1
|
Chen H, Qing Y, Xu L, Zhu L, Yin W, Li S, Kuang S, Zhou Y, Xu Z. Prevalence and Molecular Characterization of Porcine Parvovirus 2 in Southwest China During 2020-2023. Vet Sci 2025; 12:99. [PMID: 40005859 PMCID: PMC11861861 DOI: 10.3390/vetsci12020099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Porcine parvovirus (PPV) is a non-enveloped, single-stranded linear DNA virus that induces reproductive disorders in sows, particularly abortions in primiparous sows. This study investigated the prevalence of PPV in the southwestern region and conducted molecular characterization of PPV strains. An epidemiological survey was conducted on 1534 aborted fetuses from the southwestern region between 2020 and 2023, revealing an abortion rate of 3.00% due to PPV2, with the highest rate of 3.77% in Sichuan. Additionally, 2973 blood samples from sows were tested using ELISA, showing a PPV2 antibody positivity rate of 73.03% to 90%. Through shotgun metagenomics, PPV2 SC2020 was identified in aborted fetal samples from a pig farm in Pengzhou, Sichuan. PCR sequencing analysis yielded seven PPV2 genomic sequences, and the phylogenetic analysis of eight PPV2 strains with thirty reference strains showed distinct evolutionary branches. The virus was successfully isolated from PPV2-positive samples, and the phylogenetic analysis of PPV2 SC2020 revealed ORF1 gene homology of 94.9% to 99.3% and the ORF2 gene homology of 93.1% to 98.0%, with 34 reference strains. Homologous recombination analysis indicated that SC2020 is a recombinant strain of HeB03 and S1.
Collapse
Affiliation(s)
- Hongyu Chen
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.C.); (L.Z.)
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Yi Qing
- Chengdu Livestock and Poultry Genetic Resources Protection Center, Chengdu 610081, China;
| | - Lei Xu
- College of Animal Husbandry and Veterinary Medicine, Chengdu Agricultural College, Chengdu 610000, China;
| | - Ling Zhu
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.C.); (L.Z.)
| | - Wenqi Yin
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610000, China; (W.Y.); (S.L.); (S.K.)
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610000, China
| | - Shuwei Li
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610000, China; (W.Y.); (S.L.); (S.K.)
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610000, China
| | - Shengyao Kuang
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610000, China; (W.Y.); (S.L.); (S.K.)
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610000, China
| | - Yuancheng Zhou
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610000, China; (W.Y.); (S.L.); (S.K.)
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610000, China
| | - Zhiwen Xu
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.C.); (L.Z.)
| |
Collapse
|
2
|
Vargas-Ruiz A, Araiza-Hernández DM, González-Díaz FR, Marín-Flamand E, Sánchez Betancourt JI, Sánchez-Mendoza AE, García-Camacho LA. Phylogenetic analysis and molecular structure of NS1 proteins of porcine parvovirus 5 isolates from Mexico. Arch Virol 2025; 170:40. [PMID: 39856382 PMCID: PMC11761469 DOI: 10.1007/s00705-024-06182-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/03/2024] [Indexed: 01/27/2025]
Abstract
Porcine parvovirus 5 (PPV5) is an unclassified member of the family Parvoviridae with no reported pathogenicity, although it is associated with multisystemic, reproductive, and respiratory diseases. Its open reading frame 1 (ORF1) encodes non-structural protein 1 (NS1), which is predicted to have helicase activity that is essential for viral replication. This protein contains a C-motif with an invariant asparagine residue that forms the core of the enzyme's active site, in conjunction with the Walker A and B motifs. The aim of this study was the phylogenetic and molecular characterization of the NS1 of PPV5 through nested PCR and sequencing of three Mexican PPV5-positive samples. Subsequently, a phylogenetic tree, identity matrices of nucleotide and amino acid sequences, and a three-dimensional model of NS1 were constructed. The amplified sequences, which represented 96.9% of the PPV5 ORF1, occupied the same branch in the phylogenetic tree and exhibited the most nucleotide sequence similarity to the corresponding region of PPV4 and the most amino acid sequence similarity to the NS1 proteins of PPV4 and PPV6. A three-dimensional model of NS1 displayed a C-motif characteristic of superfamily 3 (SF3) helicases. The phylogenetic proximity of PPV5 to PPV4 and PPV6 suggests that it may belong to the genus Copiparvovirus. Further studies on helicases from viruses infecting domestic animals may be useful in developing antiviral drugs for both human and veterinary medicine.
