1
|
Wishart AE, Guerrero-Chacón AL, Smith R, Hawkshaw DM, McAdam AG, Dantzer B, Boutin S, Lane JE. Inferring condition in wild mammals: body condition indices confer no benefit over measuring body mass across ecological contexts. Oecologia 2024; 204:161-172. [PMID: 38180565 DOI: 10.1007/s00442-023-05495-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024]
Abstract
Many studies assume that it is beneficial for individuals of a species to be heavier, or have a higher body condition index (BCI), without accounting for the physiological relevance of variation in the composition of different body tissues. We hypothesized that the relationship between BCI and masses of physiologically important tissues (fat and lean) would be conditional on annual patterns of energy acquisition and expenditure. We studied three species with contrasting ecologies in their respective natural ranges: an obligate hibernator (Columbian ground squirrel, Urocitellus columbianus), a facultative hibernator (black-tailed prairie dog, Cynomys ludovicianus), and a food-caching non-hibernator (North American red squirrel, Tamiasciurus hudsonicus). We measured fat and lean mass in adults of both sexes using quantitative magnetic resonance (QMR). We measured body mass and two measures of skeletal structure (zygomatic width and right hind foot length) to develop sex- and species-specific BCIs, and tested the utility of BCI to predict body composition in each species. Body condition indices were more consistently, and more strongly correlated, with lean mass than fat mass. The indices were most positively correlated with fat when fat was expected to be very high (pre-hibernation prairie dogs). In all cases, however, BCI was never better than body mass alone in predicting fat or lean mass. While the accuracy of BCI in estimating fat varied across the natural histories and annual energetic patterns of the species considered, measuring body mass alone was as effective, or superior in capturing sufficient variation in fat and lean in most cases.
Collapse
Affiliation(s)
- Andrea E Wishart
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada.
| | | | - Rebecca Smith
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Deborah M Hawkshaw
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Andrew G McAdam
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Ben Dantzer
- Department of Psychology, University of Michigan, Ann Arbor, MI, 48109-1043, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109-1043, USA
| | - Stan Boutin
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Jeffrey E Lane
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| |
Collapse
|
2
|
Metcalfe NB, Bellman J, Bize P, Blier PU, Crespel A, Dawson NJ, Dunn RE, Halsey LG, Hood WR, Hopkins M, Killen SS, McLennan D, Nadler LE, Nati JJH, Noakes MJ, Norin T, Ozanne SE, Peaker M, Pettersen AK, Przybylska-Piech A, Rathery A, Récapet C, Rodríguez E, Salin K, Stier A, Thoral E, Westerterp KR, Westerterp-Plantenga MS, Wojciechowski MS, Monaghan P. Solving the conundrum of intra-specific variation in metabolic rate: A multidisciplinary conceptual and methodological toolkit: New technical developments are opening the door to an understanding of why metabolic rate varies among individual animals of a species: New technical developments are opening the door to an understanding of why metabolic rate varies among individual animals of a species. Bioessays 2023; 45:e2300026. [PMID: 37042115 DOI: 10.1002/bies.202300026] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/13/2023]
Abstract
Researchers from diverse disciplines, including organismal and cellular physiology, sports science, human nutrition, evolution and ecology, have sought to understand the causes and consequences of the surprising variation in metabolic rate found among and within individual animals of the same species. Research in this area has been hampered by differences in approach, terminology and methodology, and the context in which measurements are made. Recent advances provide important opportunities to identify and address the key questions in the field. By bringing together researchers from different areas of biology and biomedicine, we describe and evaluate these developments and the insights they could yield, highlighting the need for more standardisation across disciplines. We conclude with a list of important questions that can now be addressed by developing a common conceptual and methodological toolkit for studies on metabolic variation in animals.
