1
|
Bak YS, Park JY, Kim JB, Cho SH. Molecular characterization and antibiotic resistance of Staphylococcus aureus strains isolated from patients with diarrhea in Korea between the years 2007 and 2022. Food Sci Biotechnol 2024; 33:1965-1974. [PMID: 38752118 PMCID: PMC11091020 DOI: 10.1007/s10068-023-01478-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 05/18/2024] Open
Abstract
To investigate the molecular characteristics and antibiotic resistance of Staphylococcus aureus isolates from patients with diarrhea in Korea, 327 S. aureus strains were collected between 2007 and 2022. The presence of staphylococcal enterotoxin (SE) and toxic shock syndrome toxin-1 (TSST-1) genes in S. aureus isolates was determined by PCR. The highest expression of the TSST-1 gene was found in the GIMNO type (43.1% of GIMNO type). GIMNO type (Type I) refers to each staphylococcal enterotoxin (SE) gene gene (initials of genes): G = seg; I = sei; M = selm; N = seln; O = selo. Moreover, Type I isolates showed a significantly higher resistance to most antibiotics. A total of 195 GIMNO-type S. aureus strains were analyzed using multilocus sequence typing (MLST), and 18 unique sequence types (STs) were identified. The most frequent sequence type was ST72 (36.9%), followed by ST5 (22.1%) and ST30 (16.9%). Interestingly, ST72 strains showed a higher prevalence of MRSA than the other STs. In conclusion, our results were the first reported for S. aureus strains in Korea, which significantly expanded S. aureus genotype information for the surveillance of pathogenic S. aureus and may provide important epidemiological information to resolve several infectious diseases caused by S. aureus. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01478-9.
Collapse
Affiliation(s)
- Young-Seok Bak
- Department of Emergency Medical Services, Sun Moon University, Asan-si, Chungcheongnam-do 31460 Korea
| | - Jun-Young Park
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Jung-Beom Kim
- Department of Food Science and Technology, Suncheon National University, Suncheon, 57922 Korea
| | - Seung-Hak Cho
- Department of Emergency Medical Services, Sun Moon University, Asan-si, Chungcheongnam-do 31460 Korea
- Division of Zoonotic and Vector Borne Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Cheongju, Republic of Korea
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Heungdeok-Gu, Cheongju, 363-951 Republic of Korea
| |
Collapse
|
2
|
Wiśniewski P, Gajewska J, Zadernowska A, Chajęcka-Wierzchowska W. Identification of the Enterotoxigenic Potential of Staphylococcus spp. from Raw Milk and Raw Milk Cheeses. Toxins (Basel) 2023; 16:17. [PMID: 38251234 PMCID: PMC10819113 DOI: 10.3390/toxins16010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/16/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
This study aimed to genotypic and phenotypic analyses of the enterotoxigenic potential of Staphylococcus spp. isolated from raw milk and raw milk cheeses. The presence of genes encoding staphylococcal enterotoxins (SEs), including the classical enterotoxins (sea-see), non-classical enterotoxins (seg-seu), exfoliative toxins (eta-etd) and toxic shock syndrome toxin-1 (tst-1) were investigated. Isolates positive for classical enterotoxin genes were then tested by SET-RPLA methods for toxin expression. Out of 75 Staphylococcus spp. (19 Staphylococcus aureus and 56 CoNS) isolates from raw milk (49/65.3%) and raw milk cheese samples (26/34.7%), the presence of enterotoxin genes was confirmed in 73 (97.3%) of them. Only one isolate from cheese sample (1.3%) was able to produce enterotoxin (SED). The presence of up to eight different genes encoding enterotoxins was determined simultaneously in the staphylococcal genome. The most common toxin gene combination was sek, eta present in fourteen isolates (18.7%). The tst-1 gene was present in each of the analyzed isolates from cheese samples (26/34.7%). Non-classical enterotoxins were much more frequently identified in the genome of staphylococcal isolates than classical SEs. The current research also showed that genes tagged in S. aureus were also identified in CoNS, and the total number of different genes detected in CoNS was seven times higher than in S. aureus. The obtained results indicate that, in many cases, the presence of a gene in Staphylococcus spp. is not synonymous with the ability of enterotoxins production. The differences in the number of isolates with genes encoding SEs and enterotoxin production may be mainly due to the limit of detection of the toxin production method used. This indicates the need to use high specificity and sensitivity methods for detecting enterotoxin in future studies.
Collapse
Affiliation(s)
- Patryk Wiśniewski
- Department of Food Microbiology, Meat Technology and Chemistry, Faculty of Food Science, University of Warmia and Mazury, Plac Cieszyński 1, 10-726 Olsztyn, Poland; (J.G.); (A.Z.); (W.C.-W.)
| | | | | | | |
Collapse
|
3
|
Zhu Z, Hu Z, Li S, Fang R, Ono HK, Hu DL. Molecular Characteristics and Pathogenicity of Staphylococcus aureus Exotoxins. Int J Mol Sci 2023; 25:395. [PMID: 38203566 PMCID: PMC10778951 DOI: 10.3390/ijms25010395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Staphylococcus aureus stands as one of the most pervasive pathogens given its morbidity and mortality worldwide due to its roles as an infectious agent that causes a wide variety of diseases ranging from moderately severe skin infections to fatal pneumonia and sepsis. S. aureus produces a variety of exotoxins that serve as important virulence factors in S. aureus-related infectious diseases and food poisoning in both humans and animals. For example, staphylococcal enterotoxins (SEs) produced by S. aureus induce staphylococcal foodborne poisoning; toxic shock syndrome toxin-1 (TSST-1), as a typical superantigen, induces toxic shock syndrome; hemolysins induce cell damage in erythrocytes and leukocytes; and exfoliative toxin induces staphylococcal skin scalded syndrome. Recently, Panton-Valentine leucocidin, a cytotoxin produced by community-associated methicillin-resistant S. aureus (CA-MRSA), has been reported, and new types of SEs and staphylococcal enterotoxin-like toxins (SEls) were discovered and reported successively. This review addresses the progress of and novel insights into the molecular structure, biological activities, and pathogenicity of both the classic and the newly identified exotoxins produced by S. aureus.
Collapse
Affiliation(s)
- Zhihao Zhu
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan; (Z.Z.); (Z.H.); (H.K.O.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Zuo Hu
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan; (Z.Z.); (Z.H.); (H.K.O.)
| | - Shaowen Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Rendong Fang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China;
| | - Hisaya K. Ono
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan; (Z.Z.); (Z.H.); (H.K.O.)
| | - Dong-Liang Hu
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan; (Z.Z.); (Z.H.); (H.K.O.)