Collapse
Affiliation(s)
- Alejandro Vargas-Ruiz
- Facultad de Estudios Superiores Cuautitlán, Departamento de Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Carretera Cuautitlán-Teoloyucan Km 2.5, Cuautitlán Izcalli, 54714, Estado de México, México
| | - Diana Michele Araiza-Hernández
- Facultad de Estudios Superiores Cuautitlán, Departamento de Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Carretera Cuautitlán-Teoloyucan Km 2.5, Cuautitlán Izcalli, 54714, Estado de México, México
| | - Francisco Rodolfo González-Díaz
- Facultad de Estudios Superiores Cuautitlán, Unidad de Investigación Multidisciplinaria, Universidad Nacional Autónoma de México (UNAM), Estado de México, México
| | - Ernesto Marín-Flamand
- Facultad de Estudios Superiores Cuautitlán, Departamento de Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Carretera Cuautitlán-Teoloyucan Km 2.5, Cuautitlán Izcalli, 54714, Estado de México, México
| | - José Ivan Sánchez Betancourt
- Grupo de Investigación del Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ana Elvia Sánchez-Mendoza
- Facultad de Estudios Superiores Cuautitlán, Departamento de Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Carretera Cuautitlán-Teoloyucan Km 2.5, Cuautitlán Izcalli, 54714, Estado de México, México
| | - Lucia Angélica García-Camacho
- Facultad de Estudios Superiores Cuautitlán, Departamento de Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Carretera Cuautitlán-Teoloyucan Km 2.5, Cuautitlán Izcalli, 54714, Estado de México, México.
| |
Collapse
|
3
|
Igriczi B, Dénes L, Schönhardt K, Woźniak A, Stadejek T, Balka G. Comparative Prevalence Estimation and Phylogenetic Analysis of Novel Porcine Parvoviruses (PPV2-7) in Hungarian Pig Herds. Transbound Emerg Dis 2024; 2024:5117884. [PMID: 40303128 PMCID: PMC12016726 DOI: 10.1155/2024/5117884] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/25/2024] [Indexed: 05/02/2025]
Abstract
To date, seven novel parvoviruses have been identified in pigs and designated as porcine parvovirus 2-7 (PPV2-7). The presence of these emerging viruses has been reported in several countries around the world, although their pathogenic role and clinical and economical relevance are largely unknown. Here, we report the estimated prevalence and genetic diversity of novel PPV2-7 in Hungarian pig herds and the detection of these viruses in two Slovakian pig farms. For the comparative prevalence estimation, 2505 serum samples from different age groups, 218 oral fluid samples, and 111 processing fluid samples were collected from 26 large-scale Hungarian farms according to a systematic, cross-sectional sampling protocol. All samples were tested by real-time quantitative polymerase chain reaction (qPCR), and the presence of at least one PPV was detected in 24 of the 26 (92%) Hungarian and both Slovakian farms, suggesting high levels of subclinical circulation in most herds. The estimated PPV2-7 prevalence in Hungary varied from 50% to 89%, with PPV4 being the least and PPV2 being the most prevalent virus. The highest detection rates were observed in oral fluid samples, indicating that this sample type is most suitable for screening PPVs, but all viruses were also detected in serum samples and processing fluids. All novel PPVs were most frequently detected in the serum samples of weaned pigs and fatteners, with slightly higher viral burden in the younger age groups. These results may suggest an age-related susceptibility, which could play a significant role in the epidemiology of these viruses, impacting herd health and productivity.