Collapse
Affiliation(s)
- Neil B Metcalfe
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Jakob Bellman
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Pierre Bize
- Swiss Ornithological Institute, Sempach, Switzerland
| | - Pierre U Blier
- Département de Biologie, Université de Québec à Rimouski, Rimouski, Canada
| | - Amélie Crespel
- Department of Biology, University of Turku, Turku, Finland
| | - Neal J Dawson
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Ruth E Dunn
- Lancaster Environment Centre, University of Lancaster, Lancaster, UK
| | - Lewis G Halsey
- School of Life and Health Sciences, University of Roehampton, London, UK
| | - Wendy R Hood
- Department of Biological Sciences, Auburn University, Auburn, USA
| | - Mark Hopkins
- School of Food Science and Nutrition, Leeds University, Leeds, UK
| | - Shaun S Killen
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Darryl McLennan
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Lauren E Nadler
- Ocean and Earth Science, NOC, University of Southampton, Southampton, UK
| | - Julie J H Nati
- Ocean Sciences Center, Memorial University of Newfoundland, St John's, Canada
| | - Matthew J Noakes
- School of Animal, Plant, and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tommy Norin
- DTU Aqua: National Institute of Aquatic Resources, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Susan E Ozanne
- Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | | | - Amanda K Pettersen
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
- School of Life & Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Anna Przybylska-Piech
- Department of Vertebrate Zoology & Ecology, Nicolaus Copernicus University, Toruń, Poland
| | - Alann Rathery
- School of Life and Health Sciences, University of Roehampton, London, UK
| | - Charlotte Récapet
- Universite de Pau et des Pays de l'Adour, E2S UPPA, INRAE, ECOBIOP, Saint-Pée-sur-, Nivelle, France
| | - Enrique Rodríguez
- Department of Genetics, Evolution & Environment, University College London, London, UK
| | - Karine Salin
- IFREMER, Univ Brest, CNRS, IRD, Laboratory of Environmental Marine Sciences, Plouzané, France
| | - Antoine Stier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
| | - Elisa Thoral
- Department of Biology, Lund University, Lund, Sweden
| | - Klaas R Westerterp
- Department of Nutrition & Movement Sciences, Maastricht University, Maastricht, The Netherlands
| | | | - Michał S Wojciechowski
- Department of Vertebrate Zoology & Ecology, Nicolaus Copernicus University, Toruń, Poland
| | - Pat Monaghan
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
3
|
Gaidica M, Dantzer B. An implantable neurophysiology platform: Broadening research capabilities in free-living and non-traditional animals. Front Neural Circuits 2022; 16:940989. [PMID: 36213207 PMCID: PMC9537467 DOI: 10.3389/fncir.2022.940989] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/05/2022] [Indexed: 12/02/2022] Open
Abstract
Animal-borne sensors that can record and transmit data (“biologgers”) are becoming smaller and more capable at a rapid pace. Biologgers have provided enormous insight into the covert lives of many free-ranging animals by characterizing behavioral motifs, estimating energy expenditure, and tracking movement over vast distances, thereby serving both scientific and conservational endpoints. However, given that biologgers are usually attached externally, access to the brain and neurophysiological data has been largely unexplored outside of the laboratory, limiting our understanding of how the brain adapts to, interacts with, or addresses challenges of the natural world. For example, there are only a handful of studies in free-living animals examining the role of sleep, resulting in a wake-centric view of behavior despite the fact that sleep often encompasses a large portion of an animal’s day and plays a vital role in maintaining homeostasis. The growing need to understand sleep from a mechanistic viewpoint and probe its function led us to design an implantable neurophysiology platform that can record brain activity and inertial data, while utilizing a wireless link to enable a suite of forward-looking capabilities. Here, we describe our design approach and demonstrate our device’s capability in a standard laboratory rat as well as a captive fox squirrel. We also discuss the methodological and ethical implications of deploying this new class of device “into the wild” to fill outstanding knowledge gaps.
Collapse
Affiliation(s)
- Matt Gaidica
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Matt Gaidica,
| | - Ben Dantzer
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
4
|
Coulson T, Potter T, Felmy A. Predicting evolution over multiple generations in deteriorating environments using evolutionarily explicit Integral Projection Models. Evol Appl 2021; 14:2490-2501. [PMID: 34745339 PMCID: PMC8549625 DOI: 10.1111/eva.13272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 06/20/2021] [Accepted: 06/25/2021] [Indexed: 11/27/2022] Open
Abstract
Human impacts on the natural world often generate environmental trends that can have detrimental effects on distributions of phenotypic traits. We do not have a good understanding of how deteriorating environments might impact evolutionary trajectories across multiple generations, even though effects of environmental trends are often significant in the statistical quantitative genetic analyses of phenotypic trait data that are used to estimate additive genetic (co)variances. These environmental trends capture reaction norms, where the same (average) genotype expresses different phenotypic trait values in different environments. Not incorporated into the predictive models typically parameterised from statistical analyses to predict evolution, such as the breeder's equation. We describe how these environmental effects can be incorporated into multi-generational, evolutionarily explicit, structured population models before exploring how these effects can influence evolutionary dynamics. The paper is primarily a description of the modelling approach, but we also show how incorporation into models of the types of environmental trends that human activity has generated can have considerable impacts on the evolutionary dynamics that are predicted.
