of Biotechnology and Biosciences, University
of Milano-Bicocca, Piazza della Scienza, 2, Milano 20126, Italy
| | - Siobhán McClean
- School
of Biomolecular and Biomedical Sciences and Conway Institute of Biomolecular
and Biomedical Research, University College
Dublin, Belfield, Dublin 4 D04 V1W8, Ireland
| |
Collapse
|
2
|
Santamarina-Fernández R, Fuentes-Valverde V, Silva-Rodríguez A, García P, Moscoso M, Bou G. Pseudomonas aeruginosa Vaccine Development: Lessons, Challenges, and Future Innovations. Int J Mol Sci 2025; 26:2012. [PMID: 40076637 PMCID: PMC11900337 DOI: 10.3390/ijms26052012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/18/2025] [Accepted: 02/23/2025] [Indexed: 03/14/2025] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen with a multidrug-resistant profile that has become a critical threat to global public health. It is one of the main causes of severe nosocomial infections, including ventilator-associated pneumonia, chronic infections in patients with cystic fibrosis, and bloodstream infections in immunosuppressed individuals. Development of vaccines against P. aeruginosa is a major challenge owing to the high capacity of this bacterium to form biofilms, its wide arsenal of virulence factors (including secretion systems, lipopolysaccharides, and outer membrane proteins), and its ability to evade the host immune system. This review provides a comprehensive historical overview of vaccine development efforts targeting this pathogen, ranging from early attempts in the 1970s to recent advancements, including vaccines based on novel proteins and emerging technologies such as nanoparticles and synthetic conjugates. Despite numerous promising preclinical developments, very few candidates have progressed to clinical trials, and none have achieved final approval. This panorama highlights the significant scientific efforts undertaken and the inherent complexity of successfully developing an effective vaccine against P. aeruginosa.
Collapse
Affiliation(s)
- Rebeca Santamarina-Fernández
- Servicio de Microbiología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain; (R.S.-F.); (V.F.-V.); (A.S.-R.); (P.G.); (G.B.)
| | - Víctor Fuentes-Valverde
- Servicio de Microbiología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain; (R.S.-F.); (V.F.-V.); (A.S.-R.); (P.G.); (G.B.)
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Área de Medicamentos Biológicos, Agencia Española de Medicamentos y Productos Sanitarios (AEMPS), 28022 Madrid, Spain
| | - Alis Silva-Rodríguez
- Servicio de Microbiología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain; (R.S.-F.); (V.F.-V.); (A.S.-R.); (P.G.); (G.B.)
| | - Patricia García
- Servicio de Microbiología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain; (R.S.-F.); (V.F.-V.); (A.S.-R.); (P.G.); (G.B.)
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Miriam Moscoso
- Servicio de Microbiología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain; (R.S.-F.); (V.F.-V.); (A.S.-R.); (P.G.); (G.B.)
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Germán Bou
- Servicio de Microbiología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain; (R.S.-F.); (V.F.-V.); (A.S.-R.); (P.G.); (G.B.)
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Universidad de A Coruña, 15006 A Coruña, Spain
| |
Collapse
|
3
|
Lloren KKS, Senevirathne A, Lee JH. Advancing vaccine technology through the manipulation of pathogenic and commensal bacteria. Mater Today Bio 2024; 29:101349. [PMID: 39850273 PMCID: PMC11754135 DOI: 10.1016/j.mtbio.2024.101349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/30/2024] [Accepted: 11/15/2024] [Indexed: 01/25/2025] Open
Abstract
Advancements in vaccine technology are increasingly focused on leveraging the unique properties of both pathogenic and commensal bacteria. This revolutionary approach harnesses the diverse immune modulatory mechanisms and bacterial biology inherent in different bacterial species enhancing vaccine efficacy and safety. Pathogenic bacteria, known for their ability to induce robust immune responses, are being studied for their potential to be engineered into safe, attenuated vectors that can target specific diseases with high precision. Concurrently, commensal bacteria, which coexist harmlessly with their hosts and contribute to immune system regulation, are also being explored as novel delivery systems and in microbiome-based therapy. These bacteria can modulate immune responses, offering a promising avenue for developing effective and personalized vaccines. Integrating the distinctive characteristics of pathogenic and commensal bacteria with advanced bacterial engineering techniques paves the way for innovative vaccine and therapeutic platforms that could address a wide range of infectious diseases and potentially non-infectious conditions. This holistic approach signifies a paradigm shift in vaccine development and immunotherapy, emphasizing the intricate interplay between the bacteria and the immune systems to achieve optimal immunological outcomes.