| |
Collapse
|
4
|
Minutillo R, Pirard B, Fatihi A, Cavaiuolo M, Lefebvre D, Gérard A, Taminiau B, Nia Y, Hennekinne JA, Daube G, Clinquart A. The Enterotoxin Gene Profiles and Enterotoxin Production of Staphylococcus aureus Strains Isolated from Artisanal Cheeses in Belgium. Foods 2023; 12:4019. [PMID: 37959138 PMCID: PMC10650413 DOI: 10.3390/foods12214019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
A Staphyloccoccus aureus is one of the leading causes of food poisoning outbreaks (FPOs) worldwide. Staphylococcal food poisoning (SFP) is induced by the ingestion of food containing sufficient levels of staphylococcal enterotoxins (SEs). Currently, 33 SEs and SE-like toxins (SEls) have been described in the literature, but only five named "classical" enterotoxins are commonly investigated in FPOs due to lack of specific routine analytical techniques. The aims of this study were to (i) establish the genetic profile of strains in a variety of artisanal cheeses (n = 30) in Belgium, (ii) analyze the expression of the SE(l)s by these strains and (iii) compare the output derived from the different analytical tools. Forty-nine isolates of S. aureus were isolated from ten Belgian artisanal cheeses and were analyzed via microbiological, immunological, liquid chromatography mass spectrometry, molecular typing and genetic methods. The results indicated that classical SEs were not the dominant SEs in the Belgian artisanal cheeses that were analyzed in this study, and that all S. aureus isolates harbored at least one gene encoding a new SE(l). Among the new SE(l)s genes found, some of them code for enterotoxins with demonstrated emetic activity and ecg-enterotoxins. It is worth noting that the involvement of some of these new SEs has been demonstrated in SFP outbreaks. Thus, this study highlighted the importance of the development of specific techniques for the proper investigation of SFP outbreaks.
Collapse
Affiliation(s)
- Raphaëlle Minutillo
- Department of Food Sciences, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medecine, Avenue de Cureghem 10, 4000 Liege, Belgium (B.P.); (B.T.); (G.D.)
| | - Barbara Pirard
- Department of Food Sciences, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medecine, Avenue de Cureghem 10, 4000 Liege, Belgium (B.P.); (B.T.); (G.D.)
| | - Abdelhak Fatihi
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université Paris-Est, 94700 Maisons-Alfort, France; (A.F.); (M.C.); (D.L.); (Y.N.); (J.-A.H.)
| | - Marina Cavaiuolo
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université Paris-Est, 94700 Maisons-Alfort, France; (A.F.); (M.C.); (D.L.); (Y.N.); (J.-A.H.)
| | - Donatien Lefebvre
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université Paris-Est, 94700 Maisons-Alfort, France; (A.F.); (M.C.); (D.L.); (Y.N.); (J.-A.H.)
| | - Amaury Gérard
- Brewing and Food Science Unit, LABIRIS, Avenue Emile Gryzon 1, 1070 Anderlecht, Belgium;
| | - Bernard Taminiau
- Department of Food Sciences, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medecine, Avenue de Cureghem 10, 4000 Liege, Belgium (B.P.); (B.T.); (G.D.)
| | - Yacine Nia
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université Paris-Est, 94700 Maisons-Alfort, France; (A.F.); (M.C.); (D.L.); (Y.N.); (J.-A.H.)
| | - Jacques-Antoine Hennekinne
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université Paris-Est, 94700 Maisons-Alfort, France; (A.F.); (M.C.); (D.L.); (Y.N.); (J.-A.H.)
| | - Georges Daube
- Department of Food Sciences, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medecine, Avenue de Cureghem 10, 4000 Liege, Belgium (B.P.); (B.T.); (G.D.)
| | - Antoine Clinquart
- Department of Food Sciences, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medecine, Avenue de Cureghem 10, 4000 Liege, Belgium (B.P.); (B.T.); (G.D.)
| |
Collapse
|
5
|
Wan Y, Yang L, Li Q, Wang X, Zhou T, Chen D, Li L, Wang Y, Wang X. Stability and emetic activity of enterotoxin like X (SElX) with high carrier rate of food poisoning Staphylococcus aureus. Int J Food Microbiol 2023; 404:110352. [PMID: 37549593 DOI: 10.1016/j.ijfoodmicro.2023.110352] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/24/2023] [Accepted: 07/30/2023] [Indexed: 08/09/2023]
Abstract
In order to analyze and clarify the thermal stability of food poisoning Staphylococcus aureus (S. aureus) enterotoxin-like X (SElX) and the biological characteristics of digestive enzymes, and to evaluate the risk of S. aureus carrying selx gene in food poisoning, the selx gene carrying rates of 165 strains isolated from 95 food poisoning events from 2006 to 2019 were first statistically analyzed. Subsequently, the purified recombinant SElX protein was digested and heated, and the superantigen activity was verified with mouse spleen cells and peripheral blood mononuclear cells of kittens. At the same time, the emetic activity and toxicity of SElX were evaluated using the kitten vomiting animal model, mice toxin model and in vitro cell models. The results showed the selx gene carrying rate of 165 food poisoning S. aureus strains was 90.30 %. SElX had significant resistance to heat treatment and pepsin digestion (pH = 4.0 and pH = 4.5), and had good superantigen activity and emetic activity. However, there is no significant lethal effect on mice and no significant toxicity to cells. Importantly, we found that SElX had an inhibitory effect on acidic mucus of goblet cells in various segments of the small intestine. The present study investigated the stability of SElX, and confirmed the emetic activity of SElX by establishing a kitten vomiting model for the first time, suggesting that SElX is a high risk toxin of food poisoning, which will provide new ideas for the prevention and control of S. aureus food poisoning.
Collapse
Affiliation(s)
- Yangli Wan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liu Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qianhong Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaowen Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ting Zhou
- College of Veterinary Medicine, Northwest A&F University, China
| | - Dishi Chen
- Sichuan Animal Disease Prevention and Control Center, Chengdu 610041, China
| | - Li Li
- Sichuan Animal Disease Prevention and Control Center, Chengdu 610041, China
| | - Yeru Wang
- Risk Assessment Division China National Center for Food Safety Risk Assessment, Chaoyang District, Beijing, China.
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
6
|
Prevalence and Virulence Determinants of Staphylococcus aureus in Wholesale and Retail Pork in Wuhan, Central China. Foods 2022; 11:foods11244114. [PMID: 36553856 PMCID: PMC9777741 DOI: 10.3390/foods11244114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/11/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Staphylococcus aureus is one of the major foodborne pathogens and can cause serious foodborne illness in humans by foods contaminated with S. aureus enterotoxins. In recent years, livestock-associated S. aureus has been a major public health concern for humans and has emerged in various countries globally. China is one of the largest producers of pigs and pork in the world. However, there are few studies on the detailed genotypic and pathogenic characterization of pork-associated S. aureus in China. In this study, the prevalence, antimicrobial resistance, and genotypic characteristics of S. aureus in raw pork in Wuhan, China, were investigated through multilocus sequence typing (MLST), staphylococcal protein A gene (spa) typing, and whole-genome sequencing analysis. A total of 518 S. aureus isolates (16.9%) were isolated from 3067 retail and wholesale pork samples. The prevalence of S. aureus in retail pork (22.7%) was significantly higher than in wholesale pork (15.1%), while the proportion of multidrug-resistant (MDR) isolates in wholesale pork (12.9%) was significantly higher than in retail pork (6.2%). Among the isolates, 10.8% were resistant to three or more antibiotics, with higher rates of resistance to penicillin (88.8%) and erythromycin (58.1%). A total of 28 sequence types (STs) were identified in the 518 isolates, and the predominant type was ST7 (57.5%), followed by ST5 (9.1%). In addition, based on the whole-genome sequences of 39 representative strains, 17 spa types were identified among the isolates, of which t899, t091, and t437 were the most common. Furthermore, 19 staphylococcal enterotoxin (SE) and SE-like (SEl) toxin genes were detected in the isolates, of which selw was the most common type (100%), followed by sei, sem, seo, seu, and selv (46.2%); sey (35.9%); and sea, seg, and sen (33.3%). This study found for the first time that ST7-t091-selw and ST9-t899-SCCmecXII-selw were the predominant genotypes of S. aureus in pork in China, which indicated the spreading of S. aureus with multiple virulence factors, especially with new SE/SEl types in pigs and pork, is a serious new challenge for food safety. Good hygiene and good production practices to prevent interspecies transmission and cross-contamination of S. aureus in the pig-pork chain are of great significance to public health.
