1
|
Warren CR, Breitenbach AT, Bowden RM, Paitz RT. Responsiveness to cold snaps by turtle embryos depends on exposure timing and duration. Proc Biol Sci 2025; 292:20242445. [PMID: 39809316 PMCID: PMC11732404 DOI: 10.1098/rspb.2024.2445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
Characterizing how organisms respond to transient temperatures may further our understanding of their susceptibility to climate change. Past studies in the freshwater turtle, Trachemys scripta, have demonstrated that the timing and duration of heat waves can have major implications for the response of genes involved in gonadal development and the production of female hatchlings. Yet, no study has considered how the response of these genes to transient cold snap exposure may affect gonadal development and the production of males. We investigated how cold snap timing affects gonadal gene expression in T. scripta embryos and how the duration of an early cold snap influences the resulting hatchling sex ratios. Results show that responsiveness to cold changes rapidly across development, such that genes that responded when exposure began on incubation day 14 responded differently when exposure occurred just four or eight days later. Sex ratio data revealed that embryos experiencing an early cold snap also require a long exposure (>20 days) before most commit to testis development, suggesting that warm baseline temperatures may lower their sensitivity to later cold snap exposures. These results highlight how individual responses to incubation temperature can change rapidly across development in turtles and have important effects on sex ratios.
Collapse
Affiliation(s)
- Clinton R. Warren
- School of Biological Sciences, Illinois State University, Normal, IL61790, USA
| | | | - Rachel M. Bowden
- School of Biological Sciences, Illinois State University, Normal, IL61790, USA
| | - Ryan T. Paitz
- School of Biological Sciences, Illinois State University, Normal, IL61790, USA
| |
Collapse
|
2
|
Girondot M, Krueger CJ, Cléomène C, Tran Z, Chevallier D, Janzen FJ. Developmental Thermal Reaction Norms of Leatherback Marine Turtles at Nesting Beaches. Animals (Basel) 2024; 14:3050. [PMID: 39518772 PMCID: PMC11545689 DOI: 10.3390/ani14213050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/09/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
Accurate scientific information is critical for undertaking appropriate conservation and management practices for imperiled species. One source of concern is that research findings might vary for non-biological reasons, including experimental design and analytical methods. To illustrate, we provide detailed modern analysis of reproductive data for leatherback turtles (Dermochelys coriacea). This species exhibits significant fluctuations in nesting densities across different regions, possibly driven by local rather than global factors. Key factors influencing these changes include hatching success and sex determination, both sensitive to incubation temperatures (e.g., lower temperatures yield more males, higher temperatures yield females). This study updates the understanding of temperature-dependent sex determination (TSD) in this species using Bayesian statistics. Growth rate data from the West Pacific and Northwest Atlantic populations show a similar, monotone increase with temperature, affirming the reliability of the models used. The analysis of TSD patterns indicates that observed differences are more likely due to study methodologies and clutch-specific factors rather than regional differences. These findings challenge previous assumptions, showing that leatherback TSD does not conform to a simple on/off pattern but is influenced by multiple, interacting environmental factors. Population dynamics models must account for these complexities, recognizing that both sex ratios and hatching success are critical to understand the rapid changes observed in some leatherback populations.
Collapse
Affiliation(s)
- Marc Girondot
- Laboratoire Ecologie Systématique et Evolution, Université Paris-Saclay, Centre National de la Recherche Scientifique, AgroParisTech, 91190 Gif-sur-Yvette, France; (C.C.); (Z.T.)
| | - Caleb J. Krueger
- Ecology, Evolution, and Behavior Program, Department of Fisheries and Wildlife, W. K. Kellogg Biological Station, Michigan State University, 3700 East Gull Lake Drive, Hickory Corners, MI 49060, USA; (C.J.K.); (F.J.J.)
| | - Camille Cléomène
- Laboratoire Ecologie Systématique et Evolution, Université Paris-Saclay, Centre National de la Recherche Scientifique, AgroParisTech, 91190 Gif-sur-Yvette, France; (C.C.); (Z.T.)
| | - Zeenat Tran
- Laboratoire Ecologie Systématique et Evolution, Université Paris-Saclay, Centre National de la Recherche Scientifique, AgroParisTech, 91190 Gif-sur-Yvette, France; (C.C.); (Z.T.)
| | - Damien Chevallier
- BOREA Research Unit, Laboratoire de Biologie des Organismes et des Ecosystèmes Aquatiques, Muséum National d’Histoire Naturelle de Paris, Centre National de la Recherche Scientifique 8067, Sciences de l’Univers, Institut de Recherche Pour le Développement 207, Université de Caen Normandie, Université des Antilles, Campus Martinique, BP-7207, 97275 Schoelcher Cedex, Martinique FWI, France;
| | - Fredric J. Janzen
- Ecology, Evolution, and Behavior Program, Department of Fisheries and Wildlife, W. K. Kellogg Biological Station, Michigan State University, 3700 East Gull Lake Drive, Hickory Corners, MI 49060, USA; (C.J.K.); (F.J.J.)