Collapse
Affiliation(s)
- Khristine Kaith S. Lloren
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan City, Jeollabuk-do, 54596, Republic of Korea
| | - Amal Senevirathne
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan City, Jeollabuk-do, 54596, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan City, Jeollabuk-do, 54596, Republic of Korea
| |
Collapse
|
4
|
Chagas DB, Santos FDS, de Oliveira NR, Bohn TLO, Dellagostin OA. Recombinant Live-Attenuated Salmonella Vaccine for Veterinary Use. Vaccines (Basel) 2024; 12:1319. [PMID: 39771981 PMCID: PMC11680399 DOI: 10.3390/vaccines12121319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Vaccination is essential for maintaining animal health, with priority placed on safety and cost effectiveness in veterinary use. The development of recombinant live-attenuated Salmonella vaccines (RASVs) has enabled the construction of balanced lethal systems, ensuring the stability of plasmid vectors encoding protective antigens post-immunization. These vaccines are particularly suitable for production animals, providing long-term immunity against a range of bacterial, viral, and parasitic pathogens. This review summarizes the progress made in this field, with a focus on clinical trials demonstrating the efficacy and commercial potential of RASVs in veterinary medicine.
Collapse
Affiliation(s)
- Domitila Brzoskowski Chagas
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-610, Rio Grande do Sul, Brazil (T.L.O.B.)
| | - Francisco Denis Souza Santos
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-610, Rio Grande do Sul, Brazil (T.L.O.B.)
- Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande 96200-400, Rio Grande do Sul, Brazil
| | - Natasha Rodrigues de Oliveira
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-610, Rio Grande do Sul, Brazil (T.L.O.B.)
| | - Thaís Larré Oliveira Bohn
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-610, Rio Grande do Sul, Brazil (T.L.O.B.)
| | - Odir Antônio Dellagostin
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-610, Rio Grande do Sul, Brazil (T.L.O.B.)
| |
Collapse
|
5
|
Wang X, Liu C, Rcheulishvili N, Papukashvili D, Xie F, Zhao J, Hu X, Yu K, Yang N, Pan X, Liu X, Wang PG, He Y. Strong immune responses and protection of PcrV and OprF-I mRNA vaccine candidates against Pseudomonas aeruginosa. NPJ Vaccines 2023; 8:76. [PMID: 37231060 DOI: 10.1038/s41541-023-00672-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Pseudomonas aeruginosa (PA) is a leading cause of hospital-acquired and ventilator-associated pneumonia. The multidrug-resistance (MDR) rate of PA is increasing making the management of PA a global challenge. Messenger RNA (mRNA) vaccines represent the most promising alternative to conventional vaccines and are widely studied for viral infection and cancer immunotherapy while rarely studied for bacterial infections. In this study, two mRNA vaccines encoding PcrV- the key component of the type III secretion system in Pseudomonas and the fusion protein OprF-I comprising outer membrane proteins OprF and OprI were constructed. The mice were immunized with either one of these mRNA vaccines or with the combination of both. Additionally, mice were vaccinated with PcrV, OprF, or the combination of these two proteins. Immunization with either mRNA-PcrV or mRNA-OprF-I elicited a Th1/Th2 mixed or slighted Th1-biased immune response, conferred broad protection, and reduced bacterial burden and inflammation in burn and systemic infection models. mRNA-PcrV induced significantly stronger antigen-specific humoral and cellular immune responses and higher survival rate compared with the OprF-I after challenging with all the PA strains tested. The combined mRNA vaccine demonstrated the best survival rate. Moreover, the mRNA vaccines showed the superiority over protein vaccines. These results suggest that mRNA-PcrV as well as the mixture of mRNA-PcrV and mRNA-OprF-I are promising vaccine candidates for the prevention of PA infection.