Collapse
|
7
|
Functional and Immunological Studies Revealed a Second Superantigen Toxin in Staphylococcal Enterotoxin C Producing Staphylococcus aureus Strains. Toxins (Basel) 2022; 14:toxins14090595. [PMID: 36136533 PMCID: PMC9504012 DOI: 10.3390/toxins14090595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Staphylococcus aureus is a human and animal pathogen as well as a commensal bacterium. It can be a causative agent of severe, life-threatening infections with high mortality, e.g., toxic shock syndrome, septic shock, and multi-organ failure. S. aureus strains secrete a number of toxins. Exotoxins/enterotoxins are considered important in the pathogenesis of the above-mentioned conditions. Exotoxins, e.g., superantigen toxins, cause uncontrolled and polyclonal T cell activation and unregulated activation of inflammatory cytokines. Here we show the importance of genomic analysis of infectious strains in order to identify disease-causing exotoxins. Further, we show through functional analysis of superantigenic properties of staphylococcal exotoxins that even very small amounts of a putative superantigenic contaminant can have a significant mitogenic effect. The results show expression and production of two distinct staphylococcal exotoxins, SEC and SEL, in several strains from clinical isolates. Antibodies against both toxins are required to neutralise the superantigenic activity of staphylococcal supernatants and purified staphylococcal toxins.
Collapse
|
8
|
Multiplex Detection of 24 Staphylococcal Enterotoxins in Culture Supernatant Using Liquid Chromatography Coupled to High-Resolution Mass Spectrometry. Toxins (Basel) 2022; 14:toxins14040249. [PMID: 35448858 PMCID: PMC9031063 DOI: 10.3390/toxins14040249] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Staphylococcal food poisoning outbreaks are caused by the ingestion of food contaminated with staphylococcal enterotoxins (SEs). Among the 27 SEs described in the literature to date, only a few can be detected using immuno-enzymatic-based methods that are strongly dependent on the availability of antibodies. Liquid chromatography, coupled to high-resolution mass spectrometry (LC-HRMS), has, therefore, been put forward as a relevant complementary method, but only for the detection of a limited number of enterotoxins. In this work, LC-HRMS was developed for the detection and quantification of 24 SEs. A database of 93 specific signature peptides and LC-HRMS parameters was optimized using sequences from 24 SEs, including their 162 variants. A label-free quantification protocol was established to overcome the absence of calibration standards. The LC-HRMS method showed high performance in terms of specificity, sensitivity, and accuracy when applied to 49 enterotoxin-producing strains. SE concentrations measured depended on both SE type and the coagulase-positive staphylococci (CPS) strain. This study indicates that LC-MS is a relevant alternative and complementary tool to ELISA methods. The advantages of LC-MS clearly lie in both the multiplex analysis of a large number of SEs, and the automated analysis of a high number of samples.
Collapse
|
9
|
Zhong W, Shahbaz O, Teskey G, Beever A, Kachour N, Venketaraman V, Darmani NA. Mechanisms of Nausea and Vomiting: Current Knowledge and Recent Advances in Intracellular Emetic Signaling Systems. Int J Mol Sci 2021; 22:5797. [PMID: 34071460 PMCID: PMC8198651 DOI: 10.3390/ijms22115797] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Nausea and vomiting are common gastrointestinal complaints that can be triggered by diverse emetic stimuli through central and/or peripheral nervous systems. Both nausea and vomiting are considered as defense mechanisms when threatening toxins/drugs/bacteria/viruses/fungi enter the body either via the enteral (e.g., the gastrointestinal tract) or parenteral routes, including the blood, skin, and respiratory systems. While vomiting is the act of forceful removal of gastrointestinal contents, nausea is believed to be a subjective sensation that is more difficult to study in nonhuman species. In this review, the authors discuss the anatomical structures, neurotransmitters/mediators, and corresponding receptors, as well as intracellular emetic signaling pathways involved in the processes of nausea and vomiting in diverse animal models as well as humans. While blockade of emetic receptors in the prevention of vomiting is fairly well understood, the potential of new classes of antiemetics altering postreceptor signal transduction mechanisms is currently evolving, which is also reviewed. Finally, future directions within the field will be discussed in terms of important questions that remain to be resolved and advances in technology that may help provide potential answers.
Collapse
Affiliation(s)
- Weixia Zhong
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA; (W.Z.); (G.T.); (V.V.)
| | - Omar Shahbaz
- School of Medicine, Universidad Iberoamericana, Av. Francia 129, Santo Domingo 10203, Dominican Republic;
| | - Garrett Teskey
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA; (W.Z.); (G.T.); (V.V.)
| | - Abrianna Beever
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (A.B.); (N.K.)
| | - Nala Kachour
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (A.B.); (N.K.)
| | - Vishwanath Venketaraman
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA; (W.Z.); (G.T.); (V.V.)
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (A.B.); (N.K.)
| | - Nissar A. Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA; (W.Z.); (G.T.); (V.V.)
| |
Collapse
|
10
|
Hu DL, Li S, Fang R, Ono HK. Update on molecular diversity and multipathogenicity of staphylococcal superantigen toxins. ANIMAL DISEASES 2021. [DOI: 10.1186/s44149-021-00007-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AbstractStaphylococcal superantigen (SAg) toxins are the most notable virulence factors associated with Staphylococcus aureus, which is a pathogen associated with serious community and hospital acquired infections in humans and various diseases in animals. Recently, SAg toxins have become a superfamily with 29 types, including staphylococcal enterotoxins (SEs) with emetic activity, SE-like toxins (SEls) that do not induce emesis in primate models or have yet not been tested, and toxic shock syndrome toxin-1 (TSST-1). SEs and SEls can be subdivided into classical types (SEA to SEE) and novel types (SEG to SElY, SE01, SE02, SEl26 and SEl27). The genes of SAg toxins are located in diverse accessory genetic elements and share certain structural and biological properties. SAg toxins are heat-stable proteins that exhibit pyrogenicity, superantigenicity and capacity to induce lethal hypersensitivity to endotoxin in humans and animals. They have multiple pathogenicities that can interfere with normal immune function of host, increase the chances of survival and transmission of pathogenic bacteria in host, consequently contribute to the occurrence and development of various infections, persistent infections or food poisoning. This review focuses on the following aspects of SAg toxins: (1) superfamily members of classic and novelty discovered staphylococcal SAgs; (2) diversity of gene locations and molecular structural characteristics; (3) biological characteristics and activities; (4) multi-pathogenicity of SAgs in animal and human diseases, including bovine mastitis, swine sepsis, abscesses and skin edema in pig, arthritis and septicemia in poultry, and nosocomial infections and food-borne diseases in humans.