| |
Collapse
|
3
|
Marroquín-Flores RA, Paitz RT, Bowden RM. Temperature fluctuations and estrone sulfate affect gene expression via different mechanisms to promote female development in a species with temperature-dependent sex determination. J Exp Biol 2022; 225:276050. [PMID: 35860927 DOI: 10.1242/jeb.244211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/18/2022] [Indexed: 11/20/2022]
Abstract
Variation in developmental conditions can affect a variety of embryonic processes and shape a number of phenotypic characteristics that can affect offspring throughout their lives. This is particularly true of oviparous species where development typically occurs outside of the female, and studies have shown that traits such as survival and behavior can be altered by both temperature and exposure to steroid hormones during development. In species with temperature-dependent sex determination (TSD), the fate of gonadal development can be affected by temperature and by maternal estrogens present in the egg at oviposition and there is evidence that these factors can affect gene expression patterns. Here, we explore how thermal fluctuations and exposure to an estrogen metabolite, estrone sulfate, affect the expression of several genes known to be involved in sexual differentiation; Kdm6b, Dmrt1, Sox9, FoxL2, and Cyp19A1. We found that most of the genes responded to both temperature and estrone sulfate exposure, but that the responses to these factors was not identical in that estrone sulfate effects occur downstream of temperature effects. Our findings demonstrate that conjugated hormones such as estrone sulfate are capable of influencing temperature dependent pathways to potentially alter how embryos respond to temperature and highlight the importance of studying the interaction of maternal hormone and temperature effects.
Collapse
Affiliation(s)
| | - Ryan T Paitz
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Rachel M Bowden
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| |
Collapse
|
4
|
Paitz RT, Breitenbach AT, Marroquín-Flores RA, Bowden RM. Understanding how variable thermal environments affect the molecular mechanisms underlying temperature-sensitive phenotypes: lessons from sex determination. J Exp Biol 2022; 225:275566. [PMID: 35638467 DOI: 10.1242/jeb.242373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The thermal environment that organisms experience can affect many aspects of their phenotype. As global temperatures become more unpredictable, it is imperative that we understand the molecular mechanisms by which organisms respond to variable, and often transient, thermal environments. Beyond deciphering the mechanisms through which organisms respond to temperature, we must also appreciate the underlying variation in temperature-dependent processes, as this variation is essential for understanding the potential to adapt to changing climates. In this Commentary, we use temperature-dependent sex determination as an example to explore the mechanistic processes underlying the development of temperature-sensitive phenotypes. We synthesize the current literature on how variable thermal conditions affect these processes and address factors that may limit or allow organisms to respond to variable environments. From these examples, we posit a framework for how the field might move forward in a more systematic way to address three key questions: (1) which genes directly respond to temperature-sensitive changes in protein function and which genes are downstream, indirect responders?; (2) how long does it take different proteins and genes to respond to temperature?; and (3) are the experimental temperature manipulations relevant to the climate the organism experiences or to predicted climate change scenarios? This approach combines mechanistic questions (questions 1 and 2) with ecologically relevant conditions (question 3), allowing us to explore how organisms respond to transient thermal environments and, thus, cope with climate change.
Collapse
Affiliation(s)
- Ryan T Paitz
- Illinois State University, Normal, IL 61790, USA
| | | | | | | |
Collapse
|
5
|
Leivesley JA, Nancekivell EG, Brooks RJ, Litzgus JD, Rollinson N. Long-term resilience of primary sex ratios in a species with temperature-dependent sex determination after decades of climate warming. Am Nat 2022; 200:532-543. [DOI: 10.1086/720621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Raynal RS, Noble DWA, Riley JL, Senior AM, Warner DA, While GM, Schwanz LE. Impact of fluctuating developmental temperatures on phenotypic traits in reptiles: a meta-analysis. J Exp Biol 2022; 225:274260. [PMID: 35258602 DOI: 10.1242/jeb.243369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/29/2021] [Indexed: 11/20/2022]
Abstract
During the vulnerable stages of early life, most ectothermic animals experience hourly and diel fluctuations in temperature as air temperatures change. While we know a great deal about how different constant temperatures impact the phenotypes of developing ectotherms, we know remarkably little about the impacts of temperature fluctuations on the development of ectotherms. In this study, we used a meta-analytic approach to compare the mean and variance of phenotypic outcomes from constant and fluctuating incubation temperatures across reptile species. We found that fluctuating temperatures provided a small benefit (higher hatching success and shorter incubation durations) at cool mean temperatures compared with constant temperatures, but had a negative effect at warm mean temperatures. In addition, more extreme temperature fluctuations led to greater reductions in embryonic survival compared with moderate temperature fluctuations. Within the limited data available from species with temperature-dependent sex determination, embryos had a higher chance of developing as female when developing in fluctuating temperatures compared with those developing in constant temperatures. With our meta-analytic approach, we identified average mean nest temperatures across all taxa where reptiles switch from receiving benefits to incurring costs when incubation temperatures fluctuate. More broadly, our study indicates that the impact of fluctuating developmental temperature on some phenotypes in ectothermic taxa are likely to be predictable via integration of developmental temperature profiles with thermal performance curves.