Collapse
Affiliation(s)
- Xingyun Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Department of Critical Medicine, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, China
| | - Cong Liu
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Nino Rcheulishvili
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Dimitri Papukashvili
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Fengfei Xie
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jiao Zhao
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xing Hu
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Kaiwei Yu
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Nuo Yang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xuehua Pan
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xueyan Liu
- Department of Critical Medicine, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, China.
| | - Peng George Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| | - Yunjiao He
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
6
|
Killough M, Rodgers AM, Ingram RJ. Pseudomonas aeruginosa: Recent Advances in Vaccine Development. Vaccines (Basel) 2022; 10:vaccines10071100. [PMID: 35891262 PMCID: PMC9320790 DOI: 10.3390/vaccines10071100] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Pseudomonas aeruginosa is an important opportunistic human pathogen. Using its arsenal of virulence factors and its intrinsic ability to adapt to new environments, P. aeruginosa causes a range of complicated acute and chronic infections in immunocompromised individuals. Of particular importance are burn wound infections, ventilator-associated pneumonia, and chronic infections in people with cystic fibrosis. Antibiotic resistance has rendered many of these infections challenging to treat and novel therapeutic strategies are limited. Multiple clinical studies using well-characterised virulence factors as vaccine antigens over the last 50 years have fallen short, resulting in no effective vaccination being available for clinical use. Nonetheless, progress has been made in preclinical research, namely, in the realms of antigen discovery, adjuvant use, and novel delivery systems. Herein, we briefly review the scope of P. aeruginosa clinical infections and its major important virulence factors.
Collapse
Affiliation(s)
- Matthew Killough
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT7 1NN, UK;
| | - Aoife Maria Rodgers
- Department of Biology, The Kathleen Lonsdale Institute for Human Health Research, Maynooth University, R51 A021 Maynooth, Ireland;
| | - Rebecca Jo Ingram
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT7 1NN, UK;
- Correspondence:
| |
Collapse
|
7
|
Metallacarborane Derivatives Effective against Pseudomonas aeruginosa and Yersinia enterocolitica. Int J Mol Sci 2021; 22:ijms22136762. [PMID: 34201818 PMCID: PMC8267647 DOI: 10.3390/ijms22136762] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/28/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen that has become a nosocomial health problem worldwide. The pathogen has multiple drug removal and virulence secretion systems, is resistant to many antibiotics, and there is no commercial vaccine against it. Yersinia pestis is a zoonotic pathogen that is on the Select Agents list. The bacterium is the deadliest pathogen known to humans and antibiotic-resistant strains are appearing naturally. There is no commercial vaccine against the pathogen, either. In the current work, novel compounds based on metallacarborane cage were studied on strains of Pseudomonas aeruginosa and a Yersinia pestis substitute, Yersinia enterocolitica. The representative compounds had IC50 values below 10 µM against Y. enterocolitica and values of 20–50 μM against P. aeruginosa. Artificial generation of compound-resistant Y. enterocolitica suggested a common mechanism for drug resistance, the first reported in the literature, and suggested N-linked metallacarboranes as impervious to cellular mechanisms of resistance generation. SEM analysis of the compound-resistant strains showed that the compounds had a predominantly bacteriostatic effect and blocked bacterial cell division in Y. enterocolitica. The compounds could be a starting point towards novel anti-Yersinia drugs and the strategy presented here proposes a mechanism to bypass any future drug resistance in bacteria.