Collapse
Affiliation(s)
- Barbara Igriczi
- Department of Pathology, University of Veterinary Medicine, 1078, István Str. 2., Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, 1078, István Str. 2., Budapest, Hungary
| | - Lilla Dénes
- Department of Pathology, University of Veterinary Medicine, 1078, István Str. 2., Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, 1078, István Str. 2., Budapest, Hungary
| | - Kitti Schönhardt
- Department of Pathology, University of Veterinary Medicine, 1078, István Str. 2., Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, 1078, István Str. 2., Budapest, Hungary
| | - Aleksandra Woźniak
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159C 02-776, Warsaw, Poland
| | - Tomasz Stadejek
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159C 02-776, Warsaw, Poland
| | - Gyula Balka
- Department of Pathology, University of Veterinary Medicine, 1078, István Str. 2., Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, 1078, István Str. 2., Budapest, Hungary
| |
Collapse
|
4
|
Vargas-Bermudez DS, Prandi BA, de Souza UJB, Durães-Carvalho R, Mogollón JD, Campos FS, Roehe PM, Jaime J. Molecular Epidemiology and Phyloevolutionary Analysis of Porcine Parvoviruses (PPV1 through PPV7) Detected in Replacement Gilts from Colombia. Int J Mol Sci 2024; 25:10354. [PMID: 39408680 PMCID: PMC11476972 DOI: 10.3390/ijms251910354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Eight porcine parvovirus (PPV) species, designated as PPV1 through PPV8, have been identified in swine. Despite their similarities, knowledge about their distribution and genetic differences remains limited, resulting in a gap in the genetic classification of these viruses. In this study, we conducted a comprehensive analysis using PPV1 to PPV7 genome sequences from Colombia and others available in the GenBank database to propose a classification scheme for all PPVs. Sera from 234 gilts aged 180 to 200 days were collected from 40 herds in Colombia. Individual detection of each PPV (PPV1 through PPV7) was performed using end-point PCR. Complete nucleotide (nt) sequencing was performed on the PPV1 viral protein (VP), and near-complete genome (NCG) sequencing was carried out for novel porcine parvoviruses (nPPVs) (PPV2 through PPV7). Phylogenetic analyses were conducted by comparing PPV1-VP sequences to 94 available sequences and nPPVs with 565 NCG, 846 nPPV-VP, and 667 nPPV-nonstructural protein (NS) sequences. Bayesian phylogenetic analysis was used to estimate substitution rates and the time to the most recent common ancestor for each PPV. The highest prevalence was detected for PPV3 (40.1%), followed by PPV5 (20.5%), PPV6 (17%), PPV1 (14.5%), PPV2 (9.8%), PPV4 (4.2%), and PPV7 (1.3%). Notably, all tested sera were negative for PPV8 genomes. An analysis of the PPV1-VP sequences revealed two main clades (PPV1-I and PPV1-II), with the sequences recovered in this study grouped in the PPV1-II clade. Comparative analysis showed significant genetic distances for PPV2 to PPV7 at the NCG (>6.5%), NS (>6.3%), and VP (>7.5%) regions, particularly when compared to equivalent regions of PPV genomes recovered worldwide. This study highlights the endemic circulation of nPPVs in Colombian pig herds, specifically among gilts. Additionally, it contributes to the phylogenetic classification and evolutionary studies of these viruses. The proposed method aims to categorize and divide subtypes based on current knowledge and the genomes available in databanks.
Collapse
Affiliation(s)
- Diana S. Vargas-Bermudez
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Medicina Veterinaria y de Zootecnia, Departamento de Salud Animal, Centro de Investigación en Infectología e Inmunología Veterinaria–CI3V, Carrera 30 No. 45-03, Bogotá DC 111321, Colombia; (D.S.V.-B.); (J.D.M.)
| | - Bruno Aschidamini Prandi
- Virology Laboratory, Department of Microbiology, Immunology, and Parasitology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90050-170, Brazil; (B.A.P.); (F.S.C.); (P.M.R.)
| | - Ueric José Borges de Souza
- Bioinformatics and Biotechnology Laboratory, Campus of Gurupi, Federal University of Tocantins, Gurupi 77410-570, Brazil;
| | - Ricardo Durães-Carvalho
- Department of Microbiology, Immunology and Parasitology, São Paulo School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo 04039-032, Brazil;
- Post-Graduate Program in Structural and Functional Biology, Department of Morphology and Genetics, UNIFESP, São Paulo 04039-032, Brazil
| | - José Darío Mogollón
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Medicina Veterinaria y de Zootecnia, Departamento de Salud Animal, Centro de Investigación en Infectología e Inmunología Veterinaria–CI3V, Carrera 30 No. 45-03, Bogotá DC 111321, Colombia; (D.S.V.-B.); (J.D.M.)
| | - Fabrício Souza Campos
- Virology Laboratory, Department of Microbiology, Immunology, and Parasitology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90050-170, Brazil; (B.A.P.); (F.S.C.); (P.M.R.)