Collapse
Affiliation(s)
- Rebecca S Raynal
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Daniel W A Noble
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| | - Julia L Riley
- Department of Biology, Mount Allison University, Sackville, NB, Canada, E4L 1E2
| | - Alistair M Senior
- Charles Perkins Centre, Faculty of Science, School of Life and Environmental Sciences and School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia
| | - Daniel A Warner
- Department of Biological Sciences, College of Sciences and Mathematics, Auburn University, Auburn, AL 36849, USA
| | - Geoffrey M While
- School of Natural Sciences, University of Tasmania, Sandy Bay, Hobart, TAS 7001, Australia
| | - Lisa E Schwanz
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
7
|
Lockley EC, Eizaguirre C. Effects of global warming on species with temperature-dependent sex determination: Bridging the gap between empirical research and management. Evol Appl 2021; 14:2361-2377. [PMID: 34745331 PMCID: PMC8549623 DOI: 10.1111/eva.13226] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 12/31/2022] Open
Abstract
Global warming could threaten over 400 species with temperature-dependent sex determination (TSD) worldwide, including all species of sea turtle. During embryonic development, rising temperatures might lead to the overproduction of one sex and, in turn, could bias populations' sex ratios to an extent that threatens their persistence. If climate change predictions are correct, and biased sex ratios reduce population viability, species with TSD may go rapidly extinct unless adaptive mechanisms, whether behavioural, physiological or molecular, exist to buffer these temperature-driven effects. Here, we summarize the discovery of the TSD phenomenon and its still elusive evolutionary significance. We then review the molecular pathways underpinning TSD in model species, along with the hormonal mechanisms that interact with temperatures to determine an individual's sex. To illustrate evolutionary mechanisms that can affect sex determination, we focus on sea turtle biology, discussing both the adaptive potential of this threatened TSD taxon, and the risks associated with conservation mismanagement.
Collapse
Affiliation(s)
- Emma C. Lockley
- School of Biological and Chemical SciencesQueen Mary University LondonLondonUK
| | | |
Collapse
|
8
|
Beltrán I, Herculano-Houzel S, Sinervo B, Whiting MJ. Are ectotherm brains vulnerable to global warming? Trends Ecol Evol 2021; 36:691-699. [PMID: 34016477 DOI: 10.1016/j.tree.2021.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/28/2022]
Abstract
Elevated temperatures during development affect a wide range of traits in ectotherms. Less well understood is the impact of global warming on brain development, which has only rarely been studied experimentally. Here, we evaluate current progress in the field and search for common response patterns among ectotherm groups. Evidence suggests that temperature may have a positive effect on neuronal activity and growth in developing brains, but only up to a threshold, above which temperature is detrimental to neuron development. These responses appear to be taxon dependent but this assumption may be due to a paucity of data for some taxonomic groups. We provide a framework with which to advance this highly promising field in the future.
Collapse
Affiliation(s)
- Iván Beltrán
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Suzana Herculano-Houzel
- Department of Psychology, Vanderbilt University, Nashville, TN, USA; Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Barry Sinervo
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Martin J Whiting
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
9
|
Bowden RM, Paitz RT. Is Thermal Responsiveness Affected by Maternal Estrogens in Species with Temperature-Dependent Sex Determination? Sex Dev 2021; 15:69-79. [PMID: 33902053 DOI: 10.1159/000515187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/17/2021] [Indexed: 11/19/2022] Open
Abstract
In species with temperature-dependent sex determination (TSD), incubation temperatures regulate the expression of genes involved in gonadal differentiation and determine whether the gonads develop into ovaries or testes. For most species, natural incubation conditions result in transient exposure to thermal cues for both ovarian and testis development, but how individuals respond to this transient exposure varies and can drive variation in the resulting sex ratios. Here, we argue that variation in the timing to respond to temperature cues, or thermal responsiveness, is a trait needing further study. Recent work in the red-eared slider turtle (Trachemys scripta) has found that when embryos experience transient exposure to warm conditions (i.e., heatwaves), some embryos show high responsiveness, requiring only short exposures to commit to ovarian development, while others show low responsiveness, developing testes even after more extended exposures to warm conditions. We discuss how maternal estrogens might influence thermal responsiveness for organisms that develop under thermal fluctuations. Examining the interplay of molecular responses to more subtle thermal and endocrine environments may reveal significant insights into the process of sex determination in species with TSD.
Collapse
Affiliation(s)
- Rachel M Bowden
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Ryan T Paitz
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| |
Collapse
|
10
|
Maurer AS, Seminoff JA, Layman CA, Stapleton SP, Godfrey MH, Reiskind MOB. Population Viability of Sea Turtles in the Context of Global Warming. Bioscience 2021. [DOI: 10.1093/biosci/biab028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Sea turtles present a model for the potential impacts of climate change on imperiled species, with projected warming generating concern about their persistence. Various sea turtle life-history traits are affected by temperature; most strikingly, warmer egg incubation temperatures cause female-biased sex ratios and higher embryo mortality. Predictions of sea turtle resilience to climate change are often focused on how resulting male limitation or reduced offspring production may affect populations. In the present article, by reviewing research on sea turtles, we provide an overview of how temperature impacts on incubating eggs may cascade through life history to ultimately affect population viability. We explore how sex-specific patterns in survival and breeding periodicity determine the differences among offspring, adult, and operational sex ratios. We then discuss the implications of skewed sex ratios for male-limited reproduction, consider the negative correlation between sex ratio skew and genetic diversity, and examine consequences for adaptive potential. Our synthesis underscores the importance of considering the effects of climate throughout the life history of any species. Lethal effects (e.g., embryo mortality) are relatively direct impacts, but sublethal effects at immature life-history stages may not alter population growth rates until cohorts reach reproductive maturity. This leaves a lag during which some species transition through several stages subject to distinct biological circumstances and climate impacts. These perspectives will help managers conceptualize the drivers of emergent population dynamics and identify existing knowledge gaps under different scenarios of predicted environmental change.
