1
|
Damodar T, Pattabiraman C, Singh B, Jose M, Prabhu N, L A, Prasad P, Kinhal UV, Lalitha AV, Dsouza FS, Sajjan SV, Gowda VK, Ravi V, Kolamunnage‐Dona R, Michael BD, Solomon T, Yadav R, Turtle L. Microbiological Investigations for Chikungunya Virus in Children With Acute Encephalitis Syndrome in a Non-Outbreak Setting in Southern India. J Med Virol 2025; 97:e70233. [PMID: 39953947 PMCID: PMC11829551 DOI: 10.1002/jmv.70233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/29/2024] [Accepted: 01/31/2025] [Indexed: 02/17/2025]
Abstract
Chikungunya virus (CHIKV) is an emerging cause of acute encephalitis syndrome (AES) in India, with limited data on its role in childhood AES in southern India. We systematically evaluated children with AES in southern India during a non-epidemic period for CHIKV. Serum and cerebrospinal fluid (CSF) samples were tested for CHIKV using IgM ELISA and real-time reverse transcriptase PCR. Amplicon sequencing was performed on PCR-positive samples. Clinical and laboratory features were compared between children with and without CSF CHIKV positivity (PCR/IgM antibodies). Of 376 children with AES, 20 (5.3%) had positive CHIKV tests. Co-infections were common, particularly with scrub typhus. Children presented with diverse symptoms affecting various organ systems. Neurological manifestations included meningism, seizures, cerebellar signs, behavioral abnormalities, cranial nerve involvement, involuntary movements, and hemiparesis/hemiplegia. Children with CSF CHIKV positivity showed more focal neurological deficits and transaminitis, and less musculoskeletal symptoms. Sequencing confirmation of CHIKV was made in all patients with positive CHIKV PCR, revealing a close relationship with 2016 Kenyan and Indian strains, albeit in a different clade within the East/Central/South African genotype. Along with important mutations known to impact CHIKV infectivity, four novel amino acid substitutions were detected in envelope protein coding regions. Our findings underscore the importance of routine and comprehensive CHIKV testing for children with AES, irrespective of season/outbreak. The high rate of co-infections warrants further research. Continued genomic surveillance is essential to monitor emerging mutations with epidemic potential, increased severity and the risk of neurological disease.
Collapse
Affiliation(s)
- Tina Damodar
- Department of NeurovirologyNational Institute of Mental Health & NeurosciencesBangaloreIndia
| | - Chitra Pattabiraman
- Department of NeurovirologyNational Institute of Mental Health & NeurosciencesBangaloreIndia
| | - Bhagteshwar Singh
- Tropical & Infectious Diseases UnitRoyal Liverpool University HospitalLiverpoolUK
- Institute of Infection, Veterinary and Ecological SciencesUniversity of LiverpoolLiverpoolUK
- Department of Infectious DiseasesChristian Medical CollegeVelloreIndia
| | - Maria Jose
- Department of NeurovirologyNational Institute of Mental Health & NeurosciencesBangaloreIndia
| | - Namratha Prabhu
- Department of NeurovirologyNational Institute of Mental Health & NeurosciencesBangaloreIndia
| | - Akhila L
- Department of NeurovirologyNational Institute of Mental Health & NeurosciencesBangaloreIndia
| | - Pramada Prasad
- Department of NeurovirologyNational Institute of Mental Health & NeurosciencesBangaloreIndia
| | - Uddhava V. Kinhal
- Department of Pediatric NeurologyIndira Gandhi Institute of Child HealthBangaloreIndia
| | - A. V. Lalitha
- Department of Pediatric Critical CareSt John's Medical College and HospitalBangaloreIndia
| | | | | | - Vykuntaraju K. Gowda
- Department of Pediatric NeurologyIndira Gandhi Institute of Child HealthBangaloreIndia
| | - Vasanthapuram Ravi
- Department of NeurovirologyNational Institute of Mental Health & NeurosciencesBangaloreIndia
| | | | - Benedict D. Michael
- Department of Clinical Infection Microbiology and Immunology, Institute of Infection, Veterinary, and Ecological ScienceUniversity of LiverpoolLiverpoolUK
- National Institute for Health and Care Research Health Protection Research Unit in Emerging and Zoonotic InfectionsUniversity of LiverpoolLiverpoolUK
- The Pandemic InstituteLiverpoolUK
- Department of NeurologyThe Walton Centre NHS Foundation TrustLiverpoolUK
| | - Tom Solomon
- National Institute for Health and Care Research Health Protection Research Unit in Emerging and Zoonotic InfectionsUniversity of LiverpoolLiverpoolUK
- The Pandemic InstituteLiverpoolUK
- Department of NeurologyThe Walton Centre NHS Foundation TrustLiverpoolUK
| | - Ravi Yadav
- Department of NeurologyNational Institute of Mental Health & NeurosciencesBangaloreIndia
| | - Lance Turtle
- National Institute for Health and Care Research Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological SciencesUniversity of Liverpool
- Liverpool University Hospitals NHS Foundation TrustLiverpoolUK