Collapse
|
8
|
Swietnicki W. Secretory System Components as Potential Prophylactic Targets for Bacterial Pathogens. Biomolecules 2021; 11:892. [PMID: 34203937 PMCID: PMC8232601 DOI: 10.3390/biom11060892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 01/18/2023] Open
Abstract
Bacterial secretory systems are essential for virulence in human pathogens. The systems have become a target of alternative antibacterial strategies based on small molecules and antibodies. Strategies to use components of the systems to design prophylactics have been less publicized despite vaccines being the preferred solution to dealing with bacterial infections. In the current review, strategies to design vaccines against selected pathogens are presented and connected to the biology of the system. The examples are given for Y. pestis, S. enterica, B. anthracis, S. flexneri, and other human pathogens, and discussed in terms of effectiveness and long-term protection.
Collapse
Affiliation(s)
- Wieslaw Swietnicki
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. R. Weigla 12, 53-114 Wroclaw, Poland
| |
Collapse
|
9
|
López-Siles M, Corral-Lugo A, McConnell MJ. Vaccines for multidrug resistant Gram negative bacteria: lessons from the past for guiding future success. FEMS Microbiol Rev 2021; 45:fuaa054. [PMID: 33289833 DOI: 10.1093/femsre/fuaa054] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/18/2020] [Indexed: 02/07/2023] Open
Abstract
Antimicrobial resistance is a major threat to global public health. Vaccination is an effective approach for preventing bacterial infections, however it has not been successfully applied to infections caused by some of the most problematic multidrug resistant pathogens. In this review, the potential for vaccines to contribute to reducing the burden of disease of infections caused by multidrug resistant Gram negative bacteria is presented. Technical, logistical and societal hurdles that have limited successful vaccine development for these infections in the past are identified, and recent advances that can contribute to overcoming these challenges are assessed. A synthesis of vaccine technologies that have been employed in the development of vaccines for key multidrug resistant Gram negative bacteria is included, and emerging technologies that may contribute to future successes are discussed. Finally, a comprehensive review of vaccine development efforts over the last 40 years for three of the most worrisome multidrug resistant Gram negative pathogens, Acinetobacter baumannii, Klebsiella pneumoniae and Pseudomonas aeruginosa is presented, with a focus on recent and ongoing studies. Finally, future directions for the vaccine development field are highlighted.
Collapse
Affiliation(s)
- Mireia López-Siles
- Intrahospital Infections Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Andrés Corral-Lugo
- Intrahospital Infections Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Michael J McConnell
- Intrahospital Infections Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
10
|
Sainz-Mejías M, Jurado-Martín I, McClean S. Understanding Pseudomonas aeruginosa-Host Interactions: The Ongoing Quest for an Efficacious Vaccine. Cells 2020; 9:cells9122617. [PMID: 33291484 PMCID: PMC7762141 DOI: 10.3390/cells9122617] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/18/2022] Open
Abstract
Pseudomonas aeruginosa is a leading cause of chronic respiratory infections in people with cystic fibrosis (CF), bronchiectasis or chronic obstructive pulmonary disease (COPD), and acute infections in immunocompromised individuals. The adaptability of this opportunistic pathogen has hampered the development of antimicrobial therapies, and consequently, it remains a major threat to public health. Due to its antimicrobial resistance, vaccines represent an alternative strategy to tackle the pathogen, yet despite over 50 years of research on anti-Pseudomonas vaccines, no vaccine has been licensed. Nevertheless, there have been many advances in this field, including a better understanding of the host immune response and the biology of P. aeruginosa. Multiple antigens and adjuvants have been investigated with varying results. Although the most effective protective response remains to be established, it is clear that a polarised Th2 response is sub-optimal, and a mixed Th1/Th2 or Th1/Th17 response appears beneficial. This comprehensive review collates the current understanding of the complexities of P. aeruginosa-host interactions and its implication in vaccine design, with a view to understanding the current state of Pseudomonal vaccine development and the direction of future efforts. It highlights the importance of the incorporation of appropriate adjuvants to the protective antigen to yield optimal protection.