Collapse
Affiliation(s)
- Andrew S Maurer
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, in the United States; he is also a research associate with the Jumby Bay Hawksbill Project in Antigua, West Indies
| | - Jeffrey A Seminoff
- Marine Turtle Ecology and Assessment Program, National Oceanic and Atmospheric Administration's Southwest Fisheries Science Center, La Jolla, California, United States
| | - Craig A Layman
- Center for Energy, Environment, and Sustainability, Wake Forest University, in Winston-Salem, North Carolina, in the United States
| | - Seth P Stapleton
- Conservation and animal health sciences, Minnesota Zoo, Apple Valley, Minnesota; he is also an adjunct faculty member in the Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, in Minneapolis, Minnesota, in the United States
| | - Matthew H Godfrey
- North Carolina Wildlife Resources Commission, Raleigh, North Carolina, United States
| | - Martha O Burford Reiskind
- Martha Burford Reiskind is an assistant professor in the Department of Biological Sciences and the director of the Genetics and Genomics Scholars program, North Carolina State University, Raleigh, North Carolina, United States
| |
Collapse
|
11
|
Bock SL, Hale MD, Leri FM, Wilkinson PM, Rainwater TR, Parrott BB. Post-Transcriptional Mechanisms Respond Rapidly to Ecologically Relevant Thermal Fluctuations During Temperature-Dependent Sex Determination. Integr Org Biol 2020; 2:obaa033. [PMID: 33791571 PMCID: PMC7715621 DOI: 10.1093/iob/obaa033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
An organism's ability to integrate transient environmental cues experienced during development into molecular and physiological responses forms the basis for adaptive shifts in phenotypic trajectories. During temperature-dependent sex determination (TSD), thermal cues during discrete periods in development coordinate molecular changes that ultimately dictate sexual fate and contribute to patterns of inter- and intra-sexual variation. How these mechanisms interface with dynamic thermal environments in nature remain largely unknown. By deploying thermal loggers in wild nests of the American alligator (Alligator mississippiensis) over two consecutive breeding seasons, we observed that 80% of nests exhibit both male- and female-promoting thermal cues during the thermosensitive period, and of these nests, all exhibited both male- and female-promoting temperatures within the span of a single day. These observations raise a critical question-how are opposing environmental cues integrated into sexually dimorphic transcriptional programs across short temporal scales? To address this question, alligator embryos were exposed to fluctuating temperatures based on nest thermal profiles and sampled over the course of a daily thermal fluctuation. We examined the expression dynamics of upstream genes in the temperature-sensing pathway and find that post-transcriptional alternative splicing and transcript abundance of epigenetic modifier genes JARID2 and KDM6B respond rapidly to thermal fluctuations while transcriptional changes of downstream effector genes, SOX9 and DMRT1, occur on a delayed timescale. Our findings reveal how the basic mechanisms of TSD operate in an ecologically relevant context. We present a hypothetical hierarchical model based on our findings as well as previous studies, in which temperature-sensitive alternative splicing incrementally influences the epigenetic landscape to affect the transcriptional activity of key sex-determining genes.
Collapse
Affiliation(s)
- Samantha L Bock
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
- Savannah River Ecology Laboratory, Aiken, SC 29802, USA
| | - Matthew D Hale
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Faith M Leri
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | | | - Thomas R Rainwater
- Tom Yawkey Wildlife Center, Georgetown, SC 29440, USA
- Belle W. Baruch Institute of Coastal Ecology & Forest Science, Clemson University, Georgetown, SC 29442, USA
| | - Benjamin B Parrott
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
- Savannah River Ecology Laboratory, Aiken, SC 29802, USA
| |
Collapse
|
12
|
Breitenbach AT, Carter AW, Paitz RT, Bowden RM. Using naturalistic incubation temperatures to demonstrate how variation in the timing and continuity of heat wave exposure influences phenotype. Proc Biol Sci 2020; 287:20200992. [PMID: 32752987 DOI: 10.1098/rspb.2020.0992] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Most organisms are exposed to bouts of warm temperatures during development, yet we know little about how variation in the timing and continuity of heat exposure influences biological processes. If heat waves increase in frequency and duration as predicted, it is necessary to understand how these bouts could affect thermally sensitive species, including reptiles with temperature-dependent sex determination (TSD). In a multi-year study using fluctuating temperatures, we exposed Trachemys scripta embryos to cooler, male-producing temperatures interspersed with warmer, female-producing temperatures (heat waves) that varied in either timing during development or continuity and then analysed resulting sex ratios. We also quantified the expression of genes involved in testis differentiation (Dmrt1) and ovary differentiation (Cyp19A1) to determine how heat wave continuity affects the expression of genes involved in sexual differentiation. Heat waves applied during the middle of development produced significantly more females compared to heat waves that occurred just 7 days before or after this window, and even short gaps in the continuity of a heat wave decreased the production of females. Continuous heat exposure resulted in increased Cyp19A1 expression while discontinuous heat exposure failed to increase expression in either gene over a similar time course. We report that even small differences in the timing and continuity of heat waves can result in drastically different phenotypic outcomes. This strong effect of temperature occurred despite the fact that embryos were exposed to the same number of warm days during a short period of time, which highlights the need to study temperature effects under more ecologically relevant conditions where temperatures may be elevated for only a few days at a time. In the face of a changing climate, the finding that subtle shifts in temperature exposure result in substantial effects on embryonic development becomes even more critical.