Collapse
|
11
|
Hou F, Peng L, Jiang J, Chen T, Xu D, Huang Q, Ye C, Peng Y, Hu DL, Fang R. ATP Facilitates Staphylococcal Enterotoxin O Induced Neutrophil IL-1β Secretion via NLRP3 Inflammasome Dependent Pathways. Front Immunol 2021; 12:649235. [PMID: 34017331 PMCID: PMC8129502 DOI: 10.3389/fimmu.2021.649235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/21/2021] [Indexed: 12/24/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is an important zoonotic food-borne pathogen causing severe invasive infections, such as sepsis, pneumonia, food poisoning, toxic shock syndrome and autoimmune diseases. Staphylococcal enterotoxin O (SEO) is a new type of enterotoxins of S. aureus with superantigenic and emetic activity. However, it is still unclear about SEO-induced host inflammatory response. Therefore, the mechanism of SEO-induced interleukin-1β (IL-1β) secretion in mouse neutrophils was investigated in this study. Our results showed that recombinant SEO had superantigenic activity with high level of gamma interferon (IFN-γ) production in mouse spleen cells and induced inflammatory cytokines expression including IL-1α, IL-1β, IL-6 and TNF-α in neutrophils under the action of ATP. In addition, SEO-induced IL-1β secretion was dependent on activation of Toll like receptor 4 (TLR4), nuclear factor kappa B (NF-κB) and c-jun N-terminal kinase (JNK) signaling pathways. However, SEO-induced IL-1β secretion was abolished in the neutrophils of NLRP3-/- mice compared with those of wild type mice, indicating that activation of NLRP3 inflammasome mediated IL-1β secretion during neutrophils stimulation with SEO under the action of ATP. Moreover, this process of SEO+ATP-induced IL-1β secretion was dependent on potassium (K+) efflux. Taken together, our study suggests that activation of TLR4/JNK/NLRP3 inflammasome signaling pathway mediate maturation and secretion of IL-1β and provides a new insight on S. aureus virulence factor-induced host immune response.
Collapse
Affiliation(s)
- Fengqing Hou
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Lianci Peng
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Jiali Jiang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China.,Chongqing Animal Disease Prevention and Control Center, Chongqing, China
| | - Tingting Chen
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Dongyi Xu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Qingyuan Huang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Chao Ye
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Yuanyi Peng
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Dong-Liang Hu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China.,Department of Zoonoses, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Rendong Fang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China.,Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China
| |
Collapse
|
12
|
Grispoldi L, Karama M, Armani A, Hadjicharalambous C, Cenci-Goga BT. Staphylococcus aureus enterotoxin in food of animal origin and staphylococcal food poisoning risk assessment from farm to table. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2020.1871428] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
| | - Musafiri Karama
- Department of Paraclinical Sciences, University of Pretoria, Onderstepoort, South Africa
| | - Andrea Armani
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | | | - Beniamino T. Cenci-Goga
- Department of Veterinary Medicine, Perugia, Italy
- Department of Paraclinical Sciences, University of Pretoria, Onderstepoort, South Africa
| |
Collapse
|
13
|
Staphylococcal Enterotoxin Gene Cluster: Prediction of Enterotoxin (SEG and SEI) Production and of the Source of Food Poisoning on the Basis of vSaβ Typing. Appl Environ Microbiol 2021; 87:e0266220. [PMID: 33355100 PMCID: PMC8090894 DOI: 10.1128/aem.02662-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Besides the infection properties in human and animals, S. aureus can produce different enterotoxins in food. The enterotoxins can cause vomiting and diarrhea, often involving many people. Currently, only 5 (SEA to SEE) out of 27 known staphylococcal enterotoxins can be analyzed using commercially available kits. Six genes (seg, sei, sem, sen, seo, and seu), encoding putative and undetectable enterotoxins, are located on the enterotoxin gene cluster (egc), which is part of the Staphylococcus aureus genomic island vSaβ. These enterotoxins have been described as likely being involved in staphylococcal food-poisoning outbreaks. The aim of the present study was to determine if whole-genome data can be used for the prediction of staphylococcal egc enterotoxin production, particularly enterotoxin G (SEG) and enterotoxin I (SEI). For this purpose, whole-genome sequences of 75 Staphylococcus aureus strains from different origins (food-poisoning outbreaks, human, and animal) were investigated by applying bioinformatics methods (phylogenetic analysis using the core genome and different alignments). SEG and SEI expression was tested in vitro using a sandwich enzyme-linked immunosorbent assay method. Strains could be allocated to 14 different vSaβ types, each type being associated with a single clonal complex (CC). In addition, the vSaβ type and CC were associated with the origin of the strain (human or cattle derived). The amount of SEG and SEI produced also correlated with the vSaβ type and the CC of a strain. The present results show promising indications that the in vitro production of SEG and SEI can be predicted based on the vSaβ type or CC of a strain. IMPORTANCE Besides having infectious properties in human and animals, S. aureus can produce different enterotoxins in food. The enterotoxins can cause vomiting and diarrhea, often involving many people. Most of these outbreaks remain undiscovered, as detection methods for enterotoxins are only available for a few enterotoxins but not for the more recently discovered enterotoxins G (SEG) and I (SEI). In this study, we show promising results that in vitro production of SEG and SEI can be predicted based on the whole-genome sequencing data of a strain. In addition, these data could be used to find the source (human or cattle derived) of an outbreak strain, which is the key for a better understanding of the role SEG and SEI play in foodborne outbreaks caused by S. aureus.
Collapse
|
14
|
Féraudet Tarisse C, Goulard-Huet C, Nia Y, Devilliers K, Marcé D, Dambrune C, Lefebvre D, Hennekinne JA, Simon S. Highly Sensitive and Specific Detection of Staphylococcal Enterotoxins SEA, SEG, SEH, and SEI by Immunoassay. Toxins (Basel) 2021; 13:130. [PMID: 33572449 PMCID: PMC7916246 DOI: 10.3390/toxins13020130] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 01/05/2023] Open
Abstract
Staphylococcal food poisoning (SFP) is one of the most common foodborne diseases worldwide, resulting from the ingestion of staphylococcal enterotoxins (SEs), primarily SE type A (SEA), which is produced in food by enterotoxigenic strains of staphylococci, mainly S. aureus. Since newly identified SEs have been shown to have emetic properties and the genes encoding them have been found in food involved in poisoning outbreaks, it is necessary to have reliable tools to prove the presence of the toxins themselves, to clarify the role played by these non-classical SEs, and to precisely document SFP outbreaks. We have produced and characterized monoclonal antibodies directed specifically against SE type G, H or I (SEG, SEH or SEI respectively) or SEA. With these antibodies, we have developed, for each of these four targets, highly sensitive, specific, and reliable 3-h sandwich enzyme immunoassays that we evaluated for their suitability for SE detection in different matrices (bacterial cultures of S. aureus, contaminated food, human samples) for different purposes (strain characterization, food safety, biological threat detection, diagnosis). We also initiated and described for the first time the development of monoplex and quintuplex (SEA, SE type B (SEB), SEG, SEH, and SEI) lateral flow immunoassays for these new staphylococcal enterotoxins. The detection limits in buffer were under 10 pg/mL (0.4 pM) by enzyme immunoassays and at least 300 pg/mL (11 pM) by immunochromatography for all target toxins with no cross-reactivity observed. Spiking studies and/or bacterial supernatant analysis demonstrated the applicability of the developed methods, which could become reliable detection tools for the routine investigation of SEG, SEH, and SEI.