Collapse
Affiliation(s)
- Tim Coulson
- Department of ZoologyUniversity of OxfordOxfordUK
| | - Tomos Potter
- Department of ZoologyUniversity of OxfordOxfordUK
| | - Anja Felmy
- Department of ZoologyUniversity of OxfordOxfordUK
| |
Collapse
|
5
|
Boratyński Z. Energetic constraints on mammalian distribution areas. J Anim Ecol 2021; 90:1854-1863. [PMID: 33884621 DOI: 10.1111/1365-2656.13501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/06/2021] [Indexed: 12/01/2022]
Abstract
Energy is a universal resource essential for all life functions. The rate of transformation of energy into an organism, and the energetic investment into reproduction, determines population and ecological-level processes. Several hypotheses predicted that the ecological expansion and size of the geographic distribution of a species are shaped by, among other factors, metabolic performance. However, how organismal energetic characteristics contribute to species geographic range size is poorly understood. With phylogenetic comparative methods whether energetic maintenance costs (basal metabolic rate, BMR), aerobic capacity (maximum exercise metabolic rate, VO2 max), summit thermoregulation (summit metabolic rate, VO2 sum) and the ability to sustain energy provisioning (daily energy expenditure, DEE) determine the distribution of mammalian species range sizes was tested. Both basal and maximum exercise metabolic rates (accounting for body mass), but not summit thermogenic metabolic rate, were positively associated with species range sizes. Furthermore, daily energy expenditure (accounting for body mass) was positively associated with species ranges. Body mass (accounting for energetic maintenance) was negatively related to range sizes. High aerobic exercise capacity, aiding mobility such as running and dispersal, and high sustained energy provisioning, aiding reproductive effort such as pregnancy, lactation and natal dispersal, can facilitate the establishment of large mammalian geographic ranges. Consequently, the pace of organismal physiological processes can shape important ecological and biodiversity patterns by setting limits to species' range sizes.
Collapse
Affiliation(s)
- Zbyszek Boratyński
- CIBIO/InBio, Research Centre in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
| |
Collapse
|
6
|
Dantzer B, McAdam AG, Humphries MM, Lane JE, Boutin S. Decoupling the effects of food and density on life-history plasticity of wild animals using field experiments: Insights from the steward who sits in the shadow of its tail, the North American red squirrel. J Anim Ecol 2020; 89:2397-2414. [PMID: 32929740 DOI: 10.1111/1365-2656.13341] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/07/2020] [Indexed: 01/05/2023]
Abstract
Long-term studies of wild animals provide the opportunity to investigate how phenotypic plasticity is used to cope with environmental fluctuations and how the relationships between phenotypes and fitness can be dependent upon the ecological context. Many previous studies have only investigated life-history plasticity in response to changes in temperature, yet wild animals often experience multiple environmental fluctuations simultaneously. This requires field experiments to decouple which ecological factor induces plasticity in fitness-relevant traits to better understand their population-level responses to those environmental fluctuations. For the past 32 years, we have conducted a long-term integrative study of individually marked North American red squirrels Tamiasciurus hudsonicus Erxleben in the Yukon, Canada. We have used multi-year field experiments to examine the physiological and life-history responses of individual red squirrels to fluctuations in food abundance and conspecific density. Our long-term observational study and field experiments show that squirrels can anticipate increases in food availability and density, thereby decoupling the usual pattern where animals respond to, rather than anticipate, an ecological change. As in many other study systems, ecological factors that can induce plasticity (such as food and density) covary. However, our field experiments that manipulate food availability and social cues of density (frequency of territorial vocalizations) indicate that increases in social (acoustic) cues of density in the absence of additional food can induce similar life-history plasticity, as does experimental food supplementation. Changes in the levels of metabolic hormones (glucocorticoids) in response to variation in food and density are one mechanism that seems to induce this adaptive life-history plasticity. Although we have not yet investigated the energetic response of squirrels to elevated density or its association with life-history plasticity, energetics research in red squirrels has overturned several standard pillars of knowledge in physiological ecology. We show how a tractable model species combined with integrative studies can reveal how animals cope with resource fluctuations through life-history plasticity.