Collapse
Affiliation(s)
| | - Amanda W Carter
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996-1610, USA
| | - Ryan T Paitz
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Rachel M Bowden
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| |
Collapse
|
13
|
Carter AW, Paitz RT, Bowden RM. The Devil is in the Details: Identifying Aspects of Temperature Variation that Underlie Sex Determination in Species with TSD. Integr Comp Biol 2020; 59:1081-1088. [PMID: 31095337 DOI: 10.1093/icb/icz036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Most organisms experience thermal variability in their environment; however, our understanding of how organisms cope with this variation is under-developed. For example, in organisms with temperature-dependent sex determination (TSD), an inability to predict sex ratios under fluctuating incubation temperatures in the field hinders predictions of how species with TSD will fare in a changing climate. To better understand how sex determination is affected by thermal variation, we incubated Trachemys scripta eggs using a "heat wave" design, where embryos experienced a male-producing temperature of 25 ± 3°C for the majority of development and varying durations at a female-producing temperature of 29.5 ± 3°C during the window of development when sex is determined. We compared the sex ratios from these incubation conditions with a previous data set that utilized a similar heat wave design, but instead incubated eggs at a male-producing temperature of 27 ± 3°C but utilized the same female-producing temperature of 29.5 ± 3°C. We compared the sex ratio reaction norms produced from these two incubation conditions and found that, despite differences in average temperatures, both conditions produced 50:50 sex ratios after ∼8 days of exposure to female-producing conditions. This emphasizes that sex can be determined in just a few days at female-producing conditions and that sex determination is relatively unaffected by temperatures outside of this short window. Further, these data demonstrate the reduced accuracy of the constant temperature equivalent model (the leading method of predicting sex ratios) under thermally variable temperatures. Conceptualizing sex determination as the number of days spent incubating at female-producing conditions rather than an aggregate statistic is supported by the mechanistic underpinnings of TSD, helps to improve sex ratio estimation methods, and has important consequences for predicting how species with TSD will fare in a changing climate.
Collapse
Affiliation(s)
- A W Carter
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - R T Paitz
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - R M Bowden
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| |
Collapse
|
14
|
Warner DA, Mitchell TS, Bodensteiner BL, Janzen FJ. Sex and Incubation Temperature Independently Affect Embryonic Development and Offspring Size in a Turtle with Temperature-Dependent Sex Determination. Physiol Biochem Zool 2020; 93:62-74. [DOI: 10.1086/706786] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Dillard J, Carter AW, Ower GD, Paitz RT, Bowden RM. Learning and behavior in hatchling Trachemys scripta exposed to bisphenol-a during embryonic development. Physiol Behav 2019; 209:112614. [PMID: 31301326 DOI: 10.1016/j.physbeh.2019.112614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 11/29/2022]
Abstract
Steroids play an integral role in orchestrating embryonic development, and they can affect a suite of phenotypic traits, including learning and behavior. Endocrine disrupting compounds (EDCs) can alter steroid-dependent phenotypic traits during embryonic development. Bisphenol-A (BPA) is an EDC that disrupts the action of estrogen, and recent work indicates that BPA can affect learning and behavior similarly to estrogen. We exposed red-eared slider turtle (Trachemys scripta) eggs to BPA during embryonic development and tested hatchlings for effects on learning and behavior in modified T-mazes over the course of two weeks. We found that behavioral patterns changed within a day and over the course of the experiment, but we found no effect of BPA treatment. Further, we found that hatchling turtles were highly consistent in their behaviors. These behaviors varied among individuals, suggesting that there are discrete behavioral types in T. scripta hatchlings. The highly repetitive nature of behaviors in the hatchlings might explain the innate biases that we observed and warrants further study.
Collapse
Affiliation(s)
- Justin Dillard
- School of Biological Sciences, Illinois State University, Normal, IL 61790-4120, United States; Illinois Department of Natural Resources, Springfield, IL 62702, United States
| | - Amanda Wilson Carter
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996-0230, United States
| | - Geoff D Ower
- School of Biological Sciences, Illinois State University, Normal, IL 61790-4120, United States; Illinois Natural History Survey, University of Illinois at Urbana-Champaign, Champaign, IL 61820, United States
| | - Ryan T Paitz
- School of Biological Sciences, Illinois State University, Normal, IL 61790-4120, United States
| | - Rachel M Bowden
- School of Biological Sciences, Illinois State University, Normal, IL 61790-4120, United States.