- Bioinformatics and Biotechnology Laboratory, Campus of Gurupi, Federal University of Tocantins, Gurupi 77410-570, Brazil;
| | - Paulo Michel Roehe
- Virology Laboratory, Department of Microbiology, Immunology, and Parasitology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90050-170, Brazil; (B.A.P.); (F.S.C.); (P.M.R.)
| | - Jairo Jaime
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Medicina Veterinaria y de Zootecnia, Departamento de Salud Animal, Centro de Investigación en Infectología e Inmunología Veterinaria–CI3V, Carrera 30 No. 45-03, Bogotá DC 111321, Colombia; (D.S.V.-B.); (J.D.M.)
| |
Collapse
|
5
|
Vargas-Bermudez DS, Mainenti M, Naranjo-Ortiz MF, Mogollon JD, Piñeyro P, Jaime J. First Report of Porcine Parvovirus 2 (PPV2) in Pigs from Colombia Associated with Porcine Reproductive Failure (PRF) and Porcine Respiratory Disease Complex (PRDC). Transbound Emerg Dis 2024; 2024:1471536. [PMID: 40303191 PMCID: PMC12017240 DOI: 10.1155/2024/1471536] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/27/2024] [Accepted: 04/30/2024] [Indexed: 05/02/2025]
Abstract
Pigs are affected by various parvoviruses (PPVs); eight have been reported to date (PPV1-PPV8). Porcine parvovirus 1 is considered a primary agent of porcine reproductive failure (PRF), while it is unknown whether other PPVs impact porcine health. Recently, the presence of PPV2 has been confirmed in the lung, either as a single agent or in the form of coinfection with other respiratory; therefore, it has been proposed as a potential participant in the porcine respiratory disease complex (PRDC). In the present study, the presence of PPV2 alone and coinfection with other viruses (PCV2, PCV3, and PRRSV) was evaluated in lung samples obtained from pigs with respiratory signs (respiratory group: RG) (n = 146) and stillborn lungs (stillborn group: SG) (n = 19) from 82 farms in the five regions with the highest swine production in Colombia. The overall PPV2 prevalence was 37.6% (62/165), with the highest proportion mainly detected in grow-finisher pigs (62.5%), while its herd prevalence was 51.2% (42/82). The most prevalent virus was PRRSV in both groups, while PPV2 alone was found only in the RG group. The most common dual coinfection in the RG and SG was PCV2/PRRSV (17.8% and 10.5%), while the most frequent coinfections involving PPV2 in the RG were PPV2/PCV2 (7.5%) and PPV2/PRRSV (4%) and PPV2/PCV2 (5.3%) in the SG. The most common triple coinfection was PPV2/PCV2/PRRSV at 15% in the RG and 21% in the SG, while quadruple coinfection PVV2/PCV2/PCV3/PRRSV was detected only in the RG (5.5%). Histopathological evaluation of 21 PPV2-positive lungs showed variable degrees of histiocytic or lymphohistiocytic interstitial pneumonia (9%) in the RG, while no significant changes were observed in SG; in addition, neutrophilic bronchopneumonia was observed in 73.7% if cases evaluated. In situ hybridization-RNAScope® confirmed the presence of PPV2 within pulmonary lesions in 2/19 RG pigs, while no in situ detection was observed in the SG pigs. The phylogenetic evaluation of seven PPV2 sequences detected in Colombia was compared with another 102 reported sequences, indicating that the Colombian strains are located in clade 2. Our results confirm the presence of PPV2 in pigs with PRDC alone and pigs coinfected with PCV2, PCV3, and PRRSV. Likewise, its presence alone or in coinfection in stillbirths suggests that PPV2 is also involved in PRF.