| |
Collapse
|
2
|
Mahin A, Chikmagalur Ravindra S, Ramesh P, Naik P, Raju R, Keshava Prasad TS, Abhinand CS. Unveiling Actin Cytoskeleton Role in Mediating Chikungunya-Associated Arthritis: An Integrative Proteome-Metabolome Study. Vector Borne Zoonotic Dis 2024; 24:753-762. [PMID: 38717066 DOI: 10.1089/vbz.2024.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
Background: Chikungunya is a zoonotic disease caused by the Chikungunya virus (CHIKV), primarily transmitted to humans through infected Aedes mosquitoes. The infection is characterized by symptoms such as high fever, musculoskeletal pain, polyarthritis, and a rash, which can lead to severe complications such as encephalitis, meningitis, and even fatalities. While many disease manifestations resemble those of other viral infections, chronic arthritis caused by CHIKV is unique, and its molecular mechanisms remain ill-defined. Materials and Methods: Proteomics data from both cellular and patient levels of CHIKV infection were curated from PubMed and screened using inclusion and exclusion criteria. Patient serum proteomics data obtained from PRIDE underwent reanalysis using Proteome Discoverer 2.2. Enrichment and protein-protein interaction network analysis were conducted on differentially expressed proteins from both serum and cellular datasets. Metabolite data from CHIKV-infected patients were further retrieved, and their protein binding partners were identified using BindingDB. The protein-metabolite interaction pathway was further developed using MetaboAnalyst. Results: The proteomics data analysis revealed differential expression of proteins involved in critical host mechanisms, such as cholesterol metabolism and mRNA splicing, during CHIKV infection. Consistent upregulation of two actin cytoskeleton proteins, TAGLN2 and PFN1, was noted in both serum and cellular datasets, and their upregulations are associated with arthritis. Furthermore, alterations in purine metabolism were observed in the integrative proteome-metabolome analysis, correlating with cytoskeletal remodelling. Conclusion: Collectively, this integrative view sheds light on the involvement of actin cytoskeleton remodeling proteins and purine metabolic pathways in the development of arthritis during CHIKV infection.
Collapse
Affiliation(s)
- Althaf Mahin
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to Be University), Mangalore, India
| | - Sourav Chikmagalur Ravindra
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to Be University), Mangalore, India
- Department of Biosciences, Mangalore University, Mangalore, India
| | - Poornima Ramesh
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to Be University), Mangalore, India
| | - Prashantha Naik
- Department of Biosciences, Mangalore University, Mangalore, India
| | - Rajesh Raju
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Mangalore, India
| | | | - Chandran S Abhinand
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to Be University), Mangalore, India
| |
Collapse
|
3
|
Junior ADS, de Melo BO, Costa AKS, de Jesus Ferreira Costa D, Castro ÉJM, de Jesus Gomes Turri R, de Sousa Monteiro A, Zagmignan A, Bomfim MRQ, de Silva LCN. Molecular characterization of Chikungunya virus recovered from patients in the Maranhão state, Brazil. Mol Biol Rep 2024; 51:375. [PMID: 38427097 DOI: 10.1007/s11033-024-09252-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/12/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Chikungunya virus (CHIKV) is an arbovirus from the Togaviridae family which has four genotypes: West African (WA), East/Central/South African (ECSA) and Asian/Caribbean lineage (AL) and Indian Ocean Lineage (IOL). The ECSA genotype was first registered in Brazil in Feira de Santana and spread to all Brazilian regions. This study reports the characterization of CHIKV isolates recovered from sera samples of fifty patients from seventeen cities in Maranhão, a state from Brazilian northeast region and part of the Legal Amazon area. METHODS AND RESULTS Primers were developed to amplify the partial regions coding structural proteins (E1, E3, E2, 6 K, and Capsid C). The consensus sequences have 2871 bp, covering approximately 24% of the genome. The isolates were highly similar (> 99%) to the ECSA isolate from Feira de Santana (BHI3734/H804698), presenting 30 non-synonymous mutations in E1 (5.95%), 18 in E2 (4.46%), and 1 in E3 (3.03%), taking the BHI3734/H804698 isolate as standard. Although the mutations described have not previously been related to increased infectivity or transmissibility of CHIKV, in silico analysis showed changes in physicochemical characteristics, antigenicity, and B cell epitopes of E1 and E2. CONCLUSIONS These findings demonstrate the importance of molecular approaches for monitoring the viral adaptations undergone by CHIKV and its geographic distribution.