Collapse
Affiliation(s)
- Ben Dantzer
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA.,Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Andrew G McAdam
- Department for Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Murray M Humphries
- Natural Resource Sciences Department, McGill University, Ste-Anne-de-Bellevue, QC, Canada
| | - Jeffrey E Lane
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Stan Boutin
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
7
|
Pettersen AK, Marshall DJ, White CR. Understanding variation in metabolic rate. J Exp Biol 2018; 221:221/1/jeb166876. [DOI: 10.1242/jeb.166876] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ABSTRACT
Metabolic rate reflects an organism's capacity for growth, maintenance and reproduction, and is likely to be a target of selection. Physiologists have long sought to understand the causes and consequences of within-individual to among-species variation in metabolic rates – how metabolic rates relate to performance and how they should evolve. Traditionally, this has been viewed from a mechanistic perspective, relying primarily on hypothesis-driven approaches. A more agnostic, but ultimately more powerful tool for understanding the dynamics of phenotypic variation is through use of the breeder's equation, because variation in metabolic rate is likely to be a consequence of underlying microevolutionary processes. Here we show that metabolic rates are often significantly heritable, and are therefore free to evolve under selection. We note, however, that ‘metabolic rate’ is not a single trait: in addition to the obvious differences between metabolic levels (e.g. basal, resting, free-living, maximal), metabolic rate changes through ontogeny and in response to a range of extrinsic factors, and is therefore subject to multivariate constraint and selection. We emphasize three key advantages of studying metabolic rate within a quantitative genetics framework: its formalism, and its predictive and comparative power. We make several recommendations when applying a quantitative genetics framework: (i) measuring selection based on actual fitness, rather than proxies for fitness; (ii) considering the genetic covariances between metabolic rates throughout ontogeny; and (iii) estimating genetic covariances between metabolic rates and other traits. A quantitative genetics framework provides the means for quantifying the evolutionary potential of metabolic rate and why variance in metabolic rates within populations might be maintained.
Collapse
Affiliation(s)
- Amanda K. Pettersen
- School of Biological Sciences/Centre for Geometric Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Dustin J. Marshall
- School of Biological Sciences/Centre for Geometric Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Craig R. White
- School of Biological Sciences/Centre for Geometric Biology, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
8
|
Ciechanowski M, Zapart A, Kokurewicz T, Rusiński M, Lazarus M. Habitat selection of the pond bat (Myotis dasycneme) during pregnancy and lactation in northern Poland. J Mammal 2017. [DOI: 10.1093/jmammal/gyw108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
9
|
Rubach K, Wu M, Abebe A, Dobson FS, Murie JO, Viblanc VA. Testing the reproductive and somatic trade-off in female Columbian ground squirrels. Ecol Evol 2016; 6:7586-7595. [PMID: 30128113 PMCID: PMC6093145 DOI: 10.1002/ece3.2215] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/08/2016] [Accepted: 05/12/2016] [Indexed: 12/04/2022] Open
Abstract
Energetic trade‐offs in resource allocation form the basis of life‐history theory, which predicts that reproductive allocation in a given season should negatively affect future reproduction or individual survival. We examined how allocation of resources differed between successful and unsuccessful breeding female Columbian ground squirrels to discern any effects of resource allocation on reproductive and somatic efforts. We compared the survival rates, subsequent reprodction, and mass gain of successful breeders (females that successfully weaned young) and unsuccessful breeders (females that failed to give birth or wean young) and investigated “carryover” effects to the next year. Starting capital was an important factor influencing whether successful reproduction was initiated or not, as females with the lowest spring emergence masses did not give birth to a litter in that year. Females that were successful and unsuccessful at breeding in one year, however, were equally likely to be successful breeders in the next year and at very similar litter sizes. Although successful and unsuccessful breeding females showed no difference in over winter survival, females that failed to wean a litter gained additional mass during the season when they failed. The next year, those females had increased energy “capital” in the spring, leading to larger litter sizes. Columbian ground squirrels appear to act as income breeders that also rely on stored capital to increase their propensity for future reproduction. Failed breeders in one year “prepare” for future reproduction by accumulating additional mass, which is “carried over” to the subsequent reproductive season.