Collapse
Affiliation(s)
- Diana S. Vargas-Bermudez
- Facultad de Medicina Veterinaria y de Zootecnia, Departamento de Salud Animal, Centro de Investigación en Infectología e Inmunología Veterinaria (CI3V), Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No. 45–03, Bogotá, CP 111321, Colombia
| | - Marta Mainenti
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - María F. Naranjo-Ortiz
- Facultad de Medicina Veterinaria y de Zootecnia, Departamento de Salud Animal, Centro de Investigación en Infectología e Inmunología Veterinaria (CI3V), Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No. 45–03, Bogotá, CP 111321, Colombia
| | - José Darío Mogollon
- Facultad de Medicina Veterinaria y de Zootecnia, Departamento de Salud Animal, Centro de Investigación en Infectología e Inmunología Veterinaria (CI3V), Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No. 45–03, Bogotá, CP 111321, Colombia
| | - Pablo Piñeyro
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Jairo Jaime
- Facultad de Medicina Veterinaria y de Zootecnia, Departamento de Salud Animal, Centro de Investigación en Infectología e Inmunología Veterinaria (CI3V), Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No. 45–03, Bogotá, CP 111321, Colombia
| |
Collapse
|
6
|
Vargas-Bermudez DS, Diaz A, Polo G, Mogollon JD, Jaime J. Infection and Coinfection of Porcine-Selected Viruses (PPV1 to PPV8, PCV2 to PCV4, and PRRSV) in Gilts and Their Associations with Reproductive Performance. Vet Sci 2024; 11:185. [PMID: 38787157 PMCID: PMC11125912 DOI: 10.3390/vetsci11050185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 05/25/2024] Open
Abstract
Seven novel porcine parvoviruses (nPPVs) (PPV2 through PPV8) have been described, although their pathogenicity and possible effects on porcine reproductive failure (PRF) are undefined. In this study, these nPPVs were assessed in gilts from Colombia; their coinfections with PPV1, PCV2, PCV3, PCV4, and PRRSV and an association between the nPPVs and the reproductive performance parameters (RPPs) in sows were determined. For this, 234 serum samples were collected from healthy gilts from 40 herds in five Colombian regions, and the viruses were detected via real-time PCR. The results confirmed the circulation of PPV2 through PPV7 in Colombia, with PPV3 (40%), PPV5 (20%), and PPV6 (17%) being the most frequent. Additionally, no PCV4 or PPV8 was detected. PPV2 to PPV7 were detected in concurrence with each other and with the primary PRF viruses, and these coinfections varied from double to sextuple coinfections. Additionally, the association between nPPVs and PRF primary viruses was statistically significant for the presence of PPV6 in PCV3-positive (p < 0.01) and PPV5 in PPRSV-positive (p < 0.05) gilts; conversely, there was a significant presence of PPV3 in both PCV2-negative (p < 0.01) and PRRSV-negative (p < 0.05) gilts. Regarding the RPPs, the crude association between virus detection (positive or negative) and a high or low RPP was only statistically significant for PCV3 and the farrowing rate (FR), indicating that the crude odds of a low FR were 94% lower in herds with PCV3-positive gilts. This finding means that the detection of PCV3 in gilts (PCV3-positive by PCR) is associated with a higher FR in the farm or that these farms (with positive gilts) have lower odds (OR 0.06, p-value 0.0043) of a low FR. Additionally, a low FR tended to be associated with the detection of PPV4 and PPV5 (p-value < 0.20). This study is important for establishing the possible participation of nPPVs in PRF.
Collapse
Affiliation(s)
- Diana S. Vargas-Bermudez
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Medicina Veterinaria y de Zootecnia, Departamento de Salud Animal, Centro de Investigación en Infectología e Inmunología Veterinaria—CI3V.Cra. 30 # 45-03, Bogotá 11001, Colombia; (D.S.V.-B.); (J.D.M.)
| | - Andres Diaz
- Pig Improvement Company, Hendersonville, TN 37075, USA;
| | - Gina Polo
- Instituto de Salud Pública, Pontificia Universidad Javeriana, Bogota 110231, Colombia;
| | - Jose Dario Mogollon
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Medicina Veterinaria y de Zootecnia, Departamento de Salud Animal, Centro de Investigación en Infectología e Inmunología Veterinaria—CI3V.Cra. 30 # 45-03, Bogotá 11001, Colombia; (D.S.V.-B.); (J.D.M.)