Collapse
|
11
|
Stojanov M, Besançon H, Snäkä T, Nardelli-Haefliger D, Curtiss R, Baud D. Differentially regulated promoters for antigen expression in Salmonella vaccine strains. Vaccine 2020; 38:4154-4161. [PMID: 32376109 DOI: 10.1016/j.vaccine.2020.04.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/14/2020] [Accepted: 04/20/2020] [Indexed: 12/17/2022]
Abstract
In most attenuated Salmonella enterica vaccines, heterologous antigens are expressed under the control of strong inducible promoters to ensure a high level of synthesis. Although high expression levels of the antigen can improve the immunogenicity of the vaccine, they might be toxic to the Salmonella carrier. Expression problems could be avoided by the use of promoters with specific characteristics with respect to strength and timing of expression. To study the expression of ten selected promoters, translational promoter-green fluorescent protein (GFP) fusions were analyzed in three attenuated Salmonella strains, Ty21a, SL3261 and PhoPC. Promoter expression was evaluated both in vitro and in intracellular conditions using flow cytometry and confocal microscopy, with specific focus on the levels and timing of expression. We identified one major candidate promoter (Pasr) that could be used to express antigens specifically during in vivo conditions, without impairing bacterial growth during in vitro vaccine production.
Collapse
Affiliation(s)
- Miloš Stojanov
- Materno-fetal and Obstetrics Research Unit, Department Woman-Mother-Child, Lausanne University Hospital, Lausanne, Switzerland.
| | - Hervé Besançon
- Materno-fetal and Obstetrics Research Unit, Department Woman-Mother-Child, Lausanne University Hospital, Lausanne, Switzerland
| | - Tiia Snäkä
- Materno-fetal and Obstetrics Research Unit, Department Woman-Mother-Child, Lausanne University Hospital, Lausanne, Switzerland
| | | | - Roy Curtiss
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, USA
| | - David Baud
- Materno-fetal and Obstetrics Research Unit, Department Woman-Mother-Child, Lausanne University Hospital, Lausanne, Switzerland.
| |
Collapse
|
12
|
Bahey-El-Din M, Mohamed SA, Sheweita SA, Haroun M, Zaghloul TI. Recombinant N-terminal outer membrane porin (OprF) of Pseudomonas aeruginosa is a promising vaccine candidate against both P. aeruginosa and some strains of Acinetobacter baumannii. Int J Med Microbiol 2020; 310:151415. [PMID: 32156509 DOI: 10.1016/j.ijmm.2020.151415] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/19/2020] [Accepted: 02/27/2020] [Indexed: 02/06/2023] Open
Abstract
Pseudomonas aeruginosa is an evolving pathogen which can cause serious infections especially to immunocompromised patients. Its high resistance profile to antibiotics results in difficulty, and sometimes impossibility, in treating afflicted patients. Developing an effective vaccine against P. aeruginosa is an important approach to tackle this problem. A similar problematic situation exists for Acinetobacter baumannii. Several vaccine candidates have been investigated up till now but still there is no approved vaccine in the market. One important antigen of P. aeruginosa is the outer membrane protein F (OprF) which functions as a porin with relevant important roles in virulence. Previous studies focused mainly on the C-terminal peptidoglycan binding domain of OprF as a vaccine candidate. In the current study, we have investigated the N-terminal porin domain of OprF as a potential vaccine candidate against P. aeruginosa. Histidine-tagged recombinant N-terminal OprF (amino acid range 25-200; OprF25-200) was overexpressed in Escherichia coli and purified using metal affinity chromatography. Swiss albino mice were immunized with OprF25-200 adjuvanted with Bacillus Calmette-Guérin (BCG) and alum and the immune response was evaluated. Immunized mice developed antigen-specific IgG1 and IgG2a and were protected against challenge by both P. aeruginosa and a clinical isolate of A. baumannii expressing OprF. Serum from OprF25-200-immunized mice showed cross-reactivity with both pathogens using western blotting and whole cell enzyme-linked immunosorbent assay (ELISA). To our knowledge, this is the first report to demonstrate that the N-terminal domain of OprF is sufficiently immunogenic to protect against the two pathogens.