Collapse
Affiliation(s)
- Kristin Rubach
- Department of Biological Sciences Auburn University Auburn Alabama 36840
| | - Mingyan Wu
- Department of Mathematics and Statistics Auburn University Auburn Alabama 36840
| | - Asheber Abebe
- Department of Mathematics and Statistics Auburn University Auburn Alabama 36840
| | - F Stephen Dobson
- Department of Biological Sciences Auburn University Auburn Alabama 36840
| | - Jan O Murie
- Department of Biological Sciences University of Alberta Edmonton Alberta T6G 2E9
| | - Vincent A Viblanc
- Département Ecologie, Physiologie et Ethologie (DEPE) Institut Pluridisciplinaire Hubert Curien (IPHC) Université de Strasbourg 23 rue Becquerel 67087 Strasbourg France.,Centre National de la Recherche Scientifique Unité Mixte de Recherche 7178 67087 Strasbourg France
| |
Collapse
|
10
|
Husak JF. Measuring Selection on Physiology in the Wild and Manipulating Phenotypes (in Terrestrial Nonhuman Vertebrates). Compr Physiol 2015; 6:63-85. [PMID: 26756627 DOI: 10.1002/cphy.c140061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
To understand why organisms function the way that they do, we must understand how evolution shapes physiology. This requires knowledge of how selection acts on physiological traits in nature. Selection studies in the wild allow us to determine how variation in physiology causes variation in fitness, revealing how evolution molds physiology over evolutionary time. Manipulating phenotypes experimentally in a selection study shifts the distribution of trait variation in a population to better explore potential constraints and the adaptive value of physiological traits. There is a large database of selection studies in the wild on a variety of traits, but very few of those are physiological traits. Nevertheless, data available so far suggest that physiological traits, including metabolic rate, thermal physiology, whole-organism performance, and hormone levels, are commonly subjected to directional selection in nature, with stabilizing and disruptive selection less common than predicted if physiological traits are optimized to an environment. Selection studies on manipulated phenotypes, including circulating testosterone and glucocorticoid levels, reinforce this notion, but reveal that trade-offs between survival and reproduction or correlational selection can constrain the evolution of physiology. More studies of selection on physiological traits in nature that quantify multiple traits are necessary to better determine the manner in which physiological traits evolve and whether different types of traits (dynamic performance vs. regulatory) evolve differently.
Collapse
Affiliation(s)
- Jerry F Husak
- Department of Biology, University of St. Thomas, St. Paul, Minnesota, USA
| |
Collapse
|
11
|
Rezende EL, Bacigalupe LD. Thermoregulation in endotherms: physiological principles and ecological consequences. J Comp Physiol B 2015; 185:709-27. [PMID: 26025431 DOI: 10.1007/s00360-015-0909-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/18/2015] [Accepted: 04/27/2015] [Indexed: 01/01/2023]
Abstract
In a seminal study published nearly 70 years ago, Scholander et al. (Biol Bull 99:259-271, 1950) employed Newton's law of cooling to describe how metabolic rates (MR) in birds and mammals vary predictably with ambient temperature (T a). Here, we explore the theoretical consequences of Newton's law of cooling and show that a thermoregulatory polygon provides an intuitively simple and yet useful description of thermoregulatory responses in endothermic organisms. This polygon encapsulates the region in which heat production and dissipation are in equilibrium and, therefore, the range of conditions in which thermoregulation is possible. Whereas the typical U-shaped curve describes the relationship between T a and MR at rest, thermoregulatory polygons expand this framework to incorporate the impact of activity, other behaviors and environmental conditions on thermoregulation and energy balance. We discuss how this framework can be employed to study the limits to effective thermoregulation and their ecological repercussions, allometric effects and residual variation in MR and thermal insulation, and how thermoregulatory requirements might constrain locomotor or reproductive performance (as proposed, for instance, by the heat dissipation limit theory). In many systems the limited empirical knowledge on how organismal traits may respond to environmental changes prevents physiological ecology from becoming a fully developed predictive science. In endotherms, however, we contend that the lack of theoretical developments that translate current physiological understanding into formal mechanistic models remains the main impediment to study the ecological and evolutionary repercussions of thermoregulation. In spite of the inherent limitations of Newton's law of cooling as an oversimplified description of the mechanics of heat transfer, we argue that understanding how systems that obey this approximation work can be enlightening on conceptual grounds and relevant as an analytical and predictive tool to study ecological phenomena. As such, the proposed approach may constitute a powerful tool to study the impact of thermoregulatory constraints on variables related to fitness, such as survival and reproductive output, and help elucidating how species will be affected by ongoing climate change.
Collapse
Affiliation(s)
- Enrico L Rezende
- Department of Life Sciences, University of Roehampton, Holybourne Avenue, London, SW15 4JD, UK.
| | - Leonardo D Bacigalupe
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|