| | - Jairo Jaime
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Medicina Veterinaria y de Zootecnia, Departamento de Salud Animal, Centro de Investigación en Infectología e Inmunología Veterinaria—CI3V.Cra. 30 # 45-03, Bogotá 11001, Colombia; (D.S.V.-B.); (J.D.M.)
| |
Collapse
|
7
|
Faustini G, Tucciarone CM, Franzo G, Donneschi A, Boniotti MB, Alborali GL, Drigo M. Molecular Survey on Porcine Parvoviruses (PPV1-7) and Their Association with Major Pathogens in Reproductive Failure Outbreaks in Northern Italy. Viruses 2024; 16:157. [PMID: 38275967 PMCID: PMC10818816 DOI: 10.3390/v16010157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Successful reproductive performance is key to farm competitiveness in the global marketplace. Porcine parvovirus 1 (PPV1) has been identified as a major cause of reproductive failure, and since 2001 new species of porcine parvoviruses, namely PPV2-7, have been identified, although their role is not yet fully understood yet. The present study aimed to investigate PPVs' presence in reproductive failure outbreaks occurring in 124 farms of northern Italy. Fetuses were collected from 338 sows between 2019 and 2021 and tested for PPVs by real-time PCR-based assays and for other viruses responsible for reproductive disease. At least one PPV species was detected in 59.7% (74/124) of the tested farms. In order, PPV1, PPV5, PPV6, PPV7 and PPV4 were the most frequently detected species, whereas fewer detections were registered for PPV2 and PPV3. Overall, the new PPV2-7 species were detected in 26.6% (90/338) of the cases, both alone or in co-infections: PCV-2 (7.1%, 24/338), PCV-3 (8.2%, 28/338), and PRRSV-1 (6.2%, 21/338) were frequently identified in association with PPVs. Single PPVs detections or co-infections with other agents commonly responsible for reproductive failure should encourage future studies investigating their biological, clinical, and epidemiological role, for a better preparedness for potential emerging challenges in intensive pig production.
Collapse
Affiliation(s)
- Giulia Faustini
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy; (G.F.); (G.F.); (M.D.)
| | - Claudia Maria Tucciarone
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy; (G.F.); (G.F.); (M.D.)
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy; (G.F.); (G.F.); (M.D.)
| | - Anna Donneschi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER) “B. Ubertini”, Via Bianchi 9, 25124 Brescia, Italy; (A.D.); (M.B.B.); (G.L.A.)
| | - Maria Beatrice Boniotti
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER) “B. Ubertini”, Via Bianchi 9, 25124 Brescia, Italy; (A.D.); (M.B.B.); (G.L.A.)
| | - Giovanni Loris Alborali
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER) “B. Ubertini”, Via Bianchi 9, 25124 Brescia, Italy; (A.D.); (M.B.B.); (G.L.A.)
| | - Michele Drigo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy; (G.F.); (G.F.); (M.D.)