Collapse
Affiliation(s)
| | - Bruna Oliveira de Melo
- Laboratório de Microbiologia Aplicada, Universidade CEUMA, São Luís, MA, 65075-120, Brazil
| | | | | | | | | | | | - Adrielle Zagmignan
- Laboratório de Patogenicidade Microbiana, Universidade CEUMA, São Luís, MA, 65075-120, Brazil
| | | | | |
Collapse
|
4
|
Su L, Lou X, Yan H, Yang Z, Mao H, Yao W, Sun Y, Pan J, Zhang Y. Importation of a novel Indian Ocean lineage carrying E1-K211E and E2-V264A of Chikungunya Virus in Zhejiang Province, China, in 2019. Virus Genes 2023; 59:693-702. [PMID: 37468826 PMCID: PMC10499945 DOI: 10.1007/s11262-023-02020-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023]
Abstract
The chikungunya virus (CHIKV) is widespread. In Zhejiang province, China, CHIKV infection is often associated with travelers from tropical and subtropical countries. In the present study, three CHIKV isolates from serum samples of travelers in Zhejiang province in 2019 were sequenced, and phylogenetically analyzed to study their molecular characteristics. Sequence analysis showed that the non-structural protein and the structural protein had 37 and 28 amino acid mutations, respectively; no mutation site was found at the E1-A226 residue, which could increase the adaptability of CHIKV to Aedes albopictus. All three samples carried two mutations, namely, E1-K211E and E2-V264A, which were introduced to Bangladesh around late 2015 and Thailand in early 2017. Phylogenetic analysis revealed that these three CHIKVs were Indian Ocean lineage of the East Africa/Central/South Africa genotype (ECSA) and that the MF773566 strain from Bangladesh (Australia/Bangladesh 2017) had the closest evolutionary relationship. The three CHICKs imported into Zhejiang province in 2019 belonged to the ECSA genotype and had multiple amino acid variation sites. The variation in the three samples provides a certain reference for the subsequent research on CHIKV evolution.
Collapse
Affiliation(s)
- Lingxuan Su
- Zhejiang Provincial Center of Disease Control and Prevention, 3399 Binsheng Road, Hangzhou, 310051 China
| | - Xiuyu Lou
- Zhejiang Provincial Center of Disease Control and Prevention, 3399 Binsheng Road, Hangzhou, 310051 China
| | - Hao Yan
- Zhejiang Provincial Center of Disease Control and Prevention, 3399 Binsheng Road, Hangzhou, 310051 China
| | - Zhangnv Yang
- Zhejiang Provincial Center of Disease Control and Prevention, 3399 Binsheng Road, Hangzhou, 310051 China
| | - Haiyan Mao
- Zhejiang Provincial Center of Disease Control and Prevention, 3399 Binsheng Road, Hangzhou, 310051 China
| | - Wenwu Yao
- Zhejiang Provincial Center of Disease Control and Prevention, 3399 Binsheng Road, Hangzhou, 310051 China
| | - Yi Sun
- Zhejiang Provincial Center of Disease Control and Prevention, 3399 Binsheng Road, Hangzhou, 310051 China
| | - Junhang Pan
- Zhejiang Provincial Center of Disease Control and Prevention, 3399 Binsheng Road, Hangzhou, 310051 China
| | - Yanjun Zhang
- Zhejiang Provincial Center of Disease Control and Prevention, 3399 Binsheng Road, Hangzhou, 310051 China
| |
Collapse
|
5
|
Xavier J, Alcantara LCJ, Fonseca V, Lima M, Castro E, Fritsch H, Oliveira C, Guimarães N, Adelino T, Evaristo M, Rodrigues ES, Santos EV, de La-Roque D, de Moraes L, Tosta S, Neto A, Rosewell A, Mendonça AF, Leite A, Vasconcelos A, Silva de Mello AL, Vasconcelos B, Montalbano CA, Zanluca C, Freitas C, de Albuquerque CFC, Duarte Dos Santos CN, Santos CS, Dos Santos CA, Gonçalves CCM, Teixeira D, Neto DFL, Cabral D, de Oliveira EC, Noia Maciel EL, Pereira FM, Iani F, de Carvalho FP, Andrade G, Bezerra G, de Castro Lichs GG, Pereira GC, Barroso H, Franz HCF, Ferreira H, Gomes I, Riediger IN, Rodrigues I, de Siqueira IC, Silva J, Rico JM, Lima J, Abrantes J, do Nascimento JPM, Wasserheit JN, Pastor J, de Magalhães JJF, Luz KG, Lima Neto LG, Frutuoso LCV, da Silva LB, Sena L, de Sousa LAF, Pereira LA, Demarchi L, Câmara MCB, Astete MG, Almiron M, Lima M, Umaki Zardin MCS, Presibella MM, Falcão MB, Gale M, Freire N, Marques N, de Moura NFO, Almeida Da Silva PE, Rabinowitz P, da Cunha RV, Trinta KS, do Carmo Said RF, Kato R, Stabeli R, de Jesus R, Hans Santos R, Kashima S, Slavov SN, Andrade T, Rocha T, Carneiro T, Nardy V, da Silva V, Carvalho WG, Van Voorhis WC, Araujo WN, de Filippis AMB, Giovanetti M. Increased interregional virus exchange and nucleotide diversity outline the expansion of chikungunya virus in Brazil. Nat Commun 2023; 14:4413. [PMID: 37479700 PMCID: PMC10362057 DOI: 10.1038/s41467-023-40099-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023] Open