Collapse
Affiliation(s)
- Cécile Féraudet Tarisse
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (C.G.-H.); (K.D.); (D.M.); (C.D.); (D.L.); (S.S.)
| | - Céline Goulard-Huet
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (C.G.-H.); (K.D.); (D.M.); (C.D.); (D.L.); (S.S.)
| | - Yacine Nia
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université Paris-Est, 94706 Maisons-Alfort, France; (Y.N.); (J.-A.H.)
| | - Karine Devilliers
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (C.G.-H.); (K.D.); (D.M.); (C.D.); (D.L.); (S.S.)
| | - Dominique Marcé
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (C.G.-H.); (K.D.); (D.M.); (C.D.); (D.L.); (S.S.)
| | - Chloé Dambrune
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (C.G.-H.); (K.D.); (D.M.); (C.D.); (D.L.); (S.S.)
| | - Donatien Lefebvre
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (C.G.-H.); (K.D.); (D.M.); (C.D.); (D.L.); (S.S.)
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université Paris-Est, 94706 Maisons-Alfort, France; (Y.N.); (J.-A.H.)
| | - Jacques-Antoine Hennekinne
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université Paris-Est, 94706 Maisons-Alfort, France; (Y.N.); (J.-A.H.)
| | - Stéphanie Simon
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191 Gif-sur-Yvette, France; (C.G.-H.); (K.D.); (D.M.); (C.D.); (D.L.); (S.S.)
| |
Collapse
|
15
|
Etter D, Schelin J, Schuppler M, Johler S. Staphylococcal Enterotoxin C-An Update on SEC Variants, Their Structure and Properties, and Their Role in Foodborne Intoxications. Toxins (Basel) 2020; 12:E584. [PMID: 32927913 PMCID: PMC7551944 DOI: 10.3390/toxins12090584] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/20/2022] Open
Abstract
Staphylococcal enterotoxins are the most common cause of foodborne intoxications (staphylococcal food poisoning) and cause a wide range of diseases. With at least six variants staphylococcal enterotoxin C (SEC) stands out as particularly diverse amongst the 25 known staphylococcal enterotoxins. Some variants present unique and even host-specific features. Here, we review the role of SEC in human and animal health with a particular focus on its role as a causative agent for foodborne intoxications. We highlight structural features unique to SEC and its variants, particularly, the emetic and superantigen activity, as well as the roles of SEC in mastitis and in dairy products. Information about the genetic organization as well as regulatory mechanisms including the accessory gene regulator and food-related stressors are provided.
Collapse
Affiliation(s)
- Danai Etter
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zürich, 8057 Zürich, Switzerland;
- Laboratory of Food Microbiology, Institute of Food, Nutrition and Health, ETH Zürich, 8092 Zürich, Switzerland;
| | - Jenny Schelin
- Division of Applied Microbiology, Department of Chemistry, Lund University, 22100 Lund, Sweden;
| | - Markus Schuppler
- Laboratory of Food Microbiology, Institute of Food, Nutrition and Health, ETH Zürich, 8092 Zürich, Switzerland;
| | - Sophia Johler
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zürich, 8057 Zürich, Switzerland;
| |
Collapse
|
16
|
Merda D, Felten A, Vingadassalon N, Denayer S, Titouche Y, Decastelli L, Hickey B, Kourtis C, Daskalov H, Mistou MY, Hennekinne JA. NAuRA: Genomic Tool to Identify Staphylococcal Enterotoxins in Staphylococcus aureus Strains Responsible for FoodBorne Outbreaks. Front Microbiol 2020; 11:1483. [PMID: 32714310 PMCID: PMC7344154 DOI: 10.3389/fmicb.2020.01483] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/08/2020] [Indexed: 11/13/2022] Open
Abstract
Food contamination by staphylococcal enterotoxins (SEs) is responsible for many food poisoning outbreaks (FPOs) each year, and they represent the third leading cause of FPOs in Europe. SEs constitute a protein family with 27 proteins. However, enzyme immunoassays can only detect directly in food the five classical SEs (SEA-SEE). Thus, molecular characterization methods of strains found in food are now used for FPO investigations. Here, we describe the development and implementation of a genomic analysis tool called NAuRA (Nice automatic Research of alleles) that can detect the presence of 27 SEs genes in just one analysis- and create a database of allelic data and protein variants for harmonizing analyses. This tool uses genome assembly data and the 27 protein sequences of SEs. To include the different divergence levels between SE-coding genes, parameters of coverage and identity were generated from 10,000 simulations and a dataset of 244 assembled genomes from strains responsible for outbreaks in Europe as well as the RefSeq reference database. Based on phylogenetic inference performed using maximum-likelihood on the core genomes of the strains in this collection, we demonstrated that strains responsible for FPOs are distributed throughout the phylogenetic tree. Moreover, 71 toxin profiles were obtained using the NAuRA pipeline and these profiles do not follow the evolutionary history of strains. This study presents a pioneering method to investigate strains isolated from food at the genomic level and to analyze the diversity of all 27 SE-coding genes together.
Collapse
Affiliation(s)
- Déborah Merda
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), University of Paris-Est, Maisons-Alfort, France
| | - Arnaud Felten
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), University of Paris-Est, Maisons-Alfort, France
| | - Noémie Vingadassalon
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), University of Paris-Est, Maisons-Alfort, France
| | - Sarah Denayer
- Scientific Service of FoodBorne Pathogens, Sciensano, Brussels, Belgium
| | - Yacine Titouche
- Laboratory of Analytical Biochemistry and Biotechnology, University of Mouloud Mammeri, Tizi Ouzou, Algeria
| | - Lucia Decastelli
- National Reference Laboratory for Coagulase-Positive Including Staphylococcus aureus, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | | | - Christos Kourtis
- State General Laboratory, Food Microbiology Laboratory, Nicosia, Cyprus
| | - Hristo Daskalov
- National Center of Food Safety, NDRVI, BFSA, Sofia, Bulgaria
| | - Michel-Yves Mistou
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), University of Paris-Est, Maisons-Alfort, France
| | - Jacques-Antoine Hennekinne
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), University of Paris-Est, Maisons-Alfort, France
| |
Collapse
|
17
|
Chieffi D, Fanelli F, Cho GS, Schubert J, Blaiotta G, Franz CMAP, Bania J, Fusco V. Novel insights into the enterotoxigenic potential and genomic background of Staphylococcus aureus isolated from raw milk. Food Microbiol 2020; 90:103482. [PMID: 32336356 DOI: 10.1016/j.fm.2020.103482] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 11/17/2022]
Abstract
In this study, 53 Staphylococcus (S.) aureus strains were typed by 16S-23S rDNA intergenic spacer region (ISR) typing and staphylococcal enterotoxin gene (SEg) typing for all the staphylococcal enterotoxin (se) and staphylococcal enterotoxin-like toxin (sel) genes known to date, revealing a higher discriminatory power than that of multi locus sequence typing. Six strains, one of each ISR- and SEg-type, were genome sequenced and the ability to produce some classical and new SEs when growing in milk was investigated. The manual analysis of the six genomes allowed us to confirm, correct and expand the results of common available genomic data pipelines such as VirulenceFinder. Moreover, it enabled us to (i) investigate the actual location of se and sel genes, even for genes such as selY, whose location (in the core genome) was so far unknown, (ii) find novel allelic variants of se and sel genes and pseudogenes, (iii) correctly annotate se and sel genes and pseudogenes, and (iv) discover a novel type of enterotoxin gene cluster (egc), i.e. the egc type 5 in strains 356P and 364P, while S. argenteus MSHR1132 harbored the egc type 6. Four of the six S. aureus strains produced sufficient amounts of SEA, SEC, SED and SEH in milk to cause staphylococcal food poisoning (SFP), with S. aureus 372 P being the highest producer of SED in milk found to date, producing as much as ca. 47,300 ng/mL and 49,200 ng/mL of SED, after 24 and 48 h of incubation in milk at 37 °C, respectively. S. aureus 372 P released a low amount of SER in milk, most likely because the seR gene was present as a pseudogene, putatively encoding only 51 amino acids. These findings confirm that not only the classical SEs, but also the new ones can represent a potential hazard for the consumers' health if produced in foods in sufficient amounts. Therefore, the detection of SEs in foods, especially if involved in SFP cases, should focus not only on classical, but also on all the new SEs and SEls known to date. Where reference methods are unavailable, the presence of the relevant genes, by using the conventional and real time PCR protocols we exhaustively provided herein, and their nucleotide sequences, should be investigated.