| |
Collapse
|
16
|
Nichols H, Carter AW, Paitz RT, Bowden RM. Red-eared slider hatchlings (Trachemys scripta) show a seasonal shift in behavioral types. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2019; 331:485-493. [PMID: 31436909 DOI: 10.1002/jez.2315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 11/10/2022]
Abstract
Correlated and repeatable patterns of behavior, termed behavioral types, can affect individual fitness. The most advantageous behavioral type may differ across predictable environments (e.g., seasonally), and maternally mediated effects may match hatchling behavior to the environment. We measured righting response, an indicator of behavioral type, of juvenile red-eared slider turtles (Trachemys scripta) emerging from early and late season clutches to understand if the production of behavioral types differs across the nesting season. There was a significant effect of season, with early season hatchlings righting more quickly than late season hatchlings, and we explored two potential underlying mechanisms, maternal estrogens and maternal investment (e.g., yolk allocation). We dosed early season eggs with an estrogen mixture to mimic late season eggs and assayed hatchling righting response, but found no significant effect of this maternal effect. We assessed maternal investment by measuring egg, hatchling, and residual yolk masses. We found a seasonal pattern in yolk allocation, where early season eggs have more yolk than late season eggs. Early season hatchlings used more yolk for growth rather than maintenance of existing tissues, resulting in larger hatchlings. Interestingly, across both seasons, hatchlings that received less maternal yolk appeared to be more efficient at converting yolk to tissue, but we found no direct correlation with righting behavior. We demonstrate that the prevalence of behavioral types varies across the nesting season, creating correlated suites of seasonal phenotypes in turtle hatchlings, but it appears that neither maternal estrogens or investment in yolk directly underlie this shift in behavior.
Collapse
Affiliation(s)
- Haley Nichols
- School of Biological Sciences, Illinois State University, Normal, Illinois
| | - Amanda W Carter
- School of Biological Sciences, Illinois State University, Normal, Illinois.,Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee
| | - Ryan T Paitz
- School of Biological Sciences, Illinois State University, Normal, Illinois
| | - Rachel M Bowden
- School of Biological Sciences, Illinois State University, Normal, Illinois
| |
Collapse
|
17
|
Carter AL, Bodensteiner BL, Iverson JB, Milne‐Zelman CL, Mitchell TS, Refsnider JM, Warner DA, Janzen FJ. Breadth of the thermal response captures individual and geographic variation in temperature‐dependent sex determination. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13410] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Anna L. Carter
- Department of Ecology, Evolution & Organismal Biology Iowa State University Ames IA USA
| | | | | | | | - Timothy S. Mitchell
- Department of Ecology, Evolution & Behavior University of Minnesota Minneapolis MN USA
| | | | - Daniel A. Warner
- Department of Biological Sciences Auburn University Auburn AL USA
| | - Fredric J. Janzen
- Department of Ecology, Evolution & Organismal Biology Iowa State University Ames IA USA
| |
Collapse
|
18
|
Carter AW, Bowden RM, Paitz RT. Evidence of embryonic regulation of maternally derived yolk corticosterone. J Exp Biol 2018; 221:jeb182600. [PMID: 30266787 PMCID: PMC6262762 DOI: 10.1242/jeb.182600] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 09/24/2018] [Indexed: 12/31/2022]
Abstract
In recent years, the potential for maternal stress effects to adaptively alter offspring phenotype has received considerable attention. This research has identified offspring traits that are labile in response to maternal stress; however, an understanding of the mechanisms underlying these effects is lagging and is crucial to appreciating the significance of this maternal effect. In the present study, we sought to better understand maternal stress effects by examining the potential for embryonic regulation of corticosterone exposure, determining the phenotypic consequences of elevated corticosterone during development, and characterizing the levels of maternally transferred corticosterone in unmanipulated eggs using Trachemys scripta By dosing eggs with tritiated corticosterone and tracking the steroid throughout development, we found that most corticosterone is metabolized, and less than 1% of the corticosterone dose reaches the embryo as free corticosterone. We also found that exogenous dosing of corticosterone, in concentrations sufficient to overwhelm embryonic metabolism, reduces embryonic survival and negatively impacts hatchling traits important to fitness. Our results demonstrate that concentrations of maternal corticosterone in the yolks of unmanipulated eggs are low and are significantly lower than the doses of corticosterone required to elicit phenotypic effects in hatchlings. Taken together, these results provide evidence that both the embryo and the female may minimize corticosterone accumulation in the embryo to avoid reductions in embryonic survival and negative impacts on offspring phenotype and fitness.