Abstract
The emergence and reemergence of mosquito-borne diseases in Brazil such as yellow fever, zika, chikungunya, and dengue have had serious impacts on public health. Concerns have been raised due to the rapid dissemination of the chikungunya virus across the country since its first detection in 2014 in Northeast Brazil. In this work, we carried out on-site training activities in genomic surveillance in partnership with the National Network of Public Health Laboratories that have led to the generation of 422 chikungunya virus genomes from 12 Brazilian states over the past two years (2021-2022), a period that has seen more than 312 thousand chikungunya fever cases reported in the country. These genomes increased the amount of available data and allowed a more comprehensive characterization of the dispersal dynamics of the chikungunya virus East-Central-South-African lineage in Brazil. Tree branching patterns revealed the emergence and expansion of two distinct subclades. Phylogeographic analysis indicated that the northeast region has been the leading hub of virus spread towards other regions. Increased frequency of C > T transitions among the new genomes suggested that host restriction factors from the immune system such as ADAR and AID/APOBEC deaminases might be driving the genetic diversity of the chikungunya virus in Brazil.
Collapse
Affiliation(s)
- Joilson Xavier
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luiz Carlos Junior Alcantara
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil.
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - Vagner Fonseca
- Organização Pan-Americana da Saúde, Organização Mundial da Saúde, Brasília, Brazil
| | - Mauricio Lima
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
- Laboratório Central de Saúde Pública de Minas Gerais, Fundação Ezequiel Dias, Belo Horizonte, Brazil
| | - Emerson Castro
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
- Laboratório Central de Saúde Pública de Minas Gerais, Fundação Ezequiel Dias, Belo Horizonte, Brazil
| | - Hegger Fritsch
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Carla Oliveira
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Natalia Guimarães
- Laboratório Central de Saúde Pública de Minas Gerais, Fundação Ezequiel Dias, Belo Horizonte, Brazil
| | - Talita Adelino
- Laboratório Central de Saúde Pública de Minas Gerais, Fundação Ezequiel Dias, Belo Horizonte, Brazil
| | | | | | | | | | - Laise de Moraes
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Stephane Tosta
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Adelino Neto
- Laboratório Central de Saúde Pública do Piaui, Piauí, Brazil
| | - Alexander Rosewell
- Organização Pan-Americana da Saúde, Organização Mundial da Saúde, Brasília, Brazil
| | | | - Anderson Leite
- Laboratório Central de Saúde Pública de Alagoas, Maceió, Brazil
| | | | | | | | | | - Camila Zanluca
- Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Brazil
| | - Carla Freitas
- Coordenação Geral dos Laboratórios de Saúde Pública, Ministério da Saúde, Brasília, Brazil
| | | | | | - Cleiton S Santos
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | | | | | - Dalane Teixeira
- Laboratório Central de Saúde Pública da Paraíba, João Pessoa, Brazil
| | - Daniel F L Neto
- Coordenação Geral dos Laboratórios de Saúde Pública, Ministério da Saúde, Brasília, Brazil
| | - Diego Cabral