Collapse
Affiliation(s)
- Daniele Chieffi
- National Research Council of Italy, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Francesca Fanelli
- National Research Council of Italy, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Gyu-Sung Cho
- Max Rubner-Institut, Department of Microbiology and Biotechnology, Hermann-Weigmann-Straße 1, 24103, Kiel, Germany
| | - Justyna Schubert
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Giuseppe Blaiotta
- Department of Agricultural Sciences, Division of Vine and Wine Sciences, University of Naples Federico II, Viale Italia, 83100, Avellino, Italy
| | - Charles M A P Franz
- Max Rubner-Institut, Department of Microbiology and Biotechnology, Hermann-Weigmann-Straße 1, 24103, Kiel, Germany
| | - Jacek Bania
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Vincenzina Fusco
- National Research Council of Italy, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy.
| |
Collapse
|
18
|
Shukla SK, Carter TC, Ye Z, Pantrangi M, Rose WE. Modeling of Effective Antimicrobials to Reduce Staphylococcus aureus Virulence Gene Expression Using a Two-Compartment Hollow Fiber Infection Model. Toxins (Basel) 2020; 12:toxins12020069. [PMID: 31979087 PMCID: PMC7076779 DOI: 10.3390/toxins12020069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 01/20/2020] [Indexed: 11/17/2022] Open
Abstract
Toxins produced by community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) contribute to virulence. We developed a statistical approach to determine an optimum sequence of antimicrobials to treat CA-MRSA infections based on an antimicrobial’s ability to reduce virulence. In an in vitro pharmacodynamic hollow fiber model, expression of six virulence genes (lukSF-PV, sek, seq, ssl8, ear, and lpl10) in CA-MRSA USA300 was measured by RT-PCR at six time points with or without human-simulated, pharmacokinetic dosing of five antimicrobials (clindamycin, minocycline, vancomycin, linezolid, and trimethoprim/sulfamethoxazole (SXT)). Statistical modeling identified the antimicrobial causing the greatest decrease in virulence gene expression at each time-point. The optimum sequence was SXT at T0 and T4, linezolid at T8, and clindamycin at T24–T72 when lukSF-PV was weighted as the most important gene or when all six genes were weighted equally. This changed to SXT at T0–T24, linezolid at T48, and clindamycin at T72 when lukSF-PV was weighted as unimportant. The empirical p-value for each optimum sequence according to the different weights was 0.001, 0.0009, and 0.0018 with 10,000 permutations, respectively, indicating statistical significance. A statistical method integrating data on change in gene expression upon multiple antimicrobial exposures is a promising tool for identifying a sequence of antimicrobials that is effective in sustaining reduced CA-MRSA virulence.
Collapse
Affiliation(s)
- Sanjay K. Shukla
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA; (T.C.C.); (Z.Y.); (M.P.)
- Correspondence:
| | - Tonia C. Carter
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA; (T.C.C.); (Z.Y.); (M.P.)
| | - Zhan Ye
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA; (T.C.C.); (Z.Y.); (M.P.)
| | - Madhulatha Pantrangi
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA; (T.C.C.); (Z.Y.); (M.P.)
| | - Warren E. Rose
- Pharmacy Practice Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA;
| |
Collapse
|
19
|
Macori G, Bellio A, Bianchi DM, Chiesa F, Gallina S, Romano A, Zuccon F, Cabrera-Rubio R, Cauquil A, Merda D, Auvray F, Decastelli L. Genome-Wide Profiling of Enterotoxigenic Staphylococcus aureus Strains Used for the Production of Naturally Contaminated Cheeses. Genes (Basel) 2019; 11:E33. [PMID: 31892220 PMCID: PMC7016664 DOI: 10.3390/genes11010033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/19/2019] [Accepted: 12/22/2019] [Indexed: 12/12/2022] Open
Abstract
Staphylococcus aureus is a major human pathogen and an important cause of livestock infections. More than 20 staphylococcal enterotoxins with emetic activity can be produced by specific strains responsible for staphylococcal food poisoning, one of the most common food-borne diseases. Whole genome sequencing provides a comprehensive view of the genome structure and gene content that have largely been applied in outbreak investigations and genomic comparisons. In this study, six enterotoxigenic S. aureus strains were characterised using a combination of molecular, phenotypical and computational methods. The genomes were analysed for the presence of virulence factors (VFs), where we identified 110 genes and classified them into five categories: adherence (n = 31), exoenzymes (n = 28), genes involved in host immune system evasion (n = 7); iron uptake regulatory system (n = 8); secretion machinery factors and toxins' genes (n = 36), and 39 genes coding for transcriptional regulators related to staphylococcal VFs. Each group of VFs revealed correlations among the six enterotoxigenic strains, and further analysis revealed their accessory genomic content, including mobile genetic elements. The plasmids pLUH02 and pSK67 were detected in the strain ProNaCC1 and ProNaCC7, respectively, carrying out the genes sed, ser, and selj. The genes carried out by prophages were detected in the strain ProNaCC2 (see), ProNaCC4, and ProNaCC7 (both positive for sea). The strain ProNaCC5 resulted positive for the genes seg, sei, sem, sen, seo grouped in an exotoxin gene cluster, and the strain ProNaCC6 resulted positive for seh, a transposon-associated gene. The six strains were used for the production of naturally contaminated cheeses which were tested with the European Screening Method for staphylococcal enterotoxins. The results obtained from the analysis of toxins produced in cheese, combined with the genomic features represent a portrait of the strains that can be used for the production of staphylococcal enterotoxin-positive cheese as reference material.