Collapse
Affiliation(s)
- Amanda W Carter
- School of Biological Sciences, Illinois State University, Normal, IL 61761, USA
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Rachel M Bowden
- School of Biological Sciences, Illinois State University, Normal, IL 61761, USA
| | - Ryan T Paitz
- School of Biological Sciences, Illinois State University, Normal, IL 61761, USA
| |
Collapse
|
19
|
Roush D, Rhen T. Developmental plasticity in reptiles: Critical evaluation of the evidence for genetic and maternal effects on temperature‐dependent sex determination. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 329:287-297. [DOI: 10.1002/jez.2194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/21/2018] [Accepted: 05/30/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Danielle Roush
- Department of Biology, University of North Dakota Grand Forks North Dakota
| | - Turk Rhen
- Department of Biology, University of North Dakota Grand Forks North Dakota
| |
Collapse
|
20
|
Edwards B, Burghardt LT, Kovach KE, Donohue K. Canalization of Seasonal Phenology in the Presence of Developmental Variation: Seed Dormancy Cycling in an Annual Weed. Integr Comp Biol 2018; 57:1021-1039. [PMID: 28992196 DOI: 10.1093/icb/icx065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Variation in the developmental timing in one life stage may ramify within and across generations to disrupt optimal phenology of other life stages. By focusing on a common mechanism of developmental arrest in plants-seed dormancy-we investigated how variation in flowering time influenced seed germination behavior and identified potential processes that can lead to canalized germination behavior despite variation in reproductive timing. We quantified effects of reproductive timing on dormancy cycling by experimentally manipulating the temperature during seed maturation and the seasonal timing of seed dispersal/burial, and by assessing temperature-dependent germination of un-earthed seeds over a seasonal cycle. We found that reproductive timing, via both seed-maturation temperature and the timing of dispersal, strongly influenced germination behavior in the weeks immediately following seed burial. However, buried seeds subsequently canalized their germination behavior, after losing primary dormancy and experiencing natural temperature and moisture conditions in the field. After the complete loss of primary dormancy, germination behavior was similar across seed-maturation and dispersal treatments, even when secondary dormancy was induced. Maternal effects themselves may contribute to the canalization of germination: first, by inducing stronger dormancy in autumn-matured seeds, and second by modifying the responses of those seeds to their ambient environment. Genotypes differed in dormancy cycling, with functional alleles of known dormancy genes necessary for the suppression of germination at warm temperatures in autumn through spring across multiple years. Loss of function of dormancy genes abolished almost all dormancy cycling. In summary, effects of reproductive phenology on dormancy cycling of buried seeds were apparent only as long as seeds retained primary dormancy, and a combination of genetically imposed seed dormancy, maternally induced seed dormancy, and secondary dormancy can mitigate variation in germination behavior imposed by variation in reproductive phenology.
Collapse
Affiliation(s)
- Brianne Edwards
- Biology Department, Duke University, Box 90338, Durham, NC 27708, USA
| | - Liana T Burghardt
- Biology Department, Duke University, Box 90338, Durham, NC 27708, USA
| | | | - Kathleen Donohue
- Biology Department, Duke University, Box 90338, Durham, NC 27708, USA
| |
Collapse
|
21
|
While GM, Noble DW, Uller T, Warner DA, Riley JL, Du W, Schwanz LE. Patterns of developmental plasticity in response to incubation temperature in reptiles. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 329:162-176. [DOI: 10.1002/jez.2181] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/16/2018] [Accepted: 05/07/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Geoffrey M. While
- School of Biological Sciences University of Tasmania Hobart Australia
| | - Daniel W.A. Noble
- Evolution & Ecology Research Centre School of Biological, Earth, and Environmental Sciences University of New South Wales Sydney Australia
| | - Tobias Uller
- Department of Biology Lund University Lund Sweden
| | - Daniel A. Warner
- Department of Biological Sciences Auburn University Auburn Alabama
| | - Julia L. Riley
- Evolution & Ecology Research Centre School of Biological, Earth, and Environmental Sciences University of New South Wales Sydney Australia
- Department of Biological Sciences Macquarie University Sydney Australia
| | - Wei‐Guo Du
- Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Lisa E. Schwanz
- Evolution & Ecology Research Centre School of Biological, Earth, and Environmental Sciences University of New South Wales Sydney Australia
| |
Collapse
|
22
|
Bowden RM, Paitz RT. Temperature fluctuations and maternal estrogens as critical factors for understanding temperature-dependent sex determination in nature. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2018; 329:177-184. [PMID: 29806743 PMCID: PMC6141314 DOI: 10.1002/jez.2183] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/29/2018] [Accepted: 05/02/2018] [Indexed: 12/25/2022]
Abstract
Vertebrates with temperature-dependent sex determination (TSD) have justifiably received a lot of attention when it comes to the potential effects of climate change. Freshwater turtles have long been used to characterize the physiological and genetic mechanisms underlying TSD and provide a great system to investigate how changing climatic conditions will affect vertebrates with TSD. Unfortunately, most of what we know about the mechanisms underlying TSD comes from laboratory conditions that do not accurately mimic natural conditions (i.e., constant incubation temperatures and supraphysiological steroid manipulations). In this paper, we review recent advances in our understanding of how TSD operates in nature that arose from studies using more natural fluctuating incubation temperatures and natural variation in maternal estrogens within the yolk. By incorporating more natural conditions into laboratory studies, we are better able to use these studies to predict how changing climatic conditions will affect species with TSD.