- Laboratório Central de Saúde Pública de Pernambuco, Natal, Brazil
| | | | - Ethel L Noia Maciel
- Secretaria de Vigilância em Saúde e Ambiente, Ministério da Saúde, Brasília, Brazil
| | | | - Felipe Iani
- Laboratório Central de Saúde Pública de Minas Gerais, Fundação Ezequiel Dias, Belo Horizonte, Brazil
| | | | | | - Gabriela Bezerra
- Laboratório Central de Saúde Pública de Sergipe, Aracaju, Brazil
| | | | - Glauco Carvalho Pereira
- Laboratório Central de Saúde Pública de Minas Gerais, Fundação Ezequiel Dias, Belo Horizonte, Brazil
| | - Haline Barroso
- Laboratório Central de Saúde Pública da Paraíba, João Pessoa, Brazil
| | | | - Hivylla Ferreira
- Laboratório Central de Saúde Pública do Maranhão, São Luís, Brazil
| | - Iago Gomes
- Laboratório Central de Saúde Pública do Rio Grande do Norte, Natal, Brazil
| | | | | | | | - Jacilane Silva
- Laboratório Central de Saúde Pública de Pernambuco, Natal, Brazil
| | | | - Jaqueline Lima
- Laboratório Central de Saúde Pública da Bahia, Salvador, Brazil
| | - Jayra Abrantes
- Laboratório Central de Saúde Pública do Rio Grande do Norte, Natal, Brazil
| | | | - Judith N Wasserheit
- Department of Global Health and Medicine, University of Washington, Washington, USA
| | - Julia Pastor
- Laboratório Central de Saúde Pública de Pernambuco, Natal, Brazil
| | - Jurandy J F de Magalhães
- Laboratório Central de Saúde Pública de Pernambuco, Natal, Brazil
- Universidade de Pernambuco, Serra Talhada, Brazil
| | | | | | - Livia C V Frutuoso
- Coordenação Geral das Arboviroses, Ministério da Saúde, Brasília, Brazil
| | | | - Ludmila Sena
- Laboratório Central de Saúde Pública de Sergipe, Aracaju, Brazil
| | | | | | - Luiz Demarchi
- Laboratório Central de Saúde Pública do Mato Grosso do Sul, Campo Grande, Brazil
| | - Magaly C B Câmara
- Laboratório Central de Saúde Pública do Rio Grande do Norte, Natal, Brazil
| | | | | | - Maricelia Lima
- Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
| | | | | | - Melissa B Falcão
- Secretaria de Saúde de Feira de Santana, Feira de Santana, Brazil
| | - Michael Gale
- Department of Immunology, University of Washington, Washington, USA
| | - Naishe Freire
- Laboratório Central de Saúde Pública de Pernambuco, Natal, Brazil
| | - Nelson Marques
- Laboratório Central de Saúde Pública do Paraná, Paraná, Brazil
| | - Noely F O de Moura
- Coordenação Geral das Arboviroses, Ministério da Saúde, Brasília, Brazil
| | | | - Peter Rabinowitz
- Department of Environmental and Occupational Health Sciences, University of Washington, Washington, USA
| | - Rivaldo V da Cunha
- Fundação Oswaldo Cruz, Instituto de Tecnologia em Imunobiológicos, Rio de Janeiro, Brazil
| | - Karen S Trinta
- Fundação Oswaldo Cruz, Instituto de Tecnologia em Imunobiológicos, Rio de Janeiro, Brazil
| | | | - Rodrigo Kato
- Coordenação Geral dos Laboratórios de Saúde Pública, Ministério da Saúde, Brasília, Brazil
| | - Rodrigo Stabeli
- Organização Pan-Americana da Saúde, Organização Mundial da Saúde, Brasília, Brazil
| | - Ronaldo de Jesus
- Coordenação Geral dos Laboratórios de Saúde Pública, Ministério da Saúde, Brasília, Brazil
| | | | - Simone Kashima
- Fundação Hemocentro de Ribeirão Preto, Ribeirão Preto, Brazil
| | - Svetoslav N Slavov
- Fundação Hemocentro de Ribeirão Preto, Ribeirão Preto, Brazil
- Center for Research Development, CDC, Butantan Institute, São Paulo, Brazil
| | - Tamires Andrade
- Laboratório Central de Saúde Pública da Paraíba, João Pessoa, Brazil
| | - Themis Rocha
- Laboratório Central de Saúde Pública do Rio Grande do Norte, Natal, Brazil
| | - Thiago Carneiro
- Laboratório Central de Saúde Pública da Paraíba, João Pessoa, Brazil
| | - Vanessa Nardy
- Laboratório Central de Saúde Pública da Bahia, Salvador, Brazil
| | | | | | | | | | | | - Marta Giovanetti
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil.
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
- Sciences and Technologies for Sustainable Development and One Health, University of Campus Bio-Medico, Rome, Italy.