Collapse
Affiliation(s)
- Guerrino Macori
- National Reference Laboratory for Coagulase-Positive Staphylococci including Staphylococcus aureus, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (A.B.); (D.M.B.); (S.G.); (A.R.); (F.Z.); (L.D.)
| | - Alberto Bellio
- National Reference Laboratory for Coagulase-Positive Staphylococci including Staphylococcus aureus, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (A.B.); (D.M.B.); (S.G.); (A.R.); (F.Z.); (L.D.)
| | - Daniela Manila Bianchi
- National Reference Laboratory for Coagulase-Positive Staphylococci including Staphylococcus aureus, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (A.B.); (D.M.B.); (S.G.); (A.R.); (F.Z.); (L.D.)
| | - Francesco Chiesa
- Dipartimento di Scienze Veterinarie, Università di Torino, 10095 Grugliasco, Italy;
| | - Silvia Gallina
- National Reference Laboratory for Coagulase-Positive Staphylococci including Staphylococcus aureus, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (A.B.); (D.M.B.); (S.G.); (A.R.); (F.Z.); (L.D.)
| | - Angelo Romano
- National Reference Laboratory for Coagulase-Positive Staphylococci including Staphylococcus aureus, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (A.B.); (D.M.B.); (S.G.); (A.R.); (F.Z.); (L.D.)
| | - Fabio Zuccon
- National Reference Laboratory for Coagulase-Positive Staphylococci including Staphylococcus aureus, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (A.B.); (D.M.B.); (S.G.); (A.R.); (F.Z.); (L.D.)
| | - Raúl Cabrera-Rubio
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996, Ireland-APC Microbiome Ireland, University College Cork, T12YT20 Cork, Ireland;
| | - Alexandra Cauquil
- European Laboratory for Coagulase-Positive Staphylococci including Staphylococcus aureus, Laboratory for Food Safety, ANSES, Université Paris-Est, F-94700 Maisons-Alfort, France; (A.C.); (D.M.); (F.A.)
| | - Déborah Merda
- European Laboratory for Coagulase-Positive Staphylococci including Staphylococcus aureus, Laboratory for Food Safety, ANSES, Université Paris-Est, F-94700 Maisons-Alfort, France; (A.C.); (D.M.); (F.A.)
| | - Fréderic Auvray
- European Laboratory for Coagulase-Positive Staphylococci including Staphylococcus aureus, Laboratory for Food Safety, ANSES, Université Paris-Est, F-94700 Maisons-Alfort, France; (A.C.); (D.M.); (F.A.)
| | - Lucia Decastelli
- National Reference Laboratory for Coagulase-Positive Staphylococci including Staphylococcus aureus, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (A.B.); (D.M.B.); (S.G.); (A.R.); (F.Z.); (L.D.)
| |
Collapse
|
20
|
Zeng C, Liu Z, Han Z. Structure of Staphylococcal Enterotoxin N: Implications for Binding Properties to Its Cellular Proteins. Int J Mol Sci 2019; 20:ijms20235921. [PMID: 31775346 PMCID: PMC6928602 DOI: 10.3390/ijms20235921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 01/26/2023] Open
Abstract
Staphylococcus aureus strains produce a unique family of immunostimulatory exotoxins termed as bacterial superantigens (SAgs), which cross-link major histocompatibility complex class II (MHC II) molecule and T-cell receptor (TCR) to stimulate large numbers of T cells at extremely low concentrations. SAgs are associated with food poisoning and toxic shock syndrome. To date, 26 genetically distinct staphylococcal SAgs have been reported. This study reports the first X-ray structure of newly characterized staphylococcal enterotoxin N (SEN). SEN possesses the classical two domain architecture that includes an N-terminal oligonucleotide-binding fold and a C-terminal β-grasp domain. Amino acid and structure alignments revealed that several critical amino acids that are proposed to be responsible for MHC II and TCR molecule engagements are variable in SEN, suggesting that SEN may adopt a different binding mode to its cellular receptors. This work helps better understand the mechanisms of action of SAgs.
Collapse
Affiliation(s)
- Chi Zeng
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (C.Z.); (Z.L.)
- Hubei Province Fresh Food Engineering Research Center, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Zhaoxin Liu
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (C.Z.); (Z.L.)
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhenggang Han
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (C.Z.); (Z.L.)
- Correspondence:
| |
Collapse
|
21
|
Ono HK, Hirose S, Narita K, Sugiyama M, Asano K, Hu DL, Nakane A. Histamine release from intestinal mast cells induced by staphylococcal enterotoxin A (SEA) evokes vomiting reflex in common marmoset. PLoS Pathog 2019; 15:e1007803. [PMID: 31112582 PMCID: PMC6546250 DOI: 10.1371/journal.ppat.1007803] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 06/03/2019] [Accepted: 04/30/2019] [Indexed: 01/31/2023] Open
Abstract
Staphylococcal enterotoxins (SEs) produced by Staphylococcus aureus are known as causative agents of emetic food poisoning. We previously demonstrated that SEA binds with submucosal mast cells and evokes mast cell degranulation in a small emetic house musk shrew model. Notably, primates have been recognized as the standard model for emetic assays and analysis of SE emetic activity. However, the mechanism involved in SEA-induced vomiting in primates has not yet been elucidated. In the present study, we established common marmosets as an emetic animal model. Common marmosets were administered classical SEs, including SEA, SEB and SEC, and exhibited multiple vomiting responses. However, a non-emetic staphylococcal superantigen, toxic shock syndrome toxin-1, did not induce emesis in these monkeys. These results indicated that the common marmoset is a useful animal model for assessing the emesis-inducing activity of SEs. Furthermore, histological analysis uncovered that SEA bound with submucosal mast cells and induced mast cell degranulation. Additionally, ex vivo and in vivo pharmacological results showed that SEA-induced histamine release plays a critical role in the vomiting response in common marmosets. The present results suggested that 5-hydroxytryptamine also plays an important role in the transmission of emetic stimulation on the afferent vagus nerve or central nervous system. We conclude that SEA induces histamine release from submucosal mast cells in the gastrointestinal tract and that histamine contributes to the SEA-induced vomiting reflex via the serotonergic nerve and/or other vagus nerve. Staphylococcal enterotoxin A (SEA) is a bacterial toxin that has been recognized as a leading causative agent of staphylococcal food poisoning since 1930. The primary symptoms of staphylococcal food poisoning are nausea and emesis, which develop up to 1–6 h after ingestion of the causative foods contaminated by the bacteria. In the present study, we established the common marmoset as an emetic animal model and investigated the mechanisms of SEA-induced emesis in the primate model. Common marmosets that received SEA showed multiple emetic responses. We observed that SEA bound with submucosal mast cells in the intestinal tract and induced mast cell degranulation. Furthermore, SEA promoted histamine release from mast cells. We also demonstrated that histamine plays an important role in the SEA-induced emetic response in common marmosets. We conclude that SEA induces histamine release from submucosal mast cells in the intestinal tract and that the stimulation is transmitted from intestine to the brain via nerves, causing emesis. Our study provides a novel insight into functions of submucosal mast cells in the digestive tract.