| |
Collapse
|
8
|
Vargas-Bermudez DS, Mogollon JD, Franco-Rodriguez C, Jaime J. The Novel Porcine Parvoviruses: Current State of Knowledge and Their Possible Implications in Clinical Syndromes in Pigs. Viruses 2023; 15:2398. [PMID: 38140639 PMCID: PMC10747800 DOI: 10.3390/v15122398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 12/24/2023] Open
Abstract
Parvoviruses (PVs) affect various animal species causing different diseases. To date, eight different porcine parvoviruses (PPV1 through PPV8) are recognized in the swine population, all of which are distributed among subfamilies and genera of the Parvoviridae family. PPV1 is the oldest and is recognized as the primary agent of SMEDI, while the rest of the PPVs (PPV2 through PPV8) are called novel PPVs (nPPVs). The pathogenesis of nPPVs is still undefined, and whether these viruses are putative disease agents is unknown. Structurally, the PPVs are very similar; the differences occur mainly at the level of their genomes (ssDNA), where there is variation in the number and location of the coding genes. Additionally, it is considered that the genome of PVs has mutation rates similar to those of ssRNA viruses, that is, in the order of 10-5-10-4 nucleotide/substitution/year. These mutations manifest mainly in the VP protein, constituting the viral capsid, affecting virulence, tropism, and viral antigenicity. For nPPVs, mutation rates have already been established that are similar to those already described; however, within this group of viruses, the highest mutation rate has been reported for PPV7. In addition to the mutations, recombinations are also reported, mainly in PPV2, PPV3, and PPV7; these have been found between strains of domestic pigs and wild boars and in a more significant proportion in VP sequences. Regarding affinity for cell types, nPPVs have been detected with variable prevalence in different types of organs and tissues; this has led to the suggestion that they have a broad tropism, although proportionally more have been found in lung and lymphoid tissue such as spleen, tonsils, and lymph nodes. Regarding their epidemiology, nPPVs are present on all continents (except PPV8, only in Asia), and within pig farms, the highest prevalences detecting viral genomes have been seen in the fattener and finishing groups. The relationship between nPPVs and clinical manifestations has been complicated to establish. However, there is already some evidence that establishes associations. One of them is PPV2 with porcine respiratory disease complex (PRDC), where causality tests (PCR, ISH, and histopathology) lead to proposing the PPV2 virus as a possible agent involved in this syndrome. With the other nPPVs, there is still no clear association with any pathology. These have been detected in different systems (respiratory, reproductive, gastrointestinal, urinary, and nervous), and there is still insufficient evidence to classify them as disease-causing agents. In this regard, nPPVs (except PPV8) have been found to cause porcine reproductive failure (PRF), with the most prevalent being PPV4, PPV6, and PPV7. In the case of PRDC, nPPVs have also been detected, with PPV2 having the highest viral loads in the lungs of affected pigs. Regarding coinfections, nPPVs have been detected in concurrence in healthy and sick pigs, with primary PRDC and PRF viruses such as PCV2, PCV3, and PRRSV. The effect of these coinfections is not apparent; it is unknown whether they favor the replication of the primary agents, the severity of the clinical manifestations, or have no effect. The most significant limitation in the study of nPPVs is that their isolation has been impossible; therefore, there are no studies on their pathogenesis both in vitro and in vivo. For all of the above, it is necessary to propose basic and applied research on nPPVs to establish if they are putative disease agents, establish their effect on coinfections, and measure their impact on swine production.
Collapse
Affiliation(s)
| | | | | | - Jairo Jaime
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Medicina Veterinaria y de Zootecnia, Departamento de Salud Animal, Centro de Investigación en Infectología e Inmunología Veterinaria (CI3V), Carrera 30 No. 45-03, Bogotá 111321, CP, Colombia; (D.S.V.-B.); (J.D.M.); (C.F.-R.)
| |
Collapse
|
9
|
Jiao Q, Yang L, Liu X, Wen Y, Tian L, Qian P, Chen H, Li X. Isolation and pathogenicity of porcine circovirus type 2 in mice from Guangxi province, China. Virol J 2023; 20:195. [PMID: 37644571 PMCID: PMC10466715 DOI: 10.1186/s12985-023-02161-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Porcine circovirus type 2 (PCV2), a member of the genus Circovirus and family Circoviridae, is a closed, small, circular, and single-stranded DNA virus, and it is a crucial swine pathogen of porcine circovirus-associated diseases (PCVADs). PCV2 was first detected in PK-15(ATCC-CCL) cells in 1974, which has caused significant economic loss to the swine industry throughout the world. And the first case of PCV2 was reported in China in 2000. At present, PCV2d is the main genotype