| |
Collapse
|
6
|
Xavier J, Alcantara L, Fonseca V, Lima M, Castro E, Fritsch H, Oliveira C, Guimarães N, Adelino T, Evaristo M, Rodrigues ES, Santos EV, de La-Roque D, de Moraes L, Tosta S, Neto A, Rosewell A, Mendonça AF, Leite A, Vasconcelos A, Silva de Mello AL, Vasconcelos B, Montalbano CA, Zanluca C, Freitas C, de Albuquerque CFC, Duarte dos Santos CN, Santos CS, dos Santos CA, Maymone Gonçalves CC, Teixeira D, Neto DFL, Cabral D, de Oliveira EC, Noia Maciel EL, Pereira FM, Iani F, de Carvalho FP, Andrade G, Bezerra G, de Castro Lichs GG, Pereira GC, Barroso H, Ferreira Franz HC, Ferreira H, Gomes I, Riediger IN, Rodrigues I, de Siqueira IC, Silva J, Rico JM, Lima J, Abrantes J, do Nascimento JPM, Wasserheit JN, Pastor J, de Magalhães JJF, Luz KG, Lima Neto LG, Frutuoso LCV, da Silva LB, Sena L, de Sousa LAF, Pereira LA, Demarchi L, Câmara MCB, Astete MG, Almiron M, Lima M, Umaki Zardin MCS, Presibella MM, Falcão MB, Gale M, Freire N, Marques N, de Moura NFO, Almeida Da Silva PE, Rabinowitz P, da Cunha RV, Trinta KS, do Carmo Said RF, Kato R, Stabeli R, de Jesus R, Santos RH, Haddad SK, Slavov SN, Andrade T, Rocha T, Carneiro T, Nardy V, da Silva V, Carvalho WG, Van Voorhis WC, Araujo WN, de Filippis AM, Giovanetti M. Increased interregional virus exchange and nucleotide diversity outline the expansion of the chikungunya virus ECSA lineage in Brazil. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.28.23287733. [PMID: 37034611 PMCID: PMC10081416 DOI: 10.1101/2023.03.28.23287733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
The emergence and reemergence of mosquito-borne diseases in Brazil such as Yellow Fever, Zika, Chikungunya, and Dengue have had serious impacts on public health. Concerns have been raised due to the rapid dissemination of the chikungunya virus (CHIKV) across the country since its first detection in 2014 in Northeast Brazil. Faced with this scenario, on-site training activities in genomic surveillance carried out in partnership with the National Network of Public Health Laboratories have led to the generation of 422 CHIKV genomes from 12 Brazilian states over the past two years (2021-2022), a period that has seen more than 312 thousand chikungunya fever cases reported in the country. These new genomes increased the amount of available data and allowed a more comprehensive characterization of the dispersion dynamics of the CHIKV East-Central-South-African (ECSA) lineage in Brazil. Tree branching patterns revealed the emergence and expansion of two distinct subclades. Phylogeographic analysis indicated that the northeast region has been the leading hub of virus spread towards other regions. Increased frequency of C>T transitions among the new genomes suggested that host restriction factors from the immune system such as ADAR and AID/APOBEC deaminases might be driving CHIKV ECSA lineage genetic diversity in Brazil.
Collapse
Affiliation(s)
- Joilson Xavier
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Minas Gerais, Brazil
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Luiz Alcantara
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Minas Gerais, Brazil
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
- Correspondence: , &
| | - Vagner Fonseca
- Organização Pan-Americana da Saúde, Organização Mundial da Saúde, Brazil
| | - Mauricio Lima
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Minas Gerais, Brazil
- Laboratório Central de Saúde Pública de Minas Gerais, Fundação Ezequiel Dias, Brazil
| | - Emerson Castro
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Minas Gerais, Brazil
- Laboratório Central de Saúde Pública de Minas Gerais, Fundação Ezequiel Dias, Brazil
| | - Hegger Fritsch
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Minas Gerais, Brazil
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Carla Oliveira
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Natalia Guimarães
- Laboratório Central de Saúde Pública de Minas Gerais, Fundação Ezequiel Dias, Brazil
| | - Talita Adelino
- Laboratório Central de Saúde Pública de Minas Gerais, Fundação Ezequiel Dias, Brazil
| | | | | | | | | | - Laise de Moraes
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Bahia, Brazil
| | - Stephane Tosta
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Minas Gerais, Brazil
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Adelino Neto
- Laboratório Central de Saúde Pública do Piaui, Brazil
| | - Alexander Rosewell
- Organização Pan-Americana da Saúde, Organização Mundial da Saúde, Brazil
| | | | | | | | | | | | | | - Camila Zanluca
- Instituto Carlos Chagas, Fundação Oswaldo Cruz, Paraná, Brazil
| | - Carla Freitas
- Coordenação Geral dos Laboratórios de Saúde Pública, Ministério da Saúde, Brazil
| | | | | | | | | | | | | | - Daniel F. L. Neto
- Coordenação Geral dos Laboratórios de Saúde Pública, Ministério da Saúde, Brazil
| | - Diego Cabral