Collapse
Affiliation(s)
- Hisaya K. Ono
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada, Aomori, Japan
| | - Shouhei Hirose
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
- Department of Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kouji Narita
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
- Institute for Animal Experimentation, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Makoto Sugiyama
- Department of Veterinary Anatomy, Kitasato University School of Veterinary Medicine, Towada, Japan
| | - Krisana Asano
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
- Department of Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Dong-Liang Hu
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada, Aomori, Japan
| | - Akio Nakane
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
- Department of Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
- * E-mail:
| |
Collapse
|
22
|
Ono HK, Hachiya N, Suzuki Y, Naito I, Hirose S, Asano K, Omoe K, Nakane A, Hu DL. Development of an Immunoassay for Detection of Staphylococcal Enterotoxin-Like J, A Non-Characterized Toxin. Toxins (Basel) 2018; 10:toxins10110458. [PMID: 30404173 PMCID: PMC6266802 DOI: 10.3390/toxins10110458] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/22/2018] [Accepted: 11/03/2018] [Indexed: 11/16/2022] Open
Abstract
Staphylococcal enterotoxins (SEs) are the cause of staphylococcal food poisoning (SFP) outbreaks. Recently, many new types of SEs and SE-like toxins have been reported, but it has not been proved whether these new toxins cause food poisoning. To develop an immunoassay for detection of SE-like J (SElJ), a non-characterized toxin in SFP, a mutant SElJ with C-terminus deletion (SElJ∆C) was expressed and purified in an E. coli expression system. Anti-SElJ antibody was produced in rabbits immunized with the SElJ∆C. Western blotting and sandwich enzyme-linked immunosorbent assay (ELISA) detection systems were established and showed that the antibody specifically recognizes SElJ without cross reaction to other SEs tested. The limit of detection for the sandwich ELISA was 0.078 ng/mL, showing high sensitivity. SElJ production in S. aureus was detected by using the sandwich ELISA and showed that selj-horboring isolates produced a large amount of SElJ in the culture supernatants, especially in that of the strain isolated from a food poisoning outbreak in Japan. These results demonstrate that the immunoassay for detection of SElJ is specific and sensitive and is useful for determining the native SElJ production in S. aureus isolated from food poisoning cases.
Collapse
Affiliation(s)
- Hisaya K Ono
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, 35-1 Higashi-23-ban-cho, Towada, Aomori 034-8628, Japan.
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan.
| | - Nobuaki Hachiya
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, 35-1 Higashi-23-ban-cho, Towada, Aomori 034-8628, Japan.
| | - Yasunori Suzuki
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Shinjuku-ku, Tokyo 169-0073, Japan.
| | - Ikunori Naito
- Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Ueda 3-18-8, Morioka, Iwate 020-8550, Japan.
| | - Shouhei Hirose
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan.
| | - Krisana Asano
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan.
| | - Katsuhiko Omoe
- Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Ueda 3-18-8, Morioka, Iwate 020-8550, Japan.
| | - Akio Nakane
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan.
| | - Dong-Liang Hu
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, 35-1 Higashi-23-ban-cho, Towada, Aomori 034-8628, Japan.
| |
Collapse
|
23
|
Saka E, Terzi Gulel G. Detection of Enterotoxin Genes and Methicillin-Resistance in Staphylococcus aureus Isolated from Water Buffalo Milk and Dairy Products. J Food Sci 2018; 83:1716-1722. [PMID: 29802728 DOI: 10.1111/1750-3841.14172] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 03/21/2018] [Accepted: 03/28/2018] [Indexed: 01/30/2023]
Abstract
The aim of this study was to analyze the presence of genes encoding staphylococcal enterotoxins and methicillin resistance in Staphylococcus aureus isolates obtained from water buffalo milk and dairy products. A total of 200 samples (100 raw milk, 50 clotted cream, and 50 cheese samples) was collected from different dairy farms and smallholders in Samsun, Turkey. All samples were analyzed using the standard procedure EN ISO 6888-1 and isolates were confirmed for the presence of the target 16S rRNA specific for Staphylococcus genus specific and nuc gene specific for S. aureus species by PCR. S. aureus was identified in 30 of 100 milk (30%), 9 of 50 clotted cream (18%), and 17 of 50 cheese (34%) samples. A total of 99 isolates was confirmed as S. aureus. Genotypic methicillin resistance was evaluated using PCR for the mecA gene. Out of 99 isolates, nine (9%) were found to be methicillin resistant (mecA gene positive). Twelve out of 99 (12%) S. aureus isolates were found positive for one or more genes encoding the enterotoxins. The gene coding for enterotoxin, sea, was the most frequent (five isolates, 41.6%), followed by sec (two isolates, 16.6%), sed (1 isolates, 8.3%) and see (1 isolate, 8.3%). While three isolates (25%) contained both sec and sed, none of the samples was positive for seb. In conclusion, the presence of se gene-positive and methicillin-resistant S. aureus in buffalo milk and products revealed that consumption of these products is a potential risk of foodborne infection in this region. PRACTICAL APPLICATION Enterotoxigenic and methicillin-resistant S. aureus (MRSA) in milk and dairy products is an important public health problem. Especially in traditional dairy products, Staphylococcal enterotoxins may cause food poisoning due to consumption of raw or unpasteurized milk products.
Collapse
Affiliation(s)
- Erdem Saka
- Dept. of Bacteriological Diagnosis Laboratory, Samsun Veterinary Control Inst., Atakum, Turkey
| | - Goknur Terzi Gulel
- Dept. of Food Hygiene and Technology, Faculty of Veterinary Medicine, Univ. of Ondokuz Mayis, Samsun, Turkey
| |
Collapse
|
24
|
|
25
|
Fisher EL, Otto M, Cheung GYC. Basis of Virulence in Enterotoxin-Mediated Staphylococcal Food Poisoning. Front Microbiol 2018; 9:436. [PMID: 29662470 PMCID: PMC5890119 DOI: 10.3389/fmicb.2018.00436] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/26/2018] [Indexed: 12/17/2022] Open
Abstract
The Staphylococcus aureus enterotoxins are a superfamily of secreted virulence factors that share structural and functional similarities and possess potent superantigenic activity causing disruptions in adaptive immunity. The enterotoxins can be separated into two groups; the classical (SEA-SEE) and the newer (SEG-SElY and counting) enterotoxin groups. Many members from both these groups contribute to the pathogenesis of several serious human diseases, including toxic shock syndrome, pneumonia, and sepsis-related infections. Additionally, many members demonstrate emetic activity and are frequently responsible for food poisoning outbreaks. Due to their robust tolerance to denaturing, the enterotoxins retain activity in food contaminated previously with S. aureus. The genes encoding the enterotoxins are found mostly on a variety of different mobile genetic elements. Therefore, the presence of enterotoxins can vary widely among different S. aureus isolates. Additionally, the enterotoxins are regulated by multiple, and often overlapping, regulatory pathways, which are influenced by environmental factors. In this review, we also will focus on the newer enterotoxins (SEG-SElY), which matter for the role of S. aureus as an enteropathogen, and summarize our current knowledge on their prevalence in recent food poisoning outbreaks. Finally, we will review the current literature regarding the key elements that govern the complex regulation of enterotoxins, the molecular mechanisms underlying their enterotoxigenic, superantigenic, and immunomodulatory functions, and discuss how these activities may collectively contribute to the overall manifestation of staphylococcal food poisoning.
Collapse
Affiliation(s)
- Emilie L Fisher
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Gordon Y C Cheung
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|