Collapse
Affiliation(s)
- Rachel M. Bowden
- School of Biological Sciences, Illinois State University, Normal, IL 61790-4120
| | - Ryan T. Paitz
- School of Biological Sciences, Illinois State University, Normal, IL 61790-4120
| |
Collapse
|
23
|
Girondot M, Monsinjon J, Guillon JM. Delimitation of the embryonic thermosensitive period for sex determination using an embryo growth model reveals a potential bias for sex ratio prediction in turtles. J Therm Biol 2018; 73:32-40. [PMID: 29549989 DOI: 10.1016/j.jtherbio.2018.02.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 02/08/2018] [Accepted: 02/08/2018] [Indexed: 10/18/2022]
Abstract
The sexual phenotype of the gonad is dependent on incubation temperature in many turtles, all crocodilians, and some lepidosaurians. At hatching, identification of sexual phenotype is impossible without sacrificing the neonates. For this reason, a general method to infer sexual phenotype from incubation temperatures is needed. Temperature influences sex determination during a specific period of the embryonic development, starting when the gonad begins to form. At constant incubation temperatures, this thermosensitive period for sex determination (TSP) is located at the middle third of incubation duration (MTID). When temperature fluctuates, the position of the thermosensitive period for sex determination can be shifted from the MTID because embryo growth is affected by temperature. A method is proposed to locate the thermosensitive period for sex determination based on modelling the embryo growth, allowing its precise identification from a natural regime of temperatures. Results from natural nests and simulations show that the approximation of the thermosensitive period for sex determination to the middle third of incubation duration may create a quasi-systematic bias to lower temperatures when computing the average incubation temperature during this period and thus a male-bias for sex ratio estimate.
Collapse
Affiliation(s)
- Marc Girondot
- Ecologie, Systématique, Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91400 Orsay, France.
| | - Jonathan Monsinjon
- Ecologie, Systématique, Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91400 Orsay, France.
| | - Jean-Michel Guillon
- Ecologie, Systématique, Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91400 Orsay, France.
| |
Collapse
|
24
|
Carter AW, Sadd BM, Tuberville TD, Paitz RT, Bowden RM. Short heatwaves during fluctuating incubation regimes produce females under temperature-dependent sex determination with implications for sex ratios in nature. Sci Rep 2018; 8:3. [PMID: 29311550 PMCID: PMC5758759 DOI: 10.1038/s41598-017-17708-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/28/2017] [Indexed: 11/08/2022] Open
Abstract
Patterns of temperature fluctuations in nature affect numerous biological processes, yet, empirical studies often utilize constant temperature treatments. This can limit our understanding of how thermally sensitive species respond to ecologically relevant temperatures. Research on turtles with temperature-dependent sex determination (TSD) provides good examples of this, since nest temperatures from many populations rarely exceed those necessary to produce females under constant laboratory conditions. We hypothesized that exposure to brief periods of warm temperatures (i.e., heat waves) are integral to sex determination in species with TSD, which requires tests that move beyond constant temperatures. We exposed Trachemys scripta embryos from multiple populations and across the nesting season to heat waves of variable durations and quantified sex ratios. We found that embryos from all populations were highly sensitive to brief exposures to female producing temperatures; only 7.9 days of exposure produced a 50:50 sex ratio, but the response varied across the nesting season. From these findings, a model was developed to estimate sex ratios from field temperature traces, and this model outperformed traditional methods. Overall, these results enhance our understanding of TSD and emphasize the importance of using biologically relevant temperatures when studying thermally sensitive processes.
Collapse
Affiliation(s)
- A W Carter
- School of Biological Sciences, Illinois State University, Normal, IL, United States.
| | - B M Sadd
- School of Biological Sciences, Illinois State University, Normal, IL, United States
| | - T D Tuberville
- University of Georgia's Savanah River Ecology Lab, Aiken, SC, United States
| | - R T Paitz
- School of Biological Sciences, Illinois State University, Normal, IL, United States
| | - R M Bowden
- School of Biological Sciences, Illinois State University, Normal, IL, United States
| |
Collapse
|
25
|
Carter AW, Bowden RM, Paitz RT. Seasonal shifts in sex ratios are mediated by maternal effects and fluctuating incubation temperatures. Funct Ecol 2017; 31:876-884. [PMID: 28584392 PMCID: PMC5456293 DOI: 10.1111/1365-2435.12801] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sex-specific maternal effects can be adaptive sources of phenotypic plasticity. Reptiles with temperature-dependent sex determination (TSD) are a powerful system to investigate such maternal effects because offspring phenotype, including sex, can be sensitive to maternal influences such as oestrogens and incubation temperatures.In red-eared slider turtles (Trachemys scripta), concentrations of maternally derived oestrogens and incubation temperatures increase across the nesting season; we wanted to determine if sex ratios shift in a seasonally concordant manner, creating the potential for sex-specific maternal effects, and to define the sex ratio reaction norms under fluctuating temperatures across the nesting season.Eggs from early and late season clutches were incubated under a range of thermally fluctuating temperatures, maternally derived oestradiol concentrations were quantified via radioimmunoassay, and hatchling sex was identified. We found that late season eggs had higher maternal oestrogen concentrations and were more likely to produce female hatchlings. The sex ratio reaction norm curves systematically varied with season, such that with even a slight increase in temperature (0.5°C), late season eggs produced up to 49% more females than early season eggs.We found a seasonal shift in sex ratios which creates the potential for sex-specific phenotypic matches across the nesting season driven by maternal effects. We also describe, for the first time, systematic variation in the sex ratio reaction norm curve within a single population in a species with TSD.
Collapse
Affiliation(s)
- Amanda W. Carter
- School of Biological Sciences, Illinois State University, Normal, IL, United States
| | - Rachel M. Bowden
- School of Biological Sciences, Illinois State University, Normal, IL, United States
| | - Ryan T. Paitz
- School of Biological Sciences, Illinois State University, Normal, IL, United States
| |
Collapse
|