- Laboratório Central de Saúde Pública de Pernambuco, Brazil
| | | | | | | | - Felipe Iani
- Laboratório Central de Saúde Pública de Minas Gerais, Fundação Ezequiel Dias, Brazil
| | | | | | | | | | | | | | | | | | - Iago Gomes
- Laboratório Central de Saúde Pública do Rio Grande do Norte, Brazil
| | | | | | | | - Jacilane Silva
- Laboratório Central de Saúde Pública de Pernambuco, Brazil
| | | | | | - Jayra Abrantes
- Laboratório Central de Saúde Pública do Rio Grande do Norte, Brazil
| | | | | | - Julia Pastor
- Laboratório Central de Saúde Pública de Pernambuco, Brazil
| | - Jurandy J. F. de Magalhães
- Laboratório Central de Saúde Pública de Pernambuco, Brazil
- Universidade de Pernambuco Campus Serra Talhada
| | | | | | | | | | - Ludmila Sena
- Laboratório Central de Saúde Pública de Sergipe, Brazil
| | | | | | - Luiz Demarchi
- Laboratório Central de Saúde Pública do Mato Grosso do Sul, Brazil
| | | | | | | | | | | | | | - Melissa B. Falcão
- Secretaria de Saúde de Feira de Santana, Feira de Santana, Bahia, Brazil
| | - Michael Gale
- Department of Immunology, University of Washington, USA
| | - Naishe Freire
- Laboratório Central de Saúde Pública de Pernambuco, Brazil
| | | | | | | | - Peter Rabinowitz
- Department of Environmental and Occupational Health Sciences, University of Washington, USA
| | | | - Karen S. Trinta
- Fundação Oswaldo Cruz, Instituto de Tecnologia em Imunobiológicos, Brazil
| | | | - Rodrigo Kato
- Coordenação Geral dos Laboratórios de Saúde Pública, Ministério da Saúde, Brazil
| | - Rodrigo Stabeli
- Organização Pan-Americana da Saúde, Organização Mundial da Saúde, Brazil
| | - Ronaldo de Jesus
- Coordenação Geral dos Laboratórios de Saúde Pública, Ministério da Saúde, Brazil
| | | | | | - Svetoslav N. Slavov
- Fundação Hemocentro de Ribeirão Preto, Brazil
- Center for Research Development, CDC, Butantan Institute, Brazil
| | | | - Themis Rocha
- Laboratório Central de Saúde Pública do Rio Grande do Norte, Brazil
| | | | - Vanessa Nardy
- Laboratório Central de Saúde Pública da Bahia, Brazil
| | | | | | | | | | - Ana M.B. de Filippis
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Correspondence: , &
| | - Marta Giovanetti
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Minas Gerais, Brazil
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
- Sciences and Technologies for Sustainable Development and One Health, University of Campus Bio-Medico, Italy
- Correspondence: , &
| |
Collapse
|
7
|
Phadungsombat J, Imad HA, Nakayama EE, Leaungwutiwong P, Ramasoota P, Nguitragool W, Matsee W, Piyaphanee W, Shioda T. Spread of a Novel Indian Ocean Lineage Carrying E1-K211E/E2-V264A of Chikungunya Virus East/Central/South African Genotype across the Indian Subcontinent, Southeast Asia, and Eastern Africa. Microorganisms 2022; 10:354. [PMID: 35208808 PMCID: PMC8878743 DOI: 10.3390/microorganisms10020354] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 01/27/2023] Open
Abstract
The Indian Ocean Lineage (IOL) of the chikungunya virus (CHIKV) East/Central/South African (ECSA) genotype, which originated in Kenya, spread to the Indian ocean and the Indian subcontinent, and then expanded through Southeast Asia in the previous decade. It carried an adaptive mutation E1-A226V, which enhances CHIKV replication in Aedes albopictus. However, the IOL CHIKV of the most recent outbreaks during 2016-2020 in India, Pakistan, Bangladesh, the Maldives, Myanmar, Thailand, and Kenya lacked E1-A226V but carried E1-K211E and E2-V264A. Recent CHIKV genome sequences of the Maldives and Thailand were determined, and their phylogenetic relationships were further investigated together with IOL sequences reported in 2004-2020 in the database. The results showed that the ancestral IOLs diverged to a sub-lineage E1-K211E/E2-V264A, probably in India around 2008, and caused sporadic outbreaks in India during 2010-2015 and in Kenya in 2016. The massive expansion of this new sub-lineage occurred after the acquisition of E1-I317V in other neighboring and remote regions in 2014-2020. Additionally, the phylogenetic tree indicated that independent clades formed according to the geographical regions and introduction timing. The present results using all available partial or full sequences of the recent CHIKVs emphasized the dynamics of the IOL sub-lineages in the Indian subcontinent, Southeast Asia, and Eastern Africa.
Collapse
Affiliation(s)
- Juthamas Phadungsombat
- Mahidol-Osaka Center for Infectious Diseases (MOCID), Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
- Center for Infectious Disease Education and Research, Department of Viral Infections, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0871, Japan; (H.A.I.); (E.E.N.)
| | - Hisham A. Imad
- Center for Infectious Disease Education and Research, Department of Viral Infections, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0871, Japan; (H.A.I.); (E.E.N.)