circulating widely in China. METHODS Lymph samples were obtained from piglets with emaciation and respiratory disease in Guangxi province, China. The main pathogens were detected via PCR from lymph samples, and then PCV2-single positive samples were used to inoculate with PK-15 cells. After successive generations, the isolate was subsequently identified by polymerase chain reaction (PCR), immunofluorescence assay (IFA), Western blot (WB), and transmission electron microscopic (TEM). The full-length genome and genetic characterization of isolates were analyzed by Sanger sequencing. The TCID50 of the PCV2-GX-6 was determined by IFA, and the pathogenicity of PCV2 in BALB/c mice was analyzed via the mouse model. RESULTS The isolates were successfully isolated from clinical samples. The complete genome of PCV2-GX-4, PCV2-GX-6, PCV2-GX-7, PCV2-GX-11 and PCV2-GX-16 have been amplified, sequenced, and deposited in GenBank (accession no.: OR133747, OQ803314, OR133748, OR133749, OR133750). Homology and phylogenetic analysis with reference strains showed that the isolates belonged to the PCV2d genotype. The PCV2-GX-6 could be stably passaged more than 30 times in PK-15 cells. PCV2-GX-6 was identified by PCR, IFA, WB and TEM. The results of homology showed that PCV2-GX-6 was closely related to the reference strains PCV2-JS17-8 (GenBank accession no.: MH211363). Pathogenicity studies in mice have shown that PCV2-GX-6 can lead to growth inhibition of mice. Meanwhile PCV2-GX-6 caused the typical lesions of spleen, lung and kidney. The results of qPCR showed that PCV2 can effectively proliferate in the liver, spleen, lung, and kidney. CONCLUSION PCV2-GX-6 can successfully infect BLAB/c mice, effectively proliferate in major organs, and possessed high pathogenicity. In conclusion, combined with the genotype and pathogenicity of PCV2d currently prevalent, PCV2-GX-6 can be used as a candidate vaccine strain.
Collapse
Affiliation(s)
- Qiulin Jiao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Liuyue Yang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Xiangzu Liu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Yanwen Wen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Linxing Tian
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Ping Qian
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, PR China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, PR China
| | - Xiangmin Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, PR China.
| |
Collapse
|
10
|
Kim SC, Kim JH, Kim JY, Park GS, Jeong CG, Kim WI. Prevalence of porcine parvovirus 1 through 7 (PPV1-PPV7) and co-factor association with PCV2 and PRRSV in Korea. BMC Vet Res 2022; 18:133. [PMID: 35395853 PMCID: PMC8994367 DOI: 10.1186/s12917-022-03236-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/30/2022] [Indexed: 11/10/2022] Open
Abstract
Background Classical porcine parvovirus (PPV1) and novel porcine parvoviruses designated porcine parvovirus 2 through 7 (PPV2-PPV7) are widespread in pig populations. The objective of this study was to investigate the prevalence rates of PPV1-PPV7 in Korea by detecting PPVs in serum, lung and fecal samples and to elucidate the association of PPVs with porcine circovirus type 2 (PCV2) and porcine reproductive and respiratory virus (PRRSV), major pathogens involved in porcine respiratory disease complex (PRDC). A total of 286 serum, 481 lung, and 281 fecal samples collected from 2018 to 2020 were analyzed. Results The results showed that PPVs are widespread in Korea; the highest detection rates were found in lung samples and ranged from 7.9% (PPV1) to 32.6% (PPV2). Regarding age groups, fattening pigs had the highest detection rates of PPVs, ranging from 6.4% (PPV1) to 36.5% (PPV6); this finding suggests the chronic nature of PPV infections and the continual circulation of these viruses. When compared with PCV2- and PRRSV-negative lung samples, PCV2-positive samples with or without PRRSV positivity had significantly higher detection levels of PPV1 and PPV6. In contrast, the prevalence of PPV2 and PPV7 was significantly higher in PRRSV-infected lung samples regardless of PCV2 detection. PPV5 was detected significantly more frequently in samples with both PCV2 and PRRSV positivity. Conclusions This study could offer a better understanding of the role of PPVs in PCV2 and/or PRRSV infection though further studies are needed to experimentally assess the impact of PPVs in coinfections. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03236-1.
Collapse
Affiliation(s)
- Seung-Chai Kim
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan, 54596, Korea
| | - Jae-Hong Kim
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan, 54596, Korea
| | - Jae-Yeob Kim
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan, 54596, Korea
| | - Gyeong-Seo Park
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan, 54596, Korea
| | - Chang-Gi Jeong
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan, 54596, Korea
| | - Won-Il Kim
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan, 54596, Korea.
| |
Collapse
|