Collapse
Affiliation(s)
- Mohammed Bahey-El-Din
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.
| | - Shaymaa Abdelrahman Mohamed
- Department of Biotechnology, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, 21526, Egypt
| | - Salah Ahmed Sheweita
- Department of Biotechnology, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, 21526, Egypt; Department of Clinical Biochemistry, Faculty of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Medhat Haroun
- Department of Biotechnology, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, 21526, Egypt
| | - Taha Ibrahim Zaghloul
- Department of Biotechnology, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, 21526, Egypt
| |
Collapse
|
13
|
Pushing beyond the Envelope: the Potential Roles of OprF in Pseudomonas aeruginosa Biofilm Formation and Pathogenicity. J Bacteriol 2019; 201:JB.00050-19. [PMID: 31010902 DOI: 10.1128/jb.00050-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The ability of Pseudomonas aeruginosa to form biofilms, which are communities of cells encased in a self-produced extracellular matrix, protects the cells from antibiotics and the host immune response. While some biofilm matrix components, such as exopolysaccharides and extracellular DNA, are relatively well characterized, the extracellular matrix proteins remain understudied. Multiple proteomic analyses of the P. aeruginosa soluble biofilm matrix and outer membrane vesicles, which are a component of the matrix, have identified OprF as an abundant matrix protein. To date, the few reports on the effects of oprF mutations on biofilm formation are conflicting, and little is known about the potential role of OprF in the biofilm matrix. The majority of OprF studies focus on the protein as a cell-associated porin. As a component of the outer membrane, OprF assumes dual conformations and is involved in solute transport, as well as cell envelope integrity. Here, we review the current literature on OprF in P. aeruginosa, discussing how the structure and function of the cell-associated and matrix-associated protein may affect biofilm formation and pathogenesis in order to inform future research on this understudied matrix protein.
Collapse
|
14
|
Merakou C, Schaefers MM, Priebe GP. Progress Toward the Elusive Pseudomonas aeruginosa Vaccine. Surg Infect (Larchmt) 2018; 19:757-768. [PMID: 30388058 DOI: 10.1089/sur.2018.233] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background: The gram-negative bacterial pathogen Pseudomonas aeruginosa causes a wide range of infections, mostly in hospitalized and immunocompromised patients, those with burns, surgical wounds, or combat-related wounds, and in people with cystic fibrosis. The increasing antibiotic resistance of P. aeruginosa confers a pressing need for vaccines, yet there are no P. aeruginosa vaccines approved for human use, and recent promising candidates have failed in large clinical trials. Discussion: In this review, we summarize recent clinical trials and pre-clinical studies of P. aeruginosa vaccines and provide a suggested framework for the makeup of a future successful vaccine. Murine models of infection suggest that antibodies, specifically opsonophagocytic killing antibodies (OPK), antitoxin antibodies, and anti-attachment antibodies, combined with T cell immunity, specifically TH17 responses, are needed for broad and potent protection against P. aeruginosa infection. A better understanding of the human immune response to P. aeruginosa infections, and to vaccine candidates, will eventually pave the way to a successful vaccine for this wily pathogen.
Collapse
Affiliation(s)
- Christina Merakou
- 1 Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital , Boston, Massachusetts.,2 Department of Anaesthesia, Harvard Medical School , Boston, Massachusetts
| | - Matthew M Schaefers
- 1 Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital , Boston, Massachusetts.,2 Department of Anaesthesia, Harvard Medical School , Boston, Massachusetts
| | - Gregory P Priebe
- 1 Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital , Boston, Massachusetts.,2 Department of Anaesthesia, Harvard Medical School , Boston, Massachusetts.,3 Division of Infectious Diseases, Department of Pediatrics, Boston Children's Hospital , Boston, Massachusetts
| |
Collapse
|