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
| | - Emi E. Nakayama
- Center for Infectious Disease Education and Research, Department of Viral Infections, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0871, Japan; (H.A.I.); (E.E.N.)
| | - Pornsawan Leaungwutiwong
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
| | - Pongrama Ramasoota
- Center of Excellence for Antibody Research (CEAR), Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
| | - Wang Nguitragool
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Wasin Matsee
- Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (W.M.); (W.P.)
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Watcharapong Piyaphanee
- Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (W.M.); (W.P.)
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Tatsuo Shioda
- Mahidol-Osaka Center for Infectious Diseases (MOCID), Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
- Center for Infectious Disease Education and Research, Department of Viral Infections, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0871, Japan; (H.A.I.); (E.E.N.)
| |
Collapse
|
8
|
Shukla M, Chandley P, Tapryal S, Kumar N, Mukherjee SP, Rohatgi S. Expression, Purification, and Refolding of Chikungunya Virus Full-Length Envelope E2 Protein along with B-Cell and T-Cell Epitope Analyses Using Immuno-Informatics Approaches. ACS OMEGA 2022; 7:3491-3513. [PMID: 35128258 PMCID: PMC8811930 DOI: 10.1021/acsomega.1c05975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/10/2021] [Indexed: 05/17/2023]
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus, which causes severe illness in humans and is responsible for epidemic outbreaks in Africa, Asia, North and South America, and Europe. Despite its increased global prevalence, no licensed vaccines are available to date for treating or preventing CHIKV infection. The envelope E2 protein is one of the promising subunit vaccine candidates against CHIKV. In this study, we describe successful cloning, expression, and purification of CHIKV E2 full-length (E2-FL) and truncated (E2-ΔC and E2-ΔNC) proteins in the Escherichia coli expression system. The recombinant E2 proteins were purified from inclusion bodies using Ni-NTA chromatography. Further, we describe a detailed refolding procedure for obtaining the CHIKV E2-FL protein in native conformation, which was confirmed using circular dichroism and Fourier transform infrared spectroscopy. BALB/c mice immunized with the three different E2 proteins exhibited increased E2-specific antibody titers compared to sham-immunized controls, suggesting induction of strong humoral immune response. On analyzing the E2-specific antibody response generated in immunized mice, the CHIKV E2-FL protein was observed to be the most immunogenic among the three different CHIKV E2 antigens used in the study. Our B-cell and T-cell epitope mapping results indicate that the presence of specific immunogenic peptides located in the N-terminal and C-terminal regions of the CHIKV E2-FL protein may contribute to its increased immunogenicity, compared to truncated CHIKV E2 proteins. In summary, our study provides a detailed protocol for expressing, purifying, and refolding of the CHIKV E2-FL protein and provides an understanding of its immunogenic epitopes, which can be exploited for the development of novel multiepitope-based anti-CHIKV vaccine strategies.
Collapse
Affiliation(s)
- Manisha Shukla
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Pankaj Chandley
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Suman Tapryal
- Department
of Biotechnology, Central University of
Rajasthan, Bandersindri,
Kishangarh, Ajmer 305817, Rajasthan, India
| | - Narendra Kumar
- Jaypee
University of Information Technology, Waknaghat, Solan 173234, India
| | - Sulakshana P. Mukherjee
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Soma Rohatgi
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
9
|
The Translational Research Consortia (TRC) for Chikungunya Virus in India. Current Status of Chikungunya in India. Front Microbiol 2021; 12:695173. [PMID: 34262552 PMCID: PMC8274422 DOI: 10.3389/fmicb.2021.695173] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/17/2021] [Indexed: 01/02/2023] Open
Abstract
Chikungunya fever (CHIKF) is an arbovirus disease caused by chikungunya virus (CHIKV), an alphavirus of Togaviridae family. Transmission follows a human-mosquito-human cycle starting with a mosquito bite. Subsequently, symptoms develop after 2-6 days of incubation, including high fever and severe arthralgia. The disease is self-limiting and usually resolve within 2 weeks. However, chronic disease can last up to several years with persistent polyarthralgia. Overlapping symptoms and common vector with dengue and malaria present many challenges for diagnosis and treatment of this disease. CHIKF was reported in India in 1963 for the first time. After a period of quiescence lasting up to 32 years, CHIKV re-emerged in India in 2005. Currently, every part of the country has become endemic for the disease with outbreaks resulting in huge economic and productivity losses. Several mutations have been identified in circulating strains of the virus resulting in better adaptations or increased fitness in the vector(s), effective transmission, and disease severity. CHIKV evolution has been a significant driver of epidemics in India, hence, the need to focus on proper surveillance, and implementation of prevention and control measure in the country. Presently, there are no licensed vaccines or antivirals available; however, India has initiated several efforts in this direction including traditional medicines. In this review, we present the current status of CHIKF in India.
Collapse
|